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Abstract. The continuous uptake of anthropogenic CO2 by the ocean leads to ocean acidification, which is an ongoing threat 

to the marine ecosystem. The ocean acidification rate was globally documented in the surface ocean but limited below the 

surface. Here, we present a monthly four-dimensional 1°×1° gridded product of global seawater pH at total scale and in-situ 15 

temperature (without standardization to 25°C), derived from a machine learning algorithm trained on pH observations from 

the Global Ocean Data Analysis Project (GLODAP). The proposed pH product covers the years 1992-2020 and depths from 

the surface to 2 km on 41 levels. A three-step machine learning-based algorithm was used to construct the pH product, 

incorporating region division by the self-organizing map neural network, predictor selection by the stepwise regression 

algorithm that adds and removes variables from network inputs based on their contribution to reducing reconstruction errors, 20 

and non-linear relationship regression by feed-forward neural networks (FFNN). The performance of the machine learning 

algorithm was validated using real observations by a cross validation method, where four repeating iterations were carried out 

with 25% varied observations for each evaluation and 75% for training. The proposed pH product is evaluated through 

comparisons to time series observations and the GLODAP pH climatology. The overall root mean square error between the 

FFNN reconstructed pH and the GLODAP measurements is 0.028, ranging from 0.044 in the surface to 0.013 at 2000 m. The 25 

pH product is distributed through the data repository of the Marine Science Data Center of the Chinese Academy of Sciences 

at http://dx.doi.org/10.12157/IOCAS.20230720.001 (Zhong et al., 2023). 

1 Introduction 

Since the Industrial Revolution, the oceans have absorbed approximately one-quarter of the carbon dioxide emitted by 

human activities (Le Quéré et al., 2010; Friedlingstein et al., 2023). The continuous absorption of carbon dioxide from the 30 

atmosphere results in a decline in carbonate saturation states and surface seawater pH, which is a phenomenon of great concern: 

ocean acidification (Caldeira et al., 2003; Feely et al., 2004; Orr et al., 2005; Feely et al., 2009). As one of the primary 

environmental challenges the ocean faces today, ocean acidification will have extensive impacts on marine organisms and the 

ecological environment, resulting in notable changes to the marine ecosystem. Therefore, the assessment of ocean acidification 

is crucial for researching the response of marine organisms to changes in seawater pH and understanding the potential future 35 

changes in the capacity of the global ocean to uptake CO2 (Sabine et al., 2010; Guallart et al., 2015). 

However, acidification research is greatly limited in terms of temporal and spatial coverage due to the lack of long-term, 

global coverage, and continuous seawater pH measurements. Accurate seawater pH measurements are only available from 

select ship surveys and a limited number of time series stations in recent decades (Fay et al., 2013; Takahashi et al., 2014). 

Recent research using discrete ship survey measurements revealed rapid surface ocean acidification in the Arctic Ocean, with 40 
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some areas showing an average decreasing pH trend of -0.0086 yr-1 (Luo et al., 2016; Terhaar et al., 2020; Qi et al., 2022). 

Both seawater pH measurements from time series stations and discrete ship surveys suggest notable regional differences in 

surface ocean acidification rates (Bates et al., 2014; Lauvset et al., 2015). In the Japan/East Sea, the acidification rate in the 

deep ocean may be faster than previously considered and even faster than in the surface ocean (Chen et al., 2017; Li et al., 

2022). Meanwhile, relatively slow acidification was found in the deep Atlantic Ocean below 2000 m (Guallart et al., 2015), 45 

and rising pH in deep waters around 1000 m was also reported in the North Pacific Ocean (Ishizu et al., 2021). With limited 

reports about acidification below the surface, there remains a need to enhance our understanding of global ocean acidification 

rates across varying depths.  

The lack of long-term, global coverage, and continuous seawater pH measurements makes it difficult to expand the 

understanding of global deep ocean acidification using classic regression methods. Recent applications of machine learning 50 

methods in global reconstructions of marine carbonate system variables have facilitated global-scale research on the 

acidification and carbon cycle, including the single/ensemble-based FFNN method and the SOM-FFNN method for 

reconstruction of surface ocean partial pressure of CO2 (pCO2, Landschützer et al., 2014; Chau et al., 2022; Zhong et al., 2022; 

Chau et al., 2024), dissolved inorganic carbon (DIC, Broullón et al., 2020; Keppler et al., 2020; Gregor and Gruber, 2021; 

Chau et al., 2024), and alkalinity (Broullón et al., 2019; Gregor and Gruber, 2021; Chau et al., 2024). These methods have 55 

inspired our methodology for constructing the global gridded seawater pH dataset. Until now, only surface ocean gridded pH 

products are available in acidification research, including the 1° JMA product (Iida et al., 2021), the 1° OceanSODA-ETHZ 

product (Gregor and Gruber, 2021), the 0.25° remote-sensing-based product (Jiang et al., 2022), and the 0.25° CMEMS-LSCE 

product (Chau et al., 2024), which were derived from reconstructing pCO2, DIC, or alkalinity using machine learning 

algorithms and subsequently calculating pH with the CO2SYS program (Lewis and Wallace, 1998). In this paper, we present 60 

a monthly gridded global ocean pH product covering depths of 0-2000 m from January 1992 to December 2020, using a 

machine learning method trained on pH measurements from the Global Ocean Data Analysis Project (GLODAP) dataset 

(Lauvset et al., 2023). The proposed pH product provides regional and global insight into ocean acidification on timescales 

ranging from a few years to multiple decades. 

2 Methods 65 

2.1 Data sources and processing 

The pH measurements at total scale and in-situ temperature and pressure from the Global Ocean Data Analysis Project 

(GLODAP) dataset 2023 version were used for neural network training (Lauvset et al., 2023). The reconstructed pH product 

is also at total scale and in-situ temperature (without standardization to 25°C) based on a gridded global seawater temperature 

product (Cheng et al., 2017). We have collected gridded products of different variables as potential pH predictors (Table 1), 70 

and the selection of these products was based on two reasons. The first reason was their potential association with physical, 

chemical, and biological ocean process which may affect the seawater pH. Another reason was the sufficient availability in 

time and spatial coverage and their potential association with the unavailable interannual variability of some climatological 

products used. Specifically, the mixed layer depth, bathymetry, and ocean currents were related to the physical mixing of 

seawater and spatial distribution of pH. Sea level pressure, surface pressure, wind speed, sea surface height, surface ocean 75 

pCO2, and dry air mixing ratio of atmospheric CO2 were related to the CO2 exchange across the interface. The Multivariate 

ENSO index, Arctic Oscillation index, and Southern Oscillation index may be related to pH variability over years or decades 

in particular regions. The total alkalinity and DIC reflect the ocean carbonate system and were generally used to calculate 

seawater pH indirectly. However, 3D field products with sufficient time and spatial coverage are currently not available for 

these two variables, so monthly climatological 3D products were used for better pH spatial distribution. The remote sensing 80 

products are related to biological production of organic matter, including chlorophyll concentration, diffuse attenuation 

coefficient, remote sensing reflectance, and total absorption/ backscattering. Temporal and spatial sample information, 
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including latitude, longitude, depth and sample time, was also used as supplementary variables. Latitude and longitude were 

normalized to radians using sine and cosine transformations, to present connected sample position information. The spatial 

sample position and time information of GLODAP measurements were input in the training of FFNNs, and the spatial position 85 

and time of defined 1° and monthly product grids were input into FFNNs during the interpolation process to output a gridded 

product. Most predictor products were obtained with a monthly and 1°×1°resolution, which can be directly used without any 

treatments. Differently, products with higher resolutions were integrated into the same monthly and 1°×1° resolution by 

averaging, before they can be used in the relationship fitting. For instance, the mixed layer depth product, originally obtained 

with a resolution of 0.25°×0.25°, was converted to a 1°×1° resolution by averaging 16 0.25° grids into one 1° grid. Similarly, 90 

such as the xCO2 product, predictor products obtained with weekly resolutions were converted to the monthly resolution by 

directly averaging all values within the same month. Products used for variables listed in Table 1 was chose due to their 

sufficient temporal and spatial coverage and the application in previous research on reconstruct of carbonate system variables. 

For example, the ECCO2 MLD product has been used in reconstructions of the CMEMS-LSCE surface ocean carbonate system 

variables product (Chau, et al., 2024) and the MPI-SOM-FFN pCO2 product (Landschützer et al., 2014). 95 
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Table 1. Data products used as pH predictors. 

Predictor Abbreviation Data product and reference Resolution Related process to affect pH 
Sine of (latitude · π/180°) sin(Lat) - - Sample position and time of 

GLODAP pH measurements 
Sine of (longitude · 
π/180°) 

sin(Lon) - - 

Cosine of (longitude · 
π/180°) 

cos(Lon) - - 

Number of months since 
January 1992 

Nmon - - 

Year Year - - 

Month Month - - 

Depth Depth - - 

Temperature and monthly 
anomaly 

Temp, Tempanom IAP global ocean temperature gridded 
product (Cheng et al., 2016; 2017) 

1°, monthly 
since 1940, 0-
2000 m with 
41 levels 

State of carbonate system 

Salinity and monthly 
anomaly 

Sal, Salanom IAP global ocean salinity gridded 
product (Cheng et al., 2020) 

1°, monthly 
since 1940, 0-
2000 m with 
41 levels 

Climatological total 
alkalinity 

Alk AT_NNGv2_climatology (Broullón et 
al., 2019) 

1°, monthly 
climatological
, 0-5500 m 
with 102 
levels 

Climatological dissolved 
inorganic carbon 

DIC TCO2_NNGv2LDEO_climatology 
(Broullón et al., 2020) 

1°, monthly 
climatological
, 0-5500 m 
with 102 
levels 

Climatological dissolved 
oxygen 

DO WOA18 (Garcia et al., 2020a) 1°, monthly 
climatological
, 0-5500 m 
with 102 
levels 

Biological production and 
drawdown of organic matter 

Climatological nitrate Nitrate WOA18 (Garcia et al., 2020b) 1°, monthly 
climatological
, 0-5500 m 
with 102 
levels 

Climatological phosphate Phosphate 

Climatological silicate Silicate 

Mixed layer depth and 
monthly anomaly 

MLD, MLDanom ECCO2 cube92 (Menemenlis et al., 
2008) 

0.25°, 
monthly since 
1992 

Physical mixing of seawater 
and stratification 

Sea surface height and 
monthly anomaly 

SSH, SSHanom ocean wave, tides, current, 
and sea-level rise 

W velocity of ocean 
currents at 5 m, 65m, 
105m, 195m, and in-situ 
depth 

Wvel(5m)−Wvel(i
n-situ) 

Ocean current and upwelling 

Sea level pressure SLP ERA5 (Hersbach et al., 2020) 1°, monthly 
since 1940 

CO2 exchange between 
surface seawater and 
atmosphere Surface pressure Psurf 

dry air mixing ratio of 
atmospheric CO2 and 
monthly anomaly 

xCO2, xCO2 anom NOAA Greenhouse Gas Marine 
Boundary Layer Reference (Lan et al., 
2023) 

0.25°, weekly 
since 1979 

Multivariate ENSO Index MEI bi-monthly Multivariate El 
Niño/Southern Oscillation 
index (Wolter et al., 2011) 

monthly since 
1979 

El Niño and Southern 
Oscillation 

Arctic Oscillation index AOI Climate Prediction Center Daily 
Arctic Oscillation Index (CPC, 2002) 

monthly since 
1950 

Arctic Oscillation 
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Southern Oscillation 
Index 

SOI Climate Prediction Center Southern 
Oscillation Index (CPC, 2005) 

monthly since 
1951 

Southern Oscillation 

Bathymetry Bathy GEBCO_2022 Grid (GEBCO, 2022) 15 arc-second Vertical volume of seawater 

10 m Wind speed and 
monthly anomaly 

Wind, Windanom ERA5 (Hersbach et al., 2020) 1°, monthly 
since 1940 

CO2 exchange between 
surface seawater and 
atmosphere 

Surface ocean pCO2 pCO2 Stepwise FFNN (Zhong et al., 2022) 1°, monthly 
since 1992 

Climatology of Surface 
Ocean pCO2 

pCO2 clim MPI-ULB-SOM_FFN_clim 
(Landschützer et al., 2020) 

0.25°, 
monthly 
climatological 

Chlorophyll and monthly 
anomaly* 

Chl, Chl anom MODIS-Aqua Chlorophyll Data 
(NASA, 2022a) 

9km, monthly 
since 2002 

Biological production of 
organic matter 

Photosynthetically 
Available Radiation 

PAR MODIS-Aqua Photosynthetically 
Available Radiation Data (NASA, 
2022b) 

Light penetration and 
availability in aquatic 
systems influencing 
phytoplankton 
photosynthesis Diffuse attenuation 

coefficient at 490 nm 
KD490 MODIS-Aqua Downwelling 

Diffuse Attenuation Coefficient 
Data (NASA, 2022c) 

Remote sensing 
reflectance at 412-678 
nm** 

RRS412−RRS6
78 

MODIS-Aqua Remote-Sensing 
Reflectance Data (NASA, 2022d) 

Phytoplankton composition 
and suspended particulate 
matter, indicators of 
biological productivity 

Total absorption at 412-
678 nm 

Ta412−Ta678 MODIS-Aqua Inherent Optical 
Properties Data (NASA, 2022e) 

Total backscattering at 
412-678 nm 

Tb412−Tb678 MODIS-Aqua Inherent Optical 
Properties Data (NASA, 2022e) 

*: products from Chlorophyll to Total backscattering are satellite remote sensing products; 

**: Remote sensing reflectance, total absorption, and total backscattering both include 10 wavelengths: 412nm, 443nm, 469nm, 100 

488nm, 531nm, 547nm, 555nm, 645nm, 667nm, and 678nm, with each wave length regard as one individual parameter. 

 

On the other hand, the discrete GLODAP measurements did not match the monthly 1°×1° resolution of pH predictor 

products. To be consistent in the temporal and spatial resolution, the discrete GLODAP measurements were also merged into 

a monthly and 1°×1° resolution by averaging. The vertical layer of the temperature and salinity gridded product were used as 105 

reference standards for adjusting other collected products and constructing the pH product (Cheng et al., 2016; Cheng et al., 

2017; Cheng et al., 2020). These layers covered a depth range of 0-2000 m depth, with a total of 41 layers, including 0 m, 5 

m, 10-100 m at 10 m intervals, 120-200 m at 20 m intervals, 250-900 m at 50 m intervals, and 1000-2000 m at 100 m intervals. 

Subsequently, the in-situ seawater measurements of pH, temperature, salinity, latitude, longitude, and depth from the GLODAP 

dataset were averaged monthly within the same 1°×1° grid (first grid centered at 89.5°S, 0.5°E) and within the same vertical 110 

layer to match the resolution of the predictor products. Since a direct average was used instead of a weighted average, the 

average latitude, longitude, and depth values from the initial measurements within the same 1°×1° grid were then used as new 

sample position for the derived monthly measurements, instead of being located at the center point of grids. The pH 

measurements obtained after the 1°×1° grid and monthly averaging were employed to establish a neural network model and 

fit a non-linear relationship with the pH predictors.  115 

2.2 Biogeochemical province 

To identify predictors that are most relevant to pH drivers in different regions, we divide the global ocean into distinct 

biogeochemical provinces using self-organizing map neural networks (SOM). This was achieved by inputting climatological 

surface seawater temperature, salinity, mixed layer depth, chlorophyll concentration, dissolved oxygen, nitrate, phosphate, 

silicate, and pH (Lauvset et al., 2016) into a 4×4 SOM network, resulting in the partitioning of the global ocean into preliminary 120 
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16 provinces. Subsequently, the small “island” provinces with fewer than ten connected grids or covered by fewer than 100 

GLODAP pH measurements were merged with the nearest neighboring provinces, as the pH reconstruction errors tend to be 

notably higher due to the extremely few training samples in the non-linear relationship fitting by networks. In addition, the 

province separated by continents was manually subdivided into distinct provinces, such as the province spanning the North 

Pacific and the North Atlantic. As a result, the global ocean was divided into 14 biogeochemical provinces, as shown in Figure 125 

1. The boundary of SOM provinces was treated with a cross-boundary method to relieve the discontinuity of spatial distribution 

near the SOM boundaries (Zhong et al., 2022). Due to much more dynamic variation in coastal seawater pH, the global coastal 

areas have higher reconstruction errors than the open oceans. In this study, we removed all coastal areas shallower than 200 m 

bathymetry. Furthermore, because the drivers of seawater pH near the surface is different with deeper waters, the ocean area 

was divided into two layers: the mixed layer (ranging from 0 m to mixed layer depth) and the intermediate layer (ranging from 130 

mixed layer depth to 2000 m). Consequently, the gridded product construction in each province was carried out separately for 

the two layers. Application of SOM method can effectively reduce regional reconstruction errors, but it also generates 

discontinuity problems near the boundary. Therefore, a cross-boundary method was used to improve the FFNN performance 

near the SOM and vertical boundary (Zhong et al., 2022). The spatial scale of training samples in each SOM province was 

expand out of the boundary for 10 grids, and out of the vertical boundary for 2 layers (Figure 2). By increasing additional 135 

training sample outside the SOM province and vertical layer boundary, the cross-boundary method can effectively reduce the 

appearance of dysconnectivity near boundaries (Figures S1 and S2). 

 

Figure 1: Map of the biogeochemical province.  

 140 

Figure 2: Cross-boundary method for better connectivity near the SOM boundary and vertical boundary.  

2.3 pH product construction 

The forward feedback neural network (FFNN) with a single hidden layer was applied to fit the non-linear relationship 

between seawater pH and its predictors to perform spatial interpolation and construct the gridded product: 
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pH = 𝑓(Predictorsଵ , Predictorsଶ, … , Predictors୒) (1) 145 

where f was a non-linear function built by FFNN, and predictors related to chemical, physical, and biological properties were 

selected from products in Table 1. Considering the regional difference in pH variability and its drivers, identifying the 

combination of most relevant predictors in each region was a critical precondition. Thus, the entire product construction 

method includes two steps (Figure 3): 

(1) Selection of seawater pH predictors in each province using the Stepwise FFNN algorithm (referred as (1) Stepwise 150 

FFNN in Figure 3). All the collected products were input into the Stepwise FFNN algorithm to identify the predictors that 

yield the lowest reconstruction errors for seawater pH (Zhong et al., 2022). The variation in standard deviation (MAE) 

calculated by the K-fold cross validation method will feed back to update the input products. The input variables are selected 

as pH predictors one by one in the way MAE decreases the fastest. Specifically, by comparing reconstruction errors of using 

each collected environmental variable in Table 1 as the only predictor input to the FFNN, the variable with the lowest error is 155 

selected as the first pH predictor and moved out from the environmental variables list used in the subsequent steps. 

Subsequently, while keeping the first predictor unchanged, compare reconstruction errors when using each remaining 

environmental variable as the second input for the FFNN. The variable with the lowest error is determined to be the second 

pH predictor. In the same way, new predictors are sequentially determined. This selection process continued through multiple 

iterations until no further reduction in MAE was observed, regardless of whether a variable was added or removed. The 160 

variables identified in previous iterations were then output as the optimal pH predictors. Since both overfitting caused by co-

correlation and underfitting caused by an insufficient number of predictors result in significant increases in pH reconstruction 

errors, the lowest reconstruction error is considered to occur between these two states. In order to eliminate potential co-

correlation and prevent overfitting, whenever after a new predictor is identified, the algorithm also tests whether the 

reconstruction error will decrease when sequentially removing each determined predictor. The algorithm individually removes 165 

each previously identified predictors immediately after adding one variable as a predictor. If the error decreases after removing 

a previously determined predictor, this predictor is highly correlated with other identified predictors. If a certain predictor is 

highly correlated with existing predictors, this predictor tends to fail to compete with other variables in the adding of predictors 

and is generally removed in the following removal step to reduce reconstruction errors. Therefore, most of the co-correlation 

among the selected predictors has been removed in this Stepwise FFNN selection procedure. If products with co-correlations 170 

are still selected, some products may provide important additional information in specific regions, leading to a greater reduction 

in reconstruction errors compared to the increase caused by overfitting. Spatial and temporal variables, such as latitude, 

longitude, and time, are directly related to the spatial or temporal pH patterns rather than the factor driving pH variations. This 

means these variables are often co-correlated with other input environmental variables. In some regions where the 

environmental variables sufficiently reflect the factors influencing pH or where spatial and temporal pH patterns are not 175 

notable, adding latitude, longitude, and time as predictors does not contribute sufficient information and cannot effectively 

reduce predicting errors due to the co-correlation with other predictors. In this case, these spatial-temporal variables are not 

selected as predictors (Tables 2 and 3). In addition, depth is important in reconstructing the vertical pH distribution. However, 

it was not used as a predictor in certain regions of the mixed layer due to the notable similarity between the vertical pattern of 

pH and particular environmental variables used as predictors, such as phosphate, nitrate, and silicate. In this case, the FFNN 180 

model learned how pH varied with depth based on the similarity of vertical pattern between seawater pH and specific physical 

or biological conditions indicated by input environmental variables, and subsequently reconstructed seawater pH values at 

different depths using 3D fields of these environmental variables. In each province, pH predictors were selected separately for 

the mixed layer (Table 2) and intermediate layer (Table 3). In certain polar areas and prior to August 2002 when satellite 

remote sensing products (products from Zeu to Tb678 in Table 1) were not available, the additional selection of predictors was 185 

carried out without the use of satellite remote sensing products (Table S1). These satellite products were not used in the 

intermediate layer due to low correlation with seawater pH, with no need for additional selection.  
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(2) Fitting the non-linear relationship between seawater pH and selected predictors (referred as (2) FFNN in Figure 3). In 

each province, a group of FFNNs were trained separately for the mixed layer and intermediate layer to fit the non-linear 

relationship, based on the predictors selected in the first step and GLODAP pH measurements. To mitigate the influence of 190 

the FFNN's initial state on reconstructed values, multiple networks with the same structure but different initial states were 

trained and their results were averaged (Standard deviation showing in Figure S5). Subsequently, the seawater pH was 

calculated by inputting the product of pH predictors into the trained FFNNs. Since the satellite remote sensing products used 

in this work lack data during the period before August 2002 and in certain polar areas during winter, the FFNN generated 

missing values in these grids when remote sensing products were used as predictors. To address these missing values, we 195 

selected additional groups of predictors after removing remote sensing products (Table S1), and then trained additional FFNNs 

to predict pH in grids with missing values. This procedure was the same as the reconstruction process in the intermediate layer, 

in which the remote sensing products were also not used. Finally, the seawater pH values from all FFNNs were combined to 

construct the global ocean 0-2000 m seawater pH gridded product from January 1992 to December 2020, with a 1°×1° spatial 

resolution. The pH data earlier than 1992 is unavailable because the predictors used from ECCO2 cube92 product (Menemenlis 200 

et al., 2008) also start from 1992. Data after 2020 is limited by the coverage of used surface ocean pCO2 product and will be 

updated in future works. 

All FFNNs used in these two steps have the same structure with a single hidden layer, as using deeper structures tends to 

cause overfitting and increase pH reconstruction errors. The number of neurons was determined by comparing reconstruction 

errors of FFNNs with different neurons based on the same training samples, testing samples, and pH predictors, and then 205 

adopting the number with the lowest reconstruction error. Specifically, for the stepwise FFNN regression step, the number of 

neurons in FFNNs was determined using provisional predictors from preliminary experiments with the number of neurons set 

to 25. 
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Figure 3: The procedure of pH product construction. (1) Stepwise FFNN: the algorithm for selecting predictors (Zhong et al., 210 

2022); (2) FFNN: fitting the non-linear relationship between seawater pH and its predictors. Collected Environmental 

variables: collected products listed in Table 1. pH predictors: the selected most informative variables listed in Tables 2 and 3. 

Remote sensing products: variables from Chlorophyll to Total backscattering in Table 1. Mixed layer: from 0 m to mixed layer 

depth; intermediate layer: from mixed layer depth to 2000 m.  

Table 2. Predictors selected by the stepwise FFNN algorithm in the Mixed layer.  215 

Province 
FFNN 

neurons 
pH Predictor  

P1 Arctic Ocean 10 pCO2, sin(Lat), Depth, Sal, Wvel(105m) 

P2 Subpolar North Atlantic 10 Phosphate, DO, Nmon, DIC, Sal, Bathy 

P3 Seasonally stratified North Atlantic 75 pCO2 clim, Depth, Temp, Silicate, pCO2, DIC 

P4 Permanently stratified North Atlantic 20 pCO2, Phosphate, sin(Lat), Depth, SSHanom, Salanom, Wvel(195m), Temp, Wvel(in-

situ), pCO2 clim, DO 

P5 Equatorial Atlantic 50 sin(Lat), Tb469, Temp, Tb555, Tb547, Nitrate, Tb667, Tb678, Tb488, Tb645, 

Tb531, Sal 

P6 Subpolar North Pacific 10 DIC, sin(Lat), sin(Lon), Depth, Salinity, Temp, pCO2, Wvel(in-situ) 

P7 Subtropical North Pacific 50 Temp, sin(Lon), sin(Lat), pCO2, Phosphate, Sal, pCO2 clim, Depth, cos(Lon), 

Nitrate, Salanom, Alk 

P8 Equatorial Pacific 20 pCO2, Silicate, Depth, Sal, Temp, Wind, Alk, RRS645, Ta555, Ta547 

P9 Equatorial Indian Ocean 10 DO, Tempanom, pCO2, Depth, Wvel(in-situ), Wvel(195m), Wvel(65m) 
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P10 Subtropical South Atlantic 10 pCO2, DIC, Silicate, RRS645, Wvel(in-situ), Ta547, Temp, Ta667, Sal, Phosphate, 

Tb412, Ta412, Tb443, DO, xCO2 

P11 Subtropical South Pacific 10 Silicate, pCO2, Tb412, Phosphate, Depth, Ta488, Tempanom, Ta531 

P12 Subtropical South Indian Ocean 10 pCO2, Silicate, Phosphate, Nitrate, Depth, Wind 

P13 Subpolar Southern Ocean 20 Phosphate, Depth, pCO2, pCO2 clim, Sal, DIC, Nitrate 

P14 Southern Ocean ice 20 Phosphate, Temp, pCO2, Depth, Sal, Alk, SSH 

(The predictors are arranged in order of relative importance, with the variables listed at the front of each province being 

more effective in reducing reconstruction errors when used as pH predictors.) 

Table 3. Predictors selected by the stepwise FFNN algorithm in the intermediate layer.  

Province 
FFNN 

neurons 
pH Predictor  

P1 Arctic Ocean 50 Phosphate, Nitrate, Sal, Depth, sin(Lat), SSH 

P2 Subpolar North Atlantic 20 Phosphate, DO, Depth, Year, Sal, Temp, Nitrate, sin(Lat), Alk, Wvel(195m) 

P3 Seasonally stratified North Atlantic 10 DIC, Nitrate, Temp, Depth, sin(Lon), Year 

P4 Permanently stratified North 

Atlantic 

20 Phosphate, Temp, Depth, sin(Lat), Nmon, sin(Lon), Sal, Salanom, Nitrate, Wvel(in-

situ) 

P5 Equatorial Atlantic 25 Depth, DIC, Sal, sin(Lat), Temp, Phosphate, SSH, cos(Lon), Nitrate, Silicate 

P6 Subpolar North Pacific 25 Phosphate, Sal, Depth, Temp, sin(Lat), Silicate, xCO2 anom, Alk, Nitrate 

P7 Subtropical North Pacific 50 Phosphate, Sal, Temp, Silicate, Nmon, sin(Lat), sin(Lon), Depth, Alk, DIC, 

Nitrate 

P8 Equatorial Pacific 25 Phosphate, Depth, Temp, sin(Lat), Sal, Silicate, xCO2, Nitrate, Wvel(105m) 

P9 Equatorial Indian Ocean 10 Phosphate, Depth, pCO2, Wvel(in situ) 

P10 Subtropical South Atlantic 10 Temp, DIC, Sal, Depth, Nitrate, Wvel(65m), pCO2, pCO2 clim, DO, Wvel(195m) 

P11 Subtropical South Pacific 25 Phosphate, Depth, Temp, xCO2, sin(Lat), Silicate, Sal, Alk 

P12 Subtropical South Indian Ocean 25 Phosphate, pCO2, Depth, Temp, Sal, pCO2 clim, Silicate, DO 

P13 Subpolar Southern Ocean 50 DIC, Temp, Depth, Nmon, Sal, Alk, DO, Silicate, Psurf, Tempanom 

P14 Southern Ocean ice 25 cos(Lon), sin(Lat), Depth, DIC, Temp, Sal 

(The predictors are arranged in order of relative importance, with the variables listed at the front of each province being 

more effective in reducing reconstruction errors when used as pH predictors.) 220 

2.4 Validation and uncertainty 

The reconstructed pH product was validated based on pH measurements from GLODAP and time series stations. First, 

the root mean square error (RMSE) between the FFNN pH and GLODAP pH measurements was calculated using the K-fold 

cross validation method. The GLODAP pH measurements were divided by years, and the K value was 4 to keep aside 25% 

independent measurements for testing in each one of the total 4 iterations. Thus, within every set of four consecutive years, 225 

pH measurements from three years were utilized for training the FFNN model, while the measurements from the remaining 

year were employed for testing. This approach ensured the independence between the training and testing groups (Gregor et 

al., 2019; Zhong et al., 2022). Subsequently, the pH measurements in the testing group were compared against the FFNN pH 

values based on the training group. A total of 4 iterations were carried out with each iteration designating different years as 

the testing groups, ensuring that measurements from all years have been set as the test group once and matched with a FFNN 230 

value. By comparing all FFNN pH values with GLODAP pH measurements, the RMSE of pH and the molar hydrogen ion 

concentration ([H+]) was calculated to evaluate the performance of the FFNN model. The reconstruction of the testing group 

from the training group is similar to the interpolation process, wherein the FFNN is trained with existing measurements to 

reconstruct pH in unknown areas.  
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Second, the reconstructed seawater pH product was compared with independent pH measurements from the Hawaii Ocean 235 

Time-series (HOT, 22° 45' N, 158° 00' W, since October 1988) (Dore et al., 2009), Bermuda Atlantic Time-series Study (BAT, 

31°50' N, 64°10' W, since October 1988) (Bates et al., 2007; Bates et al., 2020), and The European Station for Time Series in 

the Ocean Canary Islands (ESTOC, 29°10' N, 15°30' W, from 1995 to 2009) (González-Dávila et al., 2010). The long-term 

trend was further compared with data from the Irminger Sea station (64.3°N, 28.0°W, from 1983 to 2019, Ólafsson, 2016; 

Ólafsdóttir et al., 2020a), the Iceland Sea station (68.0°N, 12.7°W, from 1985 to 2019, Ólafsson, 2012; Ólafsdóttir et al., 240 

2020b), and the DYFAMED station (42.3°N, 7.5° E, from 1991 to 2017, Coppola et al., 2024). For better evaluating the 

performance of FFNN below the surface, the constructed pH product was also compared to independent delayed-mode pH-

adjusted data with quality control flag 1 from the biogeochemical-Argo (BGC-Argo) profiles from Global Data Assembly 

Centre (Claustre et al., 2020; Argo, 2024). Validation based on these independent measurements from time series stations and 

BGC-Argo profiles provides additional evidence of data accuracy.  245 

A comparison between the method of training FFNN with pH and the method of training FFNN with [H+] then converting 

to pH was carried out, to validate which way has a lower pH reconstruction error (Figure S3). In addition, to identify the 

difference in pH variability uncertainty hidden by logarithm among regions with the same pH RMSE but different pH level, 

the uncertainty of reconstructed pH values was converted from [H+] RMSE instead of directly using pH RMSE. The pH 

obtained from the FFNN was first converted to [H+] to estimate RMSE. Subsequently, the pH values were shown as pH0±σ at 250 

each given pH0 value, and the local uncertainty σ stem from FFNN reconstruction errors was calculated as the following: 

𝜎 = −logଵ଴(10
ି୮ୌబ − 𝑅𝑀𝑆𝐸[ୌశ])−pH଴  (2) 

where RMSE[H+] was the RMSE of [H+] converted from FFNN pH in each layer of all 14 biogeochemical provinces, pH0 was 

the local FFNN predicted pH value. The local uncertainty 𝜎 calculated by this method is simultaneously related to the pH 

reconstruction error and local pH level which serves to convert the overall province FFNN error into local errors and better 255 

distinguishes the differences in uncertainty across different regions. The uncertainty of products used as pH predictors is one 

ineluctable source for pH reconstruction errors of the FFNN model. However, the direct estimation of pH uncertainty from 

summing the uncertainty of each used product is not feasible. Combining the inherent uncertainties of different predictor 

products via error propagation relies on the partial derivatives of pH to each predictor, but the non-linear relationships 

established by the FFNN do not have a specific formula, leading to the difficulty in calculating the partial derivatives. 260 

Therefore, the local uncertainty of our pH product was directly estimated from the regional FFNN pH reconstruction errors 

and local pH values following formula (2), instead of synthesizing the inherent uncertainty of each used predictor product 

through the propagation of errors. The inherent uncertainty and construction method of predictor products are described in the 

Supplementary text. 

3 Results and discussion 265 

3.1 Validation of algorithm 

3.1.1 Validation based on GLODAP and time series measurements 

Compared with the GLODAP dataset, most reconstructed values of Stepwise FFNN are close to the GLODAP pH 

measurements, concentrated around the y=x line (Figure 4). Only a few samples notably differ between the pH measurements 

and the reconstructed values, with the RMSE of 0.028 in the global ocean of 0-2000 m. A better performance of the FFNN 270 

was found in the intermediate layer, with testing samples more concentrated on the y=x line. The RMSE in the mixed layer is 

0.034, higher than 0.026 in the intermediate layer. The minor difference between the reconstructed value and the pH 

measurements and the R2 of 0.97 in the intermediate layer may be caused by less pH variability at depth and better model fit 

with broader pH value range. 
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 275 
Figure 4: Comparison between FFNN pH and GLODAP pH measurements. a): mixed layer from the surface to mixed layer depth; b): 

intermediate layer from mixed layer depth to 2000 m. Black lines: the y=x line; red lines: the linear regression between GLODAP pH and 

Stepwise FFNN pH (Lauvset et al., 2023); Slope: slope of the linear regression. 

The RMSE between the FFNN pH and GLODAP pH measurements at most grids were lower than 0.03 (Figure 5a). The 

performance of FFNN was relatively better in the temperate oceans, with the RMSE lower than 0.02 at some temperate grids. 280 

However, relatively higher RMSE was found in the equatorial and polar oceans, especially in the eastern equatorial Pacific, 

the near-polar North Pacific, and the northwest Indian Ocean. The RMSE was relatively lower in regions with concentrated 

GLODAP measurements, such as the near-polar North Atlantic, south Atlantic, and south Indian Ocean. 

Due to the higher seasonal and interannual variability of seawater pH near the surface ocean, the RMSE decreases with 

depth in all basins (Figure 5b). At the surface ocean, the RMSE between the FFNN pH and the GLODAP pH measurements 285 

was 0.044. The RMSE fluctuates between 0.032 and 0.048 at the subsurface 0-200 m. The RMSE between the FFNN pH and 

the GLODAP pH measurements decreased rapidly from the 200 m depth. In the global ocean 1500-2000 m depth, the global 

RMSE was lower than 0.015. While at 2000 m depth, the global ocean RMSE at 2000m was 0.013, with the higher RMSE in 

the Arctic Ocean and the lower in the Southern Ocean. The vertical distribution of the RMSE and statistical distribution of pH 

difference in different basins all suggested a relatively higher reconstruction error in the mixed layer than in the intermediate 290 

layer (Figure 5d). The vertical difference of RMSE between the mixed layer and intermediate layer was most notable in the 

Arctic and Indian Ocean, where the RMSE at different depths was also higher than the other basins. The RMSE in the surface 

Arctic Ocean was higher than 0.10 and decreased rapidly to 0.025 by 450 m depth. On the contrary, the RMSE of the surface 

Indian Ocean was 0.018, but increased to 0.053 by 80 m depth and then decreased continuously with depth. The high RMSE 

of subsurface oceans is because there are almost no GLODAP pH measurements in the entire Indian Ocean at 50-150 m depth. 295 

The RMSE in different years also suggested the notable influence of pH measurement amount on the FFNN reconstruction 

errors. The RMSE in the early years was relatively higher than in recent years, while the number of GLODAP measurements 

increased with the years (Figure 5c).  
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Figure 5: Distribution of RMSE between FFNN pH values and GLODAP pH measurements. a): global spatial distribution of RMSE 300 

between FFNN pH and GLODAP pH measurements at 0-2000 m (Lauvset et al., 2023); b): basin average RMSE at different depth; c): 

temporal distribution of global RMSE; d): Statistical distribution of pH difference between reconstructed pH values and GLODAP pH 

measurements in each basin. 
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305 

 
Figure 6: Comparison between FFNN pH and time-series measurements. a-b): pH value, pH difference and its distribution, pH seasonal 

variability of FFNN result and time series measurements at the BAT station; c-d): the ESTOC station; e-f): the HOT station. 

The Stepwise FFNN pH product showed variability of seawater pH close to the independent time series observations in 

the surface ocean from HOT, ESTOC, and BAT stations (Figure 6). At the BAT station, the RMSE between the reconstructed 310 

pH and time series observations was 0.013. The surface seawater pH of our Stepwise FFNN product decreased by 0.0017 ± 

0.0007 yr-1 on average during the past three decades at the BAT station, close to the -0.0018 ± 0.0001 yr-1 of BAT time series 

observations in the same period (Bates et al., 2020). At the ESTOC station, the Stepwise FFNNN product and time series 

observations were also well consistent, with the RMSE of 0.009 and a similar long-term trend (González-Dávila et al., 2010). 

The RMSE between the Stepwise FFNN product and HOT time series observations was also 0.010, and the long-term trends 315 

of the Stepwise FFNN pH product was 0.0018 ± 0.0004 yr-1, consistent with the HOT time series observations. Although at 

the BAT station, the Stepwise FFNN product suggested a smaller seasonal change scale than the time series observations, the 

seasonal patterns of surface seawater pH were consistent between the Stepwise FFNN product and time series observations at 

all three stations. The extreme values not reconstructed by the FFNN are mainly observed at the BAT station near 2010 and at 

the HOT station near 2000 during La Niña events, and at the HOT station before 2000 during El Niño events. Differently, the 320 

extreme values not reconstructed by the FFNN are less observed at the ESTOC station, where the surface pH did not notably 
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fluctuate during El Niño/La Niña events. It can be inferred that the extreme values not reconstructed by the FFNN may be due 

to its underestimating of the impact of El Niño/La Niña events on pH of certain temperate areas. Compared to previous surface 

ocean seawater pH product, which were derived from reconstructed DIC, TA, or pCO2 products, the Stepwise FFNN product 

was consistent with the pH trend from the majority of time series stations (Table 4). The long-term pH trend of our product at 325 

the ESTOC station was slower than other gridded products, but the result is still close to the -0.0016 ± 0.0001 yr-1 of real 

observations. In the Irminger Sea station, the FFNN pH trend was notably faster than the result of time series observations. 

However, differences in pH trend among pH products were most remarkable in this station. On the global scale, the pH trend 

of our FFNN product is -0.0015 ± 0.0002 over the period from 1992 to 2020. There is no significant difference between our 

FFNN product, the CMEMS product, and the Copernicus product under the current uncertainty.  330 

Table 4: Comparison of surface acidification rate with previous product in different time series stations and on a global scale. 

Stations Period 
Time series 

observation 

Stepwise FFNN  

(This study) 

JMA 

(Iida et al., 2021) 

CMEMS  

(Chau et al., 

2024) 

OS-ETHZ 

(Gregor et al., 

2021) 

Copernicus 

(Copernicus 

Marine Service, 

2020) 

BAT 1992~2020 -0.0018 ± 0.0001 -0.0017 ± 0.0007 -0.0018 ± 0.0002 -0.0018 ± 0.0002 -0.0018 ± 0.0002 - 

ESTOC 1995~2010 -0.0016 ± 0.0001 -0.0014 ± 0.0005 -0.0022 ± 0.0003 -0.0020 ± 0.0002 -0.0017 ± 0.0003 - 

HOT 1992~2020 -0.0018 ± 0.0001 -0.0018 ± 0.0004 -0.0020 ± 0.0001 -0.0021 ± 0.0001 -0.0019 ± 0.0001 - 

Iceland Sea 1992~2019 -0.0020 ± 0.0004 -0.0028 ± 0.0002 -0.0030± 0.0003 -0.0015 ± 0.0002 -0.0020 ± 0.0002 - 

Irminger Sea 1992~2019 -0.0025 ± 0.0004 -0.0022 ± 0.0002 -0.0027 ± 0.0002 -0.0017 ± 0.0003 -0.0016 ± 0.0003  

DYFAMED 1998~2017 -0.0010 ± 0.0008 -0.0005 ± 0.0003 - -0.0017 ± 0.0003 -0.0023 ± 0.0004  

Global 1992~2020 - -0.0015 ± 0.0002 -0.0018 ± 0.0000 -0.0017 ± 0.0004 -0.0018 ± 0.0000 -0.0017 ± 0.0002 

(the trend from different products for comparison were recalculated based on data during same period noted in the second column; Stepwise 

FFNN product: reconstructed from pH measurements with 1°×1° and monthly resolution from 1992 to 2020, covering global open ocean 0-

2000 m; JMA product: reconstructed from DIC and Alk with 1° and monthly resolutions from 1990 to 2022, covering global surface ocean 

except a portion of the Arctic; CMEMS product: reconstructed from pCO2 and Alk with 1° or 0.25° resolutions and monthly resolution from 335 

1985 to 2021, covering global surface ocean except a portion of the Arctic; OS-ETHZ product: reconstructed from pCO2 and Alk with 1° 

and monthly resolutions from 1982 to 2022, covering global surface ocean except the Arctic; Copernicus product: mean sea water pH time 

series and trend from Multi-Observations Reprocessing, from 1985 to 2021) 

 

Compared with the time series data below the surface, the FFNN pH was close to the pH observations at upper few 340 

hundred meters in the BAT and HOT station (Figure 7). However, higher RMSE and larger ranges of pH difference were 

observed at 500-1500 m in the BAT station and below 300 m in the HOT station. This may be due to the sparser GLODAP 

observations used to train the FFNN model in these areas. Additionally, as depth is used as a pH predictor, in the validation 

based on the GLODAP dataset the FFNN pH values used for validation were outputted at the same depth of the GLODAP 

observations. When comparing FFNN pH with independent time series observations, differences in depth between the pH 345 

product and the observations can amplify the calculated pH difference and RMSE. For example, the FFNN pH product was 

reconstructed at depths of 1800 m and 2000 m in the bottom. If the time series observation is at 1910 m depth, it will be 

compared with the FFNN pH value at 2000 m in the independent validation. This depth difference significantly increases the 

pH error in validation based on independent data. Despite higher RMSE at certain depths, the RMSE at most depths in the 

deep areas of the BAT station and DYFAMED station is below 0.03, indicating that the notable deviations may only occur at 350 

local scale. 
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Figure 7. RMSE and pH difference between FFNN pH and time series observations at different depths. a) BAT station 

at 31°50' N, 64°10' W based on data from 1992 to 2020; b) HOT station at 22° 45' N, 158° 00' W based on data from 1992 to 355 

2020; c) DYFMED station at 42.3°N, 7.5° E based on data from 1998 to 2017. 

 

3.1.2 Validation based on BGC-Argo float pH measurements 

Comparison with time series observations in deeper oceans suggested that the distribution of pH reconstruction errors 

with depth varies notably across different stations. To better assess the performance of FFNN in the reconstruction of pH at 360 

different depths, the FFNN reconstructed pH was further evaluated by comparing with independent BGC-Argo delayed-mode 

pH-adjusted data with quality control flag 1 at various depths (Argo, 2024), with spatial positions showing in Figure S6. 

Different from the validation results based on the GLODAP dataset, the RMSE between FFNN pH and BGC-Argo pH data in 

the intermediate layer is 0.051, higher than 0.035 in the mixed layer (Figures 8a and 8b). In both the mixed layer and 

intermediate layer, most samples were evenly distributed around the y=x line. However, in the intermediate layer, some 365 

samples were slightly offset and distributed below the y=x line, which may be the main reason for the notably higher RMSE 

between FFNN pH and BGC-Argo pH data in the intermediate layer. Overall, there is a good linear correlation between FFNN 

reconstructed pH and independent BGC-Argo pH data, with R² values of 0.73 and 0.84 in the mixed layer and intermediate 

layer, respectively. 

 370 

Figure 8. Difference between FFNN pH and BGC-Argo floats pH. a) comparison between FFNN pH and BGC-Argo floats 

pH in the mixed layer; b) comparison between FFNN pH and BGC-Argo floats pH in the intermediate layer; c) Statistical 

distribution of pH difference (FFNN pH minus BGC-Argo floats pH) at different depth levels. FFNN pH: pH data 

reconstructed in this work; BGC-Argo pH: pH data from BGC-Argo data from France Coriolis GDAC (Argo, 2024). 

The distribution of pH differences between FFNN pH and BGC-Argo pH data at different depths reveals a relatively 375 

smaller biases above 500 m (Figure 8c). However, below 500 m, the bias between FFNN pH and BGC-Argo pH data increases 

with depth and was the most remarkable at 2000 m. Comparing the pH bias calculated based on BGC-Argo dataset and 

GLODAP dataset, it is evident that only the bias between FFNN pH and BGC-Argo pH data tends to be more notable in deep 

areas except the Pacific Ocean (Table 5). In contrast, greater biases between FFNN pH and GLODAP pH occur mainly in the 
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surface layer, with the most in the surface Indian Ocean. This disparity in distribution patterns between biases based on BGC-380 

Argo dataset and GLODAP dataset is most remarkable in the Southern Ocean, where the bias between FFNN pH and GLODAP 

pH is nearly zero below 1000 m, compared to biases between FFNN pH and BGC-Argo pH data ranging from 0.040 to 0.068. 

These differences between FFNN pH and BGC-Argo pH data are primarily attributed to the discrepancies between GLODAP 

dataset and the BGC-Argo dataset in the deep ocean, as our product was based on the GLODAP dataset and small biases with 

GLODAP pH were observed in the deep ocean. 385 

 

Table 5. pH bias by area and depth computed with BGC-Argo and GLODAP dataset. 

Area  0-50 m 50-200 m 200-500 m 500-1000 m 1000-1500 m 1500-2000 m 

Pacific 

BGC-Argo 
bias 0.028 0.016 -0.003 -0.013 0.027 -0.004 

N* 16433 34708 36431 19840 8772 3565 

GLODAP 
bias -0.001 -0.001 0.000 0.000 0.000 -0.001 

N 18687 26629 22746 24843 12613 13817 

Atlantic 

BGC-Argo 
bias 0.018 0.019 0.013 -0.021 0.031 0.068 

N 3285 6832 7152 3565 1622 1288 

GLODAP 
bias 0.000 0.000 -0.001 -0.001 0.000 0.000 

N 11808 15894 14330 18056 10686 11780 

Indian 

BGC-Argo 
bias 0.023 0.034 0.025 -0.022 0.000 0.036 

N 407 916 920 491 241 57 

GLODAP 
bias -0.006 -0.001 -0.003 -0.004 -0.004 -0.001 

N 3145 5397 5124 5276 3457 3421 

Southern 

BGC-Argo 
bias 0.008 0.000 0.001 0.015 0.040 0.068 

N 66436 130563 135817 72564 27579 18692 

GLODAP 
bias 0.004 0.001 0.001 0.000 0.000 0.000 

N 7983 12268 10457 10341 6169 5800 

Global 

BGC-Argo 
bias 0.012 0.004 0.001 0.008 0.036 0.057 

N 86561 173019 180320 96460 38214 23602 

GLODAP 
bias -0.001 0.000 0.000 -0.001 -0.001 0.000 

N 46415 66635 57491 62447 34994 37008 

(*: N is the number of BGC-Argo or GLODAP samples used to compute the biases.) 

3.2 Gridded pH product 

3.2.1 Spatial pH distribution 390 

The spatial distribution of long-term average seawater pH in the Stepwise FFNN product suggests the lowest surface 

seawater pH in the equatorial Pacific with an average value near 8.00 (Figure 9a), which is in good agreement with the surface 

seawater pH range of 7.91-8.12 observed in the equatorial Pacific in recent decades (Sutton et al., 2014). The upwelling 

transporting the deep water with high dissolved inorganic carbon and low pH to the surface was the main driver. The equatorial 

Indian Ocean and the equatorial Atlantic also show a low surface pH of about 8.05, consistent with the distribution patterns of 395 

the GLODAP pH climatology (Lauvset et al., 2016). The highest surface pH is found in the Atlantic sector of the Arctic Ocean, 

where the average surface pH was around 8.15 during the past three decades. Besides, the average surface pH in temperate 

oceans is relatively higher, such as the south Indian and south Atlantic Oceans. In the temperate Pacific Ocean, differences in 

surface pH levels were observed between the west and east in both our product and GLODAP pH climatology, which may be 

caused by the spread of eastern equatorial seawater with extremely low pH. At the deeper depth of 1000 m, the spatial 400 
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distribution pattern of FFNN pH product is generally consistent with the GLODAP climatology, despite still some disturbance 

of bad FFNN performance along the SOM province boundary and the higher FFNN pH in the Southern Ocean. 

 

Figure 9: Average pH distribution from FFNN pH product and GLODAP climatology normalized to the year 2002. The 405 

GLODAP climatology data is from Lauvset et al., 2016. 

The vertical distribution of average pH in the proposed product showed a notable pH decrease with increasing depth in 

the upper 500 m of different basins (Figure 10). The seawater pH was the lowest at nearly 500 m and rose with increasing 

depth at 500-2000 m in the Pacific and Atlantic oceans. The distribution pattern of seawater pH in the Indian Ocean was similar 

to that in the South Pacific, with the lowest seawater pH appearing near 1000 m. The subsurface seawater with low pH in the 410 

Atlantic Ocean and Indian Ocean was mainly concentrated in the equatorial region. In contrast, subsurface seawater with low 

pH in the Pacific Ocean appeared in subpolar and equatorial regions. The overall distribution pattern of the reconstructed pH 

is in good agreement with previous research (Lauvset et al., 2016; Lauvset et al., 2020). It can be concluded that the FFNN 

fitted the relationship between GLODAP seawater pH and its predictors well, and the proposed pH product has good accuracy. 

Based on the pH predictors selected by the Stepwise FFNN algorithm, differences in processes driving pH variability 415 

were identified between the mixed layer and intermediate layer in most provinces. In the mixed layer, surface ocean pCO2 was 

identified as the most informative predictor in many provinces, followed by temperature and nutrient concentration. This 

suggests that the CO2 exchange between surface ocean and atmosphere is the primary driver of pH variability, followed by 

biological CO2 utilization and seasonal changes in seawater temperature. In contrast, phosphate was identified as the most 

informative predictor in the intermediate layer, followed by temperature and depth. This suggests that the primary process 420 

driving pH variability is the remineralization of organic matter, converting organic carbon into inorganic forms and also 

releasing nitrogen and phosphorus. Given the notably smaller seasonal temperature changes in the intermediate layer compared 

to the mixed layer, the selection of temperature as an important pH predictor may indicate a notable influence of ocean warming 

on seawater pH variability. Additionally, depth was also selected as an important predictor in the intermediate layer. The 

observed pattern of seawater pH decreasing with increasing depth in most provinces, as suggested by the constructed pH 425 

product, may be the main reason. 
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Figure 10: Climatological vertical distribution of zonal average FFNN pH in main basins. The pH values shown at each 

latitude were averaged from pH values across all longitudes within each major basin. 

3.2.2 Uncertainty 430 

As described in the method section, the FFNN pH was converted to [H+] to calculate the regional RMSE of [H+] between 

FFNN results and GLODAP measurements, and then the RMSE of [H+] in each SOM province was used to calculate the pH 

product uncertainty caused by the construction algorithm (Equation 2). Due to higher reconstruction errors, the pH product 

uncertainty is relatively higher near the surface (Figure 11). The uncertainty is generally lower than 0.02 at depths from 500 

m to 2000 m, except for some regions near the SOM province and vertical boundary. Although we have used a cross-boundary 435 

method to improve the FFNN performance near the SOM and vertical boundary, there are still some discontinuity problems 

and relatively higher uncertainty. This is because the pH values on two sides of the SOM boundary were reconstructed from 

two different FFNN models, which were trained with different samples and used different predictors. If one of the FFNN 

models experienced a worse performance due to insufficient training samples or predictors, the pH values on two sides of the 

SOM boundary will still differ notably, that is, discontinuity along the boundary. Therefore, the analyze on a regional scale 440 

based on pH values near SOM boundaries should be more cautious when using our product. In addition, the equatorial and 

polar regions show an uncertainty higher than 0.04. This is because the FFNN performance tends to be worse in regions with 

the highest and lowest pH levels than in regions where pH values are near the average level. Especially in the Arctic Ocean, 

the pH measurements are much sparser leading to the highest reconstruction error and pH uncertainty. Therefore, the proposed 

pH product should be cautiously used in regional analysis near the boundaries or equatorial and polar regions. 445 
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Figure 11: Uncertainty of FFNN pH product in main basins. 

4 Data availability 

The materials used in this research including the gridded seawater pH product (NetCDF files for all individual years), 

MATLAB code for reconstruction and validation, and other materials (available as .m or .mat files) are available from the 450 

Marine Science Data Center of the Chinese Academy of Sciences at http://dx.doi.org/10.12157/IOCAS.20230720.001 (Zhong 

et al., 2023). The used pH measurements are available from GLODAP (https://glodap.info/index.php/merged-and-adjusted-

data-product-v2-2023/, Lauvset et al., 2023), data products used for predictors are available from references listed in Table 1. 

5 Conclusions 

Quantifying the global seawater pH variability is important for understanding the future responses of oceans on the uptake 455 

of anthropogenic CO2. A four-dimensional global seawater pH product covering depths from the surface to 2000 m and years 

from 1992 to 2020 was reconstructed in this work. This product serves as a reference for guiding acidification surveys by 

providing a general understanding of acidification process at different depths on a basin scale and indicating areas with 

potential fast or slow acidification rates. Additionally, the pH product brings insights into acidification research and can be 

used to analyze the influence of specific ocean processes on acidification rates and the broader impacts of acidification on a 460 

large scale when direct observations are unavailable. However, caution should be exercised when using this product for 

regional analyses at a small spatial scale. The analysis of pH RMSE and uncertainty suggested that the proposed pH product 

remains limited in equatorial and polar regions and along the SOM boundary lines. This limitation was caused by sparse 
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measurements and method disadvantages, which can be mitigated in future improvement works. Potential improvement may 

be achieved by increasing more predictor products to capture the pH drivers, testing more machine learning algorithms, and 465 

accumulating more seawater pH observations. Besides, the method used to reconstruct the pH product can be applied in 

reconstruction of global fields of other ocean chemical variables, such as nutrients, particulate organic carbon, and dissolved 

inorganic carbon. The global field of these variables may further improve the pH product accuracy, as climatological products 

of these variables were used as pH predictors and lacked interannual variability information. Overall, decreasing seawater pH 

will influence the metabolism of marine organisms and result in notable changes to the marine ecosystem. The discrete 470 

observations may be insufficient to support research on large scales. With the machine learning method in this work, the 

discrete pH measurements were mapped to global gridded fields to fill the unsampled areas. Our product can be used for 

analysis of seasonal to decadal and regional to global pH variability, to break through the limitation of discrete observations. 
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