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Reviewer Comment #2 

Report for the manuscript 

"A global monthly field of seawater pH over 3 decades: a machine learning approach" by 

G. Zhong et al. 

The manuscript presents an application of machine learning techniques to reconstruct global 

fields of seawater pH covering the years 1992 to 2020 at 1° and monthly resolutions. This research 

complements to the exiting research studies on generating pH values at the surface ocean by 

providing global maps of seawater pH for depth levels up to 2000 m, essential for understanding 

ocean acidification and its impacts on ecosystems in the ocean interior. 

General comments: 

Machine learning offers flexible frameworks to link in situ observations of marine carbonate 

system variables with relevant environmental conditions. The novelty of this research lies on the 

idea of mapping on direct pH data from the surface down to different depth layers instead of 

computing through the carbonate system speciation given prior parameters as pCO2, DIC, …. The 

authors are also able to integrate various data sources, including in-situ measurements and satellite-

based datasets as input of pH estimates. 

While the manuscript presents the effectiveness of machine learning models (SOM, Stepwise 

FFNN, FFNN), there is a crucial need for greater transparency regarding model architecture, 

selection process of predictors, hyperparameter tuning, model accuracy and uncertainty 

quantification. Including these details would enhance the reliability of the proposed product and 

interpretability of the study. 

Response: Thanks for the suggestion. We have revised the methodology section for better clarity, 

the detailed changes are as the following responses. 

1.Methodologies: 

Even interpolation with direct pH data may be feasible but model accuracy remains limited 

due to the modest amount and data coverage of GLODAP pH used for training and validation, that 

may be much more problematic at the deep sea. More statistics on GLODAP data used for FFNN 

training and validation are needed for a comprehensive evaluation on the model efficiency. It 

would be worthy to test the proposed method by subsampling with the same GLODAP tracks on 

the exiting products that offer global maps of pH at some levels depths (see for instance: 

https://doi.org/10.48670/moi-00015). 

Response: Thanks for the suggestion. As we only divided two vertical layer to train FFNNs, the 
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number of training samples at the deep sea is comparable with the mixed layer near surface, and 

only the depth coverage of these training samples was notably larger than the mixed layer. 

Although these training samples were sparser in space, the FFNNs suggested a low predicting pH 

at the deep sea, which may be caused by the smaller seasonal and annual pH variability at the deep 

sea.  

We used about 75% of GLODAP data for training and about 25% for testing in each iteration 

of evaluation, with training and testing groups divided by years. After repeating four times and 

changing testing groups in each iteration, all GLODAP sample has been used for testing once to 

carry out a comprehensive evaluation. We have added a figure showing the statistics of training 

and testing sample in the supplement as the following Figure S1. 

The mentioned product in https://doi.org/10.48670/moi-00015 starts from 2021, which does 

not coincide with the temporal coverage of our product and were not used for evaluation. 

Furthermore, other existing machine learning-based products are only available for the global 

surface ocean, so we only presented comparisons of surface pH trends with these products. For 

further evaluation of our product in deep sea, we have added comparison with qualified pH data 

from Biogeochemical Argo float dataset in the validation section. 
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Figure S1. Statistical distribution of GLODAP samples used for training and testing in each 

province. Iteration 1-4: repeated evaluation with different training and testing samples dividing by 

years. Samples in 1992, 1996, …, 2020 were used for testing and the rest were used for training in 
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iteration 1; samples in 1993, 1997, …, 2017 were used for testing and the rest were used for 

training in iteration 2. 

The use of all the three ML algorithms seems redundant and would gain uncertainty for pH 

mappings (particularly with limited number of training data). FFNN itself would be skillful 

enough to interpolate pH without SOM for regional clustering and stepwise FFNN for predictor 

selection (see for instance: Broullón et al., 2019; 2020; Chau et al., 2022; 2024). Results derived 

from SOM shown in this study (e.g. Figures 1 and 8) does do not reflect the sharing patterns of 

mechanisms in CO2 uptake and storage, e.g., at temperate (equatorial) zones between different 

oceanic basins. pH estimation based on clustered biomes creates discontinuity at the regional 

boundary. Clustering and predictor selection are probably available in FFNN training phase as it 

automatically weights and select input neurons to get optimal output. In addition, the use of lat, 

lon, depth as predictors potentially locallizes training data and would allow to interpolate pH 

at non-observed locations. Results after Stepwise FFNN are not accurate enough (see comment 

for Table 2 in Specific Comments). 

Response: Thanks for the suggestion. SOM-based regional clustering has also been proved 

effective in reducing regional predicting error in machine learning mapping of carbonate system 

variables, such as Landschützer et al. (2016), Iida et al. (2021), and Zhong et al. (2022). Although 

there is discontinuity problem, we decided to use SOM clustering based on the following main 

reasons:  

(1) It is difficult to adjust the FFNN architecture and input predictor to obtain the optimal 

performance in different regions and depths. The number of neurons and combination of 

predictors adjusted to reduce predicting error in specific region may also lead to higher errors in 

other regions. Using regional-specific predictors and model architectures can reduce errors in 

different regions simultaneously. 

(2) Inputting over 300 thousand unbalanced GLODAP samples into one FFNN model may 

generate biased outputs in regions with sparser samples. Previous research suggested the one 

FFNN trained with unbalanced samples will generally output values biased toward the majority 

pattern of training samples (Zhong et al., 2024). The one FFNN model only get optimal output in 

most data-rich areas, such as north Pacific and north Atlantic with the data amount far more than 

other areas. The output pH value in data-sparse areas may be more biased toward pH pattern in 

data-rich areas. 

(3) The discontinuity problem can be solved with the further accumulate of pH measurements and 
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improvement in SOM technical. In the surface ocean, the discontinuity problem did not appear in 

most boundaries.  

(4) Training only one FFNN is also feasible, but is preferable in the method that mapping DIC 

and TA first and then calculating other variables, as these two variables are relatively more 

conservative. 

Sample position and time were used as predictors because the collected environmental 

variables are not enough comprehensive to cover all ocean processes affecting pH, as gridded 

products of many variables are currently not available or only climatological. If more 

environmental variables are included in future works, the sample position and time will fail to 

compete with other environmental variables in the predictor selection procedure. 

 

Iida, Y., Takatani, Y., Kojima, A., & Ishii, M. (2021). Global trends of ocean CO2 sink and ocean 

acidification: an observation-based reconstruction of surface ocean inorganic carbon 

variables. Journal of Oceanography, 77, 323-358. 

Landschützer, P., Gruber, N., & Bakker, D. C. (2016). Decadal variations and trends of the global 

ocean carbon sink. Global Biogeochemical Cycles, 30(10), 1396-1417. 

Zhong, G., Li, X., Song, J., Qu, B., Wang, F., Wang, Y., ... & Duan, L. (2022). Reconstruction of 

global surface ocean p CO 2 using region-specific predictors based on a stepwise FFNN 

regression algorithm. Biogeosciences, 19(3), 845-859. 

Zhong, G., Li, X., Song, J., Wang, F., Qu, B., Wang, Y., ... & Dai, J. (2024). The Southern Ocean 

carbon sink has been overestimated in the past three decades. Communications Earth & 

Environment, 5(1), 398. 

Please consider to provide more details on the data preprocessing steps, including how different 

data sources were transformed and harmonized, as well as elaborate on (1) the choice of many 

predictors (e.g., why temperature anomaly was used instead of the standard ones; why both 

number of months and Year Month are needed,...), (2) machine learning algorithms used, and (3) 

the rationale behind selecting them over other potential models. 

Response: The collected products from different sources are all gridded datasets and the most are in 

the same 1° resolution. In the preprocessing step, products with higher resolution were converted 

into 1° resolution by averaging all data within the same 1° grid into one value.  

The predictors were selected from collected environmental variables and sample 

information, which are expect to be as many as possible and cover most ocean processes affecting 
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pH. Most variables have been used for reconstruction of ocean carbonate system variables in 

previous researches, such as temperature and its anomaly. Some variable seems redundant but have 

different features. For example, the sample time has no seasonal cycle pattern information when 

using the number of months and Year, and is disconnected between years when using Months as 1-

12.  Therefore, we collected as many variables as possible and then selected predictors using a 

Stepwise regression algorithm based on FFNNs (referred as Stepwise FFNN), according to the pH 

predicting errors when using different combination of variables as FFNN inputs. This algorithm has 

been proved to have capacity to identity the most informative variables in previous pCO2 mapping 

research and can effectively reduce regional predicting errors. We have revised the section 2.3 pH 

product construction for better clarity of the predictor selection and product construction procedure. 

2.Model robustness and Uncertainty Analysis: 

Although the authors have shown the validation against independent datasets from GLODAP, 

other ML-based methods, and some time series of direct measurements (e.g., HOT, ESTOC, 

BATS), the examination limited almost for the surface ocean. Evaluation and analysis of model 

accuracy at seawater depths would provide a clearer understanding of the model performance. 

Some timeseries stations have offered pH data below the surface (e.g., HOT, ESTOC, 

BATS), other sources for data evaluation can be found in Sutton et al., (2019), Lange et al., 

(2024). 

Response: Thanks for the suggestion. We have added the BAT, HOT, and DYFAMED time series 

data below the surface in the validation section.  

 

Figure 7. RMSE and pH difference between FFNN pH and time series observations at 

different depths. a) BAT station at 31°50' N, 64°10' W based on data from 1992 to 2020; b) HOT 

station at 22° 45' N, 158° 00' W based on data from 1992 to 2020; c) DYFMED station at 42.3°N, 

7.5° E based on data from 1998 to 2017. 

 Despite higher RMSE at certain depths, the RMSE at most depths in the deep areas of the 

BAT station and DYFAMED station is below 0.03, indicating that the notable deviations may 
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only occur at local scale. This notable deviation may be due to sparser GLODAP measurements 

in certain areas, or difference in depths between pH product and independent observations. For 

example, the FFNN pH product was reconstructed at depths of 1800 m and 2000 m in the bottom. 

If the time series observation is at 1910 m depth, it will be compared with the FFNN pH value at 

2000 m in the independent validation. This depth difference significantly increases the pH error 

in validation based on independent data if the number of independent observations was limited. 

The manuscript would benefit from a more comprehensive uncertainty analysis. It is not 

convinced that adding the source of RMSE from FFNN [H+] is essential for the quantification of 

pH uncertainty as the author ultimately produce 4D pH fields from GLODAP pH data (not [H+]. 

Presenting a comparison between RMSE of pH derived from direct GLODAP pH and from [H+] 

in the supplementary is more appropriate. Instead, it would be worthy to consider predictors’ 

uncertainty in the total uncertainty of reconstructed pH. 

Response: Thanks for the suggestion. Adding the source of RMSE from FFNN [H+] is mainly to 

distinguish the uncertainty between areas with same pH RMSE but different pH levels, as the 

uncertainty would be the same between these areas if calculated directly based on pH RMSE. The 

section of comparison between pH and [H+] has been moved to the supplementary. Including all 

predictors’ uncertainty will be a better way to estimate the pH product uncertainty. However, as 

described in the supplementary section Uncertainty and construction method of selected ocean 

products, the uncertainty of particular predictor products is unclear. It is not feasible to convert the 

uncertainty of predictor products through the FFNN when some inputs are missing. Therefore, we 

have to estimate the pH product uncertainty in a different way. 

Specific Comments: 

Lines 44-45: The two studies report fast decrease in pH in the ocean interior. The authors should 

reword this sentences. 

Response: The fast decrease in pH was reported in subsurface above 500 m in these two studies, 

but a relatively slow acidification can be also observed in deeper areas. The sentence has been 

corrected as the following: 

"Meanwhile, relatively slow acidification was found in the deep Atlantic Ocean below 

2000 m (Guallart et al., 2015), and rising pH in deep waters around 1000 m was also reported in 

the North Pacific Ocean (Ishizu et al., 2021)." 
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Lines 45-46: Can be rephrased (for instance: "there remains a need to enhance our understanding 

of global ocean acidification rates across varying depths.") 

Response: Thanks for the suggestion. The sentence has been modified as the following: 

"With limited reports about acidification below the surface, there remains a need to 

enhance our understanding of global ocean acidification rates across varying depths." 

Line 49: “the global mapping of” to “global reconstructions of”. 

Response: The sentence has been corrected following the suggestion. 

Lines 50-51: Gregor and Gruber, (2021) and Chau et al., (2024) have published full datasets of 

many carbonate variables (pH, DIC, Alkaninity included). 

Response: The sentence has been modified as the following: 

"Recent applications of machine learning methods in global reconstructions of marine 

carbonate system variables have facilitated global-scale research on the acidification and carbon 

cycle, including the single/ensemble-based FFNN method and the SOM-FFNN method for 

mapping surface ocean partial pressure of CO2 (pCO2, Landschützer et al., 2014; Chau et al., 2022; 

Zhong et al., 2022; Chau et al., 2024), dissolved inorganic carbon (DIC, Broullón et al., 2020; 

Keppler et al., 2020; Gregor and Gruber, 2021; Chau et al., 2024), and alkalinity (Broullón et al., 

2019; Gregor and Gruber, 2021; Chau et al., 2024)." 

Lines 55-56: “The construct pH product”; this term is not a standard scientific or technical term. 

Maybe replace with "the proposed product" or "the recontruced pH data". 

Response: The term "The construct pH product" has been replaced by "the proposed pH product". 

Line 61: (Lauvset et al., 2022) → update refs for GLODAPv2.2023 and cite right after 2023 

version instead. 

Response: The citation has been updated. 

Line 62: “in-situ temperature”; Reviewer do not see any specific role of temperature in pH 

mappings throughout the manuscript. 

Response: The in-situ temperature was mentioned here is only for indicating that this product is 

not at 25°C, as the GLODAP dataset also provides pH data corrected to 25°C. 

Line 63: Table 1 show most of predictors’ products with no depth levels, it is not clear how to 

map pH with constant values of predictors over depths! 

Response: The product of temperature, salinity, nutrient concentration, dissolved oxygen, DIC, 

and alkalinity provide values across different depths. 

Lines 66-70: many predictors have been used but there are no hints (citations) showing why they 
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should be included in model fitting. 

Response: The citations of previous application of the predictors have been added. 

Line 80: “such as the ocean currents product” → should be at the beginning of the sentence.  

Response: This term has been moved to the beginning of the sentence. 

Table 1: please mention temporal and vertical resolutions of predictors’ products used; comments 

on how to derive transformation for Date (Year, Month,...). 

Response: The temporal and vertical resolution have been added in Table 1. Product with daily 

or weekly resolutions were converted to the monthly resolutions by directly averaging all values 

within the same month, and there is no product with year resolution. 

Line 116: “Therefor”. 

Response: The typo has been corrected. 

Figure 1: consider to not use SOM (see in General comments). 

Response: Using one FFNN model can indeed reconstruct global gridded pH data, but this 

method does not account for the regional differences in factors affecting pH. The primary feature 

of our method is the consideration of regional differences in pH drivers, allowing for the 

selection of the most suitable predictors for pH reconstruction in each region, thereby increasing 

accuracy. Despite continuity issues at some boundaries, the overall reconstruction error is lower 

than using one model. In our previous research on reconstructing gridded pCO2 data, we also 

employed the same SOM method to use regional-specific predictors, which significantly reduced 

reconstruction errors and was well-received by peers. 

Lines 153-154: “To mitigate the influence of the FFNN's initial state on predicting values, 

multiple networks with the same structure but different initial states were trained and their results 

were averaged”; standard deviation from output averaging should be reported. 

Response: The figure showing mean standard deviation between FFNN pH with different initial 

status has been added in the supplement as the following: 
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Figure S5. Mean standard deviation between FFNN pH with different initial status. 

 

Tables 2, 3: consider to not use Stepwise FFNN to select predictors. FFNN itself would choose 

which inputs benefit model training. Results from Stepwise FFNN are not align with marine 

CO2 system features and driving mechanisms. For instance, temperature is one of the key factors 

modulating CO2 absorption over the Arctic and subpolar regions (thus performs impact on pH); 

however, this predictor was not chosen after Stepwise FFNN. In addition, please clarify the use 

of both temperature (salinity,...) and their anomalies that are redundant information and may 

challenge FFNN training!!! 

Response: In current commonly used methods for reconstruction of global ocean gridded data, 

the predictors are typically selected empirically. The manually selected predictors vary in 

different methods for constructing the same marine chemical variable, contributing to partial 

differences between the products. Our algorithm selects input predictors based on statistical 

characteristics, eliminating the influence of subjectivity and randomness of manual selection. In 

some regions, effective predictors for reducing pH reconstruction errors may differ from 

predictors identified based on experience. For example, in the Arctic Ocean, temperature is not 

used because its effect on pH is already reflected in other input predictors like pCO2, which is 

D
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notably affected by temperature. The pCO2 increases with the increasing temperature. 

Additionally, the seasonal temperature variation in the Arctic Ocean is small, so other parameters 

can sufficiently reflect the effect of temperature. Including temperature as a pH predictor for the 

Arctic Ocean increased the pH reconstruction error estimated based on GLODAP samples, 

which is why we excluded temperature when reconstructing pH for the Arctic Ocean. 

The monthly anomalies of temperature only reflect seasonal and interannual variations, 

removing the regional distribution features of temperature. In the 50-60S region of the Southern 

Ocean, directly using temperature as input predictors primarily reflects the spatial distribution 

characteristics of temperature, as the scale of regional differences in temperature are much 

greater than seasonal and interannual variations. This disturbed the model's learning of seasonal 

and interannual temperature changes. Using both temperature and its monthly anomalies to 

reflect regional distribution and temporal changes can reduce pH reconstruction errors. Therefore, 

both temperature and its monthly anomalies are used as pH predictors in the subpolar Southern 

Ocean. Similarly, other variables are generally not used together with their monthly anomalies in 

most regions. They are only used together when it can reduce pH reconstruction errors. 

Line 174: RMSE; the metric for validation is not consistent with training (MAE, Line 135).  

Response: This is because the extreme values have higher weighting if the reconstruction error 

was represented by RMSE compared to the MAE. In the selection procedure, the algorithm 

was design to focus on reducing errors for the majority of testing samples rather than particular 

samples with extreme values. The MAE can also be used to present FFNN performance in the 

validation section, but RMSE is more commonly used. So we used RMSE in the validation 

section. 

Line 183: Please clarify how to define H+ here. 

Response: [H+] is the molar hydrogen ion concentration here. 

 

 

 

Lines 191-206: It’s worthy to rework on this section: It is not ease to interpret the uncertainty 

quantified with pH0 and sigma (see also in General Comments for details). 

Response: Although this method is not commonly used, it can better represent the uncertainty of 

the reconstructed pH products. This method includes the main factors influencing uncertainty, 

including the pH reconstruction errors and the notable differences in [H+] that caused by the same 
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pH error at different pH levels. For example, the same pH error of 0.02 lead to a difference in 

1.42*10-9 M of [H+] when pH is 7.5, and lead to a difference in 1.42*10-10 M of [H+] when pH is 

8.5. The difference in [H+] differs notably but the uncertainty directly estimated by pH errors will 

be the same.  

Lines 212-214: “A better performance of the FFNN was found in the intermediate layer, with 

testing samples more concentrated on the y=x line. The RMSE in the mixed layer is 0.034, 

higher than 0.026 in the intermediate layer.” Reviewer would expect to see reverse results: there 

exist very few pH data and predictors’ information which are able to support pH estimation in 

the deep sea than the shallower layer !!! Reconstruction errors (Uncertainty) would much higher 

there than the surface. 

Response: Although the pH measurements are much sparser in the deep sea, we trained the 

FFNN using all samples in the deep sea from mixed layer depth to 2000 m. The number of 

training samples in the deep sea is even more than that in the mixed layer, as covered depths are 

much broader. Additionally, the FFNN underestimation of seasonal amplitude and short-term 

fluctuations is the main source of reconstruction errors, which are notably smaller in the deep sea. 

This can be observed in the validation based on time series station, the reconstruction error is 

notably higher when pH seasonally peaked and troughed. The same pattern of decreasing RMSE 

with depth can also be observed in the 3D reconstruction of DIC and TA in previous research, 

such as Broullón et al., 2019 and Broullón et al., 2020.  

 

Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., ... & van Heuven, S. 

M. A global monthly climatology of total alkalinity: a neural network approach. Earth System 

Science Data, 11, 1109-1127, https://doi.org/10.5194/essd-11-1109-2019, 2019. 

Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., ... & Kozyr, A. A 

global monthly climatology of oceanic total dissolved inorganic carbon: a neural network 

approach. Earth System Science Data, 12, 1725-1743, https://doi.org/10.5194/essd-12-1725-

2020, 2020. 

Line 219: remove "predicting" here and elsewhere, FFNN pH is informative enough. 

Response: The term "predicting" has been removed in all contexts. 

Lines 224-225: Any clarifications to have errors lower in the deep sea than the surface. I would 

appreciate of any clarification. 

Response: In the upper ocean above 2000 m, the underestimation of seasonal amplitude and 
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short-term fluctuations has greater impacts on reconstruction errors than that of sparse training 

samples in the deep sea. Therefore, the validation based on the GLODAP dataset show a 

decreasing RMSE with increasing depths. 

Line 230: “predicting error” is not correct. Please use "prediction error" or "reconstruction error" 

instead. 

Response: Thanks for the suggestion. This term has been replaced by "reconstruction error". 

Lines 237-238: “The RMSE in the early years was relatively higher than in recent years, while the 

number of GLODAP measurements increased with the years (Figure 5c)”. Adding curves for 

number of GLODAP pH in each subplot will help to evidence the statements for Fig 5.  

Response: The number of GLODAP pH has been added in Figure 5c.  

Lines 249-: Why do the results show for Stepwise FFNN while final reconstruction is done with 

FFNN? 

Response: The reconstruction in this work was based on a two-step method that including the 

predictor selection by stepwise regression using FFNN and the FFNN fitting of non-linear 

relationship. So, we named the pH product as the Stepwise FFNN product to summarize the whole 

method. 

Lines 251 - 254: 

“The surface seawater pH of our Stepwise FFNN product decreased by 0.0017 ± 0.0007 yr-1 on 

average during the past three decades at the BAT station, close to the -0.0018 ± 0.0001 yr-1 of 

BAT time series observations in the same period (Bates et al., 2020). At the ESTOC station, the 

Stepwise FFNNN product and time series observations were also well consistent, with the RMSE 

of only 0.009 and a similar long-term trend (Chau et al., 2022).” these quotations are not 

correctly mentioned in refs (Bates et al., 2020; Chau et al., 2022). The pH decreasing rate was 

about 0.0019 ± 0.0001 per yr over the period 1983-2020 in the former study. Please clarify that 

the authors have used the data to compute the trends by themselves. Furthermore, Chau et al., 

(2022) do not provide long-term trend estimates of pH but Chau et al., (2024). 

Response: The citation has been corrected to González-Dávila et al. (2010) for ESTOC and Chau 

et al., (2024) for the CMEMS pH product. The pH trends from previous products in Table 4 were 

computed using data from 1992 to 2020 in the BAT and HOT station, and were computed using 

data from 1995 to 2010 in the ESTOC station, to eliminate the influence of different temporal 

coverage. The description of compute period has been added in remarks of Table 4. 

Line 255: remove "only" in this paragraph and elsewhere as 0.01 in pH is indeed large 
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correspondingly to a difference in 26% of H+ (acidity level)”. 

Response: Thanks for the suggestion. The word "only" has been removed. 

Table 4: report uncertainty estimates for all other products. 

Response:  The uncertainty of other products has been added. 
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