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Reviewer Comment #1 

Context and general comment : 

The continuous absorption of anthropogenic CO2 by the ocean leads to ocean 

acidification, which threatens marine ecosystems. While the acidification rate has been 

extensively documented at the surface, data for deeper waters remain limited. Zhong et 

al. address this gap by presenting a comprehensive, monthly, four-dimensional, 1°×1° 

gridded global seawater pH dataset, covering the years 1992 to 2020 and depths from 

the surface to 2000 meters. 

This dataset was developed using machine learning algorithms trained on pH 

observations from the Global Ocean Data Analysis Project (GLODAP). The 

methodology employed is a three-step process: 1) self-organizing map neural network 

for bioregionalization, 2) a stepwise algorithm for predictors selection, and 3) feed-

forward neural networks (FFNN) for non-linear regression. The resulting pH product 

is a valuable resource for studying subsurface ocean acidification and for validating or 

initializing biogeochemical models. The product is made publicly available through the 

Marine Science Data Center of the Chinese Academy of Sciences. 

Overall, the article is well-written and the figures are clearly presented. 

Despite the significance of this new 3D pH product for the scientific community, the 

article has some notable shortcomings. There is a lack of details in the methodology 

section, which makes it challenging to fully evaluate the robustness of the method and 

comprehend the implications involved. 

Response: Thank you very much for agreeing that our data has significant value. The concern 

about the lack of details in the methodology section is important and helpful for us to 

improve the manuscript quality. We have revised the manuscript according to the 

comments, which may provide a clearer understanding of the methods used in this work. 

The detailed changes were listed in the response to specific comments. 

 

Specific Comments: 

Title: 

It may be valuable to the reader to add the information that the estimations are depth-

resolved, resulting in a 3D product, which is the principal novelty of this methodology. 

Response: Thanks for the suggestion. The title has been changed to “A global monthly 

3D-field of seawater pH over 3 decades: a machine learning approach”. 
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Abstract: 

- Lines 15-17: "Here, we present a monthly four-dimensional 1°×1° gridded product of 

global seawater pH, derived from a machine learning algorithm trained on pH 

observations at total scale and in-situ temperature from the Global Ocean Data Analysis 

Project (GLODAP).": The role of temperature in the methodology is unclear. Even after 

reading the entire paper, the specific role of temperature compared to other inputs 

remains ambiguous. 

Response: Temperature is an important factor affecting seawater pH, and was used as 

a pH predictor in almost all regions in this work. In many regions temperature is 

considered one of the most important predictors and ranks very high in the predictor 

list in Tables 2 and 3, as the sort order represents the predictor’s capacity to reduce 

predicting errors. Except the relative importance, the role of temperature is the same as 

other predictors listed in Tables 2 and 3. All selected predictors were treated with same 

process and input into the neural networks. 

The reason for mentioning temperature here is not to show its important role, but 

to distinguish with the product standardized to a temperature of 25°C. For better clarity, 

the original text has been modified as the following: 

"Here, we present a monthly four-dimensional 1°×1° gridded product of global 

seawater pH at total scale and in-situ temperature, derived from a machine learning 

algorithm trained on pH observations from the Global Ocean Data Analysis Project 

(GLODAP)." 

 

- Line 18: I suggest rephrasing the method description for clarity. Consider stating: "A 

three-step machine learning-based algorithm was used..." 

Response: Thanks for the suggestion. The original text has been modified as the 

following: 

"A three-step machine learning-based algorithm was used to construct the pH 

product, incorporating region division by the self-organizing map neural network, 

predictor selection by the stepwise regression algorithm that adds and removes 

variables from network inputs based on their contribution to reducing predicting errors, 

and non-linear relationship regression by feed-forward neural networks (FFNN)." 
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- Line 19: The term "stepwise" may not be clear to the readers. Consider elaborating or 

using a more descriptive term. 

Response: Thanks for the suggestion. The term "stepwise" has been changed to "the 

stepwise regression algorithm that adds and removes variables from network inputs 

based on their contribution to reducing predicting errors" for better clarity. 

 

Introduction: 

- The introduction appears to be missing some crucial references. For example, it would 

be beneficial to acknowledge that the methodology is inspired by the work of 

Landschützer et al. (2014) and references following; i.e. a SOM-FNN approach. 

Additionally, it is important to mention that this SOM-FNN approach has already been 

applied to the 3D reconstruction of DIC by Keppler et al., 2020 

(https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GB006571). These 

references should be cited to provide a more comprehensive background. 

Response: Thanks for correcting me. Landschützer is a scientist whom I highly respect, and 

I have learned a lot of knowledge from his work. The missing references have been added 

in the introduction and the text has been modified as the following: 

"Recent applications of machine learning methods in the global mapping of marine 

carbonate system variables have facilitated global-scale research on the acidification 

and carbon cycle, including the single/ensemble-based FFNN method and the SOM-

FFNN method for mapping surface ocean partial pressure of CO2 (pCO2, Landschützer 

et al., 2014; Chau et al., 2022; Zhong et al., 2022), dissolved inorganic carbon (DIC, 

Broullón et al., 2020; Keppler et al., 2020), and alkalinity (Broullón et al., 2019; Gregor 

and Gruber, 2021). Additionally, the 3D-field mapping of DIC was also conducted 

using the SOM-FFNN method, which produced monthly climatological data but lacked 

interannual variability (Keppler et al., 2020). These methods have inspired our 

methodology for constructing the global gridded seawater pH dataset. Until now, only 

surface ocean gridded pH products are available in acidification research, including the 

1° JMA product (Iida et al., 2021), the 1° OceanSODA-ETHZ product (Gregor and 

Gruber, 2021), the 0.25° remote-sensing-based product (Jiang et al., 2022), and the 0.25° 

CMEMS-LSCE product (Chau et al., 2024), which were derived from mapping pCO2, 

DIC, or alkalinity using machine learning algorithms and subsequently calculating pH 

with the CO2SYS program (Lewis and Wallace, 1998)." 
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- Line 52 : where existing pH surface products are listed, there is a lack of references 

and details. It is crucial to include comprehensive citations of existing products (e.g. 

LSCE-FFNN), especially those used for comparison in Table 4 (+ the missing ones, see 

my comment below). 

Response: Thanks for the suggestion. The citation of Chau et al., 2024 for the CMEMS-

LSCE product and Jiang et al., 2022 for their remote sensing product have been added. 

The product names, spatial resolutions, and details in method has been added as the 

following: 

"Until now, only surface ocean gridded pH products are available in 

acidification research, including the 1° JMA product (Iida et al., 2021), the 1° 

OceanSODA-ETHZ product (Gregor and Gruber, 2021), the 0.25° remote-sensing-

based product (Jiang et al., 2022), and the 0.25° CMEMS-LSCE product (Chau et al., 

2024), which were derived from mapping pCO2, DIC, or alkalinity using machine 

learning algorithms and subsequently calculating pH with the CO2SYS program (Lewis 

and Wallace, 1998)." 

- The paper does not explain why the product spans the period 1992-2020. It would be 

helpful to provide a rationale for this timeframe and discuss why it does not cover a 

longer period, both in the past and up to the present (i.e., year-1). 

Response: Thanks for the suggestion. The product starts from 1992 because the SSH, 

MLD, and W velocity of ocean currents used as pH predictors from the ECCO2 cube92 

product also start from 1992. Data after 2020 is unavailable because our surface ocean 

pCO2 product has not been updated beyond 2020. The pH data will be updated to cover 

the period 1992-2023 after the update of our pCO2 product and the NOAA Greenhouse 

Gas Marine Boundary Layer Reference product (currently updated only until 2022). 

The explanation for the covered period has been added at the end of the section "2.3 pH 

product construction" as the following: 

"The pH data earlier than 1992 is unavailable because the predictors used from 

ECCO2 cube92 product (Menemenlis et al., 2008) also start from 1992. Data after 2020 

is limited by the coverage of used surface ocean pCO2 product and will be updated in 

future works." 

- Line 55: The reference to GLODAP by Lauvset et al. (2022) refers to 

GLODAPv2.2022 and should be cited as such throughout the article (instead of 

‘GLODAP’). Additionally, if the authors re-run their model during the review process, 

it is suggested to use the latest version of GLODAP, i.e., GLODAPv2.2023. The 
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updated reference can be found here: 

https://essd.copernicus.org/articles/16/2047/2024/essd-16-2047-2024-discussion.html 

Response: Thanks for the suggestion. The latest version of GLODAP has been used, 

and the citation has been updated to Lauvset et al., 2023 and added in all places that 

GLODAP was mentioned. 

Methods: 

Line 60: It is unclear how temperature is used in the methodology. Additional 

explanation is needed to clarify its specific role and contribution. 

Response: Here we mentioned temperature because the pH reconstructed in this work 

is at in-situ temperature, not at the commonly used 25°C. Additionally, temperature was 

used as one of pH predictors and played the same role with other variables technically, 

as shown in Formula 1 (pH = 𝑓(Predictorsଵ, Predictorsଶ, … , Predictors)). Here in-

situ temperature was mentioned to avoid the product being considered a 25°C product, 

as some researchers may convert the pH measurements or pH products to a normalized 

temperature of 25°C.  

Lines 69-73: The inclusion of other indices, such as the Northern Oscillation Index, 

should be considered. 

Response: Thanks for the suggestion. We believe that parameters like the Northern 

Oscillation Index have smaller impact on pH than currently used indices, and are not 

considered here. However, we will evaluate the impact of the Northern Oscillation 

Index on pH in future work. These indices will be added in the future works to be tested 

if they can contribute to reduction of pH predicting errors. 

Lines 71-73: The LSCE-FFNN product provides total alkalinity and DIC data monthly 

from 1985 to year-1: data available from the Copernicus Marine Service 

(https://data.marine.copernicus.eu/product/MULTIOBS_GLO_BIO_CARBON_SUR

FACE_REP_015_008/description). If authors refer to 3D products, then it has to be 

clearly mentioned. For 3D estimations, DIC is available monthly from 2004 to 2019 

from MOBO-DIC (Keppler et al., 2020). 

Response: Thanks for the suggestion. The description was about 3D products of DIC 

and alkalinity, and has been corrected as the following: 

"However, 3D field products with sufficient time and spatial coverage are 

currently not available for these two variables, so climatological 3D products were used 

for better pH spatial distribution." 
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Section 2.2 : 

- Lines 103-105: The rationale for using these specific parameters to define bioregions 

needs clarification, especially if they are not significant in the stepwise algorithm for 

determining important parameters in relation to pH. 

Response: Thanks for the suggestion. The parameters used to define bioregions are 

related to physical and biological processes affecting pH, with most being selected as 

predictors in many bioregions, except for chlorophyll concentration. However, this 

does not imply that chlorophyll concentration is unrelated to pH changes. Chlorophyll 

concentration is highly related to photosynthesis, which affects pH by influencing pCO2. 

Its role as a pH predictor is replaced by pCO2. Currently, the uncertainty of pCO2 

products is higher than that of satellite remote sensing chlorophyll products, and using 

different pCO2 products may affect the dividing of bioregions. Although the current 

bioregions are not perfect, we have set a small number of bioregions with broad 

coverage to reduce the impact of potential inaccuracies in bioregions division. In future 

work, we will further improve the parameters used to define bioregions based on the 

currently selected predictors. 

- Line 106 : The criteria and process for merging provinces with fewer than ten 

connected grids or less than 100 GLODAP pH measurements should be rephrased 

and/or detailed because it is unclear. 

Response: Thanks for the suggestion. The SOM may accidently generate three types of 

small “island” provinces: provinces consisting of many disconnected grids across 

different regions, provinces covering very small areas with fewer than 10 connected 

grids, and provinces with an insufficient number of GLODAP pH measurements. These 

provinces are not helpful in the pH product construction, as the pH predicting errors 

tend to be notably higher due to the extremely few training samples for FFNNs. A 

similar process can be also found in previous SOM-based research, such as 

Landschützer et al. (2014), which removed small “island” provinces with a surface area 

smaller than 10 connected grid cells.  The origin text has been modified as the following: 

"Subsequently, the small “island” provinces with fewer than ten connected grids or 

covered by fewer than 100 GLODAP pH measurements were merged with the nearest 

neighboring provinces, as the pH predicting errors tend to be notably higher due to the 

extremely few training samples in the non-linear relationship fitting by networks." 

- Line 107 : The need for manual subdivision of provinces separated by continents 

requires further explanation. Why not using same bioregion even if it is not in the same 
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ocean, it is possible that the underlying processes are equivalent and so that the FFNN 

will be performant in both basin? 

Response: Thanks for the suggestion. The physical process may also affect seawater 

pH distribution and are different between basins separated by continents, such as 

surface ocean currents. However, these physical mixing and transport processes are 

actually separated by lands, so we manually divided provinces separated by continents. 

- Lines 112-114 : The sentence on the division of ocean areas into different layers also 

requires further details on which drivers are important for each layer as it is stated that 

drivers differ depending on the layers. Moreover, following this statement, why using 

the same bioregions for deeper layers? 

Response: In the mixed layer, seawater pH is notably influenced by the seasonal cycle 

of environmental conditions and CO2 exchange between the surface ocean and 

atmosphere. In the intermediate layer, seawater pH experiences much weaker seasonal 

changes and is largely affected by the biological drawdown of organic matter. Such 

differences in pH drivers can also be observed in the selected predictors in Tables 2 and 

3, with the most important predictor in many provinces being surface ocean pCO2 in 

the mixed layer and phosphate concentration in the intermediate layer. 

The variables used for division of regions are fully available in the surface ocean, 

but some variables lack information at different depth, making it difficult to divide 

regions separately in the deep ocean. Additionally, to maintain consistency in 

geographic regions between the two vertical layers with existing vertical seawater 

mixing, it is unnecessary to divide regions separately in the mixed and intermediate 

layers as they are not completely separate areas. Therefore, we applied the surface 

biogeochemical provinces to the deeper ocean as well. 

Section 2.3 and Table 1 : 

- The choice of a single-layer FFNN instead of a multi-layer network should be justified. 

Has this been tested ? 

Response: The FFNN with single hidden layer has a smaller scale with faster training 

and calculating speed, and is also convenient for adjusting the number of neurons. We 

also compared different neural network structures. With a similar number of neurons, 

the impact of different structures on error is relatively small. By increasing the number 

of neurons, a fitting capability comparable to that of multi-layer neural networks can 

be achieved. Additionally, in previous studies reconstructing surface ocean pCO2 

gridded data, we also used single-layer neural networks and verified their sufficient 
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fitting capability to reconstruct global ocean gridded product of carbonate system 

variables. 

- The use of sin(Lat) as a predictor is questionable since latitude is not circular. 

Response: This normalization method was inspired from previous research, such as 

Denvil-Sommer, A., et al. (2019), where they also normalized latitude and longitude to 

radians using sine and cosine transformations. Also, we have corrected the description 

name in Table 1 to "Sine of (latitude · π/180°)", "Sine of (longitude · π/180°)", and 

"Cosine of (longitude · π/180°)". As we used the "sind" and "cosd" function 

(sind(latitude) equals sin(latitude · π/180°)) in MATLAB, the original description was 

misleading and has been corrected. 

 

Denvil-Sommer, A., et al. (2019). "LSCE-FFNN-v1: a two-step neural network model 

for the reconstruction of surface ocean pCO2 over the global ocean." Geoscientific 

Model Development 12(5): 2091-2105. 

- Clarify how depth is used as a predictor and whether it corresponds to the depth of 

retrieval of the output or if the FFNN estimates X values for X depth levels. 

Response: Thanks for the suggestion. Depth was used in the same way as latitude or 

time-related variables in Table 1. The sample depths of GLODAP measurements were 

input into FFNNs during the training process, and the depths of 41 depth layers defined 

as target output layers were input into FFNNs during the interpolation process to 

generate a product covering 0-2000m. The description has been added in the 2.1 section 

as the following: 

"Temporal and spatial sample information, including latitude, longitude, depth 

and sample time, was also used as supplementary variables. Latitude and longitude 

were normalized to radians using sine and cosine transformations, to present connected 

sample position information. The spatial sample position and time information of 

GLODAP measurements were input in the training of FFNNs, and the spatial position 

and time of defined 1° and monthly product grids were input into FFNNs during the 

interpolation process to output a gridded product." 

- The choice of the ECCO2cube92 model should be discussed and better supported by 

citations in the text. 

Response: Thanks for the suggestion. We used the ECCO2 cube92 product due to its 

wide temporal and spatial coverage, which starts from 1992 and is continuously 
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updating to the present. Moreover, the MLD and SSH data from ECCO2 were also used 

in previous research on mapping of ocean carbonate system variables and proved the 

reliability, for example, Landschützer, et al. (2014) and Chau, et al. (2024). A 

description has been added in "2.1 Data sources and processing" section as the 

following: 

"Products used for variables listed in Table 1 was chose due to their sufficient 

temporal and spatial coverage and the application in previous research on mapping 

carbonate system variables. For example, the ECCO2 MLD product has been used in 

reconstruction of the CMEMS-LSCE surface ocean carbonate system variables product 

(Chau, et al., 2024) and the MPI-SOM-FFN pCO2 product (Landschützer et al., 2014)." 

 

Landschützer, et al. (2014). Recent variability of the global ocean carbon sink. Global 

Biogeochemical Cycles 28(9): 927-949. 

Chau, et al. (2024). CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the 

surface ocean carbonate system. Earth System Science Data 16(1): 121-160. 

- MEI should be defined as the Multivariate ENSO Index. 

Response: Thanks for the suggestion. The name of MEI has been corrected. 

- Adding a column to Table 1 to indicate which process each variable is associated with 

would be informative. 

Response: Thanks for the suggestion. The related processes have been added in Table 

1 as the following: 

Table 1. Data products used as pH predictors. 

Predictor Abbreviation Data product and reference Resolution Related process to 
affect pH 

Sine of (latitude · π/180°) sin(Lat) - - Sample position and 
time of GLODAP 
pH measurements Sine of (longitude · π/180°) sin(Lon) - - 

Cosine of (longitude · π/180°) cos(Lon) - - 

Number of months since January 
1992 

Nmon - - 

Year Year - - 

Month Month - - 

Depth Depth - - 

Temperature and monthly 
anomaly 

Temp, 
Tempanom 

IAP global ocean temperature gridded 
product (Cheng et al., 2016; 2017) 

1°, monthly since 1940, 0-2000 
m with 41 levels 

State of carbonate 
system 

Salinity and monthly anomaly Sal, Salanom IAP global ocean salinity gridded product 
(Cheng et al., 2020) 

1°, monthly since 1940, 0-2000 
m with 41 levels 

Climatological total alkalinity Alk AT_NNGv2_climatology (Broullón et al., 
2019) 

1°, monthly climatological, 0-
5500 m with 102 levels 

Climatological dissolved 
inorganic carbon 

DIC TCO2_NNGv2LDEO_climatology 
(Broullón et al., 2020) 

1°, monthly climatological, 0-
5500 m with 102 levels 
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Climatological dissolved oxygen DO WOA18 (Garcia et al., 2020a) 1°, monthly climatological, 0-
5500 m with 102 levels 

Biological 
production and 
drawdown of 
organic matter Climatological nitrate Nitrate WOA18 (Garcia et al., 2020b) 1°, monthly climatological, 0-

5500 m with 102 levels 
Climatological phosphate Phosphate 

Climatological silicate Silicate 

Mixed layer depth and monthly 
anomaly 

MLD, 
MLDanom 

ECCO2 cube92 (Menemenlis et al., 2008) 0.25°, monthly since 1992 Physical mixing of 
seawater and 
stratification 

Sea surface height and monthly 
anomaly 

SSH, SSHanom ocean wave, tides, 
current, and sea-
level rise 

W velocity of ocean currents at 5 
m, 65m, 105m, 195m, and in-situ 
depth 

Wvel(5m)−Wv

el(in-situ) 
Ocean current and 
upwelling 

Sea level pressure SLP ERA5 (Hersbach et al., 2020) 1°, monthly since 1940 CO2 exchange 
between surface 
seawater and 
atmosphere 

Surface pressure Psurf 

dry air mixing ratio of atmospheric 
CO2 and monthly anomaly 

xCO2, xCO2 

anom 
NOAA Greenhouse Gas Marine Boundary 
Layer Reference (Lan et al., 2023) 

0.25°, weekly since 1979 

Multivariate ENSO Index MEI bi-monthly Multivariate El Niño/Southern 
Oscillation index (Wolter et al., 2011) 

monthly since 1979 El Niño and 
Southern Oscillation 

Arctic Oscillation index AOI Climate Prediction Center Daily Arctic 
Oscillation Index (CPC, 2002) 

monthly since 1950 Arctic Oscillation 

Southern Oscillation Index SOI Climate Prediction Center Southern 
Oscillation Index (CPC, 2005) 

monthly since 1951 Southern Oscillation 

Bathymetry Bathy GEBCO_2022 Grid (GEBCO, 2022) 15 arc-second Vertical volume of 
seawater 

10 m Wind speed and monthly 
anomaly 

Wind, 
Windanom 

ERA5 (Hersbach et al., 2020) 1°, monthly since 1940 CO2 exchange 
between surface 
seawater and 
atmosphere Surface ocean pCO2 pCO2 Stepwise FFNN (Zhong et al., 2022) 1°, monthly since 1992 

Climatology of Surface Ocean 
pCO2 

pCO2 clim MPI-ULB-SOM_FFN_clim (Landschützer 
et al., 2020) 

0.25°, monthly climatological 

Chlorophyll and monthly 
anomaly* 

Chl, Chl anom MODIS-Aqua Chlorophyll Data (NASA, 
2022a) 

9km, monthly since 2002 Biological 
production of 
organic matter 

Photosynthetically Available 
Radiation 

PAR MODIS-Aqua Photosynthetically 
Available Radiation Data (NASA, 2022b) 

Diffuse attenuation coefficient at 
490 nm 

KD490 MODIS-Aqua Downwelling Diffuse 
Attenuation Coefficient Data (NASA, 
2022c) 

Supplementary for 
lacking interannual 
variability of other 
variables, or 
potential correlation 
with unclear process 
affecting pH 

Remote sensing reflectance at 
412-678 nm** 

RRS412−RR
S678 

MODIS-Aqua Remote-Sensing 
Reflectance Data (NASA, 2022d) 

Total absorption at 412-678 nm Ta412−Ta678 MODIS-Aqua Inherent Optical Properties 
Data (NASA, 2022e) 

Total backscattering at 412-678 
nm 

Tb412−Tb67
8 

MODIS-Aqua Inherent Optical Properties 
Data (NASA, 2022e) 

 (*: products from Chlorophyll to Total backscattering are satellite remote sensing 

products; 
**: Remote sensing reflectance, total absorption, and total backscattering both include 

10 wavelengths: 412nm, 443nm, 469nm, 488nm, 531nm, 547nm, 555nm, 645nm, 

667nm, and 678nm, with each wave length regard as one individual parameter.) 
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- Consider using merged satellite ocean color data products like OC-CCI or GlobColour 

for longer time series would help for future usability and sustainability. 

Response: Thanks for the suggestion. These products will be used when we update our 

product. 

- Provide details on how the most informative parameters were chosen and how 

hyperparameters (architecture, number of neurons) were handled in this stepwise 

process. 

Response: Thanks for the suggestion. We have revised the predictor selection section, 

and added the specific procedure of stepwise FFNN algorithm in Figure 3 as the 

following:  

"(1) Selection of seawater pH predictors in each province using the Stepwise 

FFNN algorithm (referred as (1) Stepwise FFNN in Figure 3). All the collected products 

were input into the Stepwise FFNN algorithm to identify the predictors that yield the 

lowest predicting errors for seawater pH (Zhong et al., 2022). The variation in standard 

deviation (MAE) calculated by the K-fold cross validation method will feed back to 

update the input products. The input variables are selected as pH predictors one by one 

in the way MAE decreases the fastest. Specifically, by comparing predicting errors of 

using each collected environmental variable in Table 1 as the only predictor input to 

the FFNN, the variable with the lowest error is selected as the first pH predictor and 

moved out from the environmental variables list used in the subsequent steps. 

Subsequently, while keeping the first predictor unchanged, compare predicting errors 

when using each remaining environmental variable as the second input for the FFNN. 

The variable with the lowest error is determined to be the second pH predictor. In the 

same way, new predictors are sequentially determined. This selection process continued 

through multiple iterations until no further reduction in MAE was observed, regardless 

of whether a variable was added or removed. The variables identified in previous 

iterations were then output as the optimal pH predictors. Since both overfitting caused 

by co-correlation and underfitting caused by an insufficient number of predictors result 

in significant increases in pH predicting errors, the lowest predicting error is considered 

to occur between these two states. In order to eliminate potential co-correlation and 

prevent overfitting, whenever a new predictor is identified, the algorithm also tests 

whether the predicting error will decrease when sequentially removing each determined 

predictor. The algorithm individually removes each previously identified predictors 

immediately after adding one variable as a predictor. If the error decreases after 
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removing a previously determined predictor, this predictor is highly correlated with 

other identified predictors. Therefore, most of the co-correlation among the selected 

predictors has been removed in this Stepwise FFNN selection procedure. If products 

with co-correlations are still selected, some products may provide important additional 

information in specific regions, leading to a greater reduction in predicting errors 

compared to the increase caused by overfitting. In each province, pH predictors were 

selected separately for the mixed layer (Table 2) and intermediate layer (Table 3). In 

certain polar areas and prior to August 2002 when satellite remote sensing products 

(products from Zeu to Tb678 in Table 1) were not available, the additional selection of 

predictors was carried out without the use of satellite remote sensing products (Table 

S1). These satellite products were not used in the intermediate layer due to low 

correlation with seawater pH, with no need for additional selection. 

All FFNNs used in these two steps have the same structure with a single hidden 

layer, as using deeper structures tends to cause overfitting and increase pH predicting 

errors. The number of neurons was determined by comparing predicting errors of 

FFNNs with different neurons based on the same training samples, testing samples, and 

pH predictors, and then adopting the number with the lowest predicting error. 

Specifically, for the stepwise FFNN regression step, the number of neurons in FFNNs 

was determined using provisional predictors from preliminary experiments with the 

number of neurons set to 25." 
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Figure 3: The procedure of pH product construction. (1) Stepwise FFNN: the algorithm 

for selecting predictors (Zhong et al., 2022); (2) FFNN: fitting the non-linear 

relationship between seawater pH and its predictors. Collected Environmental 

Variables: collected products listed in Table 1. pH predictors: the selected most 

informative variables listed in Tables 2 and 3. Remote sensing products: variables from 

Chlorophyll to Total backscattering in Table 1. Mixed layer: from 0 m to mixed layer 

depth; intermediate layer: from mixed layer depth to 2000 m. 

- Clarify how co-correlation among selected predictors was removed in the stepwise 

FFNN selection procedure. 

Response: Since the variables with co-correlations provide similar information, the 

predicting error using two co-correlated predictors will be higher than that using two 

predictors related to different ocean processes. Therefore, the variable correlated to 

existing predictors tends to fail to compete with other variables in the predictor selection. 

Moreover, whenever after a new predictor is identified, the stepwise FFNN algorithm 

also tests whether the predicting error will decrease when sequentially removing each 
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determined predictor. If a certain predictor is highly correlated with existing predictors, 

this predictor will be generally removed for to reduce in predicting errors. 

- The sentence regarding additional FFNNs trained with predictors in Table S1 for polar 

areas and periods before August 2002 needs clarification. 

Response: The sentence has been modified as the following: 

"Since the satellite remote sensing products used in this work lack data during the 

period before August 2002 and in certain polar areas during winter, the FFNN generated 

missing values in these grids when remote sensing products were used as predictors. 

To address these missing values, we selected additional groups of predictors after 

removing remote sensing products (Table S1), and then trained additional FFNNs to 

predict pH in grids with missing values. This procedure was the same as the 

reconstruction process in the intermediate layer, in which the remote sensing products 

were also not used." 

- Discuss Tables 2 and 3 scientifically in the Results section to highlight important 

processes driving pH variability. 

Response: Thanks for the suggestion. We have added a discussion about processes 

driving pH variability in the end of section 3.2.1 Spatial pH distribution as the following: 

"Based on the pH predictors selected by the Stepwise FFNN algorithm, differences 

in processes driving pH variability were identified between the mixed layer and 

intermediate layer in most provinces. In the mixed layer, surface ocean pCO2 was 

identified as the most informative predictor in many provinces, followed by 

temperature and nutrient concentration. This suggests that the CO2 exchange between 

surface ocean and atmosphere is the primary driver of pH variability, followed by 

biological CO2 utilization and seasonal changes in seawater temperature. In contrast, 

phosphate was identified as the most informative predictor in the intermediate layer, 

followed by temperature and depth. This suggests that the primary process driving pH 

variability is the remineralization of organic matter, converting organic carbon into 

inorganic forms and also releasing nitrogen and phosphorus. Given the notably smaller 

seasonal temperature changes in the intermediate layer compared to the mixed layer, 

the selection of temperature as an important pH predictor may indicate a notable 

influence of ocean warming on seawater pH variability. Additionally, depth was also 

selected as an important predictor in the intermediate layer. The observed pattern of 

seawater pH decreasing with increasing depth in most provinces, as suggested by the 

constructed pH product, may be the main reason." 
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- Figure 3 is extremely difficult to understand and should be clarified or redesigned. 

Response: Thanks for the suggestion. We have revised Figure 3 as the following: 

 

Figure 3: The procedure of pH product construction. (1) Stepwise FFNN: the algorithm 

for selecting predictors (Zhong et al., 2022); (2) FFNN: fitting the non-linear 

relationship between seawater pH and its predictors. Collected Environmental variables: 

collected products listed in Table 1. pH predictors: the selected most informative 

variables listed in Tables 2 and 3. Remote sensing products: variables from Chlorophyll 

to Total backscattering in Table 1. Mixed layer: from 0 m to mixed layer depth; 

intermediate layer: from mixed layer depth to 2000 m. 

More generally, the section 2.3 is currently unclear and needs to be rewritten with more 

detailed explanations. 

Response: Thanks for the suggestion. We have revised the section 2.3 and added more 

details about the method. The specific changes can be found in above response. 
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Section 2.4: 

Line 191: The paragraph is unclear. The statement, “Therefore, the uncertainty of our 

pH product was directly estimated from the FFNN pH predicting errors, instead of 

synthesizing the inherent uncertainty of each used predictor product,” needs further 

clarification. How was this done? 

Response: As described in equation (2), the uncertainty was estimated from local pH 

value and pH predicting error in the corresponding province. For the uncertainty in 

certain grid, we first convert pH predicting error in the corresponding province into 

difference of [H+], by logarithm transfer of predicted and GLODAP measured pH and 

then calculating RMSE. Subsequently, the RMSE of [H+] was transferred to pH 

uncertainty based on the local pH value.  

𝜎 = −logଵ(10
ି୮ୌబ − 𝑅𝑀𝑆𝐸[ୌశ])−pH 

where RMSE[H+] was the RMSE of [H+] converted from FFNN pH predicting error in 

each vertical layer and in each biogeochemical province. pH0 was the local predicted 

pH value in the grid that uncertainty was estimated. Due to missing inherent uncertainty 

of particular predictor product, estimating uncertainty from inherent uncertainty of used 

predictor products was unfeasible. 

Section 3.1: 

- Line 214: This interpretation might be overstated. The broader value range likely 

contributes to a better model fit, and pH values exhibit less variability at depth. 

Response: Thanks for the suggestion. The sentence has been modified as the following: 

"The minor difference between the predicting value and the pH measurements and 

the R2 of 0.97 in the intermediate layer may be caused by less pH variability at depth 

and better model fit with broader pH value range." 

- Figure 4: Authors might add the slopes of the linear regression to the statistics. 

Response: The slopes and linear regression lines have been added. 

- Line 235: The impact of the Oxygen Minimum Zone (OMZ) on the product should be 

discussed more in details. 

Response: Although dissolved oxygen was considered the most informative predictor 

in the Indian Ocean, statistical differences in pH predicting errors were not observed 

between the OMZ and other areas. We have added a description about the impact of the 

OMZ on the quality of pH product. The impact of the OMZ on the pH variability will 
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be investigated in future work, as much more efforts are needed and the currently used 

dissolved oxygen product is only monthly climatological. 

- Figure 5: This figure requires re-arrangement. The map should be larger, and pH 

differences against depth should be plotted with depth as the y-axis, as is more common 

for reading profiles. Additionally, including seasonal variability for each major basin 

along with yearly variability would be beneficial. 

Response: Thanks for the suggestion. We have re-arrangement Figure 5. It is difficult 

to compare seasonal variability for each major basin, as the seasonal variability of the 

north and south hemispheres in the Pacific and Atlantic Ocean cancel each other out.

 

Figure 5: Distribution of RMSE between FFNN predicted pH values and GLODAP pH 

measurements. a): global spatial distribution of RMSE between FFNN predicted pH 

and GLODAP pH measurements at 0-2000 m; b): basin average RMSE at different 

depth; c): temporal distribution of global RMSE; d): Statistical distribution of pH 

difference between predicted pH values and GLODAP pH measurements in each basin. 

- In the validation section, it would be valuable to compare the global scale trend with 

the Copernicus Marine Service data: https://marine.copernicus.eu/access-data/ocean-

monitoring-indicators/globalocean-acidification-mean-sea-water-ph-time-series. 
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Moreover, it would be interesting to add comparison against qualified pH data from 

BGC-Argo dataset. 

Response: Thanks for the suggestion. Comparison of global scale trend has been added 

in Table 4. The BGC ARGO pH data qualified by IMOS has been added in the 

validation section. Different from the validation results based on the GLODAP dataset, 

the RMSE between FFNN pH and BGC ARGO pH data is higher in the deep ocean. 

Only the bias between FFNN pH and BGC ARGO pH data tends to increase with depth 

in most basins. In contrast, greater biases between FFNN pH and GLODAP pH occur 

mainly in the surface layer. Especially in the Southern Ocean, the bias between FFNN 

pH and GLODAP pH is nearly zero below 1000 m, notably lower than biases between 

FFNN pH and BGC ARGO pH data ranging from 0.053 to 0.076. This may be primarily 

attributed to the discrepancies between GLODAP dataset and the BGC ARGO dataset 

in the deep ocean, as our product was based on GLODAP dataset and small biases with 

GLODAP pH were observed in the deep ocean. 

 

Figure 8. Difference between FFNN pH and BGC ARGO floats pH. a) comparison 

between FFNN pH and BGC ARGO floats pH in the mixed layer; b) comparison 

between FFNN pH and BGC ARGO floats pH in the intermediate layer; c) Statistical 

distribution of pH difference (FFNN pH minus BGC ARGO floats pH) at different 

depth levels. FFNN pH: pH data reconstructed in this work; BGC ARGO floats pH: pH 

data from IMOS Biogeochemical ARGO floats core data collection (IMOS 2002-2020, 

2021). 
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Table 5. pH bias by area and depth computed with BGC ARGO and GLODAP 

dataset. 

Area  
0-50 

m 

50-200 

m 
200-500 m 500-1000 m 

1000-1500 

m 

1500-2000 

m 

Arctic 
BGC ARGO -0.006 0.021 0.014 0.026 0.037 0.029 

GLODAP -0.005 -0.003 0.001 0.000 0.002 0.003 

Pacific 
BGC ARGO 0.012 0.011 -0.008 -0.015 0.008 0.000 

GLODAP -0.001 -0.001 0.000 0.000 0.000 -0.001 

Atlantic 
BGC ARGO 0.016 0.017 0.010 -0.024 0.029 0.068 

GLODAP 0.000 0.000 -0.001 -0.001 0.000 0.000 

Indian 
BGC ARGO 0.024 0.026 0.014 -0.056 0.002 0.059 

GLODAP -0.006 -0.001 -0.003 -0.004 -0.004 -0.001 

Southern 
BGC ARGO 0.011 0.002 0.002 0.027 0.053 0.076 

GLODAP 0.004 0.001 0.001 0.000 0.000 0.000 

Global 
BGC ARGO 0.011 0.005 0.001 0.021 0.046 0.066 

GLODAP -0.001 0.000 0.000 -0.001 -0.001 0.000 

 

 

- Figure 6 + text: Comparing to other available pH time series would be interesting. 

These are listed in the recent ESSD paper by Lange et al. (2024): 

https://essd.copernicus.org/articles/16/1901/2024/. For instance, the Mediterranean Sea, 

where data from GLODAP V2 are very scarce, could be validated against the Dyfamed 

pH time series. 

Response: Thanks for the suggestion. We only compared with three station due to their 

sufficient availability in temporal coverage. The collection by Lange et al. (2024) 

includes many stations and are helpful for further evaluating our product, but the pH 

data of particular stations are only available for several years. Therefore, we only added 

the Iceland Sea, the Irminger Sea, and the DYFAMED station data in Table 4 as the 

following:  
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Table 4: Comparison of surface acidification rate with previous product in different time series stations and 

on a global scale. 

Stations Period 
Time series 

observation 

Stepwise FFNN  

(This study) 

JMA 

(Iida et al., 2021) 

CMEMS  

(Chau et al., 

2024) 

OS-ETHZ 

(Gregor et al., 

2021) 

Copernicus 

(Copernicus 

Marine Service, 

2020) 

BAT 1992~2020 -0.0018 ± 0.0001 -0.0017 ± 0.0007 -0.0018 ± 0.0002 -0.0018 ± 0.0002 -0.0018 ± 0.0002 - 

ESTOC 1995~2010 -0.0016 ± 0.0001 -0.0014 ± 0.0005 -0.0022 ± 0.0003 -0.0020 ± 0.0002 -0.0017 ± 0.0003 - 

HOT 1992~2020 -0.0018 ± 0.0001 -0.0018 ± 0.0004 -0.0020 ± 0.0001 -0.0021 ± 0.0001 -0.0019 ± 0.0001 - 

Iceland Sea 1992~2019 -0.0020 ± 0.0004 -0.0028 ± 0.0002 -0.0030± 0.0003 -0.0015 ± 0.0002 -0.0020 ± 0.0002 - 

Irminger Sea 1992~2019 -0.0025 ± 0.0004 -0.0022 ± 0.0002 -0.0027 ± 0.0002 -0.0017 ± 0.0003 -0.0016 ± 0.0003  

DYFAMED 1998~2017 -0.0010 ± 0.0008 -0.0005 ± 0.0003 - -0.0017 ± 0.0003 -0.0023 ± 0.0004  

Global 1992~2020 - -0.0015 ± 0.0002 -0.0018 ± 0.0000 -0.0017 ± 0.0004 -0.0018 ± 0.0000 -0.0017 ±0.0002 

 

- Figure 6: Discuss the extreme values not reconstructed by the FFNN in the text. 

Response: The extreme low values not reconstructed by the FFNN are mainly observed 

at the BAT station near 2010 and at the HOT station near 2000, under the influence of 

La Niña events. The extreme high values are mainly observed at the HOT station before 

2000, under the influence of El Niño events. Differently, the extreme values not 

reconstructed by the FFNN are less observed at the ESTOC station, where the surface 

pH did not notably fluctuate during El Niño/La Niña events. It can be inferred that the 

extreme values not reconstructed by the FFNN may be due to its underestimating of the 

impact of El Niño/La Niña events on pH of certain temperate areas.  

- Line 254 : Chau et al. (2022) may not be the best reference, as they are also model 

(ML)-based. 

Response: The reference has been corrected to González-Dávila et al. (2010). 

- Line 261 : Describe in what specific ways the product differs from other products. 

Response: The long-term pH trend of our product at the ESTOC station was only -

0.0014 yr-1, notably slower than the trend from -0.0017 yr-1 to -0.0022 yr-1 of other 

gridded products, but is still close to the -0.0016 ± 0.0001 yr-1 of real observations. 

- Table 4: More products could be compared, such as Jiang et al. (2022): Remote 

Sensing of Global Sea Surface pH Based on Massive Underway Data and Machine 

Learning (https://doi.org/10.3390/rs14102366). Additionally, some products compared 

here have not been previously cited in the article (refer to the comment on the 

introduction). The effect of the different time ranges of the different products on the 

computation of trends should also be analyzed and discussed. 

Response: Thanks for the suggestion. The comparison of surface pH trend in time series 

stations and on a global ocean scale between different products was based on the same 
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period, which all contain years before 2004 not covered by product of Jiang et al. (2022). 

Therefore, the product of Jiang et al. (2022) was not used, but we added the Copernicus 

Marine Service product for comparison instead, which has a longer time coverage. The 

citations of products have been added in the introduction. The pH trends from other 

products for comparison were all re-calculated using data during same periods, and the 

description has been added in table remarks. 

Section 3.1.2 and Figure 7: Not sure whether this paragraph and figure are necessary. 

Response: These contents has been moved to supplement. 

Section 3.2: 

- Lines 301-304: This issue is problematic and should be discussed in more details for 

the user. Additionally, the significant differences between the GLODAP climatology 

and this product at 1000 m in the Southern Ocean should be discussed/addressed. 

Response: The description has been corrected to focus on the temperate Pacific as the 

following: 

"In the temperate Pacific Ocean, differences in surface pH levels were observed 

between the west and east in both our product and GLODAP pH climatology, which 

may be caused by the spread of eastern equatorial seawater with extremely low pH. At 

the deeper depth of 1000 m, the spatial distribution pattern of FFNN pH product is 

generally consistent with the GLODAP climatology, despite still some disturbance of 

bad FFNN performance along the SOM province boundary and the higher FFNN pH in 

the Southern Ocean. However, the distribution of higher FFNN pH in the region 

between 35°S and 50°S is consistent with the lower DIC reconstructed by Broullon., et 

al. (2020)." 

The difference in the Southern Ocean may be because the pH observations are 

sparse and uneven in time and space in the deep Southern Ocean, leading to some pH 

distribution differences in local areas or depths. However, in the high-latitude regions 

of the Southern Ocean, our constructed data is also in good agreement with the 

GLODAP climatology, with an average pH of around 7.9. In the region between 35°S 

and 50°S, the distribution of higher FFNN pH is consistent with the lower DIC 

reconstructed by Broullon, et al. (2020). 

- Figure 9: The longitude of the zonal average should be specified in the caption and/or 

the text. 

Response: The pH values shown at each latitude were averaged from pH values across 

all longitudes within each major basin. The description has been added in the caption. 
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-Section 3.2.2: The discontinuity problem requires more discussion, both 

methodologically (explaining why this issue occurs despite the use of the cross-

boundary method) and in terms of implications for users. If local uncertainties are 

available, they should be included in the NetCDFs. 

Response: Thanks for the suggestion. The further discussion has been added in the 

Section 3.2.2. The local uncertainties have been added in the NetCDF files. Here are 

the added text: 

"Although we have used a cross-boundary method to improve the FFNN 

performance near the SOM and vertical boundary, there are still some discontinuity 

problems and relatively higher uncertainty. This is because the pH values on two sides 

of the SOM boundary were reconstructed from two different FFNN models, which were 

trained with different samples and used different predictors. If one of the FFNN models 

experienced a worse performance due to insufficient training samples or predictors, the 

pH values on two sides of the SOM boundary will still differ notably, that is, 

discontinuity along the boundary. Therefore, the analyze on a regional scale based on 

pH values near SOM boundaries should be more cautious when using our product." 

Section 5: 

Authors should provide more concrete examples of applications for their product in the 

Conclusion. 

Response: The description of applications has been added in the Section 5 as the 

following: 

"This product serves as a reference for guiding acidification surveys by providing 

a general understanding of acidification process at different depths on a basin scale and 

indicating areas with potential fast or slow acidification rates. Additionally, the pH 

product brings insights into acidification research and can be used to analyze the 

influence of specific ocean processes on acidification rates and the broader impacts of 

acidification on a large scale when direct observations are unavailable." 

Typos : 

- Line 78: was converted to a 1°×1° resolution by averaging 16 0.25° grids into one 1° 

grid 

- Line 84: (* 

- Line 116: Therefore 

Response: These typos have been corrected. 
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Data: 

I encountered an error when attempting to open the NetCDF file using R. The error 

message was as follows: 

Dans nc_open("/home/user/Data/2012.nc") : 

WARNING file /home/user/Data/2012.nc is not compliant netCDF; variable pH is 

numeric but has a character-type missing value! This is an error! Compensating, but 

you should fix the file! 

Although I didn't receive any warnings when using xarray with Python, this issue 

should be addressed to ensure compatibility with other tools. Additionally, when 

opening the dataset with xarray and attempting to plot it using the library's functions, I 

noticed that the longitude and latitude are reversed (not in the name), and the longitude 

is plotted on the y-axis. To enhance user-friendliness when using Python tools, it would 

be beneficial to adjust the format accordingly. 

Regarding the availability of MATLAB code, I am not a MATLAB programmer, so I 

am unable to provide feedback on its use. 

Response: This error is caused by the missing value defined as “nan” in the NetCDF 

file, which can be read by MATLAB but maybe not in other tools. We will replace the 

missing values to “-999” for all NetCDF files, to ensure compatibility with other tools. 


