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 114 

Abstract.  115 

Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for 116 

climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC). 117 

Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the 118 

state of the climate system and of the human influence on the global climate system. However, successive IPCC 119 

reports are published at intervals of 5–10 years, creating potential for an information gap between report cycles. 120 

 121 

We follow methods as close as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group 122 

One (WGI) report. We compile monitoring datasets to produce estimates for key climate indicators related to forcing 123 

of the climate system: emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, 124 
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radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activities, 137 

the remaining carbon budget, and estimates of global temperature extremes. The purpose of this effort, grounded in 138 

an open data, open science approach, is to make annually updated reliable global climate indicators available in the 139 

public domain (https://doi.org/10.5281/zenodo.11061606, Smith et al., 2024). As they are traceable to IPCC report 140 

methods, they can be trusted by all parties involved in UNFCCC negotiations and help convey wider understanding 141 

of the latest knowledge of the climate system and its direction of travel. 142 

 143 

The indicators show that, for the 2014–2023 decade average, observed warming was 1.19 [1.06 to 1.30] °C, of which 144 

1.19 [1.0 to 1.4] °C was human-induced. For the single year average, human-induced warming reached 1.31 [1.1 to 145 

1.7] °C in 2023 relative to 1850-1900. This is below the 2023 observed record of 1.43 [1.32 to 1.53] °C, indicating a 146 

substantial contribution of internal variability in the 2023 record. Human-induced warming has been increasing at rate 147 

that is unprecedented in the instrumental record, reaching 0.26 [0.2 - 0.4] °C per decade over 2014-2023. This high 148 

rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 54 ± 5.4 GtCO2e 149 

per year over the last decade, as well as reductions in the strength of aerosol cooling. Despite this, there is evidence 150 

that the rate of increase in CO₂ emissions over the last decade has slowed compared to the 2000s, and depending on 151 

societal choices, a continued series of these annual updates over the critical 2020s decade could track a change of 152 

direction for some of the indicators presented here. 153 

1 Introduction  154 

The IPCC AR6 has provided an assessment of human influence on key indicators of the state of climate grounded in 155 

data up to year 2019 (IPCC WGI 2021). The next IPCC AR7 assessment report is due towards the end of the decade. 156 

Given the speed of recent change, and the need for updated climate knowledge to inform evidence-based decision-157 

making, the Indicators of Global Climate Change (IGCC) was initiated to provide policymakers with annual updates 158 

of the latest scientific understanding on the state of selected critical indicators of the climate system and of human 159 

influence. 160 

This second annual update follows broadly the format of last year (Forster et al., 2023), focussing on indicators related 161 

to heating of the climate system, building from greenhouse gas emissions towards estimates of human-induced 162 

warming and the remaining carbon budget. Fig. 1 presents an overview of the aspects assessed and their interlinkages 163 

from cause (emissions) through effect (changes in physical indicators) to Climatic Impact-Drivers. It also provides a 164 

visual roadmap as to the structure of remaining sections in this paper to guide the reader. 165 
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  205 

Figure 1 The flow chart of data production from emissions to human induced warming and the remaining carbon budget, 206 
illustrating both the rationale and workflow within the paper production. 207 

The update is based on methodologies assessed by the IPCC Sixth Assessment Report (AR6) of the physical science 208 

basis of climate change (Working Group One (WGI) report; IPCC, 2021a) as well as Chap. 2 of the WGIII report 209 

(Dhakal et al., 2022) and is aligned with the efforts initiated in AR6 to implement FAIR (Findable, Accessible, 210 

Interoperable, Reusable) principles for reproducibility and reusability (Pirani et al., 2022; Iturbide et al., 2022). IPCC 211 

reports make a much wider assessment of the science and methodologies – we do not attempt to reproduce the 212 

comprehensive nature of these IPCC assessments here. Our aim is to rigorously track both climate system change and 213 

methodological improvements between IPCC report cycles, thereby transparency and consistency in between 214 

successive reports.  215 

 216 

The update is organised as follows: emissions (Sect. 2) and greenhouse gas (GHG) concentrations (Sect. 3) are used 217 

to develop updated estimates of effective radiative forcing (Sect. 4). Earth's energy imbalance (Sect. 5) and 218 
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observations of global surface temperature change (Sect. 6) are key global indicators of a warming world. The 353 

contributions to global surface temperature change from human and natural influences are formally attributed in Sect. 354 

7, which tracks the level and rate of human-induced warming. Sect. 8 updates the remaining carbon budget to policy-355 

relevant temperature thresholds. Sect. 9 gives an example of global-scale indicators associated with climate extremes 356 

of maximum land surface temperatures. An important purpose of the exercise is to make these indicators widely 357 

available and understood. Code and data availability are given in Sect. 10, and conclusions are presented in Sect. 11. 358 

Data are available at https://doi.org/10.5281/zenodo.11061606 (Smith et al., 2024). 359 

 360 

2 Emissions 361 

Historic emissions from human activity were assessed in both AR6 WGI and WGIII. Chapter 5 of WGI assessed CO2 362 

and CH4 emissions in the context of the carbon cycle (Canadell et al., 2021). Chapter 6 of WGI assessed emissions in 363 

the context of understanding the climate and air quality impacts of short-lived climate forcers (Szopa et al., 2021). 364 

Chapter 2 of WGIII, published one year later (Dhakal et al., 2022), assessed the sectoral sources of emissions and 365 

gave the most up-to-date understanding of the current level of emissions. This section bases its methods and data on 366 

those employed in this WGIII chapter. 367 

2.1 Methods of estimating greenhouse gas emissions changes  368 

Like in AR6 WGIII, net GHG emissions in this paper refer to releases of GHGs from anthropogenic sources minus 369 

removals by anthropogenic sinks, for greenhouse gases reported under the common reporting format of the UNFCCC. 370 

This includes CO2 emissions from fossil fuels and industry (CO2-FFI); net CO2 emissions from land use, land-use 371 

change and forestry (CO2-LULUCF); CH4; N2O; and fluorinated gas (F-gas) emissions. CO2-FFI mainly comprises 372 

fossil-fuel combustion emissions, as well as emissions from industrial processes such as cement production. This 373 

excludes biomass and biofuel use. CO2-LULUCF is mainly driven by deforestation but also includes anthropogenic 374 

removals on land from afforestation and reforestation, emissions from logging and forest degradation, and emissions 375 

and removals in shifting cultivation cycles, as well as emissions and removals from other land-use change and land 376 

management activities, including peat burning and drainage. The non-CO2 GHGs – CH4, N2O and F-gas emissions – 377 

are linked to the fossil-fuel extraction, agriculture, industry and waste sectors. 378 

 379 

Global regulatory conventions have led to a twofold categorisation of F-gas emissions (also known as halogenated 380 

gases). Under UNFCCC accounting, countries record emissions of hydrofluorocarbons (HFCs), perfluorocarbons 381 

(PFCs), sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3) – hereinafter “UNFCCC F-gases”. However, national 382 

inventories tend to exclude halons, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) – hereinafter 383 

“ODS (ozone-depleting substance) F-gases” – as they have been initially regulated under the Montreal Protocol and 384 

its amendments. In line with the WGIII assessment, ODS F-gases and other substances, are not included in our GHG 385 

emissions reporting but are included in subsequent assessments of concentration change (including compounds formed 386 
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in the atmosphere as ozone), effective radiative forcing, human-induced warming, carbon budgets and climate impacts 423 

in line with the WGI assessment. 424 

 425 

There are also varying conventions used to quantify CO2-LULUCF fluxes. These include the use of bookkeeping 426 

models, dynamic global vegetation models (DGVMs) and aggregated national inventory reporting (Pongratz et al., 427 

2021). Each differs in terms of their applied system boundaries and definitions and they are not directly comparable. 428 

However, efforts to “translate” between bookkeeping estimates and national inventories using DGVMs have 429 

demonstrated a degree of consistency between the varying approaches (Friedlingstein et al., 2022; Grassi et al., 2023). 430 

 431 

Each category of GHG emissions included here is covered by varying primary sources and datasets. Although many 432 

datasets cover individual categories, few extend across multiple categories, and only a minority have frequent and 433 

timely update schedules. The Global Carbon Budget (GCB; Friedlingstein et al., 2023) covers CO2-FFI and CO2-434 

LULUCF. The Emissions Database for Global Atmospheric Research (EDGAR; Crippa et al., 2023) and the Potsdam 435 

Real-time Integrated Model for probabilistic Assessment of emissions Paths (PRIMAP-hist; Gütschow et al., 2016; 436 

Gütschow et al., 2024) cover CO2-FFI, CH4, N2O and UNFCCC F-gases. The Community Emissions Data System 437 

(CEDS; Hoesly et al. 2018; ; Hoesly and Smith, 2024) covers CO2-FFI, CH4, and N2O. The Global Fire Emissions 438 

Database (GFED; van der Werf et al., 2017) covers CO2, CH4, and N2O. As detailed below, for various reasons not 439 

all these datasets were employed in this update. 440 

 441 

In AR6 WGIII, total net GHG emissions were calculated as the sum of CO2-FFI, CH4, N2O and UNFCCC F-gases 442 

from EDGAR, and net CO2-LULUCF emissions from the GCB. Net CO2-LULUCF emissions followed the GCB 443 

convention and were derived from the average of three bookkeeping models (Hansis et al., 2015; Houghton and 444 

Nassikas, 2017; Gasser et al., 2020). Version 6 of EDGAR was used (with a fast-track methodology applied for the 445 

final year of data – 2019), alongside the 2020 version of the GCB (Friedlingstein et al., 2020). CO2-equivalent 446 

emissions were calculated using global warming potentials with a 100-year time horizon (GWP100 henceforth) from 447 

AR6 WGI Chap. 7 (Forster et al., 2021). Uncertainty ranges were based on a comparative assessment of available data 448 

and expert judgment, corresponding to a 90 % confidence interval (Minx et al., 2021): ±8 % for CO2-FFI, ±70 % for 449 

CO2-LULUCF, ±30 % for CH4 and F-gases, and ±60 % for N2O (note that the GCB assesses 1 standard deviation 450 

uncertainty for CO2-FFI as ±5 % and for CO2-LULUCF as ±2.6 GtCO2; Friedlingstein et al., 2022). The total 451 

uncertainty was summed in quadrature, assuming independence of estimates per species/source. Reflecting these 452 

uncertainties, AR6 WGIII reported emissions to two significant figures only. Uncertainties in GWP100 metrics of 453 

roughly ±10 % were not applied (Minx et al., 2021).  454 

 455 

This analysis tracks the same compilation of GHGs as in AR6 WGIII. We follow the same approach for estimating 456 

uncertainties and CO2-equivalent emissions. We also use the same type of data sources but make important changes 457 

to the specific selection of data sources to further improve the quality of the data, as suggested in the knowledge gap 458 

discussion of the WGIII report (Dhakal et al., 2022). Instead of using EDGAR data (which are now available as version 459 
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8), we use GCB data for CO2-FFI, PRIMAP-hist “CR” data for CH4 and N2O, and atmospheric concentrations with 488 

best-estimate lifetimes for UNFCCC F-gas emissions (Hodnebrog et al., 2020). As in AR6 WGIII we use GCB for 489 

net CO2-LULUCF emissions, taking the average of three bookkeeping models (BLUE by Hansis et al., 2015; H&C 490 

by Houghton and Castanho, 2023; OSCAR by Gasser et al., 2020). Bunker emissions are included but military 491 

emissions excluded (e.g. Bun et al. 2024). For more completeness, this year we also include estimates of N2O and CH4 492 

emissions from global biomass fires, sourced from GFED.  493 

 494 

There are three reasons for these specific data choices. First, national greenhouse gas emissions inventories tend to 495 

use improved, higher-tier methods for estimating emissions fluxes than global inventories such as EDGAR (Dhakal 496 

et al., 2022; Minx et al., 2021). As GCB and PRIMAP-hist “CR” integrate the most recent national inventory 497 

submissions to the UNFCCC, selecting these databases makes best use of country-level improvements in data-498 

gathering infrastructures. It is important to acknowledge, however, that national inventories differ substantially with 499 

respect to reporting intervals, applied methodologies and emissions factors. Notably, the PRIMAP-hist “CR” dataset 500 

has significantly lower total CH4 emissions relative to both the other datasets reported here, and the global atmospheric 501 

inversion estimates evaluated in this paper. A substantive body of literature has evaluated national level CH4 inversions 502 

versus inventories, finding a tendency for the former to exceed the latter (Deng et al. 2022; Tibrewal et al. 2024; 503 

Janardanan et al. 2024; Scarpelli et al. 2022). Compared to the median of reported inversion models from Deng et al. 504 

2022, PRIMAP-Hist CR reports lower CH4 emissions for India, the EU27+UK, Brazil, Russia and Indonesia, but not 505 

in the case of China and the United States (see Supplement Fig 1).  506 

 507 

Second, comprehensive reporting of F-gas emissions has remained challenging in national inventories and may 508 

exclude some military applications (see Minx et al., 2021; Dhakal et al., 2022). However, F-gases are entirely 509 

anthropogenic substances, and their concentrations can be measured effectively and reliably in the atmosphere. We 510 

therefore follow the AR6 WGI approach in making use of direct atmospheric observations.  511 

 512 

Third, the choice of GCB data for CO2-FFI means we can integrate its projection of that year's CO2 emissions at the 513 

time of publication (i.e. for 2023). No other dataset except GCB provides projections of CO2 emissions on this time 514 

frame. At this point in the publication cycle (mid-year), the other chosen sources provide data points with a 2-year 515 

time lag (i.e. for 2022). While these data choices inform our overall assessment of GHG emissions, we provide a 516 

comparison across datasets for each emissions category, as well as between our estimates and an estimate derived 517 

from AR6 WGIII-like databases (i.e. EDGAR for CO2-FFI and non-CO2 GHG emissions, GCB for CO2-LULUCF). 518 

2.2 Updated greenhouse gas emissions 519 

Updated GHG emission estimates are presented in Fig. 2 and Table 1. Total global GHG emissions were 520 

55 ± 5.4 GtCO2e in 2022, the same as previous high levels in 2019 and 2021. Of this total, CO2-FFI contributed 521 

37.1 ± 3 GtCO2, CO2-LULUCF contributed 4.3 ± 3 GtCO2, CH4 contributed 9 ± 2.7 GtCO2e, N2O contributed 522 

3.1 ± 1.9 GtCO2e and F-gas emissions contributed 1.7 ± 0.51 GtCO2e. Initial projections indicate that total CO2 523 
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emissions remained similar in 2023, with emissions from fossil fuel and industry  at 37.5 ± 3 and from land-use change 556 

at 4.1 ± 2.9 GtCO2 (Friedlingstein et al., 2023; see also Liu et al., 2024; IEA, 2023). Note that ODS F-gases such as 557 

chlorofluorocarbons and hydrochlorofluorocarbons are excluded from national GHG emissions inventories. For 558 

consistency with AR6, they are also excluded here. Including them here would increase total global GHG emissions 559 

by 1.3 GtCO2e in 2022. 560 

 561 

Average annual GHG emissions for the decade 2013–2022 were 54 ± 5.4 GtCO2e, which is the same as the estimate 562 

from last year for 2012-2021. Average decadal GHG emissions have increased steadily since the 1970s across all 563 

major groups of GHGs, driven primarily by increasing CO2 emissions from fossil fuel and industry but also rising 564 

emissions of CH4 and N2O. Stratospheric ozone-depleting F-gases are regulated under the Montreal Protocol and its 565 

amendments and their emissions have declined substantially since the 1990s, whereas emissions of other F-gases, 566 

regulated under the UNFCCC, have grown more rapidly than other greenhouse gas emissions, but from low levels. 567 

Both the magnitude and trend of CO2 emissions from land-use change remain highly uncertain, with the latest data 568 

indicating an average net flux between 4–5 GtCO2 yr−1 for the past few decades. 569 

 570 

AR6 WGIII reported total net anthropogenic emissions of 59 ± 6.6 GtCO2e in 2019 and decadal average annual 571 

emissions of 56 ± 6.0 GtCO2e from 2010–2019. By comparison, our estimates here for the AR6 period sum to 572 

55 ± 5.5 GtCO2e in 2019 and an annual average of 53 ± 5.5 GtCO2e for the same decade (2010–2019). The difference 573 

between these figures, including the reduced relative uncertainty range, is partly driven by the substantial revision in 574 

GCB CO2-LULUCF estimates between the 2020 version (used in AR6 WGIII) of 6.6 GtCO2 and the 2022 version 575 

(used here) of 4.6 GtCO2. The main reason for this downward revision comes from updated estimates of agricultural 576 

areas by the FAO, which uses multi-annual land-cover maps from satellite remote sensing, leading to lower emissions 577 

from cropland expansion, particularly in the tropical regions. It is important to note that this change is not a reflection 578 

of changed and improved methodology per se but an update of the resulting estimation due to updates in the available 579 

input data. Second, there are relatively small changes resulting from improvements in datasets since AR6, including 580 

the new addition of global biomass burning (landscape fire) emissions. Datasets impacts are largest for CH4, where 581 

the emission estimate has reduced by 1.6 GtCO2e in 2019. This is related to the switch from EDGAR in AR6 to 582 

PRIMAP-hist CR in this study. EDGAR estimates considerably higher CH4 emissions – from fugitive fossil sources, 583 

as well as the livestock, rice cultivation and waste sectors – compared to country-reported data using higher tier 584 

methods, as compiled in PRIMAP-hist CR (see Sect 2.1). Differences in the remaining gases for 2019 are relatively 585 

small in magnitude (increases in N2O (+0.42 GtCO2e) and UNFCCC-F-gases (+0.2 GtCO2e) and decreases in CO2-586 

FFI (−0.8 GtCO2e)). Overall, excluding the change due to CO2-LULUCF and CH4, they impact the total GHG 587 

emissions estimate by −0.21 GtCO2e (roughly 3% of the uncertainty in total greenhouse gas emissions). 588 

 589 

The fossil fuel share of global greenhouse gas emissions was approximately 70% in 2022 (GWP100 weighted), based 590 

on the EDGAR v8 dataset (Crippa et al. 2023) and net land use CO2 emissions from the Global Carbon Budget 591 
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(Friedlingstein et al. 2023). Non fossil fuel emissions are mostly from land-use change, agriculture, cement production, 836 

waste and F-gas emissions. 837 

 838 

New literature not available at the time of the AR6 suggests that increases in atmospheric CH4 concentrations are also 839 

driven by methane emissions from wetland changes resulting from climate change (e.g. Basu et al., 2022; Peng et al., 840 

2022; Nisbet et al., 2023; Zhang et al., 2023). There is also a possible effect from CO3 fertilisation (Feron et al., 2024; 841 

Hu et al., 2023). Such carbon cycle feedbacks are not considered here as they are not a direct emission from human 842 

activity, yet they will contribute to greenhouse gas concentration rise, forcing and energy budget changes discussed 843 

in the next sections. They will become more important to properly account for in future years.  844 
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Figure 2 Annual global anthropogenic greenhouse gas emissions by source, 1970–2022. Refer to Sect. 2.1 for a list of 854 
datasets. Datasets with an asterisk (*) indicate the sources used to compile global total greenhouse gas emissions in (a). CO2-855 
equivalent emissions in (a) and (f) are calculated using GWP100 from the AR6 WGI Chap. 7 (Forster et al., 2021). F-gas 856 
emissions in (a) comprise only UNFCCC F-gas emissions (see Sect. 2.1 for a list of species). GFED refers to CH4 and N2O 857 
emissions from global biomass fires only. 858 

Table 1 Global anthropogenic greenhouse gas emissions by source and decade. All numbers refer to decadal averages, 859 
except for annual estimates in 2022 and 2023. CO2-equivalent emissions are calculated using GWP100 from AR6 WGI 860 
Chap. 7 (Forster et al., 2021). Projections of non-CO2 GHG emissions in 2023 remain unavailable at the time of publication. 861 
Uncertainties are ±8 % for CO2-FFI, ±70 % for CO2-LULUCF, ±30 % for CH4 and F-gases, and ±60 % for N2O, 862 
corresponding to a 90 % confidence interval. ODS F-gases are excluded, as noted in Sect. 2.1. 863 

Units: 
GtCO2e 

1970- 
1979 

1980- 
1989 

1990- 
1999 

2000- 
2009 

2010- 
2019 

2013- 
2022 

2022 2023 
(projectio
n) 

GHG 31±4.2 35±4.7 40±5.2 46±5.2 53±5.5 54±5.4 55±5.4  

CO2- 
FFI 

17.3±1.4 20.3±1.6 23.6±1.9 28.9±2.3 35.4±2.8 36±2.9 37.1±3 37.5±3 

CO2- 
LULUCF 

4.6±3.3 5.2±3.7 5.8±4 5.2±3.6 5.2±3.5 4.7±3.3 4.3±3 4.1±2.9 

CH4 6.3±1.9 6.9±2.1 7.5±2.3 8.1±2.4 8.8±2.6 8.8±2.7 9±2.7  

N2O 2.1±1.2 2.3±1.4 2.5±1.5 2.7±1.6 2.9±1.8 3±1.8 3.1±1.9  

UNFCCC 
F-gases 

0.57±0.17 0.73±0.22 0.67±0.2 0.9±0.27 1.3±0.39 1.5±0.44 1.7±0.51  

 865 

2.3 Non-methane short-lived climate forcers 866 

In addition to GHG emissions, we provide an update of anthropogenic emissions of non-methane short-lived climate 867 

forcers (SLCFs) (SO2, black carbon (BC), organic carbon (OC), NOx, volatile organic compounds (VOCs), CO and 868 

NH3). Data is presented in Table 2. HFCs are considered in Sect. 2.2.  869 

 870 

Sectoral emissions of SLCFs are derived from two sources. For fossil fuel, industrial, waste and agricultural sectors, 871 

we use the CEDS dataset. CEDS provides global emissions totals from 1750 to 2022 in its most recent version 872 

(v_2024_04_01) (Hoesly et al., 2018; Hoesly & Smith, 2024). No CEDS emissions data are currently available for 873 

2023. The estimate for 2023 was derived by assuming a scaled return to an underlying SSP2-4.5 emissions scenario, 874 

used for inputs to COVID-MIP (Forster et al., 2020, Lamboll et al. 2021). We find that the 2020-2022 emissions trends 875 

comparing CEDS and the COVID-MIP extrapolation are not substantially different (Supplement Fig. S2), so the 876 

COVID-MIP extension to 2023 is justifiable. In Forster et al. (2023), the CEDS dataset was only available to 2019, 877 
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so the COVID-MIP extension was used to 2022. Therefore, emissions from 2020 have been revised in this year’s 1146 

paper with 2020-2022 data now arising from CEDS.  1147 

 1148 

Overall, the net SO2 emissions were similar (within 2 TgSO2, see Supplement Sect. S2) over the 2020-22 period in 1149 

the CEDS dataset than our estimate in Forster et al. (2023). The CEDS dataset accounts for the introduction of strict 1150 

fuel sulphur controls brought in by the International Maritime Organization on 1 January 2020. Total SO2 emissions 1151 

in 2019 were 84.2 TgSO2 (Table 2). The SO2 emissions from international shipping declined by 7.4 TgSO2 from 10.4 1152 

TgSO2 in 2019 to 3.0 TgSO2 in 2020, which is close to the expected 8.5 TgSO2 reduction estimated by the IMO, 1153 

approximately -80% from the 2019 number, accounting for a 3-month phase in period and COVID-19 changes. Non-1154 

shipping SO2 emissions were impacted slightly by COVID-19, but had rebounded to close to 2019 levels by 2022 in 1155 

CEDS.  1156 

 1157 

For biomass burning SLCF emissions, we follow AR6 WGIII (Dhakal et al., 2022) and use GFED (van der Werf et 1158 

al., 2017) version 4 with small fires (GFED4s) for 1997 to 2023, with the dataset extended back to 1750 for CMIP6 1159 

(van Marle et al., 2017). Estimates from 2017 to 2023 are provisional.  As demonstrated with the update to CEDS 1160 

emissions, the potential for both sources of emissions data to be updated in future versions exists, for example with a 1161 

planned introduction of GFED5 in preparation for CMIP7.  1162 

 1163 

Using our combined estimate of GFED and CEDS with a 2023 extrapolation, emissions of all SLCFs were reduced in 1164 

2022 relative to 2019, but rebounded again in 2023 (Table 2). The primary driver of the increase in 2023 is an 1165 

anomalous biomass burning year, mostly related to the unprecedented 2023 Canadian fire season, with a smaller 1166 

contribution from a continued recovery from COVID-19. Under these assumptions, 2023 was a record year for 1167 

emissions of organic carbon (driven again by a very active biomass burning season) and ammonia (driven by a steady 1168 

background increase in agricultural sources, plus a contribution from biomass burning). Causes of the enhanced 1169 

burning are not distinguished in the GFED data. Whether human-caused burning, a feedback due to the extreme heat 1170 

or naturally occurring, we choose to include them in our tracking, as historical biomass burning emissions inventories 1171 

have previously been consistently treated as a forcing (for example in CMIP6), though this assumption may need to 1172 

be revisited in the future. . This differs from the treatment of accounting for CO2 and CH4 emissions at present (Sect. 1173 

2.2), where we do not include natural emissions in the inventories.  As described in Sect. 4, the treatment of all biomass 1174 

burning emissions as a forcing has implications for several categories of anthropogenic radiative forcing. Trends in 1175 

SLCFs emissions are spatially heterogeneous (Szopa et al., 2021), with strong shifts in the locations of reductions and 1176 

increases over the 2010–2019 decade (Hodnebrog et al. 2024).  1177 
Table 2 Emissions of the major SLCFs in 1750, 2019, 2022 and 2023 from a combination of CEDS and GFED. Emissions of 1178 
SO2+SO4 use SO2 molecular weights. Emissions of NOx use NO2 molecular weights. VOCs are for the total mass. 1179 

Compound  1750 emissions (Tg 
yr-1) 

2019 emissions (Tg 
yr-1) 

2022 emissions (Tg 
yr-1) 

2023 emissions (Tg 
yr-1) 
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Sulfur dioxide (SO2) 
+ sulfate (SO42-) 

0.8 84.2 75.3 79.1 

Black carbon (BC) 2.1 7.5 6.8 7.3 

Organic carbon 
(OC) 

15.5 34.2 25.8 40.7 

Ammonia (NH3) 6.6 67.6 67.3 71.1 

Oxides of nitrogen 
(NOx) 

19.4 141.7 130.4 139.4 

Volatile organic 
compounds (VOCs) 

60.9 217.3 183.9 228.1 

Carbon monoxide 
(CO) 

348.4 853.8 686.4 917.5 

 1232 

Uncertainties associated with these emission estimates are difficult to quantify. From the non-biomass-burning sectors 1233 

they are estimated to be smallest for SO2 (±14 %), largest for black carbon (BC) (a factor of 2) and intermediate for 1234 

other species (Smith et al., 2011; Bond et al., 2013; Hoesly et al., 2018). Uncertainties are also likely to increase both 1235 

backwards in time (Hoesly et al., 2018) and again in the most recent years. The estimates of non-biomass-burning 1236 

emissions for 2023, especially SO2 are highly uncertain, owing to the use of proxy activity data used with a SSP2-4.5 1237 

scenario extension (see above). Future updates of CEDS are expected to include uncertainties (Hoesly et al., 2018). 1238 

Even though trends over recent years are uncertain, the general decline in some SLCF emissions derived from 1239 

inventories punctuated by temporary anomalous years with high biomass burning emissions including 2023 is 1240 

supported by MODIS Terra and Aqua aerosol optical depth measurements (e.g. Quaas et al., 2022, Hodnebrog et al 1241 

2024). 1242 

3 Well-mixed greenhouse gas concentrations  1244 

As in Forster et al. (2023), we report best-estimate global mean concentrations for 52 well-mixed greenhouse gases. 1245 

These concentrations are updated to 2023. 1246 

 1247 

As in AR6 and Forster et al. (2023), CO2 mixing ratios were taken from the NOAA Global Monitoring Laboratory 1248 

(GML) and are updated here through 2023 (Lan et al., 2024a). As in Forster et al. (2023), CO2 is reported on the 1249 

WMO-CO2-X2019 scale, which differs from the WMO-CO2-X2007 scale used in AR6. Prior to the use of NOAA 1250 

GML data from 1980 onwards, a conversion is applied to the AR6 CO2 time series to take into account the scale 1251 

change using X2019 = 1.00079 * X2007 - 0.142 ppm. Other LLGHG records were compiled from NOAA and AGAGE 1252 

global networks or extrapolated from literature. An average of NOAA and AGAGE data were used for N2O, CH4, 1253 

CFC-11, CFC-12, CFC-113, CCl4, HCFC-22, HFC-134a, and HFC-125 (Lan et al., 2024b; Dutton et al., 2024; Prinn 1254 

et al., 2018), which, along with CO2, account for over 98% of the ERF from well-mixed greenhouse gases. In cases 1255 

where no updated information is available, global estimates were extrapolated from Vimont et al. (2022), Western et 1256 
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al. (2023), or other literature and scaled to be consistent with those reported in AR6. Some extrapolations are based 1282 

on data from the mid-2010s (Droste et al., 2020; Laube et al., 2014; Simmonds et al., 2017; Vollmer et al., 2018), but 1283 

have an imperceptible effect on the total ERF assessed in Sect. 4, and are included to maintain consistency with AR6. 1284 

Mixing ratio uncertainties for 2023 are assumed to be similar to 2019, and we adopt the same uncertainties as assessed 1285 

in AR6 WGI. 1286 

 1287 

The global surface mean concentrations of CO2, CH4 and N2O in 2023 were 419.3 [±0.4] parts per million (ppm), 1288 

1922.5 [±3.3] parts per billion (ppb) and 336.9 [±0.4] ppb, respectively. Concentrations of all three major GHGs have 1289 

increased since 2019, with CO2 increasing by 9.2 ppm, CH4 by 56 ppb, and N2O by 4.8 ppb. Increases since 2019 are 1290 

consistent with those from the CSIRO network (Francey at al., 1999), which are 9.3 ppm, 55 ppb, and 5.0 ppb for 1291 

CO2, CH4, and N2O, respectively. With few exceptions, concentrations of ozone-depleting substances, such as CFC-1292 

11 and CFC-12, continue to decline, while those of replacement compounds (HFCs) have increased. HFC-134a, for 1293 

example, has increased 20% since 2019 to 129.5 parts per trillion (ppt). Aggregated across all gases, PFCs have 1294 

increased from 109.7 to an estimated 115 ppt CF4-eq from 2019 to 2023, HFCs from 237 to 301 ppt HFC-134a-eq, 1295 

while Montreal gases have declined from 1032 to 1004 ppt CFC-12-eq. Mixing ratio equivalents are determined by 1296 

the radiative efficiencies of each greenhouse gas from Hodnebrog et al. (2020). 1297 

 1298 

Ozone is an important greenhouse gas with strong regional variation both in the stratosphere and troposphere (Szopa 1299 

et al., 2021). Its ERF arising from its regional distribution is assessed in Sect. 4 but following AR6 convention is not 1300 

included with the GHGs discussed here. Other non-methane SLCFs are heterogeneously distributed in the atmosphere 1301 

and are also not typically reported in terms of a globally averaged concentration. Globally averaged concentrations 1302 

for these are normally model-derived, supplemented by local monitoring networks and satellite data (Szopa et al., 1303 

2021). 1304 

 1305 

In this update we employ AR6-derived uncertainty estimates and do not perform a new assessment. Table S1 in 1306 

Supplement Sect. S3 shows specific updated concentrations for all the GHGs considered. 1307 

4 Effective radiative forcing (ERF) 1308 

ERFs were principally assessed in Chap. 7 of AR6 WGI (Forster et al., 2021), which focussed on assessing ERF from 1309 

changes in atmospheric concentrations; it also supported estimates of ERF in Chap. 6 that attributed forcing to specific 1310 

precursor emissions (Szopa et al., 2021) and also generated the time history of ERF shown in AR6 WGI Fig. 2.10 and 1311 

discussed in Chap. 2 (Gulev et al., 2021). Only the concentration-based estimates are updated herein. 1312 

 1313 

The ERF calculation follows the methodology used in AR6 WGI (Smith et al., 2021) as updated by Forster et al. 1314 

(2023). For each category of forcing, a 100 000-member probabilistic Monte Carlo ensemble is sampled to span the 1315 

assessed uncertainty range in each forcing. All uncertainties are reported as 5 %–95 % ranges and provided in square 1316 

brackets. The methods are all detailed in the Supplement, Sect. S4. 1317 
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 1474 

The summary results for the anthropogenic constituents of ERF and solar irradiance in 2023 relative to 1750 are shown 1475 

in Fig. 3a. In Table 3 these are summarised alongside the equivalent ERFs from AR6 (1750–2019) and last year’s 1476 

Climate Indicators update (1750-2022). Fig. 3b shows the time evolution of ERF from 1750 to 2023. 1477 
 1478 

Table 3 Contributions to anthropogenic effective radiative forcing (ERF) for 1750–2023 assessed in this section. Data is for 1479 
single year estimates unless specified. All values are in watts per square metre (W m−2), and 5 %–95 % ranges are in square 1480 
brackets. As a comparison, the equivalent assessments from AR6 (1750–2019) and last year’s Climate Indicators (1750-1481 
2022) are shown. Solar ERF is included and unchanged from AR6, based on the most recent solar cycle (2009–2019), thus 1482 
differing from the single-year estimate in Fig. 3a. Volcanic ERF is excluded due to the sporadic nature of eruptions. 1483 

Forcer 1750-2019 [W m-2] 
(AR6) 

1750-2022 [W m-2] 
(Forster et al., 2023) 

1750-2023 [W m-2] Reason for change 
since last year 

CO2 2.16 [1.90 to 2.41] 2.25 [1.98 to 2.52] 2.28 [2.01 to 2.56] Increases in GHG 
concentrations 
resulting from 
increases in 
emissions 

CH4 0.54 [0.43 to 0.65] 0.56 [0.45 to 0.67] 0.56 [0.45 to 0.68]  

N2O 0.21 [0.18 to 0.24] 0.22 [0.19 to 0.25] 0.22 [0.19 to 0.26]  

Halogenated GHGs 0.41 [0.33 to 0.49] 0.41 [0.33 to 0.49] 0.41 [0.33 to 0.49]  

Ozone 0.47 [0.24 to 0.71] 0.48 [0.24 to 0.72] 0.51 [0.25 to 0.76] Increase in 
precursors (CO, 
VOC, CH4) 

Stratospheric water 
vapour 

0.05 [0.00 to 0.10] 0.05 [0.00 to 0.10] 0.05 [0.00 to 0.10]  

Aerosol-radiation 
interactions 

-0.22 [-0.47 to 
+0.04] 

-0.21 [-0.42 to 0.00] -0.26 [-0.50 to -
0.03] 

Large increases in 
biomass burning 
aerosol in 2023; 
continued recovery 
from COVID-19; 
drop in sulphur from 
shipping 

Aerosol-cloud 
interactions 

-0.84 [-1.45 to -
0.25] 

-0.77 [-1.33 to -
0.13] 

-0.91 [-1.80 to -
0.27] 

Land use (surface 
albedo changes and 
effects of irrigation) 

-0.20 [-0.30 to -
0.10] 

-0.20 [-0.30 to -
0.10] 

-0.20 [-0.31 to -
0.10] 

 

Light-absorbing 
particles on snow 
and ice 

0.08 [0.00 to 0.18] 0.06 [0.00 to 0.14] 0.08 [0.00 to 0.17] Rebound in BC 
emissions from 
biomass burning 
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 1503 
Figure 3 Effective radiative forcing from 1750–2023. (a) 1750–2023 change in ERF, showing best estimates (bars) and 5 %–1504 
95 % uncertainty ranges (lines) from major anthropogenic components to ERF, total anthropogenic ERF and solar forcing. 1505 
Note that solar forcing in 2023 is a single-year estimate. (b) Time evolution of ERF from 1750 to 2023. Best estimates from 1506 
major anthropogenic categories are shown along with solar and volcanic forcing (thin coloured lines), total (thin black line), 1507 
and anthropogenic total (thick black line). The 5 %–95 % uncertainty in the anthropogenic forcing is shown by grey 1508 
shading.  1509 

Total anthropogenic ERF has increased to 2.79 [1.78 to 3.60] W m−2 in 2023 relative to 1750, compared to 2.72 [1.96 1510 

to 3.48] W m−2 for 2019 relative to 1750 in AR6. The estimate of ERF for 2023 is lower than the 2.91 [2.19 to 3.63] 1511 

W m−2 in 2022 evaluated in last year’s Indicators. The main reason for the decline in 2023 relative to 2022 is a very 1512 

strong contribution from biomass burning aerosol in 2023, particularly organic carbon emissions which strengthened 1513 

the negative aerosol ERF (see also Sect. 2.3). Sulphur emissions from shipping have declined since 2020, weakening 1514 

the aerosol ERF and adding around +0.1 W m−2 over 2020 to 2023 (Gettelman et al., 2024; see Supplement Sect. 1515 

S4.2.2). However, the strengthened negative ERF from increased biomass burning likely dominated the effect of 1516 

reduced shipping emissions. As discussed in Sect. 2, it is not easy to determine how much of the biomass burning 1517 

contribution is from natural wildfires in response to 2023’s anomalously warm year, which would be a climate 1518 

feedback rather than a forcing. We follow the convention of CMIP and count all biomass burning emissions as 1519 

anthropogenic, though this assumption may need revision in future. The approach of including all biomass burning 1520 

aerosols is consistent with reporting ERF based on concentration increase of GHGs independent of whether CO2 and 1521 

CH4 are caused by anthropogenic emissions or a smaller part is caused by any feedbacks such as from biomass burning 1522 

fires or wetlands. However, changes in mineral dust and sea salt are not included in ERF of aerosols and any changes 1523 

are interpreted as yearly variations or related to feedbacks.   1524 
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The total aerosol ERF (sum of the ERF from aerosol radiation 1615 
interactions (ERFari) and aerosol cloud interactions 1616 
(ERFaci)) for 1750-2022 is -0.98 [-1.58 to -0.40] W m-2 1617 
compared to -1.06 [-1.71 to -0.41] W m-2 assessed for 1750-1618 
2019 in AR6 WG1. This continues a trend of weakening 1619 
aerosol forcing due to reductions in precursor emissions. 1620 
Most of this reduction is from ERFaci which is determined to 1621 
be -0.77 [-1.33 to -0.23] W m-2 compared to -0.84 [-1.45 to -1622 
0.25] W m-2 in AR6 for 1750-2019. ERFari for 1750-2022 is 1623 
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The relative uncertainty in the total ERF was at the lowest reported in 2022, see Table 3, but with the strengthening 1646 

of the aerosol ERF due to biomass additional burning, the relative uncertainty in total ERF for 2023 is higher than in 1647 

2019 reported in AR6 (Forster et al., 2021). Despite the strong aerosol forcing in 2023, decadal trends in anthropogenic 1648 

ERF remain high, and are over 0.6 W m−2 per decade. These are discussed further in Sect. 7.3.  1649 

 1650 

The ERF from well-mixed GHGs is 3.45 [3.14 to 3.75] W m1651 
−2 for 1750–2022, of which 2.25 W m−2 is from CO2, 0.56 W m−2 from CH4, 0.22 W m−2 from N2O and 0.41 W m−2 1652 

from halogenated gases. This is an increase from 3.32 [3.03 to 3.61] W m−2 for 1750–2019 in AR6. ERFs from CO2, 1653 

CH4 and N2O have all increased since the AR6 WG1 assessment for 1750–2019, owing to increases in atmospheric 1654 

concentrations. 1655 

 1656 

The total aerosol ERF (sum of the ERF from aerosol–radiation interactions (ERFari) and aerosol–cloud interactions 1657 

(ERFaci)) for 1750–2023 is −1.18 [−2.10 to −0.49] W m−2 compared to −0.98 [−1.58 to −0.40] W m−2  in Forster et 1658 

al. (2023) and −1.06 [−1.71 to −0.41] W m−2 assessed for 1750–2019 in AR6 WG1. This counters a recent trend of 1659 

reductions in aerosol forcing, and is related in most part to 2023 being an extremely active biomass burning season. 1660 

Most of this reduction is from ERFaci, which is determined to be −0.91 [−1.80 to −0.27] W m−2 in 2023 compared to 1661 

−0.77 [−1.33 to −0.23] W m−2 for 1750–2022 (Forster et al. 2023) and −0.84 [−1.45 to −0.25] W m−2 in AR6 for 1750–1662 

2019. ERFari for 1750–2023 is −0.26 [−0.50 to −0.03] W m−2, stronger than the −0.21 [−0.42 to 0.00] W m−2 for 1750–1663 

2022 and the −0.22 [−0.47 to 0.04] W m−2 assessed for 1750–2019 in AR6 WG1 (Forster et al., 2021). The largest 1664 

contributions to ERFari are from SO2 (primary source of sulfate aerosol; −0.24 W m−2), BC (+0.16 W m−2), OC 1665 

(−0.11 W m−2) and NH3 (primary source of nitrate aerosol; −0.04 W m−2).  ERFari also includes terms from CH4, N2O, 1666 

VOCs and NOx which are small. 1667 
 1668 
Ozone ERF is determined to be 0.51 [0.25 to 0.76] W m−2 for 1750–2023, slightly higher than the  the AR6 assessment 1669 

of 0.47 [0.24 to 0.71] W m−2 for 1750–2019. This is due to the increase in emissions of some of its precursors (CO, 1670 

VOC, CH4), but this result is highly uncertain since the preliminary OMI/MLS satellite data indicate tropospheric ozone 1671 

burden is stable from 2020 to 2023 (meaning that the 2023 level does not reach the 2019 one) which could be partly 1672 

due to the 2020-2023 levels of tropospheric NO2 than the pre-COVID levels (OMI data from Krotkov et al. 2019). 1673 

Land-use forcing and stratospheric water vapour from methane oxidation are unchanged (to two decimal places) since 1674 

AR6. BC emissions have increased between 2022 and 2023, and were similar to 2019 levels in 2023 resulting inERF 1675 

from light-absorbing particles on snow and ice being 0.08 [0.00 to 0.17] W m−2 for 1750–2023, similar to AR6.  We 1676 

determine from provisional data that aviation activity in 2023 had not yet returned to pre-COVID levels. Therefore, 1677 

ERF from contrails and contrail-induced cirrus remains lower than AR6, at 0.05 [0.02 to 0.09] W m−2 in 2023 1678 

compared to 0.06 [0.02 to 0.10] W m−2 in 2019. 1679 

 1680 

The headline assessment of solar ERF is unchanged, at 0.01 [−0.06 to +0.08] W m−2 from pre-industrial to the 2009–1681 

2019 solar cycle mean. Separate to the assessment of solar forcing over complete solar cycles, we provide a single-1682 
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year solar ERF for 2023 of 0.08 [0.00 to +0.16] W m−2. This is higher than the single-year estimate of solar ERF for 1707 

2019 (a solar minimum) of −0.02 [−0.08 to 0.06] W m−2. 1708 

 1709 

Volcanic ERF is included in the overall time series (Fig. 3b) but following IPCC convention we do not provide a 1710 

single-year estimate for 2023 given the sporadic nature of volcanoes. Alongside the time series of stratospheric aerosol 1711 

optical depth derived from proxies and satellite products, for 2022 and 2023 we include the stratospheric water vapour 1712 

contribution from the Hunga Tonga-Hunga Ha’apai (HTHH) eruption derived from Microwave Limb Sounder (MLS) 1713 

data.  1714 

 1715 

Stratospheric water vapour forcing is estimated to be +0.14 W m-2 in 2022 and +0.18 W m-2 in 2023, and in 2023 1716 

almost totally offsets the negative forcing from stratospheric aerosol. 1717 

 1718 

51719 

 Earth energy imbalance 1720 

The Earth energy imbalance (EEI), assessed in Chap. 7 of AR6 WGI (Forster et al., 2021), provides a measure of 1721 

accumulated surplus energy (heating) in the climate system, and is hence an essential indicator to monitor the current 1722 

and future status of global warming. It represents the difference between the radiative forcing acting to warm the 1723 

climate and Earth's radiative response, which acts to oppose this warming. On annual and longer timescales, the global 1724 

Earth heat inventory changes associated with EEI are dominated by the changes in global ocean heat content (OHC), 1725 

which accounts for about 90 % of global heating since the 1970s (Forster et al., 2021). This planetary heating results 1726 

in changes in all components of the Earth system such as sea level rise, ocean warming, ice loss, rise in temperature 1727 

and water vapor in the atmosphere, changes in ocean and atmospheric circulation, ice loss and permafrost thawing 1728 

(e.g. Cheng et al., 2022; von Schuckmann et al., 2023a), with adverse impacts for ecosystems and human systems 1729 

(Douville et al., 2021; IPCC, 2022). 1730 

 1731 

On decadal timescales, changes in global surface temperatures (Sect. 5) can become decoupled from EEI by ocean 1732 

heat rearrangement processes (e.g. Palmer and McNeall, 2014; Allison et al., 2020). Therefore, the increase in the 1733 

Earth heat inventory provides a robust indicator of the rate of global change on interannual-to-decadal timescales 1734 

(Cheng et al., 2019; Forster et al., 2021; von Schuckmann et al., 2023a). AR6 WGI found increased confidence in the 1735 

assessment of change in the Earth heat inventory compared to previous IPCC reports due to observational advances 1736 

and closure of the energy and global sea level budgets (Forster et al., 2021; Fox-Kemper et al., 2021). 1737 

 1738 

AR6 estimated that EEI increased from 0.50 [0.32–0.69] W m−2 during the period 1971–2006 to 0.79 [0.52–1739 

1.06] W m−2 during the period 2006–2018 (Forster et al., 2021). The contributions to increases in the Earth heat 1740 

inventory throughout 1971–2018 remained stable: 91 % for the full-depth ocean, 5 % for the land, 3 % for the 1741 

cryosphere and about 1 % for the atmosphere (Forster et al., 2021).  Two recent studies demonstrated independently 1742 
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and consistently that since 1960, the warming of the world ocean has accelerated at a relatively consistent pace 1780 

of 0.15 ± 0.05 W m−2 per decade (Minière et al., 2023; Storto and Yang, 2024), while the land, cryosphere, and 1781 

atmosphere have exhibited an accelerated pace of 0.013 ± 0.003 W m−2 per decade (Minière et al., 2023).  The 1782 

increase in EEI over the most recent quarter of a decade (Fig. 4) has also been reported by Cheng et al. (2019), von 1783 

Schuckmann et al. (2020, 2023a), Loeb et al. (2021), Hakuba et al. (2021), Kramer et al. (2021) Raghuraman et al. 1784 

(2021) and Minère et al. (2023). Drivers for the observed increase over the most recent period (i.e. past 2 decades) are 1785 

discussed to be linked to rising concentrations of well-mixed greenhouse gases and recent reductions in aerosol 1786 

emissions (Raghuraman et al., 2021; Kramer et al., 2021; Hansen et al., 2023 ), and to an increase in absorbed solar 1787 

radiation associated with decreased reflection by clouds and sea-ice and a decrease in outgoing longwave radiation 1788 

(OLR) due to increases in trace gases and water vapor (Loeb et al., 2021) . The degree of contribution from the 1789 

different drivers is uncertain and still under active investigation. 1790 

 1791 

 1792 

We carry out an update to the AR6 estimate of changes in the Earth heat inventory based on updated observational 1793 

time series for the period 1971–2020 (Table 4 and Fig. 4). Time series of heating associated with loss of ice and 1794 

warming of the atmosphere and continental land surface are obtained from the recent Global Climate Observing 1795 

System (GCOS) initiative (von Schuckmann et al., 2023b; Adusumilli et al., 2022; Cuesta-Valero et al., 2023; 1796 

Vanderkelen and Thiery, 2022; Nitzbon et al., 2022; Kirchengast et al., 2022). We use the original AR6 time series 1797 

ensemble OHC time series for the period 1971–2018 and then an updated five-member ensemble for the period 2019–1798 

2023. We “splice” the two sets of time series by adding an offset as needed to ensure that the 2018 values are identical. 1799 

The AR6 heating rates and uncertainties for the ocean below 2000 m are assumed to be constant throughout the period. 1800 

The time evolution of the Earth heat inventory is determined as a simple summation of time series of atmospheric 1801 

heating; continental land heating; heating of the cryosphere; and heating of the ocean over three depth layers: 0–700, 1802 

700–2000 and below 2000 m (Fig. 4a). While von Schuckmann et al. (2023a) have also quantified heating of 1803 

permafrost and inland lakes and reservoirs, these additional terms are very small and are omitted here for consistency 1804 

with AR6 (Forster et al., 2021). 1805 
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 1914 
Figure 4 (a) Observed changes in the Earth heat inventory for the period 1971–2020, with component contributions as 1915 
indicated in the figure legend. (b) Estimates of the Earth energy imbalance for IPCC AR6 assessment periods, for 1916 
consecutive 20-year periods and the most recent decade. Shaded regions indicate the very likely range (90 % to 100 % 1917 
probability). Data use and approach are based on the AR6 methods and further described in the Supplement Sect. 5 1918 
Materials. 1919 

In our updated analysis, we find successive increases in EEI for each 20-year period since 1974, with an estimated 1920 

value of 0.42 [0.02 to 0.81] W m−2 during 1974–1993 that more than doubled to 0.87 [0.65 to 1.08] W m−2 during 1921 

2004–2023 (Fig. 4b). In addition, there is some evidence that the warming signal is propagating into the deeper ocean 1922 

over time, as seen by a robust increase of deep (700–2000 m) ocean warming since the 1990s (von Schuckmann et al., 1923 

2020; 2023; Cheng et al., 2019, 2022). The model simulations qualitatively agree with the observational evidence (e.g. 1924 

Gleckler et al., 2016; Cheng et al., 2019), further suggesting that more than half of the OHC increase since the late 1925 

1800s occurs after the 1990s.  1926 

 1927 

The update of the AR6 assessment periods to end in 2023 results in systematic increases of EEI: 0.65 W m−2 during 1928 

1976–2023 compared  to 0.57 W m−2 during 1971–2018; and 0.96 W m−2 during 2011–2023 compared to 0.79 W m−2 1929 

2006–2018 (Table 4). The trend and interannual variability of EEI can largely be explained by a combination of 1930 

surface temperature changes and radiative forcing (Hodnebrog et al., 2024), although there was a jump in 2023 which 1931 

is still being investigated (Hansen et al., 2023). 1932 
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 1973 

Table 4 Estimates of the Earth energy imbalance (EEI) for AR6 and the present study. 1974 

 
 
Time Period  

Earth energy imbalance (W m-2). Square brackets [show 90% confidence intervals].  

IPCC AR6 This Study 

1971-2018 0.57 [0.43 to 0.72] 0.57 [0.43 to 0.72] 

1971-2006 0.50 [0.32 to 0.69] 0.50 [0.31 to 0.68] 

2006-2018 0.79 [0.52 to 1.06] 0.79 [0.52 to 1.07] 

1976-2023 - 0.65 [0.48 to 0.82] 

2011-2023 - 0.96 [0.67 to 1.26] 

 1975 

6 Global surface temperatures 1976 

AR6 WGI Chap. 2 assessed the 2001–2020 globally averaged surface temperature change above an 1850–1900 1977 

baseline to be 0.99 [0.84 to 1.10] °C and 1.09 [0.95 to 1.20] °C for 2011–2020 (Gulev et al., 2021). Updated estimates 1978 

to 2022 of 1.15 [1.00–1.25] °C were given in AR6 SYR (Lee et al., 2023), matching the estimate in Forster et al. 1979 

(2023). 1980 

 1981 

There are choices around the methods used to aggregate surface temperatures into a global average, how to correct for 1982 

systematic errors in measurements, methods of infilling missing data, and whether surface measurements or 1983 

atmospheric temperatures just above the surface are used. These choices, and others, affect temperature change 1984 

estimates and contribute to uncertainty (IPCC AR6 WGI Chap. 2, Cross Chap. Box 2.3, Gulev et al., 2021). The 1985 

methods chosen here closely follow AR6 WGI and are presented in the Supplement, Sect. S6. Confidence intervals 1986 

are taken from AR6 as only one of the employed datasets regularly updates ensembles (see Supplement, Sect. S6). 1987 

 1988 

Based on the updates available as of March 2024, the change in global surface temperature from 1850–1900 to 2014–1989 

2023 is presented in Fig. 5. These data, using the same underlying datasets and methodology as AR6, give 1.19 [1.06–1990 

1.30] °C, an increase of 0.10 °C within three years from the 2011–2020 value reported in AR6 WGI (Table 5) and 1991 

0.09 °C from the 2011–2020 value in the most recent dataset versions. The change from 1850–1900 to 2004–2023 1992 

was 1.05 [0.90–1.16] °C, 0.07 °C higher than the value reported in AR6 WGI from three years earlier. These changes, 1993 

although amplified somewhat by the exceptionally warm 2023, are broadly consistent with typical warming rates over 1994 

the last few decades, which were assessed in AR6 as 0.76 °C over the 1980–2020 period (using ordinary-least-square 1995 

linear trends) or 0.019 °C per year (Gulev et al., 2021). They are also broadly consistent with projected warming rates 1996 
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from 2001–2020 to 2021–2040 reported in AR6, which are in the order of 0.025 °C per year under most scenarios 2001 

(Lee et al., 2021). See Sect. 7.4 for further discussion of trends. 2002 

 2003 
Table 5 Estimates of global surface temperature change from 1850–1900 [very likely (90 %–100 % probability) ranges] for 2004 
IPCC AR6 and the present study. 2005 

Time period Temperature change from 1850-1900 (°C) 

 IPCC AR6 This study 

Global, most recent 10 years 1.09 [0.95 to 1.20] 
(to 2011-2020) 

1.19 [1.06 to 1.30] 
(to 2014-2023) 

Global, most recent 20 years 0.99 [0.84 to 1.10] 
(to 2001-2020) 

1.05 [0.90 to 1.16] 
(to 2004-2023) 

Land, most recent 10 years 1.59 [1.34 to 1.83] 
(to 2011-2020) 

1.71 [1.41 to 1.94] 
(to 2014-2023) 

Ocean, most recent 10 years 0.88 [0.68 to 1.01] 
(to 2011-2020) 

0.97 [0.77 to 1.09] 
(to 2014-2023) 
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Figure 5 Annual (thin line) and decadal (thick line) means of global surface temperature (expressed as a change from the 2015 
1850–1900 reference period). 2016 

 2017 

The global surface temperature in 2023 was 1.43 [1.32 to 1.53] °C above the 1850-1900 average in the multi-data set 2018 

mean used here. This is similar to the combined estimate from six datasets quoted in the 2023 WMO State of the 2019 

Climate report 1.45 [1.33 to 1.57] °C (WMO, 2024). As seen in Fig. 5 and discussed in Sect. 7.3, this is considerably 2020 

above the human induced warming estimate, indicating a significant role for internal variability.  2021 

7 Human-induced global warming 2022 

Human-induced warming, also known as anthropogenic warming, refers to the component of observed global surface 2023 

temperature increase attributable to both the direct and indirect effects of human activities, which are typically grouped 2024 

as follows: well-mixed greenhouse gases (consisting of CO₂, CH₄, N₂O and F-gases) and other human forcings 2025 

(consisting of aerosol–radiation interaction, aerosol–cloud interaction, black carbon on snow, contrails, ozone, 2026 

stratospheric H₂O and land use) (Eyring et al., 2021). The remaining contributors to total warming are natural 2027 

consisting of both natural forcings (such as solar and volcanic activity) and internal variability of the climate system 2028 

(such as variability related to El Niño/La Nina events). 2029 

 2030 

While total warming, the observed temperature change resulting from both natural and human influences, is the 2031 

quantity more directly related to climate impacts and therefore particularly relevant for adaptation, mitigation efforts 2032 

focus on limiting human-induced warming, which better represents the state of long-term climate averages. Further, 2033 

as attribution analysis allows human-induced warming to be disentangled from possible contributions from natural 2034 

sources, it avoids misperception about short-term fluctuations in temperature, for example in relation to El Niño/La 2035 

Nina events. 2036 

 2037 

An assessment of human-induced warming was therefore provided in two reports within the IPCC's 6th assessment 2038 

cycle: first in SR1.5 in 2018 [Chap. 1 Sect. 1.2.1.3 and Fig. 1.2 (Allen et al., 2018), summarised in the Summary for 2039 

Policymakers (SPM) Sect. A.1 and Fig. SPM.1 (IPCC, 2018)] and second in AR6 in 2021 [WGI Chap. 3 Sect. 3.3.1.1.2 2040 

and Fig. 3.8 (Eyring et al., 2021), summarised in the WGI Summary for Policymakers (SPM) Sect. A.1.3 and Fig. 2041 

SPM.2 (IPCC, 2021b), and quoted again without any updates in SYR Sect. 2.1.1 and Fig. 2.1 (IPCC,2023a) and SYR 2042 

Summary for Policymakers (SPM) Sect. A.1.2. (IPCC 2023b). 2043 

7.1 Warming period definitions in the IPCC Sixth Assessment cycle 2044 

Temperature increases are defined relative to a baseline; IPCC assessments typically use the 1850–1900 average 2045 

temperature, as a proxy for the climate in pre-industrial times, referred to as the period before 1750 (see AR6 WGI 2046 

Cross Chapter Box 1.2). 2047 

 2048 
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Tracking progress towards the long-term global goal to limit warming, in line with the Paris Agreement, requires the 2087 

assessment of both what the current level of global surface temperatures are and whether a level of global warming, 2088 

such as 1.5°C, is being reached. Definitions for these were not specified in the Paris Agreement, and several ways of 2089 

tracking levels of global warming are in use (Betts et al. 2023); here we focus on those adopted within the IPCC’s 2090 

AR6 (Fig. 6). When determining whether warming thresholds have been passed, both AR6 and SR1.5 adopted 2091 

definitions that depend on future warming; in practice, levels of current warming were therefore reported in AR6 and 2092 

SR.15 using additional definitions that circumvented the need to wait for observations of the future climate. AR6 2093 

defined crossing-time for a level of global warming as the midpoint of the first 20-year period during which the average 2094 

observed warming for that period, in GSAT, exceeds that level of warming (see AR6 WGI Chapter 2 Box 2.3). It then 2095 

reported current levels of both observed and human-induced warming as their averages over the most recent decade 2096 

(see AR6 WGI Chapter 3 Sect. 3.3.1.1.2). This still effectively gives the warming level with a crossing time 5 years 2097 

in the past, so would need to be combined with a projection of temperature change over the next decade to give a 20-2098 

year mean with crossing time at the current year (Betts et al., 2023); we do not focus on this here due to the need for 2099 

further examination of methods and implications. SR1.5 defined the current level of warming as the average human-2100 

induced warming, in GMST, of a 30-year period centred on the current year, extrapolating any multidecadal trend into 2101 

the future if necessary (see SR1.5 Chapter 1 Sect. 1.2.1). If the multidecadal trend is interpreted as being linear, this 2102 

definition of current warming is equivalent to the end-point of the trend line through the most recent 15 years of 2103 

human-induced warming, and therefore depends only on historical warming. This interpretation produces results that 2104 

are almost all identical to the present-day single-year value of human-induced warming (see Fig. 5, results in Sect. 2105 

7.3, and Supplement Sect. S7.3), so in practice the attribution assessment in SR1.5 was based on the single-year 2106 

attributed warming calculated using the Global Warming Index, not the trend-based definition. 2107 
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Figure 6 Anthropogenic warming period definitions adopted in the IPCC Sixth assessment cycle. A single sampled 2127 
timeseries of anthropogenic warming is shown in red (in this case from the GWI method - see Supplement Sect. S7). Single-2128 
year warming is given by the annual values of this timeseries. The AR6 decade average warming is given by the average of 2129 
the 10 most-recent single year anthropogenic warming values; this is depicted by the green dashed line with shading between 2130 
this and the red single year values; the decade-average value for 2014-2023 is given by the green dot. SR1.5 trend-based 2131 
warming is given by the end-point of the linear trend line through the 15 most-recent single year anthropogenic warming 2132 
values; this is depicted by the blue dashed line with shading between this and the red single-year values; the trend-based 2133 
value for 2023 is given by the blue dot. Reference observations of GMST are provided from HadCRUT5, with 5-95% 2134 
uncertainty range. The single-year, trend-based, and decade-average calculations are applied at the level of the individual 2135 
ensemble members for each attribution method; percentiles of those ensemble results provide central estimates and 2136 
uncertainty ranges for each method, and the multi-method assessment combines those into the final assessment results with 2137 
uncertainty (as described in Supplement Sect. S7.4); for reference, the assessment results for 2023 provided in Sect. 7.3 are 2138 
annotated in the figure (though the data in the figure does not correspond to the final assessment results). 2139 

7.2 Updated assessment approach of human-induced warming to date 2140 

This paper provides an update of the AR6 WGI and SR1.5 human-induced warming assessments, including for 2141 

completeness all three definitions (AR6 decade-average, SR1.5 trend-based, and SR1.5 single-year). The 2023 updates 2142 

in this paper follow the same methods and process as the 2022 updates provided in Forster et al. (2023). Global mean 2143 

surface temperature is adopted as the definition of global surface temperature (see Supplement Sect. S7.1). The three 2144 

attribution methods used in AR6 are retained: the Global Warming Index (GWI) (building on Haustein et al., 2017), 2145 

regularised optimal fingerprinting (ROF) (as in Gillett et al., 2021) and kriging for climate change (KCC) (Ribes et 2146 

al., 2021). Details of each method, their different uses in SR1.5 and AR6, and any methodological changes, are 2147 

provided in Supplement Sect. S7.2; method-specific results are also provided in Supplement Sect. S7.3. The overall 2148 

estimate of attributed global warming for each definition (decade-average, trend-based, and single-year), is based on 2149 

a multi-method assessment of the three attribution methods (GWI, KCC, ROF); the best estimate is given as the 2150 

0.01°C-precision mean of the 50th percentiles from each method, and the likely range is given as the smallest 0.1°C-2151 

precision range that envelops the 5th to 95th percentile ranges of each method. This assessment approach is identical 2152 

to last year’s update (Forster et al. (2023)); it is directly traceable to and fully consistent with the assessment approach 2153 

in AR6, though it has been extended in ways that are explained in Supplement Sect. S7.4. 2154 

 2155 

7.3 Results 2156 

Results are summarised in Table 6 and Figs. 6 and 7. Method-specific contributions to the assessment results, along 2157 

with time series, are given in the Supplement, Sect. S7.3. Where results reported in GSAT differ from those reported 2158 

in GMST (see Supplement Sect. S7.1), the additional GSAT results are given in Supplement Sect. S7.3. 2159 
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Figure 7 Updated assessed contributions to observed warming relative to 1850–1900; see AR6 WGI SPM.2. Results for all 2303 
time periods in this figure are calculated using updated datasets and methods. To show how these updates have affected the 2304 
previous assessments, the 2010–2019 decade-average assessed results repeat the AR6 2010–2019 assessment, and the 2017 2305 
single-year assessed results repeat the SR1.5 2017 assessment. The 2014–2023 decade-average and 2023 single-year results 2306 
are this year’s updated assessments for AR6 and SR1.5, respectively. For each double bar, the lighter and darker shading 2307 
refers to the earlier and later period, respectively. Panel (a) shows updated observed global warming from Sect. 6, expressed 2308 
as total global mean surface temperature (GMST), due to both anthropogenic and natural influences. Whiskers give the 2309 
“very likely” range. Panels (b) and (c) show updated assessed contributions to warming, expressed as global mean surface 2310 
temperature (GMST), from natural forcings and total human-induced forcings, which in turn consist of contributions from 2311 
well-mixed greenhouse gases and other human forcings. Whiskers give the “likely” range. 2312 

Table 6 Updates to assessments in the IPCC 6th assessment cycle of warming attributable to multiple influences. Estimates 2313 
of warming attributable to multiple influences2314 
the IPCC 6th assessment cycle, for both AR6 and SR1.5, are quoted in columns labelled (i) and are compared with repeat 2315 
calculations in columns labelled (ii) for the same period using the updated methods and datasets in order to see how 2316 
methodological and dataset updates alone would change previous assessments. Assessments for the updated periods are 2317 
reported in columns labelled (iii). * Updated GMST observations, quoted from Sect. 6 of this update, are marked with an 2318 
asterisk, with “very likely” ranges given in brackets. ** In AR6 WGI, best-estimate values were not provided for warming 2319 
attributable to well-mixed greenhouse gases, other human forcings and natural forcings (though they did receive a “likely” 2320 
range); for comparison, best estimates (marked with two asterisks) have been retrospectively calculated in an identical way 2321 
to the best estimate that AR6 provided for anthropogenic warming (see discussion in Supplement Sect. S7.4.1). *** The 2322 
SR1.5 assessment drew only on GWI rounded to 0.1°C precision, whereas the repeat and updated calculations use the 2323 
updated multi-method assessment approach. 2324 

Estimates of warming attributable to multiple influences, in °C, relative to the 1850–1900 baseline period  
Results are given as best estimates, with the likely range in brackets, and reported as Global Mean Surface Temperature (GMST). 

Definition ➡ (a) IPCC AR6 Attributable Warming Update 
Average value for previous 10-year period 

(b) IPCC SR1.5 Attributable Warming Update 
Value for single-year period 

 Period ➡ (i) 2010-2019 
Quoted from 
AR6 Chapter 3 
Sect. 3.3.1.1.2 
Table 3.1 

(ii) 2010-2019 
Repeat 
calculation 
using the 
updated 
methods and 
datasets 

(iii) 2014-2023  
Updated value 
using updated 
methods and 
datasets 

(i) 2017 
Quoted from 
SR1.5 Chapter 1 
Sect. 1.2.1.3 

(ii) 2017 
Repeat 
calculation 
using the 
updated 
methods and 
datasets 

(iii) 2023 
Updated value 
using updated 
methods and 
datasets Component ⬇ 

Observed 1.06 (0.88 to 
1.21) 

1.07  (0.89 to 
1.22) * 

1.19 (1.06 to 
1.30) * 

- - 1.43 (1.32 to 

1.53) 

Anthropogenic 1.07 (0.8 to 1.3) 1.09 (0.9 to 1.3) 1.19 (1.0 to 1.4) 1.0 (0.8 to 1.2) 
*** 

1.15 (0.9 to 1.4) 1.31 (1.1 to 1.7) 

Well-mixed 
greenhouse gases 

1.40** (1.0 to 
2.0) 

1.38 (1.0 to 1.8) 1.47 (1.0 to 1.9) N/A 1.43 (1.0 to 1.9) 1.57 (1.1 to 2.1) 

Other human 
forcings 

-0.32** (-0.8 to 
0.0) 

-0.28 (-0.7 to 
0.1) 

-0.27 (-0.7 to 
0.1) 

N/A -0.28 (-0.7 to 
0.1) 

-0.26 (-0.7 to 
0.1) 

Natural forcings 0.03** (-0.1 to 
0.1) 

0.05 (-0.1 to 
0.2) 

0.04 (-0.1 to 0.2) N/A 0.04 (-0.1  to 
0.2) 

0.04 (-0.1 to 
0.2) 

 2325 

The repeat calculations for attributable warming in 2010–2019 exhibit good correspondence with the results in AR6 2326 

WGI for the same period (see also Supplement, Sect. S7). The repeat calculation for the level of attributable 2327 

anthropogenic warming in 2017 is about 0.1 °C larger than the estimate provided in SR1.5 for the same period, 2328 
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resulting from changes in methods and observational data (see AR6 WGI Chapter 2 Box 2.3). The updated results for 2377 

warming contributions in 2023 are higher than in 2017 due also to 6 additional years of increasing anthropogenic 2378 

forcing. Note also that the SR1.5 assessment only used the GWI method, whereas these annual updates apply the full 2379 

AR6 multi-method assessment (see Supplement Sect. S7.4 for details and rationale). A repeat assessment using the 2380 

SR1.5 trend-based definition (see Sect. 7.1) leads to results that are very similar to the single-year results reported in 2381 

Table 6b; best estimates across all components for single-year and trend-based definitions are identical to each other 2382 

for 2023, and identical or well within uncertainty range for 2017 (Supplement, Sect. S7.3 Table S3). 2383 

 2384 

In this 2024 update, we assess the 2014–2023 decade average human induced-warming at 1.19 [1.0 to 1.4] °C, which 2385 

is 0.12°C above the AR6 assessment for 2010–2019. The single year average human-induced warming is assessed to 2386 

be 1.31 [1.1 to 1.7] °C in 2023 relative to 1850–1900. This best-estimate for the current level of human-induced 2387 

warming reaches the 1.3°C threshold for the first time. The best estimate is below the observed temperature in 2023 2388 

(1.43 [1.32 to 1.53] °C, see Sect. 6), but note the overlap of uncertainties. These best estimates for decade-average and 2389 

single-year human-induced warming are both 0.05 °C above the value estimated in the previous update for the year 2390 

2022 (Forster et al., 2023) – a rise partly driven by the high temperatures observed in 2023. Comparing our estimates 2391 

of attributable warming in 2017 with those reported last year by Forster et al. (2023), we find that attribution methods 2392 

give a slightly stronger anthropogenic warming, driven by the inclusion of observations for 2023. This is comprised 2393 

of a larger greenhouse gas attributable warming, partially offset by a slightly stronger aerosol-induced cooling, WGI 2394 

AR6 found that, averaged for the 2010–2019 period, essentially all observed global surface temperature change was 2395 

human-induced, with solar and volcanic drivers and internal climate variability making a negligible contribution. This 2396 

conclusion remains the same for the 2014–2023 period. Generally, whatever methodology is used, on a global scale, 2397 

the best estimate of the human-induced warming is (within small uncertainties) similar to the observed global surface 2398 

temperature change (Table 6). 2399 

 2400 

7.4 Rate of human-induced global warming 2401 

Estimates of the human-induced warming rate refer to the rate of increase in the level of attributed anthropogenic 2402 

warming over time; this is distinct from the rate of increase in the observed global surface temperature (Sect. 6) which 2403 

is affected by internal variability such as El Niño and natural forcings such as volcanic activity (Jenkins et al 2023). 2404 

The rate of anthropogenic warming is driven by the rate of change of anthropogenic ERF, meaning variations in the 2405 

rate of climate forcing over time correlate with variations in the rate of attributed warming (see Fig. 8). 2406 



 2407 
Figure 8 Rates of (a) attributable warming (global mean surface temperature (GMST)) and (b) effective radiative forcing. 2408 
The attributable warming rate time-series are calculated using the Global Warming Index method with full ensemble 2409 
uncertainty. The observed GMST rates included for reference are also calculated with uncertainty from the HadCRUT5 2410 
ensemble, and, for consistency with the attributed warming rates, do not include standard regression error, which, for 2411 
observed warming, would increase the size of the error bars. The effective radiative forcing rates are calculated using a 2412 
representative 1000-member ensemble of the forcings provided in Sect. 4 of this paper. 2413 

 2414 

A very simple estimate of the rate of human-induced warming and effective radiative forcing was made last year by 2415 

Forster et al. 2023, which indicated that warming rates were unprecedented, surpassing 0.2 °C per decade (although 2416 

no uncertainty range was given). That rate calculation was based on annual changes in decade-average anthropogenic 2417 

warming levels from the GWI method (see Supplement Sect. S7.2). This year, attributed anthropogenic warming rates 2418 

are calculated for all attribution methods using linear trends, as used in AR6, with the overall rate estimate updated in 2419 

a manner that is fully traceable to and consistent with the rate assessment in AR6. 2420 

 2421 

7.4.1 SR1.5 and AR6 definitions of warming rate 2422 

In recent IPCC assessments the definition of warming rate follows two approaches, both of which rely to some extent 2423 

on expert judgment. In SR1.5 several studies were considered, each defining the rate of warming in various ways and 2424 

over various timescales; the assessment concluded that the rate of increase of anthropogenic warming in 2017 was 2425 

0.2°C per decade with a likely range of 0.1°C to 0.3°C per decade). In AR6 WGI the rate of anthropogenic warming 2426 

utilised three methods (GWI, KCC, ROF, see Supplement Sect. S7.2) with the rate defined consistently across all 2427 

three as the linear trend in the preceding decade of attributed anthropogenic warming. While the best estimate trends 2428 

reported in AR6 were all higher than the SR1.5 assessment, Eyring et al. (2021) concluded that there was insufficient 2429 

evidence to change the SR1.5 assessed anthropogenic warming trend in the AR6 WGI report, which therefore 2430 



remained unchanged from SR1.5 at 0.2°C per decade (with a likely range of 0.1°C to 0.3°C per decade). Both the 2431 

SR1.5 and AR6 assessments were given to 0.1°C per decade precision only. 2432 

 2433 

7.4.2 Methods 2434 

Following AR6’s definition, the rate of warming is defined here as the rolling 10-year linear trend in attributed 2435 

anthropogenic warming, calculated using ordinary least-squares linear regression. Note that, as with the level of 2436 

anthropogenic warming, this decadal approach means the rate of warming in a given year is the trend centered on the 2437 

preceding decade (i.e. it is 5 years out of date). Each of the three attribution methods used to calculate the level of 2438 

warming are again used here to estimate separate anthropogenic warming rates. 2439 

 2440 

Note that only the GWI methodology relies on the updated historical forcing timeseries presented in Sect. 4, with the 2441 

other two methods (ROF and KCC) relying on CMIP6 SSP2-4.5 simulations, which are increasingly out of date (see 2442 

Supplement Sect. S7.2). Very recent changes in anthropogenic forcing, for example desulphurisation of shipping fuels 2443 

or the impact of COVID-19, may therefore not be captured fully in the decade-average trend. Further, the 2444 

anthropogenic forcing record used for attributing warming contains small contributions from biomass burning in the 2445 

natural environment, because of difficulty separating this in estimates of anthropogenic aerosol emissions. It is not 2446 

expected that either of these effects substantially bias the globally-averaged rate of warming estimated here. 2447 

7.4.3 Results 2448 

Estimates from the GWI (based on observed warming and forcing), and KCC (based on CMIP simulations), both 2449 

report results in terms of GMST and are in close agreement across each time period. Estimates derived with the the 2450 

ROF method (also based on CMIP simulations), are also reported for GMST here and are more strongly influenced 2451 

by residual internal variability that remains in the anthropogenic warming signal due to the limitations in size of the 2452 

CMIP ensemble, as reflected in their broader uncertainty ranges. Given that the ROF results are in this sense outlying, 2453 

the standard approach of taking the median result for the overall multi-method assessment is adopted. 2454 

 2455 

Results for human-induced warming rate are summarised in Table 7 and Fig 8. For the purpose of providing annual 2456 

updates, we take the median estimate at 0.01°C/decade precision, resulting in an overall best estimate for 2014–2023 2457 

of 0.26°C/decade. This increased rate relative to the 0.2°C/decade AR6 assessment is broken down in the following 2458 

way: (i) 0.03°C/decade of the increase is from a change in rounding precision (updating the AR6 assessment for the 2459 

2010–2019 warming rate from 0.2°C/decade to 0.23°C/decade), (ii) 0.02°C/decade of the increase is due to 2460 

methodological and dataset updates (updating the 2010–2019 warming rate from 0.23°C/decade to 0.25°C/decade; 2461 

this includes the effect of adding 4 additional observed years which affect the attribution for the entire historical 2462 

period), and (iii) only 0.01°C/decade of the increase is due to a substantive increase in rate for the 2014–2023 period 2463 

since the 2010–2019 period (updating 0.25°C/decade for 2010–2019 to 0.26°C/decade for 2014–2023). The spread of 2464 

rates across the three attribution methods remains similar to their spread in AR6, and hence do not support a decrease 2465 



in the uncertainty width in this update. However, to better reflect the closer agreement of the 5% floors and the larger 2466 

spread in the 95% ceilings of the three methods, and high rate from the ROF method, we update the uncertainty range 2467 

for the rate of human-induced warming from [0.1–0.3]°C/decade in AR6 to [0.2–0.4]°C/decade, leaving the precision 2468 

and width unchanged, noting that this is asymmetric around the central estimate. Therefore, the rate of human-induced 2469 

warming for the 2014-2023 decade is concluded to be 0.26°C/decade with a range of [0.2–0.4]°C/decade). 2470 

 2471 
Table 7 Updates to the IPCC AR6 rate of human-induced warming. Results for each method are given as best estimates 2472 
with 5-95% confidence, as described in the main text; assessment results are given as a best estimate with likely range in 2473 
brackets. Results from AR6 WGI (Ch.3 Sect. 3.3.1.1.2 Table 3.1) are quoted in column (i), and compared with a repeat 2474 
calculation using the updated methods and datasets in column (ii), and finally updated for the 2014-2023 period in column 2475 
(iii). The AR6 assessment result was identical to the SR1.5 assessment result, though the latter was based on a different set 2476 
of studies and timeframes. * Note that for clarity and ease of comparison with this year’s updated assessment, in the assessed 2477 
rate in column (i) both quotes the the assessment from AR6 and retrospectively applies the median approach adopted in 2478 
this paper. 2479 

Estimates of anthropogenic warming rate, in °C per decade 
Results are given as best estimates, with brackets giving the likely range for the assessments, and 5-95% uncertainty for the 
individual methods 

Definition ➡ IPCC AR6 Anthropogenic Warming Rate Update 
Linear trend in anthropogenic warming over the trailing 10-year period 

 Period ➡ (i) 2010-2019 
Quoted from AR6 Chapter 3 Sect. 3.3.1.1.2 
Table 3.1 

(ii) 2010-2019 
Repeat calculation using 
the updated methods and 
datasets 

(iii) 2014-2023  
Updated value using 
updated methods and 
datasets 

Method ⬇    

Anthropogenic 
Warming Rate 
Assessment 

Quoted from AR6: 
0.2 (0.1 to 0.3) 
 
Using the median approach: 
0.23 (0.1 to 0.3) * 

0.25 (0.2 to 0.4) 0.26 (0.2 to 0.4) 

GWI 0.23 (0.19 to 0.35) GMST 0.24 (0.18 to 0.29) GMST 0.25 (0.19 to  0.30) 
GMST 

KCC 0.23 (0.18 to 0.29) GSAT 0.25 (0.23 to 0.30) GMST 0.26 (0.20 to 0.31) 
GMST 

ROF 0.35 (0.30 to 0.41) GSAT 0.27 (0.17 to 0.38) GMST 0.38 (0.24 to 0.52) 
GMST 

 2480 

Fig. 8 and Table 7 include a breakdown into well-mixed GHGs and other human forcings (including aerosols), and 2481 

natural forcing contributions since pre-industrial times. The rate timeseries with ensemble uncertainty are depicted 2482 

from the GWI method, which is based on observed warming and historical forcing. The rate of total attributable 2483 

warming (the sum of anthropogenic and natural, not plotted) has good correspondence with the reference plotted 2484 

observed warming rates. The rates for the attributed warming also correlate closely with the forcing rates. Warming 2485 



rates have remained high due to strong GHG warming from high emissions and declining aerosol cooling (Forster et 2486 

al., 2023, Quaas et al.,2022, Jenkins et al., 2022). 2487 

8 Remaining Carbon Budget 2488 

AR5 (IPCC, 2013) assessed that global surface temperature increase is close to linearly proportional to the total 2489 

amount of cumulative CO2 emissions (Collins et al., 2013). The most recent AR6 report reaffirmed this assessment 2490 

(Canadell et al., 2021). This near-linear relationship implies that for keeping global warming below a specified 2491 

temperature level, one can estimate the total amount of CO2 that can ever be emitted. When expressed relative to a 2492 

recent reference period, this is referred to as the remaining carbon budget (Rogelj et al., 2018). 2493 

 2494 

AR6 assessed the remaining carbon budget (RCB) in Chap. 5 of its WGI report (Canadell et al., 2021) for 1.5, 1.7 and 2495 

2 °C thresholds (see Table 7). They were also reported in its Summary for Policymakers (Table SPM.2, IPCC, 2021b). 2496 

These are updated in this section using the same method as last year (Forster et al., 2023). 2497 

 2498 

The RCB is estimated by application of the WGI AR6 method described in Rogelj et al. (2019), which involves the 2499 

combination of the assessment of five factors: (i) the most recent decade of human-induced warming (given in Sect. 2500 

7), (ii) the transient climate response to cumulative emissions of CO2 (TCRE), (iii) the zero emissions commitment 2501 

(ZEC), (iv) the temperature contribution of non-CO2 emissions and (v) an adjustment term for Earth system feedbacks 2502 

that are otherwise not captured through the other factors. AR6 WGI reassessed all five terms (Canadell et al., 2021). 2503 

The incorporation of factor (v) was further considered by Lamboll and Rogelj (2022). Lamboll et al. (2023) further 2504 

considered factor (iv). 2505 

 2506 

The RCB for 1.5, 1.7 and 2 °C warming levels is re-assessed based on the most recent available data. Estimated RCBs 2507 

are reported in Table 8. They are expressed both relative to 2020 to compare to AR6 and relative to the start of 2024 2508 

for estimates based on the 2014–2023 human-induced warming update (Sect. 7). Note that between the start of 2020 2509 

and the end of 2023, about 164 GtCO2 has been emitted (Sect. 2). Based on the variation in non-CO2 emissions across 2510 

the scenarios in AR6 WGIII scenario database, the estimated RCB values can be higher or lower by around 200 GtCO2 2511 

depending on how deeply non-CO2 emissions are reduced (Lamboll et al., 2023). The impact of non-CO2 emissions 2512 

on warming includes both the warming effects of other greenhouse gases such as methane and the cooling effects of 2513 

aerosols such as sulfates. Updating these pathways increased the estimate of the importance of aerosols, which are 2514 

expected to decline with time in low emissions pathways (Rogelj et al., 2014), causing a warming and decreasing the 2515 

RCB (Lamboll et al., 2023). The AR6 WGIII version of MAGICC is used here. Structural uncertainties give inherent 2516 

limits to the precision with which remaining carbon budgets can be quantified. These particularly impact the 1.5 °C 2517 

RCB. Overall, the 1.5 °C compatible budget is very small and shrinking fast due to continuing high global CO2 2518 

emissions. 2519 

 2520 
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Table 8 Updated estimates of the remaining carbon budget for 1.5, 1.7 and 2.0  °C, for five levels of likelihood, considering 2592 
only uncertainty in TCRE.  2593 
Estimates start from AR6 WGI estimates (first row for each warming level), updated with the latest MAGICC emulator 2594 
and scenario information from AR6 WGIII (from second row for each warming level), and an update of the anthropogenic 2595 
historical warming, which is estimated for the 2014–2023 period (third row for each warming level). Estimates are expressed 2596 
relative to either the start of the year 2020 or 2024. The probability includes only the uncertainty in how the Earth 2597 
immediately responds to carbon emissions, not long-term committed warming or uncertainty in other emissions. All values 2598 
are rounded to the nearest 50 GtCO2. 2599 

Remaining carbon budget 
case/update 

Base year Estimated remaining carbon budgets from the beginning of base 
year (GtCO2) 

Likelihood of limiting global 
warming to temperature limit 

 17% 33% 50% 67% 83% 

1.5 °C from AR6 WG1 2020 900 650 500 400 300 

+ AR6 emulators and scenarios 2020 750 500 400 300 200 

+ Updated warming estimate 2024 400 250 150 100 50 

1.7 °C from AR6 WG1 2020 1450 1050 850 700 550 

+ AR6 emulators and scenarios 2020 1300 950 750 600 500 

+ Updated warming estimate 2024 950 700 550 400 300 

2 °C from AR6 WG1 2020 2300 1700 1350 1150 900 

+ AR6 emulators and scenarios 2020 2200 1650 1300 1100 900 

+ Updated warming estimate 2024 1850 1350 1100 900 700 

 2600 

Updated RCB estimates presented in Table 8 for 1.5, 1.7 and 2.0 °C of global warming are smaller than AR6, and 2601 

geophysical and other uncertainties therefore have become larger in relative terms. This is a feature that will have to 2602 

be kept in mind when communicating budgets. The estimates presented here differ from those presented in the annual 2603 

Global Carbon Budget (GCB) publications (Friedlingstein et al., 2023). The GCB 2023 used the average between the 2604 

AR6 WGI estimate and the Forster et al. (2023) estimates. The RCB estimates presented here consider the same 2605 

updates in historical CO2 emissions from the GCB as well as the latest available quantification of human-induced 2606 

warming to date and a reassessment from AR6 of non-CO2 warming contributions. 2607 

 2608 

The RCB for limiting warming to 1.5 °C is rapidly diminishing. It is important, however, to correctly interpret this 2609 

information. RCB estimates consider projected reductions in non-CO2 emissions that are aligned with a global 2610 
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transition to net zero CO2 emissions (Lamboll et al., 2023). These estimates assume median reductions in non-CO2 2641 

emissions between 2020–2050 of CH4 (50 %), N2O (25 %) and SO2 (77 %). If these non-CO2 greenhouse gas emission 2642 

reductions are not achieved, the RCB will be smaller (see Lamboll et al., 2023 and Supplement, Sect. S8). Note that 2643 

the 50 % RCB is expected to be exhausted a few years before the 1.5 °C global warming level is reached due to the 2644 

way it factors future warming from non-CO2 emissions into its estimate. 2645 

9 Climate and weather extremes 2646 

Changes in climate and weather extremes are among the most visible effects of human-induced climate change. Within 2647 

AR6 WGI, a full chapter was dedicated to the assessment of past and projected changes in extremes on continents 2648 

(Seneviratne et al., 2021), and the chapter on ocean, cryosphere and sea level changes also provided assessments on 2649 

changes in marine heatwaves (Fox-Kemper et al., 2021). Global indicators related to climate extremes include 2650 

averaged changes in climate extremes, for example, the mean increase of annual minimum and maximum temperatures 2651 

on land (AR6 WGI Chap. 11, Fig. 11.2, Seneviratne et al., 2021) or the area affected by certain types of extremes 2652 

(AR6 WGI Chap. 11, Box 11.1, Fig. 1, Seneviratne et al., 2021; Sippel et al., 2015). In contrast to global surface 2653 

temperature, extreme indicators are less established. Land average annual maximum temperature (TXx). 2654 

 2655 

The climate indicator of changes in temperature extremes consists of land average annual maximum temperatures 2656 

(TXx) (excluding Antarctica). As part of this update, we provide an upgraded version of Fig. 6 from Forster et al. 2657 

(2023), which in turn is based on Fig. 11.2 from Seneviratne et al. (2021) (Fig. 9). As last year, three datasets are 2658 

analyzed: HadEX3 (Dunn et al., 2020), Berkeley Earth Surface Temperature (building off Rohde et al., 2013), and the 2659 

fifth-generation ECMWF atmospheric reanalysis of the global climate (ERA5; Hersbach et al., 2020). HadEX3 is 2660 

currently static and is not being updated. Berkeley Earth has been updated, resulting in TXx differences for most years 2661 

(less than 0.1°C), and now includes data for 2022. Of the three datasets, only ERA5 covers the whole of 2023 at the 2662 

present time. TXx is calculated by averaging the annual maximum temperature over all available land grid points 2663 

(excluding Antarctica) and then converted to anomalies with respect to a base period of 1961–1990. To express the 2664 

TXx as anomalies with respect to 1850–1900, we add an offset of 0.52°C to all three datasets. See Supplement Sect. 2665 

S9 for details on the data selection, averaging and offset computation. 2666 
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 2764 
Figure 9 Time series of observed temperature anomalies for land average annual maximum temperature (TXx) for ERA5 2765 
(1950–2023), Berkeley Earth (1955–2022) and HadEX3 (1961–2018), with respect to 1850–1900. Note that the datasets have 2766 
different spatial coverage and are not coverage-matched. All anomalies are calculated relative to 1961–1990, and an offset 2767 
of 0.52 °C is added to obtain TXx values relative to 1850–1900. Note that while the HadEX3 numbers are the same as shown 2768 
in Seneviratne et al. (2021) Fig. 11.2, these numbers were not specifically assessed. 2769 

 2770 

Our climate has warmed rapidly in the last few decades (Sect. 6), which also manifests in changes in the occurrence 2771 

and intensity of climate and weather extremes. From about 1980 onwards, all employed datasets point to a strong TXx 2772 

increase, which coincides with the transition from global dimming, associated with aerosol increases, to brightening, 2773 

associated with aerosol decreases (Wild et al., 2005, Sect. 3). The ERA5 based TXx warming estimate w.r.t. 1850-2774 

1900 for 2023 is at 2.3°C; an increase of more than 0.5°C compared to 2022, and shattering the previous record by 2775 

more than 0.3°C. On longer time scales, land average annual maximum temperatures have warmed by more than 2776 

0.6 °C in the past 10 years (1.81 °C with respect to pre-industrial conditions) compared to the first decade of the 2777 

millennium (1.21°C; Table 9). Since the offset relative to our pre-industrial baseline period is calculated over the 2778 

1961–1990, temperature anomalies align by construction over this period but can diverge afterwards. In an extensive 2779 

comparison of climate extreme indices across several reanalyses and observational products, Dunn et al. (2022) point 2780 

to an overall strong correspondence between temperature extreme indices across reanalysis and observational 2781 

products, with ERA5 exhibiting especially high correlations to HadEX3 among all regularly updated datasets.  2782 

 2783 

Moved (insertion) [21]

Moved (insertion) [22]

Deleted: ,2784 
Deleted:  We visualise this with land-averaged annual 2785 
maximum temperatures (TXx) from three different datasets 2786 
(ERA5, Berkeley Earth and HadEX3), expressed as 2787 
anomalies with respect to the pre-industrial baseline period of 2788 
1850–1900 (Figure 6).2789 
Deleted: ). Together with strongly increasing greenhouse gas 2790 
emissions (2791 
Deleted: 2), this explains why human-induced climate change 2792 
has emerged 2793 
Deleted: even greater pace in2794 
Deleted: last four decades than previously. For example2795 
Deleted: -averaged2796 
Deleted: 52797 
Deleted: 722798 
Deleted: 22 2799 
Deleted: 82800 
Deleted: relative to2801 
Deleted: within the latter period, 2802 
Deleted: ),2803 
Deleted: This suggests that both our choice of datasets and 2804 
approach to calculate anomalies does not affect our 2805 
conclusion — the intensity of heatwaves across all land areas 2806 
has unequivocally increased since pre-industrial times.2807 

2808 
Deleted: Figure 6: Time series of observed temperature 2820 
anomalies for land average annual maximum temperature 2821 ... [63]



Table 9 Anomalies of land average annual maximum temperature (TXx) for recent decades based on HadEX3 and ERA5. 2822 

Period 

Anomaly w.r.t. 
1850-1900 
(°C) 

Anomaly 
w.r.t. 1961-
1990 (°C) 

Anomaly w.r.t. 1961-
1990 (°C) 

 ERA5 ERA5 HadEX3 

2000-2009 1.21 0.69 0.72 

2009-2018 1.54 1.02 1.01 

2010-2019 1.62 1.11 - 

2011-2020 1.63 1.12 - 

2012-2021 1.70 1.18 - 

2013-2022 1.73 1.21 - 

2014-2023 1.81 1.29 - 

10 Code and data availability 2823 

The main indicators are presented in an online dashboard at climatechangetracker.org, 2824 

https://climatechangetracker.org/igcc.  2825 

 2826 

The carbon budget calculation is available from https://github.com/Rlamboll/AR6CarbonBudgetCalc (Lamboll and 2827 

Rogelj, 2023). The code and data used to produce other indicators are available in repositories under 2828 

https://github.com/ClimateIndicator (Smith et al., 2024). All data are available from 2829 

https://doi.org/10.5281/zenodo.11061606 (Smith et al., 2024). Data are provided under the CC-BY 4.0 Licence. 2830 

 2831 

HadEX3 [3.0.4] data were obtained from https://catalogue.ceda.ac.uk/uuid/115d5e4ebf7148ec941423ec86fa9f26 2832 

(Dunn et al., 2023) on 5 April 2023 and are © British Crown Copyright, Met Office, 2022, provided under an Open 2833 

Government Licence; http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/ (last access: 2 2834 

June 2023). 2835 

11 Discussion and conclusions 2836 

The second year of the Global Climate Change (IGCC) initiative has built on last year's effort and the AR6 report 2837 

cycle to provide a comprehensive update of the climate change indicators required to estimate the human-induced 2838 

warming and the remaining carbon budget. Table 10 presents a summary of the headline indicators from each section 2839 

compared to those given in the AR6 assessment and also summarises methodological updates. The main substantive 2840 

dataset change since AR6 is that land-use CO2 emissions have been revised down by around 2 GtCO2 (Table 10). 2841 

However, as CO2 ERF and human-induced warming estimates depend on concentrations, not emissions, this does not 2842 

affect most of the other findings. Note it does slightly increase the remaining carbon budget, but this is only by 2843 

5 GtCO2, less than the 50 GtCO2 rounding precision. 2844 
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 2915 
Table 10 Summary of headline results and methodological updates from the Indicators of Global Climate Change (IGCC) 2916 
initiative. 2917 

Climate Indicator AR6 2021 
assessment  

This 2023 
assessment  

Explanation of changes Methodological updates 
since AR6 

Greenhouse gas 
emissions 

AR6 WGIII 
Chapter 2: Dhakal 
et al. (2022); see 
also Minx et al. 
(2021) 

2010-2019 
average:  

56 ± 6 
GtCO2e* 

  

2010-2019  
average:  

53 ± 5.5 GtCO2e 

2013-2022  
average: 

54 ± 5.4 GtCO2e 

Average emissions in the 
past decade grew at a 
slower rate than in the 
previous decade.  The 
change from AR6 is due to a 
systematic downward 
revision in CO2-LULUCF 
and CH4 estimates. Real-
world emissions have 
slightly increased. 

CO2-LULUCF emissions 
revised down. PRIMAP-hist 
CR used in place of EDGAR 
for CH4 and N2O emissions, 
atmospheric measurements 
taken for F-gas emissions. 
These changes reduce 
estimates by around 3 
GtCO2e (Sect. 2). Note 
following convention, ODS 
F-gases are excluded from 
the total. 

Greenhouse gas 
concentrations 

AR6 WGI 
Chapter 2: Gulev 
et al. (2021) 

2019:   

CO2,  410.1 [± 
0.36] ppm 

CH4, 1866.3 [± 
3.2] ppb  

N2O, 332.1 [± 
0.7] ppb 

2022:   

CO2, 419.2 [±0.4] 
ppm 

CH4, 1922.9 [±3.3] 
ppb 

N2O, 337.0 [±0.4] 
ppb 

Increases caused by 
continued GHG 
anthropogenic emissions  

Updates based on NOAA 
data and AGAGE (Sect. 3) 

Effective radiative 
forcing change 
since 1750 

AR6 WGI 
Chapter 7: Forster 
et al. (2021) 

2019: 

2.72 [1.96 to 
3.48] W m-2 

2023: 

2.79 [1.78 to 3.60] 
W m-2 

Trend since 2019 is caused 
by increases in greenhouse 
gas concentrations and 
reductions in aerosol 
precursors. Shipping 
emission reductions may 
have added approximately 
0.1 W m-2 to the ERF in 
2023 compared to 2022. 
However, increases in 
biomass burning aerosol 
from Canadian wildfires 
decreased the ERF by more. 

Follows AR6 with minor 
update to aerosol precursor 
treatment that does not 
affect historic estimates 
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Earth’s energy 
imbalance 

AR6 WGI 
Chapter 7: Forster 
et al. (2021) 

2006-2018 
average: 

0.79 [0.52 to 
1.06] W m–2 

2010-2023.
 average: 

0.96 [0.67 to 1.26] 
W m–2 

Substantial increase in 
energy imbalance estimated 
based on increased rate of 
ocean heating. 

Ocean heat content 
timeseries extended from 
2018 to 2023 using 4 of the 5 
AR6 datasets. Other heat 
inventory terms updated 
following von Schuckmann 
et al (2023a).  Ocean heat 
content uncertainty is used 
as a proxy for total 
uncertainty. Further details 
in Sect. 5.  

Global mean 
surface 
temperature 
change above 
1850-1900 

AR6 WGI 
Chapter 2: Gulev 
et al. (2021) 

2011-2020 
average: 

1.09 [0.95 to 
1.20] °C  

2014-2023 
 average: 

1.19 [1.06–1.30] °C 

An increase of 0.1 °C within 
three years, indicating a 
high decadal rate of change 
which may in part be 
internal variability. 

Methods match four 
datasets used AR6 (Sect. 6). 
Individual datasets have 
updated historical data, but 
these changes are not 
materially affecting results. 

Human induced 
global warming 
since preindustrial 

AR6 WGI 
Chapter 3: Eyring 
et al. (2021) 

2010-2019 
average: 

1.07 [0.8 to 
1.3] °C 

2010-2019 average: 

1.09 [0.9 to 1.3] °C 

2014-2023 
 average: 

1.19 [1.0 to 1.4] °C 

An increase of 0.1 °C within 
four years, indicating a high 
decadal rate of change. 
GMST increase in 2023 has 
revised historical estimates 
upwards. 

The three methods for the 
basis of the AR6 assessment 
are retained, but each has 
new input data (Sect. 7) 

Remaining carbon 
budget for 50% 
likelihood of 
limiting global 
warming to 1.5°C 

AR6 WGI 
Chapter 5: 
Canadell et al. 
(2021) 

From the start 
of 2020: 

500 GtCO2  

  

From the start of 
2024: 

150 GtCO2 

  

The 1.5°C budget is 
becoming very small. The 
RCB can exhaust before the 
1.5°C threshold is reached 
due to having to allow for 
future non-CO2 warming. 

Emulator and scenario 
change has reduced budget 
since 2020 by 100 GtCO2  
(Sect. 8) 

Land average 
maximum 
temperature 
change compared 
to pre-industrial.  

AR6 WGI 
Chapter 11: 

2009-2018 
average: 

1.55 °C 

2014-2023 average:  

1.74 °C 

Rising at a substantially 
faster rate compared to 
global mean surface 
temperature 

HadEX3 data used in AR6 
replaced with reanalysis 
data employed in this report 
which is more updatable 
going forward. Adds 0.01 °C 
to estimate (Sect. 9) 
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Figure 10 Infographic for the best estimate of headlinee indicators assessed in this paper. 2995 

Last year witnessed a large increase in GMST (Sect. 6), approaching 1.5°C above 1850-1900 levels that has widely 2996 

been reported in the press. The 2022 to 2023 increase was the third largest annual increase in the instrumental record 2997 

after 1876-1877 and 1976-1977, two other periods with a strong transition from La Niña to El Niño conditions. The 2998 

reasons for the change, especially regarding the potential role of external forcings such as shipping emission reductions 2999 

compared to internal variability are currently being investigated (e.g. Schmidt, 2024; Gettelman et al. 2024). Our work 3000 

looks at long-term changes and does not directly investigate the reasons for the jump in GMST levels, yet we note 3001 

that our best estimate of human induced warming in 2023 is 1.31 (1.1 to 1.7) °C (Table 6), below the observed GMST 3002 

estimate of 1.43 [1.32 to 1.53] °C in 2023 (Sect. 6). This indicates a potentially large role for El Niño and other wind-3003 

driven ocean changes. 3004 

Methane and biomass emissions had a strong component of change related to climate feedbacks (Sects. 2 and 3). Such 3005 

changes will become increasingly important over this century, even if the direct human influence declines. These 3006 

changes need to be properly accounted for to explain atmospheric concentration and energy budget changes. The 3007 

approach to methane taken in this paper (where changes to natural sources are excluded) is inconsistent with that taken 3008 

for aerosol emissions (where wildfire changes are included). In future years and in the next IPCC report a consistent 3009 

approach to attribution of atmospheric emissions, concentration change and radiative forcing should be developed.   3010 

It is hoped that this update can support the science community in its collection and provision of reliable and timely 3011 

global climate data. In future years we are particularly interested in improving SLCF updating methods to get a more 3012 

accurate estimate of short-term ERF changes. The work also highlights the importance of high-quality metadata to 3013 

document changes in methodological approaches over time. In future years we hope to improve the robustness of the 3014 

indicators presented here but also extend the breadth of indicators reported through coordinated research activities. 3015 

For example, we could begin to make use of new satellite and ground-based data for better greenhouse monitoring 3016 

(e.g. via the WMO Global Greenhouse Gas Watch initiative). Parallel efforts could explore how we might update 3017 

indicators of regional climate extremes and their attribution, which are particularly relevant for supporting actions on 3018 

adaptation and loss and damage. 3019 

 3020 

Generally, scientists and scientific organisations have an important role as “watchdogs” to critically inform evidence-3021 

based decision-making. This annual update traced to IPCC methods can provide a reliable, timely source of 3022 

trustworthy information. As well as helping inform decisions, we can use the update to track changes in dataset 3023 

homogeneity between their use in one IPCC report and the next. We can also provide information and testing to 3024 

motivate updates in methods that future IPCC reports might choose to employ. 3025 

 3026 

This is a critical decade: human-induced global warming rates are at their highest historical level, and 1.5 °C global 3027 

warming might be expected to be reached or exceeded within the next 10 years in the absence of cooling from major 3028 

volcanic eruptions (Lee et al., 2021). Yet this is also the decade that global greenhouse gas emissions could be expected 3029 

to peak and begin to substantially decline. The indicators of global climate change presented here show that the Earth's 3030 
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energy imbalance has increased to around 0.9 W m−2, averaged over the last 12 years. This also has implications for 3109 

the committed response of slow components in the climate system (glaciers, deep ocean, ice sheets) and committed 3110 

long-term sea level rise, but this is not part of the update here. However, rapid and stringent GHG emission decreases 3111 

such as those committed to at COP28 could halve warming rates over the next 20 years (McKenna et al., 2021). Table 3112 

1 shows that global GHG emissions are at a long-term high, yet there are signs that their rate of increase has slowed. 3113 

Depending on the societal choices made in this critical decade, a continued series of these annual updates could track 3114 

an improving trend for some of the the indicators herein discussed. 3115 
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