
1 
 

A global daily High Spatial-Temporal Coverage Merged tropospheric 
NO2 dataset (HSTCM-NO2) from 2007 to 2022 based on OMI and 
GOME-2 
Kai Qin1, Hongrui Gao1, Xuancen Liu1, Qin He1, Pravash Tiwari1, Jason Blake Cohen1* 

1School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China 5 

Correspondence to: Jason Blake Cohen (jasonbc@alum.mit.edu) 

Abstract. Remote sensing based on satellites can provide long-term, consistent, and global coverage of NO2 (an important 

atmospheric air pollutant) as well as other trace gases. However, satellites often miss data due to factors including but not 

limited to clouds, surface features, and aerosols. Moreover, as one of the longest continuous observational platforms of NO2, 

OMI has suffered from missing data over certain rows since 2007, significantly reducing spatial coverage. This work uses the 10 

OMI-based OMNO2 product, as well as a NO2 product from GOME-2 in combination with machine learning (XGBoost) and 

spatial interpolation (DINEOF) method to produce a 16-year global daily High Spatial-Temporal Coverage Merged 

tropospheric NO2 dataset (HSTCM-NO2, https://doi.org/10.5281/zenodo.10968462, Qin et al., 2024), which increases the 

average global spatial coverage of NO2 from 39.5% to 99.1%. The HSTCM-NO2 dataset is validated using upward-looking 

observations of NO2 (MAX-DOAS), other satellites (TROPOMI), and reanalysis products. The comparisons show that 15 

HSTCM-NO2 maintains a good correlation with the magnitude of other observational datasets, except for under heavily 

polluted conditions (>6×1015 molec.cm-2). This work also introduces a new validation technique to validate coherent spatial 

and temporal signals (EOF) and validates that the HSTCM-NO2 is not only consistent with the original OMNO2 data, but in 

some parts of the world effectively fills in missing gaps and yields a superior result when analyzing long-range atmospheric 

transport of NO2. The few differences are also reported to be related to areas in which the original OMNO2 signal was very 20 

low, which has been shown elsewhere, but not from this perspective, further validating that applying a minimum cutoff to 

retrieved NO2 data is essential. The reconstructed data product can effectively extend the utilization value of the original 

OMNO2 data, and the data quality of HSTCM-NO2 can meet the needs of scientific research. 

1 Introduction 

The sum of nitrogen dioxide (NO2) and nitrogen oxide, hereafter referred to as nitrogen oxides (NOx), plays several important 25 

roles in tropospheric chemistry (Eriksson, 1952; Levy, 1972; Crutzen, 1973; Fishman et al., 1979; Crutzen, 1979; Logan et al., 

1981), specifically with respect to tropospheric ozone (Sillman et al., 1990), nitrate aerosol (Lu et al., 2021), which indirectly 

influences radiative forcing both through scattering downward propagating visible light (Richter et al., 2005), as well as 

through enhancing absorption of black carbon aerosols (Tiwari et al., 2023), and the concentration of tropospheric OH, which 

indirectly influences both methane and carbon monoxide (Lu and Khalil, 1993; Spivakovsky et al., 2000). During the daytime, 30 

under low pollution and low cloud conditions, the photochemical cycle of NOx can be scaled somewhat stably to NO2, allowing 

observations of NO2 to be an indicator of NOx concentration (D. Schaub et al., 2006). Under more heavily polluted conditions, 

such a relationship can also be established, although it is found to vary in space and month-by-month (Qin et al., 2023; Li et 

al., 2023). Due to its rapid reactivity with water vapor, NOx forms into nitric acid, contributes directly to acid rain (Wang et 

al., 2024). Additionally, NOx has been shown to have adverse effects on human health (Liu et al., 2016), specifically, as an 35 

irritant of the respiratory system and via impacts on respiratory diseases when inhaled at high levels (Manisalidis et al., 2020). 

The Differential Optical Absorption Spectroscopy (DOAS) method is used extensively to retrieve total column amounts of 

trace gases such as NO2 and others based on UV-visible measurements of satellite spectrometers (Eskes and Boersma, 2003). 
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The DOAS technique is based on the wavelength-dependent absorption of light over a specified light path, and it leads to the 

application of continuous monitoring of tropospheric pollution levels from space (Platt and Stutz, 2008). Initially applied to 40 

ground-based upward-looking instruments (i.e. MAX-DOAS, Wagner et al., 2004), nowadays, satellite-based measurements 

have been proven to offer reliable inversions of column NO2 when compared with ground-based measurements (Bauer et al., 

2012; Wang et al., 2017; Ialongo et al., 2020), with the errors commonly within a 20% bound and nearly always within a 40% 

bound (Boersma et al., 2004; Irie et al., 2012; Wang et al., 2017; Compernolle et al., 2020; Pinardi et al., 2020; Wang et al., 

2020; Verhoelst et al., 2021). 45 

Satellite observations offer the advantages of wide spatial and long-term temporal coverage (Streets et al., 2013), which can 

help fill spatial gaps between ground-based observations, and do so using a single platform without the need for calibrating 

multiple individual machines (Kolle et al., 2021). Starting nearly two decades ago, and continuing today, an array of different 

satellites has been monitoring global tropospheric NO2 distributions including GOME (from 1995 to 2003) aboard ERS-2, 

SCIAMACHY (from 2002 to 2012) aboard Envisat, OMI (from 2004) aboard EOS-AURA, GOME-2 (from 2006) aboard 50 

Metop and TROPOMI (from 2017) aboard Sentinel-5P (Bovensmann et al., 1999; Laan et al., 2001; Richter and Burrows, 

2002; Veefkind et al., 2012; Munro et al., 2016). As a result, there have been useful products relating to estimating surface or 

near-surface NO2 emissions (Wang et al., 2012; Li et al., 2021) and detecting the long-term or short-term change of NO2 (van 

der A et al., 2006; Cooper et al., 2022). 

NOx is emitted any time there is a high temperature reaction that occurs within the air (Echterhof and Pfeifer, 2012). For this 55 

reason, most sources are related to anthropogenic combustion of fossil fuels, biomass, and even forests, as well as a small 

amount from natural sources induced by lightning. (Sun et al., 2018; Lu et al., 2021; Li et al., 2022). Emissions are frequently 

computed using a bottom-up approach, where economic, population, and other factors are merged with an activity coefficient 

associated with each parameter, and applied on average over space and time (Li et al., 2017, Xu et al., 2023). Recent work has 

looked at using the satellite observations of NO2 above and applying them on a grid-by-grid and day-by-day basis to attribute 60 

emissions to different types of industrial sources, population centers, power generation, transportation, residential uses, 

agriculture, and natural sources (Li et al., 2023, Qin et al., 2023). Current best estimates vary by considerable amounts from 

each other in space and time (Wang et al., 2021), and account for both natural (Deng et al., 2021) and human-based factors 

(according to EDGAR and MEIC). There is controversy about the amounts that lightning and microbial activity may or may 

not contribute (Logan, 1983). 65 

Vertical column densities (VCDs) of tropospheric NO2 retrieved from satellite-based instruments provide plentiful data under 

relatively clean and clear atmospheric conditions, but have many missing pixels in both time and space due to a variety of 

factors including very bright surfaces, clouds, and aerosols (Lin et al., 2014; Xia and Jia, 2022). One of the underlying sources 

of error is related to the air mass factor (AMF), which allows conversion from a slant column to a vertical column, which is 

highly sensitive to cloud and aerosol layer height (Leitão et al., 2010), aerosol absorption (Lin et al., 2014; Cooper et al., 70 

2019), and the spatial and temporal distribution of NOx emissions (Qin et al., 2023; Li et al., 2023), which can lead to both 

uncertainties and biases in the retrieval (Bousserez, 2014). For these reasons, pixels known to be impacted by clouds are 

usually filtered before analysis, however, other impacted pixels may not be properly filtered, leading to other issues. Similarly, 

for some older satellites, due to the orbit and swath width, it respectively requires 3 days, 6 days and 1.5 days for GOME, 

SCIAMACHY and GOME-2 to cover the whole globe, with additional missing pixels on a day-by-day basis. OMI, which is 75 

carried on a near-polar, sun-synchronous satellite, is the world's first sensor with daily global coverage of NO2 since 2004. 

However, in 2007, a reduction in OMI’s spatial coverage occurred due to an equipment malfunction, called the row anomaly 

(RA), which began affecting just two rows of data in June 2007 but has gradually worsened over time (Torres et al., 2018). 

The absence of data presently affects both short-term estimation of air quality as well as long-term quantitative analysis 

(Duncan et al., 2013; van Geffen et al., 2020), although OMI is still useful for the detection of extreme events (Wang et al., 80 

2020; Wang et al., 2021; Deng et al., 2021). Due to 19 years of continuous observations, OMI is a very widely used sensor in 
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the field of atmospheric trace gas research, and finding ways to comprehensively and reasonably fill these missing pixels 

would allow its usefulness to be extended into other fields (de Hoogh et al., 2019; He et al., 2020; Wu et al., 2021; Wei et 

al., 2022; Shao et al., 2023; Liu et al., 2024). 

There are many existing approaches to fill missing data from satellite-based platforms including interpolation techniques: 85 

geostatistical (e.g., kriging), deterministic (e.g., inverse distance weighted, thin plate splines), and hybrid (e.g., regression 

kriging) methods (Abdulmanov et al., 2021; Achite et al., 2024), as well as machine learning techniques include random forests 

(Sanabria et al., 2013). As there is a strong correlation in terms of both geospatial relationships as well as retrieval approaches 

used to determine the VCDs between tropospheric NO2 obtained by different sensors (Wang et al., 2016; Park et al., 2020), 

issues of spatial-temporal correlation need to be carefully taken into consideration, something that these previous approaches 90 

may not have fully considered. In this work, the machine learning and Data Interpolating Empirical Orthogonal Functions 

(DINEOF) methods are selected to carry out the reconstruction, which takes advantage of both machine learning and pattern 

recognition in tandem, as demonstrated by previous studies reconstructing satellite chlorophyll-a data (Wang and Liu, 2013; 

Chang et al., 2017; Hilborn and Costa, 2018; Park et al., 2020), filling in missing part of both sea and land surface temperature 

data (Alvera-Azcárate et al., 2009; Zhou et al., 2017), analyzing sea surface salinity data (Alvera-Azcárate et al., 2016; Chen 95 

et al., 2022), and Jiang et al. (2022) used DINEOF to reconstruct the XCO2 data of OCO-2 and OCO-3 by fusing the two, 

effectively improving the spatiotemporal coverage of XCO2 products. 

This research aims to accurately and precisely reconstruct the tropospheric NO2 VCD at daily time resolution and grid-by-grid 

spatial resolution using OMI 2007-2022. Under the support of global daily High Spatial-Temporal Coverage Merged 

tropospheric NO2 dataset (HSTCM-NO2), model validation, spatial distribution analysis and temporal change monitoring can 100 

be carried out. Also, HSTCM-NO2 can be an ideal tool for improving numerical prediction of air quality and AMF, contributing 

to a better understanding of typical chemical and dynamic processes in the atmosphere, and future remote sensing retrieval 

improvements. 

2 Materials and methods 

Table 1: Summary of the parameters used in this research. 105 

Data type Parameter Abbreviation Unit 

OMI Daily tropospheric NO2  
vertical column density OMI molec.cm-2 

GOME-2 

Daily tropospheric NO2  
vertical column density GOME-2_NO2 molec.cm-2 

Daily cloud cover cloud_fraction % 

Land cover types 

Water bodies wb - 

Evergreen needleleaf vegetation env - 

Evergreen broadleaf vegetation ebv - 

Deciduous needleleaf vegetation dnv - 

Deciduous broadleaf vegetation dbv - 

Annual broadleaf vegetation abv - 

Annual grass vegetation agv - 

Non-vegetated lands nvl - 
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Urban and built-up lands ubl - 

ERA5 single levels 

Surface pressure sp Pa 

Mean surface downward  
UV radiation flux msdwuvrf W.m-2 

Total column ozone tco3 kg.m-2 

UV visible albedo for diffuse radiation aluvd - 

UV visible albedo for direct radiation aluvp - 

ERA5 multi-levels 

Specific rain water content crwc kg.kg-2 

Ozone mass mixing ratio o3 kg.kg-2 

Relative humidity r % 

Temperature t K 

U-component of wind u m.s-1 

V-component of wind v m.s-1 

Vertical velocity w Pa.s-1 

Others 

Latitude - - 

Longitude - - 

Day of year doy - 

2.1 Tropospheric NO2 products 

2.1.1 OMI tropospheric NO2 (OMNO2) 

OMI is a UV/VIS charge-coupled device (CCD) spectrometer aboard Aura satellite, which was launched on 15 July 2004 into 

a Sun-synchronous orbit with a local equator crossing time of approximately 13:45. OMI covers a spectrum of 270–500 nm 

with a spectral resolution between 0.42 nm and 0.63 nm and a nominal spatial resolution of 13 km×24 km at nadir (Boersma 110 

et al., 2008; Foret et al., 2014), providing coverage over 740 wavelength bands along the satellite track and global coverage 

via 14 orbits per day. 

OMI data are processed and archived at NASA’s Goddard Earth Sciences Data and Information Services Center (GES DISC). 

This work specifically uses the daily Level 3 global gridded data product that corresponds to the OMI NO2 standard product 

(OMNO2), and the adopted L3 grid is a 0.25-degree by 0.25-degree grid in longitude and latitude. 115 

2.1.2 GOME-2 tropospheric NO2 

The Global Ozone Monitoring Experiment-2 (GOME-2) is an optical spectrometer aboard the MetOp satellites. MetOp-A was 

launched on 19 October 2006, MetOp-B was launched on 17 September 2012, and MetOp-C was launched on 7 November 

2018. GOME-2 senses backscattered and reflected radiance in the ultraviolet and visible part of the spectrum from 240 nm-

790 nm, with a high spectral resolution between 0.26 nm and 0.51 nm covering 4096 spectral points from four detector channels 120 

(Fioletov et al., 2013). The spatial resolution varies from 80 km×40 km to 40 km×40 km, and provides daily near global 

coverage at the equator (Liu et al., 2019). 

The GOME Data Processor version 4.8 is used for MetOp-A and -B, while version 4.9 is used for -C. Datasets were resampled 
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at a uniform gridding of 0.25×0.25 degree using HARP tool. 

2.1.3 TROPOMI tropospheric NO2 125 

The Tropospheric Monitoring Instrument (TROPOMI) was launched on October 13, 2017, aboard the polar-orbiting Sentinel-

5 Precursor satellite. It measures solar radiation reflected by and emitted from Earth, and provides measurements of 

atmospheric trace including NO2, O3, SO2, HCHO, CH4, and CO, as well as cloud and aerosol properties. NO2 retrieval is 

performed using the visible band (400-496 nm), which has spectral resolution and sampling of 0.54 and 0.20 nm. The 

instrument operates in a push-broom configuration with a swath width of approximately 2,600 km, yielding on Earth’s surface. 130 

The typical pixel size (near nadir) for NO2 is 7 km×3.5 km which was reduced to 5.5 km×3.5 km in 2019 (Ialongo et al., 2020; 

Ludewig et al., 2020). This work specifically uses the level 2 NO2 data products based on version 1.4, and an applied quality 

filter of qa_value>0.75 (van Geffen et al., 2019). The TROPOMI data products are also resampled to a spatial resolution of 

0.25°×0.25° by HARP. 

2.2 Auxiliary data 135 

2.2.1 Land cover type data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type (MCD12Q1) provides data that maps global 

land cover at 500-meter spatial resolution annually derived from six different classification schemes. The maps were created 

from classifications of spectra-temporal features derived using the BIOME-Biogeochemical Cycles approach described by 

Running et al. (1993). 140 

2.2.2 MAX-DOAS data 

Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a passive DOAS ground-based remote sensing 

observation technology using solar scattering as the light source. MAX-DOAS technology can be used to detect trace gases in 

the troposphere and has been widely applied in related fields. This instrument can observe scattered sunlight from different 

perspectives, thus having high sensitivity to trace gases in the troposphere, specifically using low elevation observations as the 145 

measurement intensity and zenith measurements as the reference intensity. The Beer-Lambert Law can be used to determine 

the total molecular amount of specific gas categories along the optical path (subtracting zenith concentration from non-zenith 

measurements), which is known as differential slant column concentration. The tropospheric vertical column density is 

inverted using a radiative transfer model. This work specifically adopts the QA4ECV NO2 MAX-DOAS reference datasets, 

which includes 10 sites. The sites are categorized into three types (Sub-urban, Urban and Rural) based on their location, and 3 150 

sites of different types are used here. The information of the 3 sites is listed in Table 2. 

Table 2: Information of MAX-DOAS sites. 

Station Latitude Longitude Range of NO2 Observations (molec.cm-2) Time Zone Data Used 

Uccle 50.8°N 4.4°E 0-26×1015 0 2011.04-2015.06 

OHP 43.9°N 5.7°E 0-7×1015 0 2007.01-2016.12 

Xianghe 39.8°N 117.0°E 0-59×1015 UTC+8 2010.04-2017.01 

2.2.3 Reanalysis meteorological data 

Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using 

a model of the atmosphere based on the laws of physics and chemistry. For this reason, this work uses the fifth generation 155 

ECMWF reanalysis (ERA5) for 12 specific meteorological parameters as given in Table 1. The dataset used has an hourly 
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temporal resolution and a 0.25°×0.25° spatial resolution. Those meteorological products in this work are used at the following 

pressure levels: 100 hPa, 200 hPa, 500 hPa, 700 hPa, 850 hPa, 925 hPa, and 1000 hPa. The actual weightings used in this work 

are computed using principal component analysis (PCA), and rely nearly fully on the data from 850hPa and below, at roughly 

equal weights. 160 

This study also uses the fourth generation ECMWF reanalysis (EAC4) specifically for its modeled NO2 column values, which 

are used as a means of comparison against the NO2 fields generated within this work. EAC4 data has a spatial resolution of 

0.25°×0.25°, and a temporal resolution of 3 hours. In this work, a vertical column density of tropospheric NO2 is derived from 

EAC4 and is used for comparison. 

2.3 XGBoost (eXtreme Gradient Boosting) algorithm 165 

A gradient boosting framework is used by the decision-tree based ensemble machine learning approach known as XGBoost 

(Chen and Guestrin, 2016). This method employs a more regularized model formalization than other techniques (Cisty and 

Soldanova, 2018; Zhang et al., 2018), having greater control against overfitting compared with gradient boosting decision tree 

(GBDT) approaches (Dong et al., 2022). Similar to the random forest algorithm, XGBoost needs its hyperparameters tuned 

(Kapoor and Perrone, 2021). It has a more intricate structure and adds regularization components to the loss function to prevent 170 

overfitting so that it can handle complicated data better. Therefore, XGBoost is a better option for working with vast volumes 

of data and multidimensional affecting factors like NO2 gap filling. Additionally, XGBoost has been used to estimate pollutants, 

and its results outperform those of certain other statistical and machine learning methods (Reid et al., 2015; Just et al., 2018; 

Zhai and Chen, 2018; Fan et al., 2020). Table 1 shows the data used in this research, which are input into the machine learning 

model. 175 

2.4 SHAP (SHapley Additive exPlanation) values 

SHAP values quantitatively represent the conditional expected value function of the machine learning model, implying the 

average contribution of a feature to a prediction (Lloyd Shapley, 1952). The use of a black box model, such as XGBoost in 

this work, necessitates an explanatory model in contrast to interpretable algorithms (i.e. Cohen and Prinn, 2011). According 

to each feature’s marginal contribution, SHAP distributes the overall gain, in terms of both negative and positive contribution. 180 

In this work, SHAP values are used to quantify the importance of features, as shown in Figure 2. 

2.5 DINEOF method 

DINEOF is used in this work to reconstruct the missing points in the spatio-temporal field of NO2. This method relies on an 

empirical orthogonal function (EOF) decomposition in space and a principle component (PC) decomposition in time that 

identifies spatial-temporal domains of maximal variation following (Cohen, 2014). The method allows the assignment of a 185 

prediction under conditions in time and/or space that are missing observational data. By using the weighted EOFs and PCs in 

an iterative manner, missing data points can be re-synthesized based on a weighting of the various underlying orthogonal basis 

functions. The number of iterations which minimizes the cross-validation error is used to obtain the best-reconstructed data. 

For a more detailed description of the overall approach, see Beckers and Rixen (2003) and Alvera-Azcarate et al. (2005). In 

this work, the amount of data filled using this approach ranges from 27% to 35% on a year-by-year basis, as given in Table 4. 190 

2.6 Validation strategy 

In order to analyze the performance of the reconstructed dataset, this work not only uses cross-validation based on the original 

data itself, but also refers to the observations from TROPOMI, MAX-DOAS, and the EAC4 reanalysis product mentioned 

above. The root mean square error (RMSE), Pearson correlation coefficient (R), normalized mean bias (NMB) and mean 

absolute error (MAE) are all used in the validation process. 195 
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Also, as an important and innovative approach, EOF is performed on the three-dimensional observed and HSTCM-NO2 fields. 

And these values are compared to ensure that the maximum changes in spatial and temporal signal are consistent with the 

original observations. EOF is an exploratory technique for multivariate data, which is in essence an eigenvalue problem, aiming 

at explaining and interpreting the variability in the data. Till now, EOF has been introduced into data analysis of satellite-based 

remote sensing to estimate the spatiotemporal distribution characteristics of pollutants such as HCHO (Kim et al., 2014), CO 200 

(Baek & Kim, 2011), aerosols (Cohen et al., 2017) and NO2 (Li et al., 2023). 

2.7 Method selection 

The goal of this work is to use all available day-by-day and pixel-by-pixel NO2 column data from both OMI and GOME-2 in 

tandem to reconstruct a consistent global NO2 column product with the highest possible coverage. Machine learning used in 

this work can only predict OMNO2 data which also has GOME-2 data at corresponding position in space and time. For this 205 

reason, this work introduces DINEOF to reconstruct data in locations where both of OMI and GOME-2 do not have values, 

but where data exists at other times or nearby locations in space. 

Since DINEOF and machine learning have not previously been used in tandem for this type of issue, a critical component of 

the methodology is to quantify the impact of using the two approaches individually, in tandem, and if in tandem in what order. 

To first determine which sets of methods are best suited for this work, a subset of data from 2007 is selected. Furthermore, due 210 

to the issue of the row anomaly, a second comparison dataset from 2013 is used as a mask. In this way, data from 2007 which 

are masked by data from 2013 will be separated for validation, and the missing data will be the major difference assuming the 

changes in the climatology are not significant. Therefore, the following methods are applied, as displayed in Fig. 1: 

I. First XGBoost is used to predict OMNO2 data based on GOME-2 data. Subsequently, DINEOF is applied to fill the 

remaining gaps. 215 

II. DINEOF is first used to fill the gaps in GOME-2 data. This is then followed by XGBoost prediction based on the 

reconstructed GOME-2 dataset. 

III. DINEOF is used solely to fill in gaps in OMNO2. 

The reconstructed dataset is evaluated based on comparison between the masked data from 2007 and the results. Additionally, 

in order to verify whether and how the absence of GOME-2 values affects prediction accuracy, further partitioning of the 220 

dataset based on the presence or absence of GOME-2 values is performed. All results are given in Fig. 1, where the row is the 

method and the column is the amount of GOME-2 data used. 
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Figure 1: Cross-validation of 3 methods between reconstructed data and masked OMNO2 in 2007. 

As shown in Fig. 1, the complete or partial datasets reconstructed by Method Ⅰ all have the maximum R value and the minimum 225 

RMSE and NMB in the same scenario. Meanwhile, by comparing Column 2 and Column 3, it is obvious that the presence of 

GOME-2 observations can greatly improve the accuracy of reconstruction and have an impact on the fitted slopes (especially 

in the cases of methods Ⅰ and Ⅱ). From Row 3, it can be found that DINEOF has universality, but does not have outstanding 

performance. Therefore, it is necessary to use machine learning for prediction in positions with values obtained from GOME-

2 and DINEOF only used for filling in positions that do not contain GOME-2 data. In conclusion, in order to obtain the optimal 230 

results, Method Ⅰ will be chosen as the reconstruction scheme in this work, which is consistent with the idea that using the 

most amount of actual observational data possible best supports the machine learning approach. 

3 Results 

3.1 Reconstruction process and model evaluation 

3.1.1 Quantifying the importance of individual features 235 

The results of the SHAP value and its statistics are given in Fig. 2 based on global training data from February 2019 as an 

example.  
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Figure 2: Feature importance ranking (a), and scatter plot of feature density for each parameter of XGBoost (b), represented as a beeswarm. 
In specific, each row represents a feature, and the order of arrangement is determined by the importance of the feature calculated in the 240 
previous step. The horizontal coordinate is the SHAP value, where the sign of the value indicates the direction of the contribution of that 
feature. Each point in each row represents a single sample, and the color of the point indicates the magnitude of the feature value (high in 
red and low in blue). 

The 20 features with the highest contribution are provided. Data from GOME-2_NO2 has both the highest overall mean 

contribution, as well as the largest absolute contribution (up to 1.8), which is larger than the absolute values of all other 245 

contributing factors, as well as the only significant source in terms of positive contribution (greater than 0.6). This result is 

consistent with the fact that GOME-2_NO2 is the base observation upon which the machine learning is acting. The second 

most significant driving feature is the surface pressure, which has both the second highest mean and the second largest absolute 

contribution (down to -1.5) of any factor. This is consistent with the fact that human settlements tend to occur at lower 

elevations in general and that changes in pressure tend to accompany changes in the rates of transport and chemical activity of 250 

NO2 in situ (Wang et al., 2020; Li et al., 2023). Below this there are some interesting patterns in which some species contribute 

more to the mean SHAP, but not necessarily to the extreme SHAP values, meaning that the global and local contribution 

factors are different in different locations. As expected, latitude, longitude, day of year, and downwelling UV radiation are all 

relatively important in different areas, which is consistent with the highly heterogenous nature of NO2 emissions, different 

driving forces which impact the ratio of NO to NO2 emissions within NOx, issues of geospatial change, and processing once 255 

the NO2 is in the atmosphere, among other factors.  These factors are sufficient to capture the presence of pollution sources 

within specific pixels, and therefore it is required to not only be able to predict the long-term signal, but also account for short-

term changes of a sudden nature as well. 

3.1.2 Separation of models over ocean and land 

Globally, the distribution of NO2 observed by satellites is not balanced, due to the fact that NO2 has a relatively short lifetime, 260 

and the vast majority of its emissions occur over land in and around areas of anthropogenic disturbance. Furthermore, if major 

shipping lanes and areas of significant downwind transport are excluded, NO2 generally has lower values over the sea compared 

to land. On top of this, the surface absorption profile over the oceans is different from land, which may further contribute to 

differences in the column interpretation. This section quantitatively explores the impact of separating those pixels over the sea 

from those over the land in terms of training the machine learning model, and works to quantify any reduction in the overall 265 

error rate of the models between the separated and unified approaches. 
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Figure 3: Prediction results with and without prior knowledge, versus TROPOMI observations over 3 regions (Eastern North America, 
Europe and Western Asia). 

The effects of separating the land from the ocean models are demonstrated clearly over April 2019 in Fig. 3. First, the high 270 

values of NO2 observed over the Western Atlantic Ocean found in the all data model are no longer observed in the land and 

ocean separate data models, which is consistent with TROPOMI NO2 observations. Over Western Europe, the high values off 

of Scotland as confirmed by TROPOMI still remain in the land and ocean separate data models’ case, while the unusually high 

values in the all data model case are reduced to more reasonable values compared to the observations from TROPOMI over 

the areas between Spain and France and between the UK and France. Even with the separation, there are still erroneously high 275 

values between the UK and Ireland, and in the Eastern Atlantic which are not resolved. The third row shows the distribution 

of NO2 concentrations in Western Asia. In the TROPOMI observations, high values are observed on the southwest side of the 

Arabian Peninsula only over land, and mostly on land over Northern Turkey except for the Bosphorus Straits, which is 

consistent with what is understood, and which the separate land and ocean data models are able to capture, while the all data 

model misrepresents these values as being higher than the observations support. Overall, there is a considerable improvement 280 

observed over near-sea areas, in terms of both retaining enhancement where it is justified and reducing enhancement where it 

is not justified by using the separately trained models. However, there are still inconsistencies which are not resolved. 

3.1.3 Evaluation of machine learning 

After applying XGBoost and prior knowledge mentioned above, Fig. 4 demonstrates the reconstructed results and compares 

them with the original data on a pixel-by-pixel basis in 2007. 285 
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Figure 4: Accuracy validation of XGBoost prediction results (MAE, RMSE, and R2). 

Among the results predicted by XGBoost, the MAE and RMSE of the results located over water are slightly lower than those 

located over land. The predicted results over Eastern Asia, Europe and Eastern North America show a higher correlation with 

the observations, indicating that the variability is captured better over regions where the vertical column density of NO2 is 290 

larger. For these reasons, the machine learning model is trained separately over both land and over the ocean, with training 

done on a month-by-month basis. The results of this fitting are given in Fig. 5, demonstrating the time series of the statistics 

from 2013 to 2015. 

 

Figure 5: Land and ocean model quality of XGBoost from 2013 to 2015. 295 

As demonstrated, the RMSE and MAE of the ocean model are both always higher than, and less temporally variable than those 

of the land model, also, unlike the land model, which shows improved performance during the winter, the ocean model does 
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not experience this seasonal improvement. This indicates that these errors scale both in terms of the magnitude, which is higher 

over land, but also in response to the retrieval algorithms themselves, which have a different amount of error over bright and 

dark surfaces. Additionally, the abundance of surface-based measurements over land has initially enhanced the accuracy of 300 

these retrievals. The correlation over time of the land model is slightly higher than that of the ocean model, indicating that the 

data predicted by the land model may have a lower uncertainty, possibly due to a better apriori data, a better-defined AMF 

over land, or due to the overall retrieval being better over land as compared to water (Richter et al., 2011, Streets et al., 2013, 

Lamsal et al., 2021). 

The quality of the land model fit shows a strong decrease in quality over a period of 1 to 3 months every year, experiencing 305 

both inter-annual and intra-annual variation, while the ocean model shows a weaker decrease in the fit for a few months in two 

of the years, and no change in the other years. This indicates that there must be a few different forces acting upon the fits, 

including some of which are clearly seasonal in nature with only small variation (air temperature), while others are more 

variable (UV radiation and AAOD), consistent with the results from Wang et al. (2020), and Li et al. (2023). On the one hand, 

the UV intensity is generally lowest in December and January, leading to an increase in the residence time of NO2 in the 310 

atmosphere, and generally highest in May and June, leading to a decrease in the residence time. However, the UV itself is also 

modified by the effects of both clouds and absorbing aerosols. Cloud coverage tends to affect a larger percentage of the ocean 

surface compared to land. However, absorbing aerosols have a more significant impact over land, which contributes to the 

findings mentioned earlier. The effects of temperature tend to peak differently from those of UV radiation, but these effects 

tend to be climatologically more similar year to year, given that the years analyzed do not contain any El Niño or La Niña 315 

types of patterns. In addition to this, the vertical column density of NO2 itself also changes from month to month with the peak 

values over land occurring in December and January, with both the magnitude of the peak and the peak month varying from 

year to year. This allows for a greater amount of differentiation between the heavily polluted and more clean regions during 

this time, especially so over land. As discussed previously, such high variability may lead to additional machine learning fitting 

issues. On the other hand, there is generally less cloud during the winter, meaning more observations on a day-by-day basis, 320 

as well as more atmospheric stability in the winter, leading to less vertical and long-range transport of pollutants away from 

their source regions. The combination of all of which enables the model to achieve more accurate predictions. 

3.1.4 Reconstruction process and accuracy analysis of DINEOF 

The EOF separates the data into its primary basis functions, of which there are spatial and temporal components. To test the 

efficacy of the EOF procedure as a function of the time length of data used, this work has run the procedure over different time 325 

periods from a minimum of 1 month of data to a maximum of 3 years of data. The annual data, as shown in Table 4, yields the 

lowest overall standard deviation. This is consistent with the above results showing that there is a clear annual peak in the NO2 

columns occurring each winter, and indicates that this amount of variability drives the model more than the smaller year-to-

year changes in the peak or overall characteristics of NO2. This result is consistent with a year (intra-annual variability) tending 

to be smaller than year-to-year variability unless a very long time series is considered (minimum of 20-30 years) (Chowdhury, 330 

2022), unless capturing a known extreme such as El Niño, La Niña, etc. (Deng et al., 2021). Based on the timing chosen and 

the results below, this work will rely upon applying the DINEOF reconstruction of the dataset on a year-by-year basis. 

Table 4: Reconstruction results of different time lengths of DINEOF. 
Time Length 1 month 3 months 6 months 1 year 3 years 

Start Time 2008.01.01 2008.01.01 2008.01.01 2008.01.01 2008.01.01 
End Time 2008.01.31 2008.03.31 2008.06.30 2008.12.31 2010.12.31 

Image Number 31 91 182 366 1090 
Missing Rate 34.2% 27.7% 29.1% 29.3% 32.0% 

Mean Value (×1015) 0.60 0.54 0.54 0.56 0.58 
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Standard Deviation (×1015) 1.57 1.35 1.15 1.12 1.13 
Iterations Made 112 50 16 12 12 

Convergence Achieved 10.0E-4 10.0E-4 9.8E-4 8.61E-3 9.9E-4 

Table 5 shows the DINEOF results for each year, with most years achieving convergence after 12 to 29 iterations. The standard 

deviation is shown to be lowest when analyzing data one year at a time. Interestingly, the year 2009 saw the most data loss, 335 

with more than one-third of the total data (34.3%) lost. This indicates that both the geospatial nature of the data and the range 

of column loading values are important factors, in addition to the absolute amount of data reconstructed. 

Table 5: Statistics of DINEOF reconstruction results by year. 
Year Mean Value (×1015) Standard Deviation (×1015) Iterations Made Convergence Achieved Missing Rate 

2007 0.56  1.18 12 9.2E-04 31.1% 
2008 0.55  1.12 12 8.5E-04 29.3% 
2009 0.58  1.07 16 9.7E-04 34.3% 
2010 0.59  1.17 16 9.4E-04 32.5% 
2011 0.59  1.21 14 8.8E-04 33.1% 
2012 0.59  1.21 13 9.4E-04 30.7% 
2013 0.59  1.16 12 9.1E-04 23.0% 
2014 0.58  1.05 14 9.3E-04 23.5% 
2015 0.58  0.98 22 9.6E-04 22.6% 
2016 0.60  0.91 18 9.9E-04 23.9% 
2017 0.59  0.93 22 9.3E-04 32.2% 
2018 0.58  0.92 29 9.9E-04 23.2% 
2019 0.59  0.59 25 9.9E-04 21.2% 
2020 0.58  0.86 42 9.8E-04 21.4% 
2021 0.64  0.93 64 9.9E-04 22.9% 
2022 0.68 0.88 23 9.6E-04 21.3% 

3.1.5 Overall analysis 

The performance of reconstruction can be tested by simulating the known "row anomaly" issue, wherein OMI started to lose 340 

access to specific camera angles on a swath-by-swath basis starting in 2007, leading to the appearance of missing lines of data. 

Since the data is otherwise in good order, a well-conditioned filling method should be able to produce data to cover these well-

known and geometrically simple gaps. Five regions (East Asia, Europe, Eastern North America, South Africa, and South Asia) 

are used to demonstrate the effectiveness of the procedure to fill these gaps on different days in 2007. 
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 345 
Figure 6: Results of stepwise reconstruction of masked data over 5 regions (East Asia, Europe, Eastern North America, South Africa, and 
South Asia). 

As shown in Fig. 6, the first column shows the original OMNO2, and the second column shows the data distribution after 

simulating the effect of "row anomaly". The machine learning reconstructs the image of GOME-2 at positions with value, 

keeps the original observations, and only reconstructs the missing parts. After reconstruction by XGBoost, the image elements 350 

that are still missing are reconstructed using DINEOF to obtain a dataset with more than 99% coverage. Comparing the 

reconstructed data with the original data, it can be found that the reconstructed results are basically consistent with the 

distribution of the original OMNO2, with the following two exceptions: some very high pixels observed in the EU and USA 

have been removed and replaced with lower value pixels in the reconstruction, while some moderate and low pixels in China 

and India have been replaced with high value pixels in the reconstruction. In general, the overall shapes are reasonably similar 355 

and the transition from high to low values seems to make sense based on the values from the original OMNO2. 
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3.1.6 Coverage statistics 

 
Figure 7: Coverage statistics of HSTCM-NO2 from 2007 to 2022, daily coverage (0.3 is used as a cut-off) is shown in (a), number of days 
with data for each pixel is shown in (b). 360 

The spatial coverage of the original OMNO2 declined from about 50% in 2007 to 35%-40% after 2009 due to the "row 

anomaly" phenomenon and cloud occlusion, and improved slightly in late 2012 (although not recovering to previous levels). 

The reconstructed data however has a daily coverage of over 90%. As shown in Fig. 7(a), the original data has more gaps when 

the cloud volume is higher and less data when the cloud volume is smaller. The reconstructed data also shows such a trend, 

although with a much smaller difference between the high cloud and low cloud periods of time, indicating that some fraction 365 

of cloud-covered data can be reconstructed successfully, while some other amount has so much data lost that even this 

technique used in this work cannot fully reconstruct the data. 

Fig. 7(b) shows the comparison between the original OMNO2 and the HSTCM-NO2 in terms of spatial distribution. OMNO2 

in the eastern part of North America, northwestern part of South America, Europe and southeastern part of Asia is obviously 

missing, although after reconstruction all the data in the above locations are reconstructed. The reliability of their HSTCM-370 

NO2 is verified over such land-based and near-land areas. There are a few exceptions, such as perpetually cloud-covered areas 

in the North Pacific and along the equator, but in these cases, there is likely no possible solution since they are covered for 

days in a row over huge spatial areas. Globally on average, the 39.5% coverage of OMNO2 increases to a 99.1% coverage of 

HSTCM-NO2. 

3.2 Multi-source validation of HSTCM-NO2 375 

3.2.1 Comparison with MAX-DOAS data 

The original OMNO2, HSTCM-NO2 were validated against MAX-DOAS and the following results were obtained. The 3 sites 
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used in this work are Xianghe, Uccle and OHP, which are located separately in Sub-urban, Urban and Rural. 
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Figure 8: Scatter plots of comparison between MAX-DOAS observations (Xianghe, Uccle and OHP) and HSTCM-NO2, the figures of the 380 
left panel use all observations of MAX-DOAS, while of the right panel are filtered out extreme cases. The boxes in the upper left corner 
summarize the statistical comparisons, while the boxes to the right of each subfigure represent the statistics of each individual reconstruction 
step. 

Comparisons between the various different products and MAX-DOAS are shown in Fig. 8. Due to the small amount of data, 

there is a missing box which corresponds to a result that didn’t pass the p-test. In all cases, there is a sufficient number of data 385 

points to consider the fits under both all data and extreme event filtered data conditions. At the site with very high NO2 column 

loading (Xianghe) and moderately high NO2 column loading (Uccle), the results using both XGBoost and DINEOF together 

are still less good than the original OMI data, regardless of whether the data is filtered or not filtered. In Xianghe this difference 

is even larger than in Uccle, confirming that the approaches employed here do not work very well when a substantial amount 

of data is located at or above 6×1015 molec.cm-2. However, it is clearly shown even at these high sites that using both XGBoost 390 

and DINEOF together yields a final product which is more representative of OMI than using only one method independently. 

In the case of Xianghe, using all data with XGBoost alone, or using filtered data with either XGBoost or DINEOF alone yields 

similar results, which are worse than applying both XGBoost and DINEOF in tandem. At Uccle, applying XGBoost on its own 

always yields a result with a much higher R coefficient and a lower RMSE coefficient than when DINEOF is applied on its 

own, consistent across both filtered and unfiltered data. Interestingly under the relatively cleaner conditions found at OHP, the 395 

results of applying both XGBoost and DINEOF together yield a result which is better than the result of OMI in terms of RMSE 

and similar in terms of R. The application of either XGBoost or DINEOF independently at this location yields results which 

are quite good when compared with OMI. This set of results makes it clear that under cleaner conditions, the use of one or 

both of XGBoost and/or DINEOF yields benefits and can be considered trustworthy, while their combination yields a large 

amount of additional data and still works well. Clearly the benefits of the gap filling and prediction are consistent with the 400 

observations under these conditions, allowing conclusions observed above under different polluted conditions to be further 

supported. 

3.2.2 Comparison with TROPOMI 

Compared with OMI, TROPOMI has a higher spatial resolution and wider swath angle, allowing improved spatial observation 

of tropospheric NO2, with the caveat that higher resolution may mean that some pixels are cloud-covered, whereas at lower 405 

resolution this may not be the case. For these reasons, TROPOMI NO2 is used as an external data source to allow comparison 

with the various products and to serve as a means for ensuring that the derived products are reasonable. 

The spatial distribution on 4 specific days in 2019 and annual average coverage over East Asia, South Asia, Europe and North 

America are used to compare OMNO2, HSTCM-NO2 and TROPOMI NO2, as displayed in Fig. 9. 
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 410 

Figure 9: Distribution and coverage statistics of OMI, HSTCM-NO2 and TROPOMI over East Asia (a), South Asia (b), Europe (c) and 
North America (d) in 2019. 

As shown in Fig. 9(a), the coastal areas of China are severed affected by the RA, leading to a significant portion of data missing 

in OMNO2. The reconstructed results of HSTCM-NO2 are similar to TROPOMI on average, and in particular in Hebei, Henan, 

Shanxi, Shaanxi, parts of industrial Inner Mongolia, the Pearl River Delta, and even the transport corridors between China and 415 

South Korea in the East China Sea. However, there are some regions in Shandong, southern Jiangsu, Wuhan, and Shanghai, 

where the characteristics on average may be acceptable, but where high and low values are too smoothed over and extremes 

are not well predicted by HSTCM-NO2 as compared with TROPOMI. Due to the effects of cloud cover, both OMNO2 and 

TROPOMI show no data over the megacities of Chongqing and Chengdu, while HSTCM-NO2 effectively solves this problem 

in terms of large-scale spatial averaging, with a coverage of almost 100%. However, the fine-scale centers of the two cities are 420 

not clear in this case. 

In Fig. 9(b), again due to the RA, OMNO2 lacks data over New Delhi, Lahore and other cities in central and western India. 

The reconstructed HSTCM-NO2 products fill this part of data well, and the NO2 distribution shown in HSTCM-NO2 is similar 

to that of TROPOMI, with the major issue being that heavily polluted areas are more diffuse than in TROPOMI. In particular, 

the areas of Northeast India which are known to have seasonal fires this time of the year are reflected well in HSTCM-NO2 425 

but not in TROPOMI, possibly indicating that the information from the morning provided by GOME-2 identifies information 

which is missed by TROPOMI in the afternoon. The special geographical environment of the Qinghai-Tibet Plateau has led to 

both high cloud cover and significant surface reflection in the region. As a result, the coverage of OMI and TROPOMI products 

in the Qinghai-Tibet Plateau region is relatively low, and HSTCM-NO2 is able to provide some amount of geospatial 

information, likely again from GOME-2, while filling the climatological gap. 430 

As shown in Fig. 9(c), due to the influence of the marine climate, high coverage of cloud often occurs in the European region, 

which causes significant interference to satellite observations. The coverage of both OMNO2 and TROPOMI products in the 

European region is relatively low on this day. The HSTCM-NO2 has effectively reconstructed missing data in the UK from 

Scotland through London, most of central France, and even into Algeria and Tunisia, while greatly increasing data coverage 

throughout Europe as a whole. 435 

As shown in Fig. 9(d), missing data in areas such as the western coast of North America, Texas, and Oklahoma have been well 
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reconstructed. Due to the impact of RA, the spatial coverage of OMNO2 is lower than TROPOMI, and the coverage of both 

is not ideal in both high latitude and high altitude regions. Through the comparison of the four regions, it can be found that the 

HSTCM-NO2 solves this problem, and has high consistency with TROPOMI NO2. It works particularly well along the West 

Coast from San Francisco up through Vancouver, energy producing areas from Texas through New Mexico, and in general 440 

around urban and energy producing areas along the Eastern edge of the Rockies. 

As shown in Fig. 10, each day and grid which contains a value of both HSTCM-NO2 and TROPOMI NO2 are compared in 

2019. The comparison consists of a total of 171297320 pixels, and shows a reasonable fit globally with a RMSE of 0.64, R of 

0.75, and NMB of 0.09. As pointed out elsewhere in this work, at values larger than 6×1015 molec.cm-2, and especially so at 

values larger than 20×1015 molec.cm-2, there are some small differences in the overall shape. 445 

 
Figure 10: Comparison between global HSTCM-NO2 and TROPOMI data in 2019. 

3.2.3 Comparison with EAC4 data 

Global results as well as results over three regions with a sufficient number of pixels with high NO2 vertical column densities 

(East Asia, North America, and Europe) were selected to compare the reconstruction results with EAC4 data for February 450 

2008. The reconstructed data at a global scale contains more than 2.6 million points and has an RMSE of 1.02, R of 0.77, and 

NMB of -0.25. Among the 3 regions, East Asia has the validation results with the highest R and the lowest NMB, followed by 

North America and Europe, as displayed in Fig. 11. 
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Figure 11: Global and regional (East Asia, Europe and North America) comparison between HSTCM-NO2 and EAC4 data. 455 

3.3 Results of EOF analysis 

In order to verify the performance of HSTCM-NO2, the temporal and spatial patterns are expected to match the observed 

variability. In specific, analysis was done over the time period from 2019-2021. The first three modes contribute 7.6%, 2.2%, 

and 2.0% of the total original OMNO2 respectively, while they contribute 26.1%, 4.0%, and 3.2% respectively for HSTCM-

NO2. This indicates that a spatial and temporal comparison using the first mode is sufficient to demonstrate the ability of 460 

HSTCM-NO2 to reproduce OMNO2, given the fact that they both contribute more than the approximated global background 

5% of error associated with the NO2 retrieval itself. The contribution of HSTCM-NO2’s first mode to the total variance 

indicates that the reconstructed data is missing many finer modes of variability, however, as demonstrated below, the good 

spatial and temporal match shows that it is able to reproduce the signal reasonably well in actuality, with the major sources of 

this difference being regions north of 40°N and south of 40°S, both of which tend to be relatively clean and have the majority 465 

of their variability due to noise in the retrievals themselves, which is not explicitly considered by the methods employed herein. 
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Figure 12: Spatial and temporal patterns after EOF variance maximization is performed on both OMNO2 and HSTCM-NO2. EOF1 is given 
for OMNO2 positive (a), OMNO2 negative (b), HSTCM-NO2 positive (c), and HSTCM-NO2 negative (d). The temporal mean value of 470 
OMNO2 over the EOF1 positive region and EOF1 negative region are respectively given in (e) and (f), while PC1 is given in (g), where red 
and blue represent the peaks in the positive and negative factors respectively. Subfigures (h), (i), and (j) are similar to (e), (f), and (g) except 
when applied to HSTCM-NO2. 

Figure 12 shows the spatial and temporal patterns after EOF variance maximization is performed on both OMNO2 and 

HSTCM-NO2. First and foremost, the EOFs represent a few general patterns, seeming to capture a combination of biomass 475 

burning (across Africa, South America, and Australia), urbanization (across South Africa, Northeastern China and Japan), 

energy producing regions in the Southern US and northern Mexico, and transport regions from the Mediterranean to the Indian 

Ocean. This includes the large areas of pollution transported downwind over the various oceans, and uncertainty associated 

with clouds, sea salt, and low signal strengths near where the Southern Ocean intrudes into the cleaner areas of the Indian and 

Pacific Oceans respectively. The overall patterns look reasonable in both space and time. 480 

A more detailed analysis clearly demonstrates that three such examples are consistently represented between the original 

OMNO2 and HSTCM-NO2. First, the negative mode of EOF1 representing biomass burning over Congo and its subsequent 

transport over the Southern Atlantic Ocean, and the positive mode of EOF1 representing biomass burning and urbanization 

over respective parts of Southern Africa are interpolated well and line-filled by the respective negative and positive modes of 
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HSTCM-NO2 EOF1 (Du et al., 2020). Second, the wildfires off of Southwestern Australia and subsequent transport into the 485 

Southern Ocean are clearly shown by the negative mode of EOF1, while the negative mode of EOF1 of HSTCM-NO2 expands 

these observations into the Indian Ocean and all the way to New Zealand, while narrowing the band and reducing the error 

due to the mixing from the Southern Ocean, consistent with observations (Wenig et al., 2003). Third, the positive region of 

EOF1 loosely picks up the transported wave-trains from East Asia to North America, while the HSTCM-NO2 is able to clearly 

pick up the entire wave-train clearly originating in industrial regions of Japan and spreading part of the time to Luzon and 490 

another part of the time to the USA (Wang, et al., 2023). In terms of time, it is clear that the negative EOF1 regions in both 

plots are well represented by the positive PC1 values. All three peaks demonstrated are clearly observed in the average values 

of NO2 over the negative EOF1 regions respectively. There are four large peaks and two small peaks represented in the negative 

PC1 values, all of which are picked up well in the average values of NO2 over the positive EOF1 regions respectively. All of 

the peak times are represented in the time series using different colors. 495 

While the distribution of the HSTCM-NO2 EOF is more smeared spatially than the OMNO2 product in some regions, this is 

not unexpected. In some cases, this makes the story consistent, by filling in missing data, especially so in cases of long-range 

transported plums which are otherwise missing, as well as for the known variation observed over Henan and Shandong. 

However, some of the smearing is also noise, as identified over the low NO2 concentration regions near where the Indian and 

Pacific Oceans intersect with the Southern Ocean. 500 

This analysis shows that the HSTCM-NO2 product does a decent job at representing the temporal and spatial extremes in the 

original OMNO2 dataset. While this test is not frequently done in the community (Cohen, 2014; Liu et al., 2023; Liu et al., 

2024), it clearly demonstrates in an objective manner a new and additional way to test the goodness of the final product, in 

that it requires the product to not only match in space and time with observed mean conditions, but also with observed extreme 

conditions. The fact that there is spatial smearing in some aspects is good, in that it fills in missing long-range transport events 505 

that are missed between swaths or due to clouds in situ. In other aspects, it may extend the actual signals too far in space. For 

these reasons, care must be used when applying the results. We hope that this section sets a gold standard by which future big 

data products are more carefully compared with and validated against the underlying data. 

4 Data availability 

The global daily High Spatial-Temporal Coverage Merged tropospheric NO2 dataset (HSTCM-NO2) from 2007 to 2022 based 510 

on OMI and GOME-2 can be accessed directly through: https://doi.org/10.5281/zenodo.10968462 (Qin et al., 2024). 

5 Conclusions and discussion 

In order to improve the spatial coverage of OMNO2 due to data loss caused by cloud occlusion, row anomaly, high retrieval 

noise, and other issues, this study proposes an effective method of reconstruction consisting of machine learning (XGBoost) 

and gap filling (DINEOF) to produce a new reconstructed product (HSTCM-NO2). 515 

First, the process of applying XGBoost first followed by DINEOF second yields the highest correlation and lowest RMSE 

between the OMNO2 and HSTCM-NO2. One reason for this is that XGBoost requires the presence of GOME-2 data, allowing 

for additional observational support in the final reconstructed product. This is consistent with the fact that GOME-2 occupies 

a very high SHAP value. There are a few qualifiers however: first that cases without prior knowledge perform less well than 

places with priori knowledge; and second that locations with a lower column loading of OMNO2 work better than places with 520 

a higher column loading of OMNO2. Since the majority of the data points globally are biased towards lower (i.e. non-polluted) 

areas, comparison with additional datasets and using different approaches is essential. 

Second, external observations from MAX-DOAS and TROPOMI as well as reanalysis data from EAC4 are used to validate 

HSTCM-NO2 on a column-by-column, large-area basis. HSTCM-NO2 shows good correlations with all of the observations 



24 
 

above, especially so when the VCDs are below 6×1015 molec.cm-2. Specific issues in terms of spatial distribution mismatches 525 

and issues reproducing very high VCDs are explained in detail within the paper. There are a few exceptions to this, specifically 

over Wuhan and the Yangtze River from Wuhan up to Nanjing, and specific urban parts of India (such as New Delhi) being 

reasonably well represented. 

Third, additional analysis to verify the goodness of HSTCM-NO2 in terms of being able to capture extreme events observed 

within the OMNO2 data is also performed. In this case, variance maximization is used to decompose the OMNO2 data into 530 

standing spatial (EOF) and temporal (PC) signals. A similar analysis is performed on the HSTCM-NO2 data, with the resulting 

signals compared. It is shown that in addition to generally matching in terms of space and time, data after gap filling observed 

by HSTCM-NO2 especially downwind from large pollution areas over various oceans (South Atlantic, Indian, South Pacific 

and North Pacific) are improved. Interestingly, some of the strongest signals, including biomass burning from central and 

northern Africa including in Algeria, including pixels over the value of 6×1015 molec.cm-2 are also well represented, in terms 535 

of both the magnitude, as well as the spatial and temporal extremes. 

This combination of findings indicates that the new HSTCM-NO2 product works well in terms of representing both the grid-

by-grid and climatological mean conditions, as well as extreme events, with the caveats that first there is some apriori 

knowledge and second that the original OMNO2 data has an VCD below 6×1015 molec.cm-2 (i.e. is not heavily polluted).In 

the future, related work will focus on how to enhance the application of datasets in polluted scenes. Separating low and high 540 

values for training might be an effective approach, since it is known that there are different retrieval assumptions and impacts 

that occur under polluted and non-polluted conditions (Boersma et al., 2007; Chimot et al., 2016; Lorente et al., 2018; Liu et 

al., 2019; Zhou et al., 2024). Presently the criteria for demarcation and the sets of impacting variables are still undergoing 

discussion by the community and are not yet agreed upon. Whether there are better methods or combinations of methods that 

can be applied across the full range of scenarios at the same time is also something that needs to be considered. 545 
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