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Abstract. In the Western Arctic Ocean lies the largest freshwater reservoir in the Arctic 12 

Ocean, the Beaufort Gyre. Long-term changes in freshwater reservoirs are critical for 13 

understanding the Arctic Ocean, and data from various sources, particularly measured 14 

or reanalyzed data, must be used to the greatest extent possible. Over the past two 15 

decades, a large number of intensive field observations and ship surveys have been 16 

conducted in the western Arctic Ocean to obtain a large amount of CTD data. Multiple 17 

machine learning methods were evaluated and merged to reconstruct annual salinity 18 

product in the western Arctic Ocean over the period 2003-2022. Data mining-based 19 

machine learning methods make use of variables determined by physical processes, 20 

such as sea level pressure, sea ice concentration, and drift. Our objective is to effectively 21 

manage the mean root mean square error (RMSE) of sea surface salinity, which exhibits 22 

greater susceptibility to atmospheric, sea ice, and oceanic changes. Considering the 23 

higher susceptibility of sea surface salinity to atmospheric, sea ice, and oceanic changes, 24 

which leads to greater variability, we ensured that the average root mean square error 25 

of CTD and EN4 sea surface salinity field during the machine learning training process 26 

was constrained within 0.25psu. The machine learning process reveals that the 27 

uncertainty in predicting sea surface salinity, as constrained by CTD data, is 0.24%, 28 

whereas when constrained by EN4 data it reduces to 0.02%. During data merging and 29 

post-calibrating, the weight coefficients are constrained by imposing limitations on the 30 

uncertainty value. Compared with commonly used EN4 and ORAS5 salinity in the 31 

Arctic Ocean, our salinity product provide more accurate descriptions of freshwater 32 

content in the Beaufort Gyre and depth variations at its halocline base. The application 33 

potential of this multi-machine learning results approach for evaluating and integrating 34 

extends beyond the salinity field, encompassing hydrometeorology, sea ice thickness, 35 

polar biogeochemistry, and other related fields. The datasets are available at 36 

https://zenodo.org/records/10990138 (Tao and Du, 2024). 37 

 38 

1. Introduction 39 

Unlike the low- and mid-latitude oceans, the Arctic Ocean is characterized by its 40 

extensive sea ice coverage and near-freezing sea surface water. Variations in salinity in 41 

the Western Arctic Ocean have profound implications for stratification strength, ocean 42 

circulation patterns, and biogeochemical cycles (Carmack et al., 2016; Cornish et al., 43 

2020). Freshwater reservoirs and their evolution, which are closely related to the change 44 

of seawater salinity, have become the focus of research in the Arctic Ocean. Therefore, 45 

obtaining accurate salinity data holds great significance for our understanding of this 46 

unique marine environment. The mean density structure and wind-driven surface 47 
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circulation in the Arctic Ocean are predominantly influenced by two key factors: The 48 

anti-cyclonic Beaufort Gyre located in the Canadian Basin and the Transpolar Drift 49 

(Hall et al., 2022). Furthermore, within Western Arctic Oceans, significant amounts of 50 

freshwater accumulate within the Beaufort Gyre. The release of this freshwater exerts 51 

a substantial impact on local climate dynamics as well as global climate change at large 52 

scales (Carmack et al., 2008; Giles et al., 2012; Proshutinsky et al., 2009, 2019). Our 53 

research specifically focuses on a case study of investigating salinity product improved 54 

by multi-machine learning results evaluating and integrating within Western Arctic 55 

Oceans. 56 

The presence of sea ice severely limits the availability of salinity data in the Arctic 57 

Ocean, posing significant challenges to meeting the demands of current research. 58 

Shipborne observations of CTD and ITP data are sporadic, posing challenges in 59 

obtaining reliable salinity measurements. The accuracy of both model and reanalysis 60 

data is frequently subpar. Behrentdt et al. (2018) collected a large amount of measured 61 

data to form a Unified Database for Arctic and Subarctic Hydrography for the period 62 

1980-2015, however, hydrological data for recent years are lacking.. In recent years, 63 

however, highly developed measurement techniques were especially designed for 64 

operation in the Arctic environment. Furthermore, an increasing number of research 65 

activities and international collaboration - such as Beaufort Gyre Exploration Project 66 

(BGEP) has generated a large number of hydrographic data in the Western Arctic ocean 67 

and the subarctic seas (e.g., Rabe et al., 2014).  68 

The advancement of stochastic computer science and technology in recent years has led 69 

to an increasing utilization of machine learning methods across various domains. The 70 

utilization of data mining-based machine learning techniques for data generation is 71 

explored in this paper, with a focus on the salinity observed in the Western Arctic Ocean. 72 

Machine learning techniques have already demonstrated their efficacy in data 73 

generation tasks. For instance, Wang et al. (2023) employed a machine-learning-based 74 

regression method to reconstruct long-term (2003-2020) sea surface pCO2 in the South 75 

China Sea, while Chen et al. (2024) utilized the Random Forest Algorithm to generate 76 

datasets of stable isotopes of precipitation in the Eurasian continent. The utilization of 77 

machine learning offers distinct advantages during data reconstruction processes 78 

including high automation, exceptional accuracy, robust scalability, and expedited 79 

processing compared to assimilation approaches. Consequently, this paper employs 80 

several machine learning methods to produce dependable salinity data in the western 81 

Arctic Ocean.  82 

We performed machine learning training on sea level pressure, sea ice concentration, 83 
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sea ice motion, as well as a large number of quality-controlled CTD data and EN4 data 84 

using various machine learning methods. The datasets were merged to generate a 85 

salinity product with a resolution of 0.5×0.25° above 1000m for the period spanning 86 

from 2003 to 2022, encompassing a total of 48 vertical layers. The machine learning 87 

performance was assessed not only through RMSE, but also by evaluating the 88 

uncertainty resulting from data merging and post-calibrating processes. The ORAS5 89 

and EN4 datasets were employed to investigate the Beaufort Gyre and Arctic Ocean 90 

(Hall et al.,2022). The accuracy and reliability of our salinity product were 91 

demonstrated by comparing it with EN4 and ORAS5 data, as well as measured 92 

freshwater content and halocline base depth in the Beaufort Gyre region. 93 

2. Data and methodology 94 

2.1 Study area  95 

The Western Arctic Ocean (140°E-120°W, 68°N-90°N) spans a vast territory with the 96 

Beaufort Gyre, the largest fresh water reservoir in the Arctic Ocean (Fig. 1). In the 97 

Western Arctic Ocean, sea ice covers the area in winter, while in summer, a large area 98 

of sea ice at low latitudes melts. However, sea ice still exists in the multi-year ice zone 99 

in the northeast of Canada Basin. The Western Arctic Ocean is mainly influenced by 100 

the anticyclonic Beaufort High. In the western part of the Arctic Ocean, there is the 101 

main circulation system of the Arctic Ocean, the Beaufort Gyre, which accumulates a 102 

large amount of fresh water. The Strength of the Beaufort Gyre has been continuously 103 

increasing, reaching a stable state after 2007, with changes in freshwater content 104 

consistent with the strength of the gyre (Regan et al., 2019). The range of the Beaufort 105 

Gyre expanded westward from 2003 to 2013, and contracted eastward back to the 106 

Canadian Basin after 2014 (Lin et al., 2023). Freshwater accumulation, storage, and 107 

release from the BG exert far-reaching impacts on both regional and global climate 108 

systems. Therefore, accurate salinity data is very important for our study of Beaufort 109 

Gyre.  110 
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 111 

Figure1. Topography of the Western Arctic Ocean. The map also includes the 112 

Canada Basin (CB), Chukchi sea (CS), the Chukchi Plateau (CP), East Siberian 113 

Sea (ESS) and Makarov Basin (MB). 114 

Our goal is to generate a set of salinity product that can be used to analyze the physical 115 

ocean environment changes in the Arctic Ocean in recent years. The procedure of 116 

improving salinity product is mainly divided into four major parts, which are data 117 

selecting, machine learning training, data merging, and post-calibrating.  118 
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 119 

Figure.2 Procedure for improving the salinity field in the Western Arctic Ocean 120 

through a data mining-based machine learning method 121 

2.2 Data Selecting 122 

We have collected a large amount of CTD salinity data. The World Ocean Database 123 

(WOD) is world's largest collection of uniformly formatted, quality controlled, publicly 124 

available ocean profile data (https://www.ncei.noaa.gov/access/world-ocean-125 

database/bin/getwodyearlydata.pl?Go=TimeSorted, last access: 8 December 2023). We 126 

selected the WOD18 salinity profiles and retained the data with flags 0 and 1 based on 127 

the quality control provided by the data itself. Unified Database for Arctic and Subarctic 128 

Hydrography (UDASH) is a unified and high-quality temperature and salinity data set 129 

for the Arctic Ocean and the subpolar seas north of 65° N for the period 1980-2015 130 

(https://essd.copernicus.org/articles/10/1119/2018/, last access: 8 December 2023). Sea 131 

ice presents a significant impediment to sustained observation of the Arctic Ocean. 132 
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Researchers designed and field tested an automated, easily-deployed Ice-Tethered 133 

Profiler (ITP) for Arctic study. Building on the ongoing success of ice drifters that 134 

support multiple discrete subsurface sensors on tethers and the WHOI-developed 135 

Moored Profiler instrument capable of moving along a tether to sample at better than 136 

1-m vertical resolution (https://www2.whoi.edu/site/itp/data/, last access: 8 December 137 

2023). Shipboard hydrographic data and water sampling measured on board the CCGS 138 

Louis S. St-Laurent (LSSL) are carried out at about 30 standard sites on each cruise 139 

(https://www2.whoi.edu/site/beaufortgyre/data/ctd-and-geochemistry/, Last access: 8 140 

December 2023), the CTD data of LSSL collected during the 2004 expedition was not 141 

utilized.  142 

 143 

Figure 3. Annual sea surface salinity fields from 2003 to 2022 in the Western Arctic 144 

Ocean. 145 

The data collected include a variety of issues such as missing values, outliers, and 146 

duplicates as well as gaps in dates and missing or incorrect latitude and longitude 147 

information. Therefore, the collected raw data underwent pre-processing and data 148 

cleaning. Missing data were interpolated, entries that could not be completed were 149 

removed, and duplicate data were eliminated. This article interpolates all data onto the 150 

WOD vertical grid in depth. The most CTD data was collected in late summer and early 151 

autumn (August to October), while the least CTD data was collected in June. The 152 

measured data is mainly concentrated in the Canadian Basin, with very few measured 153 
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data in the East Siberian Sea (Fig. 2). After 2003, ITP and LSSL supplemented a large 154 

amount of CTD data in situ, so we hope to generate gridded data from 2003 to 2022. 155 

In addition to a large amount of observed CTD data, considering the temporal and 156 

spatial discontinuity of the observed data, we have introduced EN4 157 

(https://www.metoffice.gov.uk/hadobs/en4/, Last access: 8 December 2023) reanalysis 158 

data. Furthermore, taking into account the influence of the atmosphere and sea ice on 159 

the ocean, we have also incorporated SLP data from ERA5 160 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-161 

monthly-means?tab=form, Last access: 8 December 2023) and sea ice concentration 162 

and sea ice drift field data from NSIDC (https://nsidc.org/home, Last access: 8 163 

December 2023). We use monthly salinity data provided by the European Centre for 164 

Medium-Range Weather Forecasts (ECMWF) through the Ocean Reanalysis System’s 165 

version 5 (ORAS5), which uses the Nucleus for European Modeling of the Ocean 166 

(NEMOv3.4) for its ocean model coupled with a sea ice model to assess the accuracy 167 

of salinity product. In the data selecting section, we summarized previous literature and 168 

selected the sea level pressure field, sea ice concentration, and sea ice drift field data of 169 

the Western Arctic Ocean as training variables for machine learning. 170 

2.3 Machine learning 171 

In the second part of the machine learning training section, we selected six commonly 172 

used machine learning methods, which are Random Forest (RF), K Nearest Neighbor 173 

(KNN), LightGBM (LGB), CatBoost (CB), Neural Network (NN), and Multilinear 174 

Regression (MLR). We determined the optimal value of different machine learning 175 

algorithm using optuna hyper parameter methods (code from 176 

https://github.com/optuna/, last access: 20 March 2024) and GridSearchCV (from 177 

scikit-learning) for the training set. We trained EN4 and CTD data with six different 178 

machine learning methods respectively.  179 

It is necessary to evaluate the accuracy of any model based on certain error metrics 180 

before applying it to specific scenarios. Common model evaluation metrics include 181 

MAE, RMSE. The mean squared error (MSE) is the standard deviation of the residuals 182 

(prediction error), and the residuals are the distances between the fitted line and the data 183 

points (i.e., the residuals show the degree of concentration of the reconstructed data 184 

around the regression line). In regression analysis, RMSE is commonly used to verify 185 

experimental results. To assess bias, the RMSE needs to combine the magnitude of the 186 

model data and is calculated as follows: 187 
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𝑅𝑀𝑆𝐸𝐾𝑗 = √
1

𝑛
∑ (𝑦𝑖𝐾𝑗 − 𝑦𝑝𝑖𝐾𝑗)

2
 

𝑛

𝑖=1
，(𝐸𝑞. 1:) 188 

where n is the number of data points; K represents different machine learning 189 

algorithms, and there are six types in total, which are RF, KNN, LGB, CB, NN, MLR; 190 

j=1 represents CTD data, j=2 represents EN4 data; y is the training target data; 𝑦𝑝 is 191 

the prediction result after machine learning training. 192 

Taking the results from 2008 of Random Forest results as an example (Fig.4), we found 193 

that the salinity prediction at a depth of 200m is better than the prediction at the surface 194 

(15m), and the prediction using EN4 data is better than using CTD data. However, what 195 

is exciting is that even for the weakest prediction ability of CTD at the surface, the 196 

RMSE is less than 0.35psu. Therefore, our evaluation of the model learning results will 197 

mainly focus on the surface with larger prediction errors by RMSE. 198 

 199 

Figure 4. Comparisons between the predicted salinity and train target salinity 200 

values for the Random Forest testing pool in 2008.  201 

In addition to RF, we also evaluated the prediction results of surface salinity for five 202 
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other machine learning methods using RMSE (Table1), which is calculated as follows: 203 

Table1. Evaluation of predicted surface salinity using different machine learning 204 

methods 205 

 206 

We selected four machine learning methods that prediction is closer to the training 207 

target of sea surface salinity (with the mean RMSE less than 0.25), which are RF, KNN, 208 

LGB, and CB. These four machine learning methods have better prediction results for 209 

EN4 than for CTD. The errors generated during the prediction process mainly come 210 

from the prediction of CTD salinity. The annual differences in predictive capabilities of 211 

these four types of machine learning are very significant. The prediction results for RF 212 

were the best in 2005 and 2016, and the worst in 2020, KNN had the best prediction 213 

results for 2016 and 2017, and the worst prediction results for 2020. LGB had the best 214 

forecast results for 2016 and 2017, and the worst forecast results for 2003. CB had the 215 

best forecast results for 2016 and 2017, and the worst forecast results for 2003. In the 216 

same year, some machine learning predictions are good while others are poor. For 217 

example, in 2020, the predictions of RF and KNN were poor, but the predictions of 218 

LGB and CB were good. This indicates that using multiple machine learning methods 219 

can help improve the predictions of a certain method that performed poorly in a 220 

particular year, eliminate biases in selecting machine learning methods for predictions, 221 

and make the predictions more reliable. 222 
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RMSE is the spatial average result (Table 1), so only considering the numerical value 223 

of RMSE will ignore the predictive ability of machine learning methods on different 224 

regions in space. After training, we selected four machine learning methods with the 225 

mean RMSE less than 0.25, which are RF, KNN, LGB, and CB. We take the example 226 

of the prediction error of surface salinity in 2008 (predicted value minus training target 227 

value) to analyze the salinity prediction ability of machine learning methods in different 228 

regions. Machine learning models has significant spatial differences in predicting 229 

salinity of CTD. Specifically, there are larger prediction errors in the Chukchi Sea, 230 

Chukchi Sea Shelf, southern continental shelf slope of the Beaufort Gyre and center 231 

Canada basin. The largest error occurred in the Chukchi Sea, which may be due to the 232 

influence of Pacific water on the salinity of the upper layer of the Western Arctic Ocean. 233 

The four machine learning methods for predicting surface salinity in EN4 are all very 234 

good. KNN, LGB, and CB even have negligible prediction errors. RF shows a 235 

significant spatial distribution in predicting surface salinity in EN4, with 236 

overestimations in the southeast of the Canadian Basin and the western part of the East 237 

Siberian Sea, with prediction errors less than 0.2psu. The predictions are 238 

underestimated in the Chukchi Sea and the East Siberian Sea. The prediction errors of 239 

different machine learning methods vary, so different weights need to be considered in 240 

the data mergence process. 241 

 242 

Figure 5. Error between the predicted salinity and real salinity values for the 243 

training pool in 2008. 244 

2.4 Data merging and post-calibrating 245 

The third part is the data mergence part, where we linearly merging the training results 246 

of the four better machine learning models. MAE is the average absolute difference 247 
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between the in situ data (true values) and the model output (predicted values). The sign 248 

of these differences is ignored so that cancelations between positive and negative values 249 

do not occur. RMSE and MAE have primarily been used to represent the uncertainties 250 

in reconstructed datasets. In this article, we choose MAE as the criterion for assessing 251 

uncertainty. We introduced weights and defined uncertainty, with uncertainty less than 252 

2% as the indicator for selecting weights a𝑘𝑗.The uncertainty (CT1) is calculated as 253 

follows: 𝐶𝑇1𝑘𝑗 =
1

4
∑

|𝑦̂𝑘𝑗−𝑍𝑗|

𝑌𝑗

4

𝑘=1

× 100%  ( 𝐸𝑞 . 2), Where k represents different 254 

machine learning algorithms, and there are six types in total, which are RF, KNN, LGB, 255 

CB; j=1 represents CTD data, j=2 represents EN4 data; 𝑍𝑗 = ∑ a𝑘𝑗𝑦̂𝑘𝑗

4

𝑘=1
  (𝐸𝑞 .3). 256 

From this, we obtain the initial predicted products.  257 

The salinity product is generated through the fourth post-calibrating, when there are 258 

CTD measured data around the grid point, the salinity value of the point is formed by 259 

merging the EN4 prediction results and the CTD prediction results according to weights; 260 

otherwise, the salinity value of the point is taken as the EN4 prediction result. We 261 

introduced weights and defined uncertainty, with uncertainty less than 3% as the 262 

indicator for selecting weights β𝑘𝑗 . We need to check that salinity product 𝑆̂ =263 

∑ 𝛽𝐽̇𝑍̂𝑗

2

𝑗=1
 (𝐸𝑞. 4)  by uncertainty judging. The uncertainty (CT2) is calculated as 264 

follows:𝐶𝑇2𝑗 =
1

2
∑

|𝑍̂𝑗−𝑆̂|

𝑆̂

2

𝑗=1
× 100% (𝐸𝑞.5), Where j=1 represents CTD data, j=2 265 

represents EN4 data. From this, we obtain the final salinity product in the Western 266 

Arctic Ocean. 267 

The uncertainty of the data in this article (represented by rMAE) includes three parts: 268 

one part is the uncertainty generated during the machine learning process, with an 269 

uncertainty of 0.24% for the surface salinity prediction generated by CTD and 0.02% 270 

for the surface salinity prediction generated by EN4; the other parts include 271 

uncertainties in data merging (Fig. 6a, 6b) and post calibrating (Fig. 6c). There are two 272 

sets of initial predicted products for data merging of machine learning methods, EN4 273 

and CTD. The uncertainty generated shows that the uncertainty constrained by CTD 274 

data is larger in the central part of the Canadian Basin and the Chukchi Sea Shelf and 275 

its adjacent waters, reaching 1.63% in the central part of the Canadian Basin. The 276 

uncertainty constrained by EN4 data is larger in the central part of the Canadian Basin 277 

and the East Siberian Sea, reaching 0.44% in the East Siberian Sea. The uncertainty 278 

generated during the post-calibrating process is highest in the Canadian basin, with a 279 
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maximum value of 2.54%. 280 

 281 

Figure 6. Spacial pattern of sea surface salinity uncertainty (%) during the data 282 

merging (a, CTD; b, EN4) and post-calibrating. 283 

3. Result and Discussion 284 

We used the salinity product to calculate the freshwater content in the Beaufort Gyre 285 

region (black box in Fig. 7a). In order to verify the superiority of the generated salinity 286 

data in calculating the freshwater content, in addition to the freshwater content data 287 

provided by BGEP for verification. On the other hand, the research of Hall et al. (2022) 288 

showed that the salinity of ORAS5 and EN4 can be used to calculate the freshwater 289 

content of the Arctic Ocean, and we also introduced the results of the freshwater content 290 

calculation of ORAS5 (Fig .7b). The FWC was computed relative to salinity 34.8 psu 291 

following Proshutinsky et al. (2009):FWC = ∫ (
34.8−s(z)

34.8
) ⅆz

𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑧34.8
 (𝐸𝑞. 6) 292 

The absolute errors of the freshwater content calculated by the generated salinity 293 

product, the salinity data of EN4 and ORAS5 and the freshwater content provided by 294 

BGEP are 4.89%, 13.21% and 16.40%, respectively. Using the generated salinity 295 

product to calculate the freshwater content in the Beaufort Gyre region area can 296 

improve the accuracy. We compared the spatial distribution of freshwater content 297 

calculated from salinity product with freshwater content provided by BGEP. There are 298 

areas on the Mendeleev Ridge with large freshwater content, which may be formed by 299 

fresh water advection from the East Siberian Sea or by freshwater advection from the 300 

Beaufort Gyre. 301 
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 302 

Figure 7. Temporal and special variation of Freshwater Content (FWC, m). 303 

(a)Shadow is Mean FWC from 2003 to 2022 derived from salinity product, color 304 

dots represent FWC provided by BGEP. (b) Time series of FWC in Beaufort Gyre 305 

region, Beaufort Gyre region is the black box in (a). 306 

The depth of halocline base plays an important role in studying the Beaufort Gyre 307 

dynamics (e.g. Manucharyan et al.,2016). The depth of the halocline base is determined 308 

by taking the 33.9 psu isosalinity line (Lin et al.,2023; Nyugen et al.,2012). All salinity 309 

data used were interpolated vertically to 2m to calculate the depth of the halocline base. 310 

The salinity product, EN4, ORAS5 and WOA18 calculated the halocline base depth in 311 

Beaufort Gyre region of 192m,191m,187m and 176m, respectively (Fig. 8d). Salinity 312 

product allow more accurate calculation of depth of halocline depth. Compared with 313 

the results of ORAS5, the depth of halocline calculated by salinity product increased 314 

significantly in the 2000s. Compared with EN4 results, the deepening trend in the 2010s 315 

is more significant, but smaller than that of ORAS5. We compared the spatial 316 

distribution characteristics of the bottom halocline and WOA18 obtained from salinity 317 

product. The depth of halocline base is the deepest in the Canadian Basin, but the 318 

salinity product results are shallower and more easterly than WOA18. The depth of the 319 

halocline base calculated by salinity product is obviously 21m shallower in the 320 

southwest of the Canadian Basin and 23m deeper in the north of the East Siberian Sea 321 
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 322 

 323 

Figure8. Temporal and special variation of Halocline depth (m). (a)Mean halocline 324 

depth from 2005 to 2017 derived from salinity product (b) Mean halocline base 325 

depth from 2005 to 2017 derived from salinity of WOA18. (c) Mean halocline 326 

depth difference between salinity product and WOA18 from 2005 to 2017. (d) 327 

Time series of halocline depth in Beaufort Gyre region. 328 

The results of salinity product indicate that the surface salinity is characterized by low 329 

salinity in the central Canadian Basin and the East Siberian Sea, which indicates the 330 

accumulation of fresh water there (Fig. 9). The continuous decrease in surface salinity 331 

before 2011 and the continuous increase in surface salinity after 2011 indicate that 332 

freshwater accumulated mainly at the surface before 2011 and decreased after 2011, 333 

which support the recent major freshening event from 2012 to 2016 in North Atlantic 334 

(Holliday et al.,2020). In the east-west direction, the surface low salt characteristics 335 

westward expanded from 2003 to 2013, and eastward from 2014 to 2022, which 336 

supports the conclusion that Beaufort Gyre expands westward (Regan et al.,2019; 337 

Armitage et al., 2017) and shrinks eastward (Lin et al.,2023). In the north-south 338 

direction, the surface low salt characteristics expanded northward in 2007, 2008, 2015 339 

and 2016. The surface salinity of the East Siberian Sea decreased significantly in 2008 340 

and has remained at reduced levels since then. According to the characteristics of 341 

surface ocean circulation (Armitage et al., 2017), surface freshwater in the East Siberian 342 
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Sea may enter the Beaufort Gyre or flow out of the Arctic Ocean along the transpolar 343 

drift. The characteristics of sea surface salinity can be seen that the Pacific water flows 344 

partly to the northern Chukchi Sea, partly to the Canadian Basin and partly to the CAA 345 

along the Alaskan coastal current, the reduced sea surface salinity of the Alaskan coastal 346 

current indicates that less Pacific water is being transported along this path, indicating 347 

a weakening of the Alaskan coastal current, whether this is influenced by the enhanced 348 

Beaufort Gyre. 349 

 350 

Figure 9. Annual sea surface salinity fields in the Western Arctic ocean from 2003 351 

to 2022. The color dots represent the measured CTD results, and the white dots 352 

represent the measured sites that were deleted after quality control (see section 353 

2.2). 354 

In order to observe the salinity distribution at the bottom of the halocline, which is about 355 

200m deep in the western Arctic Ocean, we have analyzed the salinity distribution at 356 

200m (Fig. 10). The results of salinity product indicate that salinity at 200m is 357 

characterized by low salinity in the central Canadian Basin which indicates the 358 

accumulation of fresh water in Canada Basin. Unlike the sea surface salinity, the salinity 359 

at 200m has remained a slow downward trend after a rapid decline before 2008. This 360 

suggests that fresh water in the Canadian Basin was relatively stable after a rapid 361 

accumulation prior to 2008. Prior to 2008, freshwater in the western Arctic Ocean 362 

pooled in large quantities at both the surface and the bottom of the halocline. After 2008, 363 

the surface water decreased significantly while the bottom of the halocline water still 364 

increased, indicating that the freshwater may be redistributed in the Arctic Ocean 365 
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through westward and northward expansion into the Marklov Basin (Bertosio et 366 

al.,2022) or transported out of the Arctic Ocean (Zhang et al.,2021), or it may be pooled 367 

deeper into the water column. From 2003 to 2013, the range of low salinity 368 

characteristics of the halocline depth expanded, indicating that the area of freshwater 369 

reservoir expanded and the area of Beaufort Gyre expanded. The salinity at 200m in 370 

2022 increases significantly, indicating that there may be a freshwater migration 371 

process in 2022.  372 

 373 

Figure 10. Reconstructed annual salinity fields at 200m in the Western Arctic 374 

ocean from 2003 to 2022. 375 

4. Data availability 376 

The salinity product (0.5×0.25°, 2003-2022) is available at 377 

https://zenodo.org/records/10990138 (Tao and Du, 2024). 378 

5. Summary 379 

Based on data mining-based machine learning method, we have provided a salinity 380 

product for the Western Arctic Ocean with a resolution of 0.5°×0.25° for the period 381 

spanning from 2003 to 2022. This was achieved by establishing correlations between 382 

bathymetry, sea ice dynamics, atmospheric conditions, and seawater salinity. The input 383 

variables employed in our machine learning model encompass ERA5 data (sea level 384 

pressure), NSIDC information (sea ice concentration and motion), as well as ETOPO1 385 
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dataset (bathymetric details). After filtering, we employ four machine learning 386 

algorithms (Random Forest, K Nearest Neighbor, LightGBM, CatBoost) to train 387 

salinity data obtained from EN4 and CTD. Utilizing multiple machine learning methods 388 

can mitigate the impact of inherent flaws in a specific method on the results. During 389 

data integration, varying weight combinations of variables greatly affect uncertainty; 390 

therefore, we implement an uncertainty threshold to constrain appropriate weights. 391 

We conducted an analysis to determine the significance of five input variables in 392 

predicting salinity, which serves as a reliable indicator for identifying the key factors 393 

influencing salinity changes. However, it is crucial to acknowledge that there might be 394 

potential interactions among different variables. The importance of various factors 395 

varies when predicting salinity in both EN4 and CTD datasets. Interestingly, both 396 

datasets consistently highlight sea level pressure as the primary influential factor for 397 

surface salinity prediction, while sea ice concentration emerges as the main determinant 398 

when forecasting salinity at a depth of approximately 200m (corresponding to the 399 

halocline base). The impact of sea ice movement on the surface is more significant than 400 

that on the bottom of the halocline. The meridional ice speed is advantageous for 401 

salinity prediction using CTD data, while the zonal flow speed is advantageous for 402 

salinity prediction using EN4 data. However, the contribution of water depth factors 403 

varies. CTD data indicates that water depth has a dominant influence on salinity 404 

prediction in deep layers, whereas EN4 data shows the opposite trend. Salinity is closely 405 

associated with freshwater distribution. The transport and accumulation of surface 406 

freshwater are regulated by the sea level pressure field, and the melting of sea ice exerts 407 

a greater impact on salinity compared to its movement affecting freshwater.408 

 409 
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Figure 11. Importance of different input variance. 410 

Accurate salinity product is crucial for understanding the dynamics of the Beaufort 411 

Gyre and the redistribution of freshwater in the Beaufort Gyre in the western Arctic 412 

Ocean. Hall et al. (2022) demonstrated that EN4 and ORAS5 salinity data can be 413 

utilized for Arctic Ocean studies. However, when compared to EN4 and ORAS5, 414 

salinity-derived freshwater content aligns more closely with BGEP estimates, 415 

suggesting superior accuracy in FWC calculations. Furthermore, considering the 416 

precision depth of halocline base, salinity products exhibit greater accuracy than EN4 417 

and ORAS5. The findings from salinity product reveal a significant increase in 418 

freshwater content throughout the upper 200m layer of the Beaufort Gyre during the 419 

2000s; however, surface freshwater decreased while subsurface fresh water continued 420 

to accumulate during the 2010s. It is likely that surface fresh water has been 421 

redistributed towards Marklov Basin (Bertosio et al., 2022), potentially accumulating 422 

in subsurface layers due to Ekman Pumping influences. 423 

The salinity field of the Western Arctic Ocean is taken as an example to construct a 424 

novel data mining method for polar sea areas, utilizing multiple machine learning 425 

methods that integrate multiple data sources and incorporate physical processes. The 426 

application potential of this method extends beyond the salinity field and includes other 427 

related fields like hydrometeorology, sea ice thickness, polar biogeochemistry, among 428 

others. It effectively utilizes multi-machine learning results for data evaluation and 429 

integration. 430 
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