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Abstract.

The long-term and reliable meteorological reanalysis dataset with high spatial-temporal resolution is crucial for various hy-

drological and meteorological applications, especially in regions or periods with scarce in situ observations and with limited

open-access data. Based on the ERA5 (produced by the European Centre for Medium-Range Weather Forecasts, 0.25°×0.25°,

since 1940) and CLDAS (China Meteorological Administration Land Data Assimilation System, 0.0625°×0.0625°, since5

2008), we proposed a novel downscaling method Geopotential-guide Attention Network (GeoAN) leveraging the high spa-

tial resolution of CLDAS and the extended historical coverage of ERA5 and produced the daily multi-variable (2m tem-

perature, surface pressure, and 10m wind speed) meteorological dataset MDG625 (Song et al., 2024). MDG625 (0.0625°

Meteorological Dataset derived by GeoAN) covers most of Asia from 0.125° S to 64.875° N and 60.125° E to 160.125° E

since 1940. Compared with other downscaling methods, GeoAN shows better performance with the R2 (2m temperature,10

surface pressure, and 10m wind speed reached 0.990, 0.998, and 0.781, respectively). MDG625 demonstrates superior con-

tinuity and consistency from both spatial and temporal perspectives. We anticipate that this GeoAN method and this dataset

MDG625 will aid in climate studies of Asia and will contribute to improving the accuracy of reanalysis products from the

1940s. The dataset (Song et al., 2024) is presented in https://doi.org/10.57760/sciencedb.17408 and the code can be found in

https://github.com/songzijiang/GeoAN.15

1 Introduction

As temperatures continue to rise and extremes become more frequent, weather-related data analysis is becoming increasingly

important (Berrang-Ford et al., 2011; Dietz et al., 2020; Taylor et al., 2013; Karl and Trenberth, 2003). Spatial resolution is

crucial for geographic datasets. However, due to the limited data density, it’s hard to obtain enough information to produce

a high-quality reanalysis dataset, especially for decades ago. For getting a higher resolution reanalysis dataset, downscaling20

is widely used in geoprocessing (Atkinson, 2013), especially in climate-related fields (Wang et al., 2021; Vogel et al., 2023;

Tefera et al., 2024; Sun et al., 2024). The meteorological reanalysis dataset, which is obtained from in situ and remote sensing

measurements, is important for agriculture, extreme weather forecasts, etc. Higher resolution of these data can better guide

life and production. He et al. (2020) produced a meteorological dataset with spatial resolution of 0.1◦ from 1979 in China. A

long-term gridded daily meteorological dataset for northwestern North America was proposed by Werner et al. (2019). The25

high-resolution meteorological dataset in Italian was produced by Bonanno et al. (2019) called MERIDA. The global dataset

of meteorological forcings for land surface modeling was made by Sheffield et al. (2006). However, considering the optical

limitation, high-resolution reanalysis data is expensive to produce, and historical high-resolution data is even harder to come

by. Since high-quality and high-resolution data is necessary for kinds of research, to solve the contradiction, low-resolution

(LR) data products being used to downscale into high-resolution (HR, also called as ground truth) are widely used (Hu et al.,30

2023; Zhong et al., 2023). The mainly used downscaling methods are categorized into statistical downscaling and kinetic

downscaling. While the existing downscaling methods could produce high-resolution results, the results are unsatisfactory and

unable to reconstruct detail and texture information.
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Figure 1. Sketch of the GeoAN. LR and HR denoted the low-resolution and high-resolution, respectively. The head block contains one group

norm, one activation function, and two convolutions, which are abbreviated by Conv3×3 meaning the kernel size is 3× 3. SiLU is adopted

as the activation function. The results of the two blocks of head in the diagram have the same channels of 108. GeoAB, which is repeated 18

times, is the attention block for extracting deep information using geopotential. The pixel shuffle operation is performed after the convolution

in the tail block to produce the high-resolution variables. Note that, the order of execution in each grey block (i.e., head and tail blocks) is

along the arrows in the box.

Since Vaswani et al. (2017) proposed the transformer network, the ability of deep learning to harvest shadow information

has gained a step. After that, the transformer block is widely used in diverse tasks including Super-Resolution (SR) (Liang35

et al., 2021; Zhang et al., 2022; Song and Zhong, 2022). Super-resolution task (Hu et al., 2021; Li and Chen, 2021; Liu

et al., 2018; Lai et al., 2017; Li et al., 2018; Lu et al., 2021; Ji et al., 2021; Hui et al., 2019; Liang et al., 2021; Song and

Zhong, 2022) is similar to geographic downscaling tasks (Wilby and Wigley, 1997; Wilby and Dawson, 2013; Benestad, 2001;

Khan et al., 2006; Ekström et al., 2015). The input of the SR task are low-resolution images, usually having three channels

denoting red, green, and blue respectively. The output is a series of the corresponding high-resolution images. However, the40

low-resolution images in SR training dataset (Bevilacqua et al., 2012; Martin et al., 2001; Huang et al., 2015; Matsui et al.,

2017) are usually generated by downsampling directly from the high-resolution ones. In downscaling tasks, the low-resolution

and high-resolution data are from different analysis data, calculated by different reanalysis measures, and have more practical

significance. Zhong et al. (2023) proposed a transformer-based learning method Uformer, which directly adds topography

data, to achieve high-resolution meteorological variables in inner Mongolia province, China. Shen et al. (2023) proposed45

a near-surface air temperature downscaling network Light-CLDASSD. Liu et al. (2023) used the terrain to guide the deep

learning network for the downscaling task. In this paper, we proposed a new attention-based network called Geopotential-

guided Attention Network (GeoAN), the structure of which is shown in Fig. 1, for meteorological variables downscaling,

including temperature at 2m (T2m), pressure at the surface (PRS), and wind speed at 10m (WS10m) from 0.25◦ to 0.0625◦. The
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Figure 2. Sketch of the GeoAB, which repeated 18 times in GeoAN. GeoAB is the attention block to extract deep information. The query

information of GeoAN is harvested from geopotential and the key and value are made from variable features. To make the loops, the outputs

of the tth GeoAB, i.e., Ft+1 and Gt+1, are treated as the input of the (t +1)th GeoAB.

low-resolution input of the variables is organized from the fifth-generation reanalysis dataset for the global climate and weather50

(ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF), the range year of which is from 1940 to the

present. The target, which is used by the downscaling algorithm, is made from China Meteorological Administration’s Land

Data Assimilation System (CLDAS) (Shi et al., 2014; Sun et al., 2020; Shi et al., 2011) daily. The data quality and resolution of

CLDAS are relatively high, but only the areas in China and the surrounding area, and the year after 2008 can be obtained. After

using deep learning networks to construct the mapping relationship between ERA5 and CLADAS, a historical meteorological55

dataset since 1940 can be produced.
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2 Data and methods

2.1 Data

The study area spans most of Asia (latitudes from 0.125◦ S to 64.875◦ N and longitudes from 60.125◦ E to 160.125◦ E),

including China, Japan, India, etc. ERA5 is the fifth generation ECMWF reanalysis, provided by the ECMWF and used widely60

(Muñoz-Sabater et al., 2021; Hersbach et al., 2020; Jiang et al., 2021; Olauson, 2018; Cucchi et al., 2020), for the global climate

and weather. ECMWF is a premier international organization, considered advanced in numerical weather prediction (NWP)

models. The variables of PRS and T2m used in this work are listed in the ERA5 data list directly, and WS10m is calculated

by U and V components of the wind at 10m. CLDAS, which uses multigrid variational analysis and multi-source precipitation

fusion, is a reanalysis production provided by the China Meteorological Administration (CMA). The value in higher resolution65

in China is more reasonable than other datasets. In this paper, ERA5 is used as the low-resolution image (LR), and CLDAS

is treated as the high-resolution image (HR, i.e., ground truth) to train the proposed model. The output of the downscaling

network is called super-resolution images (SR).

There are four meteorological variables, temperature at 2m, pressure at the surface, wind speed at 10m, and daily total

precipitation (TP) considered in GeoAN. Considering it is hard to process the downscale of TP, only three other variables are70

produced by GeoAN in MDG625. The period of dataset used to train the network is from 2020 to 2022. And, the period of

the validation dataset is from January 1 to December 31, 2023. Note that, all times are in Coordinated Universal Time (UTC).

CLDAS data is used as the high-resolution and the ERA5 data is used as the low-resolution input. The spatial resolution of

ERA5 and CLDAS are 0.25◦ and 0.0625◦ respectively. The temporal resolution of these two datasets is calculated to one day,

which is calculated by the mean of PRS (hPa), T2m (K), and WS10m (m · s−1) over the whole day respectively using the75

original hourly data. For the TP (mm), the day sum is adopted. The region is limited by CLDAS, i.e. latitudes from 0.125◦S to

64.875◦N, and the range of longitudes is from 60.125◦E to 160.125◦E. Because the grids of ERA5 and CLDAS do not overlap,

thus the extent of ERA5 is a bit larger than CLDAS (0.25◦S to 65◦N and 60◦E to 160.25◦E).

2.2 Geopotential-guided attention network

Geopotential (m2 · s−2) is the gravitational potential energy of a unit mass. Geopotential can reflect the elevation, latitude,80

pressure, etc. The value of geopotential used in this paper is obtained from the ERA5 dataset. Using geopotential to guide the

attention calculation for downscaling can gain geographic semantic information, which is lacking in common deep learning

networks.

As shown in Fig. 2, geopotential-guided attention is realized by the Geopotential-Guided Attention Block (GeoAB), which

is the core unit of the GeoAN. The window attention (WA), shifted window attention (SWA), and long rang attention (LRA)85

are constructed from Song and Zhong (2022) and Song et al. (2022). The concepts of query, key, and value were used in

transformer block Vaswani et al. (2017) to excavate the effects of attention. The query being produced from geopotential is

different from the original transformer block, in which the query is produced from the input features. The key and value are, the

same as the original block, harvested from the input features. For ease of understanding, normalization, residual operation, and
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other detailed parts are not listed in the formulas incidentally. The formulas are defined as follows, where Ft and Gt denoted90

the deep features of meteorological variables and geopotential at tth loop respectively:

Ft+1 = F(A(Gt,Ft)), (1)

Gt+1 = F(Gt). (2)

F(·) and A(·) denoted the forward and attention parts respectively, all forward parts did not share the parameters. After that,95

the WA and SWA were updated from Swin Transformer (Liu et al., 2021) to Swin Transformer V2 (Liu et al., 2022) comparing

Song and Zhong (2022).

The network architecture is described in Fig. 1. The GeoAB is repeated 18 times to harvest more geographic information as

shown in Eq. 1, Eq. 2, and Fig. 2, the definition of the network architecture is described as follows:

SR = T (GeoAB18[H(LR),H(G)]), (3)100

where LR, G, and SR denoted low-resolution variables, geopotential, and produced high-resolution variables, respectively.

H(·), T (·), and GeoABk[·, ·] denoted head block, tail block, and GeoAB block, respectively. The GeoAB block is repeated for

k times.

The batch size of the training step was 5, which is an unbalanced GUP distribution for 3 NVIDIA RTX 6000 Ada Generation

(48G), considering the GUP memory limitation. There were 6 days of high-resolution data missing from 2020 to 2022. Thus105

there were only 1090 LR and SR pairs for training (366+365+365−6 = 1090). The learning rate was set to 10−4 and reduced

by half at epochs 20, 40, 60, 80, 90 and 95. The network was trained for 100 epochs from the pre-trained models. Considering

differences among the lines of latitude, the latitude-weighted loss was chosen to be the loss function, and the distortion of

geographical coordinates with changes in latitude is fully taken into account (Bi et al., 2023; Rasp et al., 2020). The loss

function is defined as follows:110

loss =

∑H
i=1

∑W
j=1

∑C
c=1 ai× |HRi,j,c−SRi,j,c|
H×W×C

, (4)

where H, W, and C are 1040, 1600, and 4, respectively. HRi,j,c and SRi,j,c is the value at position of (i, j) of channel c in HR

variables and SR variables. The ai is latitude weight defined as:

ai = H · cosθi∑H
i=1 cosθi

, (5)

where θi is the latitude of the ith line in the map of the variables in the form of 1040× 1600× 4 (1040 and 1600 represent115

the pixel counts along latitude and longitude, and 4 represent WS10m, T2m, PRS, and TP, TP is only for assist and not in the

results of the network.) For calculation purposes, the latitudes range is offset to 0 - 65◦N (i.e., 0 <= θi < 65 π
180 ) replacing

0.125◦S - 64.875◦N.
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Table 1. A comparison of our proposed GeoAN with other downscaling methods. The bigger value stands for better performance, and the

value in bold indicates the best performance in each metric. Considering the suitability of the downscaling task, PSNR, SSIM, and R2 are

chosen. All results are produced by the same environment and super parameters.

Methods Variables PSNR (dB) ↑ SSIM ↑ R2 ↑

Bilinear

T2m

WS10m

PRS

27.920

21.271

33.392

0.900

0.747

0.902

0.939

0.582

0.965

U-net

(Evol.)

T2m

WS10m

PRS

35.471

25.556

40.008

0.969

0.845

0.969

0.991

0.780

0.990

SwinIR

T2m

WS10m

PRS

34.042

24.452

37.435

0.956

0.825

0.943

0.988

0.745

0.978

GeoAN

(Ours)

T2m

WS10m

PRS

35.054

25.599

47.251

0.983

0.859

0.996

0.990

0.781

0.998

3 Performance

3.1 Quantitative comparison120

To evaluate the performance of GeoAN, related experiments are presented in this section. For comparisons, the classic al-

gorithm bilinear interpolation is chosen, which is widely used in downscaling. Deep learning methods such as U-net (Ron-

neberger et al., 2015) and SwinIR (Liang et al., 2021) are also chosen, the codes of these two networks are from GitHub.

Necessary changes were made for a fair comparison to U-net. The original U-net can be found in https://github.com/milesial/

Pytorch-UNet, the modified network is called U-net Evolution (Evol.) in this paper for the downscaling task, and SwinIR125

can be found in https://github.com/JingyunLiang/SwinIR. For a fair comparison, all deep learning methods are adjusted to the

equivalent parameters or computational complexity. All deep learning methods were trained for 100 epochs with the same

super parameters and environment.

As shown in Tab. 1, PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and R2 (Coefficient of Deter-

mination) are considered to evaluate the performance of the methods. PSNR and SSIM are the most commonly used metrics130

for measuring super-resolution algorithms. Compared to RMSE, R2 or other numerical metrics, which only calculate the in-

dependent value of each pixel, a more holistic and detailed assessment is considered. A PSNR greater than 25dB is acceptable

and greater than 30dB is considered a good result. In most metrics, GeoAN produces better results than others, however, in

the T2m comparison, U-net (Evol.) got a higher result, further analyses about this part will be discussed in the appendix. Note
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Figure 3. Pressure visual results of GeoAN and other downscaling algorithms on the 1st of November 2023. GroundTruth means the target

high-resolution data (i.e., CLDAS), and ERA5 is the original low-resolution data. GeoAN is the deep learning method we proposed in this

paper. The picture in the lower right corner of each subgraph is the detailed picture of the target area (i.e., red rectangle) respectively.

that, the performance of SwinIR is worse than U-net (Evol.), this phenomenon may caused by the that, the training step only135

contains 100 epochs considering the limitation of GPU, and it is not enough for an attention-based SwinIR or GeoAN. Even in

this situation, GeoAN could outperform the other methods.

3.2 Visual comparison

Although GeoAN achieved better results in most cases in Tab. 1, a more subjective comparison also needs to be drawn directly.

Visual results of PRS, T2m, WS10m are shown in Fig. 3, Fig. 4, and Fig. 5, respectively. We compare the 1st of each two140

months in 2023 (i.e., January, March, May, July, September, and November) and choose one day to display for each variable.

As shown in the figures, GeoAN can achieve the best results among all the compared algorithms. Especially, for extracting

details, GeoAN has an excellent performance. Benefiting from the geopotential-guided attention and training from the historical

data, enough geographic semantic information can be harvested by the neural network, and even the distorted detail parts, can

be restored well by the GeoAN. Comparing other downscaling algorithms, the data produced by GeoAN can be treated as145

high-quality meteorological data.
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Figure 4. Temperature visual results of GeoAN and other downscaling algorithms on the 1st of January 2023.

Figure 5. Wind speed visual results of GeoAN and other downscaling algorithms on the 1st of November 2023.
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Table 2. A comparison of different datasets.

Datasets Time period Spatial resolution Derived from Sources

ERA5 1940 - present 0.25° × 0.25° Reanalysis method ECMWF

CLDAS 2008 - present 0.0625° × 0.0625° Reanalysis method CMA

GLDAS 1948 - present 0.25° × 0.25° Reanalysis method NASA

MDG625 1940 - present 0.0625° × 0.0625° Deep learning method Ours

4 Produced dataset

4.1 Historical meteorological data

The period of CLDAS is from 2008 to the present. The producing of CLDAS relies on the stations, which were rare before the

2000s in China (Tie et al., 2022). Due to the historical high-resolution meteorological data being hard to access, we used our150

proposed GeoAN, which can be guided by the geopotential well, to produce the historical meteorological data, called MDG625

(Meteorological Dataset with 0.0625◦ resolution produced by GeoAN), in the study area since 1940. MDG625 is valuable for

historical meteorological studies in relevant areas. The comparison between similar datasets is in Tab. 2. The resolution of

ERA5 and GLDAS is too low for various regional studies. The CLDAS dataset produced by CMA is not long enough in time

series, and can not do a long period study. The biggest difference is that MDG625 is driven by the deep learning method instead155

of numerical methods.

Note that, there are two days variables abnormal in ERA5, i.e., ’1965-11-29’ and ’2008-7-6’. The first day of MDG625 is

’1940-1-1’ and the index of this day is recorded as ’0’. The index of each day means the number of days elapsed since the 1st

of January 1940. A larger spatial extent dataset also can be produced by GeoAN, considering the pattern used in training steps,

only the data in the study area is provided in MDG625.160

4.2 Error distribution

Considering the period of CLDAS, and the data from 2020 to 2022 are used in the training step, the results of error distribution

are calculated in 2023. The RMSE of the 2m temperature, surface pressure, and 10m wind speed are 1.40 K, 2.76 hPa, and

0.89 m · s−1 respectively. To further evaluate the quality of MDG625 temporally and spatially, the error distributions of the

variables (PRS, T2m, and WS10m) are analyzed in Fig. 6 and Fig. 7. As shown in Fig. 6, the variables of T2m in winter are165

not satisfied, and other variables performed well. However, although in the worst month of T2m (i.e., January), the difference

to ground truth is around 3K, which is acceptable. The average RMSE of T2m is about 1K for the whole year. For PRS and

WS10m, stable good performance throughout the whole year. This phenomenon may be caused by the seasonal change of the

temperature which is hard for a statistical model to infer the right results without any extra season or date information. One

thing to note, 9 days of data are missing (’2023-05-22’, ’2023-06-27’, ’2023-10-10’, ’2023-10-11’, ’2023-10-12’, ’2023-10-170
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Figure 6. The daily average RMSE of MDG625 in 2023. From top to bottom are pressure (hPa), temperature (K) at 2m, and wind

speed (m · s−1) at 10m, respectively. The RMSE at a single day is calculated from the daily pixels.

0 hPa 5025

Pressure at Surface 

0 K 105

Temperature at 2m

0 m·s⁻¹ 52.5

Wind Speed at 10m

Figure 7. The RMSE map of three meteorological variables (PRS, T2m, and WS10m) between MDG625 and the ground truth. The RMSE

is calculated from the whole year daily in 2023. Blue represents a smaller error and red represents the bad results.
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13’, ’2023-10-14’, ’2023-10-15’, and ’2023-10-16’) in CLDAS by the time of the program run. The RMSE of the missing data

is calculated by the mean of the nearest data that are not missing before and after.

Considering the spatial distribution as shown in Fig. 7, the mean RMSE across the whole year shows the condition of three

variables. PRS and T2m show better results in marine than in the mainland. On the contrary, WS10m results on the mainland

are better. For T2m, the results of the mainland performed worse than the marine, which may be caused by the specific heat175

capacity of water being higher than the land (e.g., soil, sand, etc.) Temperature variations over the oceans are lower in magnitude

than over the continents, and the deep learning method is better at learning the patterns of small changes. For the other two

variables, maybe the same reason caused the error distribution. No matter which variables, the results of the coastal plain (e.g.,

east of China) are relatively better. Lastly, even if the relative effectiveness of the results in some areas is unsatisfactory, the

errors are still in a reasonable and acceptable range and the dataset can be used for various analyses.180

5 Conclusions and discussion

Considering the rarity of long-time historical high-resolution meteorological data in Asia, MDG625 (Meteorological Dataset

with 0.0625◦ resolution produced by Geopotential-guide attention network) provided a solution using a deep geographic cou-

pling attention network called geopotential-guide attention network (GeoAN) within an acceptable error. MDG625 contains

daily temperature at 2m, surface pressure, and 10m wind speed since 1940. Experimental results demonstrated the outperfor-185

mance of the GeoAN and the satisfaction of MDG625.

Considering the experimental results, the precipitation is hard for statistical models, especially for extreme cases, and it does

not do well in various methods. In future work, more factors should be considered to handle the precipitation downscaling.

Further on, more geography-guide information can be explored to help the neural network understand the semantic information

of geography better rather than transfer the common models into geography-related tasks directly. In the future, more deep190

learning methods coupling geographic mechanisms may give solutions to various geographic problems.

Code and data availability. The ERA5 data of ECMWF can be found at https://cds.climate.copernicus.eu. The high-resolution data, CLDAS,

is provided by CMA at https://data.cma.cn. An education and research account is required to acquire the CLDAS data, this requirement is

set by the CMA. The code and the generated dataset MDG625 (Song et al., 2024) can be found in the GitHub repository: https://github.com/

songzijiang/GeoAN and ScienceDB repository: https://doi.org/10.57760/sciencedb.17408. Considering CLDAS is not public, and GeoAN195

was trained using CLDAS, the data of MDG625 for 2017-2023 are not offered in the repository.
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Figure A1. The monthly average statistic of GeoAN in 2023 compared with other methods on temperature (K) at 2m. The box plot is the

distribution of GeoAN in each month.

Appendix A: T2m comparison against U-net (Evol.)

Shown in Table 1, U-net (Evol.) performed better than GeoAN in T2m on PSNR and R2, to explain this situation, we analyzed

the error distributions of T2m temporal and spatial in Figure 6 and Figure 7. In summer, the results of GeoAN have a similar

performance with U-net (Evol.) on PSNR and R2 as shown in Figure A1. The higher the altitude, the more error in GeoAN200

observed refers to Figure 7. Both in winter or high-altitude altitude, temperatures will be lower, we extrapolate that, the

GeoAN performs badly in cold areas and periods. To verify whether PSNR and R2 react to the real performance in cold

environments, we conducted a full year of comparisons in 2023 at high altitudes area, the specific results are shown in Figure

B1. In comparison, the texture of GeoAN is clearer than U-net (Evol.), and the temperature values in each pixel of these two

methods are close, the difference is almost negligible. However, the improvement in sharpness GeoAN brings is discernible to205

the naked eye. Refers to Figure 6, the largest RMSE between ground truth and GeoAN in winter is around 3K, and the mean

RMSE of T2m is 1.40K, consider the RMSE between CLDAS and in-situ stations is 1.8K, the bias in GeoAN totally could be

accepted.

13

https://doi.org/10.5194/essd-2024-137
Preprint. Discussion started: 24 June 2024
c© Author(s) 2024. CC BY 4.0 License.



250 K

300
Jan. Mar. May Jul. Sept. Nov.

U
-n

et
 (E

vo
l.)

G
eo

A
N

G
ro

un
d 

Tr
ut

h

275

287

262

Figure B1. Temperature at 2m comparison between U-net (Evol.), GeoAN, and ground truth at high altitude areas (Himalayas areas) in 2023.

Only the results of the first day of odd-numbered months are shown for convenient observation.
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