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Abstract. Identifying paleochannels in 3D seismic volumes is essential for georesource development and offering insights

into paleoclimate conditions. However, it remains a labor-intensive and time-consuming task. Deep learning has shown great

promise in automating seismic channel interpretation with high efficiency and accuracy, as demonstrated in similar image

segmentation tasks in computer vision (CV). Yet, unlike the CV domain, seismic exploration lacks a comprehensive labeled

dataset for paleochannels, significantly hindering the development, application, and evaluation of deep learning models in5

this field. Manual labeling of 3D paleochannels is tedious and subjective, potentially leading to mislabeling that degrades

model performance. To address this, we propose a workflow to generate a synthetic seismic dataset, cigChannel, consisting

of 1,600 256×256×256 seismic volumes with over 10,000 labeled paleochannels. It is the largest dataset to date for seismic

paleochannel interpretation, featuring geologically reasonable seismic volumes with accurately labeled meandering channels,

tributary channel networks, and submarine canyons. A convolutional neural network (simplified from U-Net) trained on this10

dataset achieves F1 scores of 0.52, 0.73, and 0.63 in detecting meandering channels, tributary channel networks, and submarine

canyons in three field seismic volumes, respectively. However, the synthetic seismic volumes in cigChannel still lack the

variability and realism of field seismic data, potentially affecting the deep learning model’s generalizability. To facilitate further

research, we publicly release the dataset, data generation codes, and the trained model, aiming to advance deep learning

approaches for seismic channel interpretation.15

1 Introduction

Paleochannels are buried river channels that have been preserved in the geological record. They can not only provide insights

into paleoclimate conditions (e.g., Leigh and Feeney, 1995; Nordfjord et al., 2005; Sylvia and Galloway, 2006), but also serve

as reservoirs for groundwater (e.g., Revil et al., 2005; Samadder et al., 2011), geothermal energy (e.g., Crooijmans et al., 2016;

Kang et al., 2022), ore deposits (e.g., Heim et al., 2006; Oraby et al., 2019) and hydrocarbons (e.g., Clark and Pickering, 1996;20

Bridge et al., 2000). Paleochannels can be identified in seismic volumes by their distinct shapes and sedimentary structures

that differ from the surrounding rock formations. Although paleochannels are considered as geobodies, interpreters are limited

to view them slice-by-slice in seismic volumes. This limitation significantly increases the complexity and time of interpreting
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Figure 1. Workflow for generating the cigChannel dataset. First, we create 3D models of three types of paleochannels: meandering channels,

tributary channel networks and submarine canyons. Second, we build 3D seismic impedance models with multiple layers and place these

channels at layer boundaries as impedance anomalies. Third, the impedance models are used to calculate seismic reflection coefficients,

which are subsequently convolved with Ricker wavelets to create synthetic seismic volumes. Finally, seismic reflections of paleochannels

are automatically labeled. Note that both the channel models, seismic impedance models and seismic volumes are in depth domain.

paleochannel bodies in large seismic volumes. Moreover, the historical tectonic movement may introduce deformations such

as foldings to the paleochannels, making them even more difficult to recognize.25

To address those issues, automatic paleochannel identification methods based on 3D convolutional neural networks (CNNs)

(Pham et al., 2019; Gao et al., 2021) have been developed. The 3D CNNs are designed to capture volumetric features by

performing 3D convolutions (Ji et al., 2012). They have the advantage of handling paleochannels according to their 3D nature,
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as opposed to the slice-by-slice visual investigation of a human interpreter. This advantage is particularly significant when the

paleochannels have been deformed by historical tectonic movements (e.g., folding and faulting), which disrupt their continuity30

and makes them more challenging to track in a slice-wise view. Another notable advantage is their efficiency. Once trained,

the network can rapidly identify paleochannels in a large seismic volume. However, the main limitation of applying CNNs

for paleochannel identification is the lack of labeled paleochannel samples for training. Unlike deep learning for computer

vision, which benefits from numerous large datasets with labeled images such as ImageNet (Deng et al., 2009) and COCO

(Lin et al., 2014), there is no publicly available dataset of field seismic volumes with labeled paleochannels. To create such a35

dataset, one needs to access a large amount of field seismic volumes and correctly label the paleochannels. However, labeling

paleochannels can be challenging due to the complexity of field seismic volumes, and human bias may introduce uncertainty to

the labels (Bond et al., 2007). The label noise produced by mislabeling will deteriorate the performance of supervised learning

(Pechenizkiy et al., 2006; Nettleton et al., 2010). Additionally, the labeling process will be time-consuming and labor-intensive.

While creating a dataset by labeling paleochannels in field seismic volumes is expensive, an alternative solution is to use40

synthetic seismic volumes, which are generated through a series of simulation processes in order to mimic field seismic

volumes. Although lacking in sophisticated features, the synthetic seismic volumes are controllable, allowing us to tailor

the features that our network will learn to segment. Moreover, mislabeling can be avoided in synthetic seismic volumes since

the locations of objectives are known during the simulation process. Synthetic seismic volumes have been proven effective

as training data for networks to identify various objectives in field seismic volumes, such as faults (Wu et al., 2019; Zheng45

et al., 2019), seismic horizons (Bi et al., 2021; Vizeu et al., 2022), paleokarsts (Wu et al., 2020b; Zhang et al., 2024) and

paleochannels (Pham et al., 2019; Gao et al., 2021). As for paleochannel identification, the synthetic seismic datasets created

by Pham et al. (2019) and Gao et al. (2021) only simulate meandering channels, while the frequently observed tributary channel

networks (e.g., Nordfjord et al., 2005; García et al., 2006; Darmadi et al., 2007) and submarine canyons (e.g. Deptuck et al.,

2007; Gee et al., 2007; Covault et al., 2021) are not included. Considering the diversity of paleochannels in field seismic50

volumes, creating a dataset with various types of paleochannels is necessary for enhancing the networks’ generalizability.

In this paper, we propose a workflow (Figure 1) for generating synthetic seismic volumes with three types of paleochannels

and their labels. We first build numerous 3D models of meandering channels, tributary channel networks and submarine

canyons. Parameters that control the modeling process are randomized within reasonable ranges in order to increase the

diversity of channel models. Second, we build seismic impedance models with multiple layers and place the channels at layer55

boundaries as impedance anomalies. Third, the impedance models are used to calculate seismic reflection coefficients, which

are subsequently convolved with Ricker wavelets to create synthetic seismic volumes. Finally, channels in the seismic volume

can be automatically labeled since their positions are already known. Using this workflow, we have created a dataset named

cigChannel for deep learning-based seismic paleochannel interpretation. This dataset contains 1,600 256×256×256 seismic

volumes and labels of more than 10,000 paleochannels. The effectiveness of this dataset has been validated by training a CNN to60

identify meandering channels, tributary channel networks and submarine canyons in three field seismic volumes, respectively.

It should be noted that although we have significantly improved the diversity of paleochannels compared with previous datasets,

there is no guarantee that this dataset covers every form of paleochannel in field seismic volumes. Therefore, a Python package

3



Initial channel

200 iterations

320 iterations

340 iterations

Abandoned channel

Channel intersects

Cutoff

Flow

Flow

(a)

(b)

(c)

(d)

Y 
[m

]
Y 

[m
]

Y 
[m

]
Y 

[m
]

X [m]
2500 5000 7500 10000 12500 15000 17500

0

3000

0

3000

0

3000

0

3000

Flow

Flow

0

10

20

-10

-20

-30

Z 
[m

]

Distance to Centerline [m]
100 100 300 500500 300

0

10

20

-10

-20

-30

Z 
[m

]

(e)

(f)

Figure 2. Meandering channel modeling process based on the open-source Python package meanderpy (Sylvester, 2021). First, we create (a)

a straight channel with some minor perturbations. Then, (b) the channel begins to migrate, leading to the formation of multiple meanders.

(c) The channel curvature increases as the migration continues, eventually causing a channel intersection, where (d) the channel cutoff will

occur, forming the oxbow lake. Lastly, (e) the U- and (f) V-shaped channel cross-sections are used to define the channel topography.

of the dataset generation workflow (https://github.com/wanggy-1/cigChannel, see Appendix C for demonstration codes) is also

provided for customizing paleochannels and facilitating further development.65

2 Dataset generation workflow

In this section, we will outline the dataset generation workflow, covering the steps for constructing 3D channel models and

synthesizing seismic volumes. We will begin by describing the modeling process for meandering channels, tributary channel

networks and submarine canyons. Following that, we will explain how to build seismic impedance models based on these

channel models and use the impedance models to generate synthetic seismic volumes.70

2.1 Meandering channel modeling

Meandering channels are a common type of river channels that can be found in many seismic volumes (e.g., Noah et al.,

1992; Carter, 2003; Wood, 2007; Wang et al., 2012; Alqahtani et al., 2017). They are distinguished by their sinuous paths.

The continuous interaction between water and the riverbed can lead to erosion on the outer bank and deposition on the inner
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bank, causing the channel to migrate over time and increasing its curvature. The key to create a realistic meandering channel75

is to simulate its migration. We use the open-source package meanderpy (Sylvester, 2021) for this purpose, which employs a

kinematic simulation method that computes the river migration rate as a weighted sum of upstream curvatures (Howard and

Knutson, 1984; Sylvester et al., 2019). This simple kinematic model focuses on the influence of upstream curvatures on river

migration and cannot capture complex processes such as compound meander formation without cutoffs (Frascati and Lanzoni,

2009). However, it remains sufficient for generating morphologically realistic meandering channels. The meandering channel80

simulation process is demonstrated in Figure 2. We start with a straight channel with some minor perturbations, which provide

initial curvatures for channel migration (Figure 2a). The channel migrates over time and forms meanders at its upstream (Figure

2b). As the migration continues, curvature of the meander increases and eventually leads to channel intersection (Figure 2c),

where the channel cutoff will occur, resulting in an abandoned channel (Figure 2d). The channel migration ends when it reaches

the maximum number of iteration. We neglect the abandoned channel and extract the centerline from a random segment of the85

most recent meandering channel, which has to be long enough to span a 256×256 square grid with a cell size of 25 m after

arbitrary rotation.

The centerline is randomly placed on the grid and rotated by a certain angle between 0◦and 360◦. Since meandering channels

in field seismic volumes typically exhibit U- or V-shaped cross-sections (e.g., Zhuo et al., 2015; Alqahtani et al., 2017; Zeng

et al., 2020; Manshor and Amir Hassan, 2023), we use simplified U- or V-shaped profiles to define the channel topography, as90

shown in Figures 2e and 2f. The simplified U-shaped channel is defined as a parabolic function:

Z(x) =

4Dc(x/Wc)
2 −Dc, x≤Wc

0, x >Wc

, (1)

where x is the Euclidean distance from the centerline to any point on the grid, Dc is the maximum depth of the channel (which

will be denoted as channel depth hereafter for simplicity) and Wc is the channel width. The simplified V-shaped channel is

defined as a combination of Gaussian and parabolic functions:95

Z(x) =

min[p(x),g(x)], x≤Wc

0, x >Wc

, (2)

where p(x) is the parabolic function in Equation (1) and

g(x) =−Dce
− x2

2(Wc/4)2 . (3)

Although these simplified channel cross-sections may not precisely represent the real ones, they can capture their main

features at a low computational cost. We create diverse topographic models of the meandering channel by randomizing the100

modeling parameters within reasonable ranges (see Table A1). Some examples are demonstrated in Figure 5a, showing various

meandering channels with different widths, depths and meander wavelengths.

It should be noted that in this study, we focus on identifying the most recent meandering channels in their migration histories.

Therefore, all the meandering channel models only include the last channel form of the migration process. The corresponding
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Figure 3. Tributary channel network modeling process based on the open-source package soillib (McDonald, 2020b). First, we generate

(a) a map of normalized water discharge using the soillib package. Second, we create (b) the river mask by binarizing the normalized water

discharge with a threshold value of 0.4, where values greater than this threshold are considered as rivers. Third, we compute (c) the Euclidean

distance to rivers and (d) the normalized width of the nearest river, which are subsequently used as parameters in a parabolic function to

define (e) the channel topography. Finally, to avoid abrupt topographic shifts, a Gaussian filter is applied to create (f) a smoothed channel

topography.

sedimentary facies formed during the channel migration process, such as point bars, natural levees and abandoned channels (or105

oxbow lakes), are not included. It is also worth noting that the width and maximum depth of each channel are fixed, while in

nature they generally exhibit certain degree of variability.

2.2 Tributary channel network modeling

A tributary channel network is a result of smaller rivers (tributaries) flowing into a large main river. It generally exhibit a

branching or tree-like structure. To efficiently generate extensive tributary channel networks that are morphologically reasonable,110

we adopt the open-source package soillib (McDonald, 2020b), which offers a fast implementation of particle-based hydraulic

erosion that can create a morphologically resonable tributary river network in about 10 to 20 seconds (McDonald, 2020a).

The soillib package is programmed to spawn hundreds of thousands of water particles at random positions on a mountainous

terrain generated by random Perlin noise. The water particles move across the terrain following classical mechanics and engage

in mass transfer with the surface, eventually forming a tributary river network. Figure 3a shows the normalized water discharge115
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map of a tributary river network generated by the soillib package on a 256×256 square grid with a cell size of 25m. To define

the river channel topography, we first binarize the water discharge by a threshold (e.g., 0.4), where values greater than this

threshold are considered as rivers (Figure 3b). Next, we compute the Euclidean distance from the river to each point on the grid

(Figure 3c) and the normalized width of the nearest river (Figure 3d), which is represented by the normalized water discharge.

We then define the channel topography using a parabolic function similar to that in Equation (1):120

Zi(xi) = min[4Dc(
xi

Wcαi
)2 −Dc,0], (4)

where the subscript i denotes the i-th point on the grid, x is the distance to river, Dc is the maximum channel depth, Wc

is the maximum channel width and α is the normalized width of the nearest river. The main modification is replacing the

constant channel width Wc with a point-wise channel width Wcαi. By doing so, we are able to create channels with varying

widths, as demonstrated in Figure 3e. The variation in channel width is controlled by α, where the mainstream is wider and125

the tributaries are narrower. However, the channel topography demonstrated in Figure 3e exhibits abrupt shifts at the channel

edge due to the inherent width of the river mask. Therefore, we subsequently apply a Gaussian filter to smooth it and the

final channel topography is shown in Figure 3f. When implementing the particle-based hydraulic erosion, randomness in the

initial terrain and positions of water particles ensure the diversity of tributary channels, which is demonstrated in Figure 5b.

Diversity of the channel topographic models can be further increased by randomizing maximum channel widths and depths130

within reasonable ranges (see Table A1). Similar to the meandering channel models, our models of tributary channel networks

are also designed for training deep learning models to identify the final form of the tributary channel networks. Therefore, they

do not include any sedimentary process during the formation of the tributary channel network. As a result, our workflow

only generates morphologically reasonable meandering channels and tributary channel networks. They lack stratigraphic

components compared to those generated by stratigraphic models (e.g., Flumy (Cojan et al., 2005) and Sedsim (Wild et al.,135

2019)), which are more geologically realistic.

2.3 Submarine canyon modeling

Submarine canyons are steep-sided valleys cut into the continental shelf at the shelf/slope break (Normark et al., 1993). They

are similar to river canyons on land but are formed by the movement of turbidity currents. The pathway of the turbidity current

is referred to as a submarine channel. In this work, we aim at modeling a specific type of submarine canyon related to the140

submarine channel-levee system (Deptuck et al., 2003; Kane et al., 2007; Catterall et al., 2010), assuming the turbidity current

carries enough fine-grained sediments to form natural levees. Similar to a terrestrial river channel which can meander across the

floodplain on land, a submarine channel can also migrate laterally on the seabed. However, a key distinction between terrestrial

and submarine channels lies in the pronounced vertical incision and aggradation of submarine channels, which are driven by

the erosion and deposition processes associated with the turbidity current. As a result, submarine canyons generally exhibit a145

large-scale erosion surface and layered sediments within the canyon, which are discernible in high-resolution seismic profile

(Kolla et al., 2007).

7



(b)(a)

(e) (f)

(c)

(d)

Most recent channel

Previous channel
Abandoned meander
Most recent channel

Abandoned meander
Natural leveeBedrock

Point bar

Figure 4. Submarine canyon modeling using the open-source package meanderpy (Sylvester, 2021). (a) Lateral migration of a submarine

channel within the submarine canyon. (b) Channel erosion (c) Deposition of point bars and natural levees. (d) The channel migrates towards

the outer bend and erode parts of the sediments. (e) Vertical component of the channel trajectory during the migration process, which is

modified from Sylvester et al. (2011), showing an initial channel incision and a later aggradation. (f) The cross-section of the submarine

canyon at the red dashed line in (a), showing a large-scale erosional surface, a layered structure within the channel and a wedge-like natural

levee after 1,000 iterations of channel migration.

To model the large-scale erosional surface and layered sediments within the submarine canyon, we adopt a modeling method

based on submarine channel trajectories (Sylvester et al., 2011), which is also implemented in meanderpy. The modeling

process is illustrated in Figure 4. It first simulates the lateral migration of a submarine channel (Figure 4a) At each iteration150

during the migration process, a parabolic function shown in Equation (1) is used to define the surface of channel erosion (Figure

4b), which is followed by deposition of point bars and natural levees (Figure 4c). Point bars are accumulated sediments on the

inner bends of the channel where the flow velocity is lower. Their top surface is defined using a combination of parabolic and

Gaussian function as shown in Equation (2) and (3). For modeling convenience, point bars are created on both inner and outer

bends, with those on the outer bends will be subsequently eroded. Natural levees are structures that form along the sides of a155
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submarine channel when the turbidity current overflow the channel banks. They typically exhibit a wedge-like shape because

the turbidity current lose energy and sediments as it move away from the channel margins. The natural levee thickness is

defined as follows:

T (x) =


Tmax
Wl

(x− Wc−Wl

2 ), x≥Wc

Tmax, x <Wc

, (5)

where x denotes the distance to channel centerline, Tmax is the maximum levee thickness, Wl is the levee width on one side160

of the channel and Wc is the channel width. After the deposition of point bars and natural levees, the channel will migrate

towards its outer bends and erode parts of these sediments (Figure 4d). The erosion and deposition processes repeat until the

channel migration ends. In the meantime of lateral migration, the channel also experience vertical incision and aggradation

(Figure 4e). At the end of migration, the movement of submarine channel and deposition of sediments will create a large-

scale submarine canyon with a wedge-like outer levee and layered sediments within the canyon. Sediments within the canyon165

consist of interbedded layers of sandy point bars and muddy inner levees, as well as muds of abandoned meanders (Figure

4f). To create diverse forms of submarine canyons, we use a random set of modeling parameters within reasonable ranges (see

Table A1), and some of the submarine canyon models are shown in Figure 5c.

2.4 Seismic volume simulation

After constructing over 10,000 channel topographic models covering meandering channels, tributary channel networks and170

submarine canyons, we proceed to create synthetic seismic volumes based on these models. The first step is to define the

seismic impedance, which is a crucial parameter for simulating seismic events. In seismic exploration, seismic waves from

an artificial source travel through the subsurface rock mass, and part of the waves will be reflected back to the surface at

the boundaries of two geological layers with a contrast in seismic impedance. The reflected seismic waves will form seismic

events, which are considered as representatives of layer boundaries, and their amplitudes are related to the contrast in seismic175

impedance. We start by generating 3D seismic impedance models with horizontal layers. In each layer, we add some minor

random perturbations to the impedance to make it more realistic. Details about the configuration of the impedance model are

listed in Table D1. The channel topographic models are then placed at the layer boundaries, and the seismic impedance of the

channel is defined according to the channel type.

Within meandering channels and tributary channels, we fill them with relatively uniform impedance with some minor180

perturbations (approximately 100 m/s.g/cm3). The average impedance value of the channel is determined by a parameter ε,

which is defined as the impedance contrast between the channel and its covering layer:

ε=
|Zf −Zu|

Zu
, (6)

where Zf denotes the impedance filling in the channel, and Zu denotes the impedance of the covering layer. The value of ε

varies between zero and one, with the value of one indicating the highest impedance constrast between the channel and its185

covering layer, and the value of zero indicating the impedance of channel is the same as that of its covering layer. Figures 6a

9



(a)

(b)

(c)

0
2000

4000
6000

X (m
)

2000

4000

6000 Y (m)

0

0
2000

4000
6000

X (m
)

2000

4000

6000 Y (m)

0

0
2000

4000
6000

X (m
)

2000

4000

6000 Y (m)

0

0
2000

4000
6000

X (m
)

2000

4000

6000 Y (m)

0

0
2000

4000
6000

X (m
)

2000

4000

6000 Y (m)

0

0

2000
4000

6000

X (m
)

2000

4000

6000 Y (m)

0

0

2000
4000

6000

X (m
)

2000

4000

6000 Y (m)

0

0
2000

4000
6000

X (m
)

2000

4000

6000 Y (m)

0

0

2000
4000

6000

X (m
)

2000

4000

6000 Y (m)

0

0

2000
4000

6000

X (m
)

2000

4000

6000 Y (m)

0

0

2000
4000

6000

X (m
)

2000

4000

6000 Y (m)

0

0

2000
4000

6000

X (m
)

2000

4000

6000 Y (m)

0

Figure 5. Diverse topographic models of (a) meandering channels, (b) tributary channel networks and (c) submarine canyons.

and 6b demonstrate the horizontal and vertical slices of a 3D impedance model, which consists of meandering and tributary

channels with high impedance contrast (ε= 1). The impedance model is then used for computing the seismic reflectivity as

follows:

Ri =
Zi+1 −Zi

Zi+1 +Zi
, i= 1,2, ...,N − 1, (7)190

where the subscript i denotes the i-th point in the vertical direction of the model, and N denotes the total number of points

in the vertical direction. The reflectivity model is subsequently convolved with a Ricker wavelet (see Figures 8a and 8b for

examples), which is commonly used to create synthetic seismic data. The mathematical expression of a Ricker wavelet in the

depth-domain is:

f(s) = (1− 2π2k2ms2)e−π2k2
ms2 , (8)195

where s denotes the distance and km denotes the peak wavenumber of the wavelet. Figure 6c shows the synthetic seismic

volume corresponding to a high impedance contrast between the channel and its covering layer. We can observe that the
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Figure 6. Seismic impedance and amplitude volumes containing meandering channels and tributary channel networks, showing different

levels of impedance contrast between channels and their covering layers. (a) to (d) correspond to channels with high impedance contrast,

(f) to (h) correspond to channels with low impedance contrast, and (i) to (l) correspond to channels with no impedance contrast with their

covering layers.

channels have strong seismic amplitudes, appearing as bright spots on the vertical slice of the seismic volume (Figure 6d). As

the value of ε decreases to 0.2, the impedance contrast between the channel and its covering layer becomes lower, as shown

in Figures 6e and 6f. The corresponding seismic volume (Figure 6g) also indicates a reduction in seismic amplitude of the200

channels, which exhibit an infilling feature on the vertical slice of the seismic volume (Figure 6h). When the value of ε is set to

zero, the impedance of channel will be the same as that of its covering layer (Figures 6i and 6j). As a result, the channels show
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Figure 7. Illustration of creating a seismic impedance model and seismic amplitude volume containing a submarine channel according to its

sedimentary facies, showing vertical and orthogonal slices of the (a) sedimentary facies, (b) seismic impedance and (c) amplitude volume.

no seismic response except at their erosion boundaries (Figure 6k), and an incision feature can be observed on the vertical slice

of the seismic volume (Figure 6l).

The impedance of submarine canyons is determined based on their sedimentary facies, which include point bars, natural205

levees and abandoned meanders. Figure 7a shows the sedimentary facies of a submarine canyon, which is primarily filled with

layers of point bars as a result of the continuous migration of a submarine channel. Additionally, the canyon is also filled with

sediments of abandoned meanders and inner natural levees. As shown in Figure 7b, the sediments of point bars are assigned

lower impedance because they generally consist of sand, whereas the sediments of natural levees and abandoned meanders

sediments are assigned higher impedance due to their muddy composition. The impedance ranges we assigned for the point210

bars, natural levees and abandoned meanders are listed in Table D1. It should be noted that an impedance discrepancy exists

12



between the neighboring layers of point bars, such that the canyon will exhibit a layered feature on the vertical slice of seismic

volume and a meander belt on the horizontal slice, as shown in Figure 7c. Minor impedance perturbations (±100 m/s.g/cm3)

also exists within each sedimentary facies.

By far, all the channels and layers in the impedance model are horizontal. However, the channels and layers in practice215

often undergo structural deformations, such as folding and faulting, which are common in many field seismic volume. To

increase the diversity and realism of synthetic seismic volumes, we introduce inclination, folds and faults into the impedance

model following the workflow proposed by Wu et al. (2020a). An example of the resulting impedance model with structural

deformation is shown in Figure 8c. Another way to increase the diversity of synthetic seismic volumes is to use wavelets with

various peak wavenumbers. This is also necessary because the peak wavenumber of seismic waves reflected by the channel220

can be diverse in field seismic volumes. It depends on various factors, such as the absorption effect of subsurface media and

the characteristics of the seismic source. Figure 8 shows two synthetic seismic profiles with different wavelets computed from

the same impedance model. Using a wavelet with small peak wavenumber (Figure 8a) will generate a low-resolution seismic

profile with thick seismic events (Figure 8d), where some thin layers within the submarine canyon at the bottom part of the

profile is hard to distinguish. On the contrary, using a large-wavenumber wavelet (Figure 8b) will create a high-resolution225

seismic profile (Figure 8e), where those thin layers within the submarine canyon become discernible. The peak wavenumber

range of the Ricker wavelet that we used to generate synthetic seismic volumes is listed in Table D1.

3 Results

Using the proposed workflow, we construct the cigChannel dataset, which consists of 1,600 synthetic seismic volumes containing

over 10,000 labeled paleochannels. Each seismic volume has a size of 256×256×256. The dataset is organized into four task-230

specific subsets: meandering channels, tributary channel networks, submarine canyons, and assorted channels. In addition to the

seismic volumes, the cigChannel dataset includes the corresponding seismic impedance models. Furthermore, the submarine

canyon subset provides sedimentary facies volume associated with submarine canyons. A detail breakdown of the dataset’s

components is presented in Table B1.

Aiming to train deep learning models to identify specific types of channels, the subsets of meandering channels, tributary235

channel networks and submarine canyons each provides 400 seismic volumes containing only the corresponding type of

channel. Binary class labels are provided in these subsets, with 0 denoting non-channel areas and 1 denoting channels. As

shown in Figure 9, each subset contains seismic volumes featuring horizontal, inclined, folded and faulted structures, serving

as training data for deep learning models to identify channels with various types of structures. These structures are randomly

generated to introduce variability in the seismic volumes. Since submarine canyons are generally wider and deeper than240

terrestrial channels (Normark et al., 2003; Kolla et al., 2007; Covault et al., 2021), we honor this nature in the cigChannel

dataset by generating submarine canyons larger than meandering and tributary channels.

The assorted channel subset also has 400 seismic volumes. Each seismic volume contains multiple terrestrial channels

(including meandering channels and tributary channel networks) and a submarine canyon. This subset provides multi-class
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Figure 8. Synthetic seismic profile with different wavelets computed from the same seismic impedance model. (a) A small-wavenumber

Ricker wavelet with a peak wavenumber of 20 km-1 (corresponding to a peak frequency of 20 Hz) in depth-domain and wavenumber-domain.

(b) A large-wavenumber Ricker wavelet with a peak frequency of 60 km-1 (corresponding to a peak frequency of 60 Hz) in depth-domain

and wavenumber-domain. (c) Seismic impedance model with inclined and folded structure. (d) Low-resolution seismic profile generated by

using the small-wavenumber wavelet. (e) High-resolution seismic profile generated by using the large-wavenumber wavelet.

labels of non-channel areas, terrestrial channels and submarine canyons, as shown in Figure 9d. They are denoted by 0, 1, and245

2 in the label volume, respectively. The reason of simulating multiple terrestrial channels but only one submarine canyon in a

single seismic volume is to balance their voxel amounts, since a model trained on an imbalanced dataset perform poorly on

the minority class (i.e., the class-imbalance problem). However, there is still a huge gap in voxel amounts between channels

and non-channel areas. This gap exists in all four subsets. Therefore, we suggest to adopt strategies for addressing the class-

imbalance problem when using the cigChannel dataset to train a deep learning model, such as employing the class-balanced250

cross-entropy loss function (Xie and Tu, 2015).

4 Applications

Three U-Nets are trained on the subsets of meandering channels, tributary channel networks and submarine canyons, respectively,

which are then applied to identify paleochannels in three field seismic volumes. The U-Net architecture is demonstrated in

Figure 10, which is reduced in convolutional layers and feature maps compared to the original architecture in Ronneberger255
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Figure 9. Synthetic seismic volumes and paleochannel labels from the (a) meandering channel, (b) tributary channel network, (c) submarine

canyon and (d) assorted channel subsets of the cigChannel dataset, showing various types of structures. The first three subsets provides

binary class labels to distinguish between channels and the background (i.e. the non-channel areas), while the assorted channel subset

provides multi-class labels to distinguish between terrestrial channels, submarine canyons and the background.
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Figure 10. A simplified U-Net used to identify paleochannels in seismic volumes. The inputs of the U-Net are seismic volumes and the

outputs are channel probabilities between 0 and 1.

et al. (2015) to save memory and computational costs. The network’s input is a 224×224×224 seismic volume, which is

cropped from the original 256×256×256 volume due to the memory limit of GPU. Each seismic volume is normalized using

the mean-variance normalization method, and Gaussian random noise is added to the synthetic seismic volume to make the

training process more robust and reduce the tendency towards overfitting. The noise is zero-mean and its standard deviation is

determined according to the expected signal-to-noise ratio (SNR) of the noisy seismic volume. We set the SNR of each seismic260

volume to vary between 5 dB and 10 dB, which is a reasonable range for field seismic volumes (Zhang et al., 2017; Wu et al.,

2021). The noisy seismic volume goes through the contracting and expansive path of the U-Net for feature extraction. The

final output layer of the network is a 3×3×3 convolutional layer followed by a sigmoid activation, which maps the extracted

feature into channel probabilities between 0 and 1. We binarize the channel probability values using a threshold of 0.5 in order

to compare with human-made channel interpretation.265

To evaluate the training performance, each subset is divided into training and test set. The training and test set contain 70%

and 30% of the total samples, respectively. The class-balanced cross-entropy is used as loss function regarding the huge gap in

voxel amounts between channels and non-channel areas. The F1 score is used as a metric to evaluate the network’s performance

on the test set. We use the Adam method (Kingma, 2014) to optimize the network’s parameters and set the learning rate to be

0.0001. As shown in Figure 11, the training loss of each network converges after 200 epochs, and the F1 scores of the test sets270

gradually increase to around 0.9. The networks from the last epoch are used to identify paleochannels in field seismic volumes.

The U-Net is trained on the meandering channel subset and applied to a volume from the Parihaka seismic survey (https:

//wiki.seg.org/wiki/Parihaka-3D). As shown in Figure 12a, the seismic volume reveals several meandering channels feeding

into a larger channel (may be a submarine canyon). The channel identification result of the U-Net is shown in Figure 12b.
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Figure 11. Training progress of the U-Net on the subsets of meandering channels, tributary channel networks, and submarine canyons,

showing (a) training loss (class-balanced cross-entropy) and (b) F1 score on the test set over epochs.

which has a F1 score of 0.52 when compared to the human-made channel interpretation (Figure 12c). Some channel areas275

with significant variations in seismic amplitude or where the channel width suddenly increase are not correctly identified, as

indicated by the blue arrows in Figure 12b. This is likely due to that each meandering channel in the training set has a fixed

channel width, and the seismic amplitude within each channel is relatively uniform. Moreover, there are many false positive

channel identification results, as indicated by the green arrows in Figure 12b, which might be local structural deformations that

resemble the feature of a U- or V-shaped channel.280

The second U-Net is trained on the tributary channel network subset and applied to a volume from an anonymous seismic

survey (denoted as NW seismic survey hereafter). As demonstrated in Figure 13a, this seismic volume shows several tributary

channels with a V-shaped cross-section. Seismic amplitudes within the channel are relatively homogeneous, indicating a

relatively uniform seismic impedance within the channel as we designed in our data generation workflow. The channel

identification result of the U-Net is demonstrated in Figure 13b, showing that most of the channels are correctly identified.285

However, there are still a number of small-scale structural deformations that are mistakenly identified as channels, as indicated

by the green arrows in Figure 13b. The F1 score between the U-Net and human-made interpretation result (Figure 13c) is 0.73.

The last U-Net is trained on the submarine canyon subset and applied to another volume from the Parihaka seismic survey.

As demonstrated in Figure 14a, a submarine canyon with a large erosion surface can be observed in this seismic volume. It

has a relatively low seismic amplitude compared with that of its surrounding layers, indicating a low discrepancy in seismic290

impedance within the canyon. However, some layered structures are still visible within the canyon. Figure 14b demonstrates

the channel identification result of the U-Net. Most areas of the submarine canyon are correctly identified but the U-Net cannot
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Figure 12. (a) A field seismic volume from the Parihaka seismic survey (courtesy of New Zealand Crown Minerals), showing multiple

meandering channels (indicated by the yellow arrows). (b) Channel interpretation result of the U-Net trained on the subset of meandering

channels. The blue arrows indicate channel areas that fail to be identified, and the green arrows indicate false positive channel identification

results. (c) Human-made channel interpretation result.

delineate the canyon boundary accurately. The F1 score between the U-Net and human-made interpretation result (Figure 14c)

is 0.63.

5 Discussion295

5.1 Plausibility of the synthetic seismic volumes

While the cigChannel dataset provides various samples for training deep learning models to identify paleochannels in seismic

volumes, the plausibility of the synthetic seismic volume remains uncertain. Several simplifications are applied to reduce

computational costs during the generation of synthetic seismic volumes. For instance, the configuration of seismic impedance

models ignores the variability within layers and channel facies. However, this variability is ubiquitous in the subsurface.300

Moreover, the forward seismic modeling uses the simplest 1D convolution between seismic (P-wave) impedance and Ricker

wavelet. It disregards many aspects of wave propagation in the subsurface, including the contribution of shear waves, separate

contributions from P-wave velocity and density, and multi-path reflection. These simplifications reduce the realism of synthetic

seismic volumes. It is questionable whether the synthetic seismic volumes can capture the patterns in the field seismic volumes.
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Figure 13. (a) A field seismic volume from an anonymous seismic survey (denoted as NW seismic survey), showing a tributary channel

network (indicated by the yellow arrows) with V-shaped cross-sections. (b) Channel interpretation result of the U-Net trained on the subset

of tributary channel networks. Some false positive channel interpretation results are indicated by the green arrows. (c) Human-made channel

interpretation result.

(a) Seismic volume (b) U-Net interpretation (c) Human-made interpretation
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Figure 14. (a) A field seismic volume from the Parihaka seismic survey (courtesy of New Zealand Crown Minerals), showing a submarine

canyon (indicated by the yellow arrows). (b) Channel interpretation result of the U-Net trained on the subset of submarine canyon. (c)

Human-made channel interpretation result.
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Figure 15. U-Net-based autoencoder architecture for reconstructing seismic volumes. Compared to the U-Net architecture used for

paleochannel identification, the skip connections are removed, and the final layer is a 3×3×3 convolutional layer without sigmoid activation.

The inputs of the autoencoder are the original seismic volumes and the outputs are their reconstruction results.

(a) (b)

Figure 16. Training progress of the U-Net-based autoencoder, showing (a) training loss (mean squared error) and (b) multi-scale structural

similarity (MS-SSIM) on the test set over epochs.

To answer this question quantitatively, we use the synthetic seismic volumes in the cigChannel dataset to train an autoencoder305

to reconstruct seismic volumes. If this autoencoder can reconstruct the field seismic volumes as well as the synthetic ones, it

means that the synthetic seismic volumes are plausible and representative enough of field seismic volumes. Otherwise, it
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indicates room for improvement. To construct training and test set, we randomly choose 70 samples for training and 30 samples

for testing from each subsets. That makes a total number of 280 training samples and 120 test samples. The architecture of

the autoencoder is adapted from the U-Net used for identifying paleochannels. As shown in Figure 15, we remove all the skip310

connections from the U-Net and the sigmoid activation from the final convolutional layer. Each synthetic seismic volume is

cropped into a size of 224×224×224. They will serve as both inputs and labels to train the autoencoder. The seismic volumes

(both synthetic and field ones) will be normalized and zero-mean Gaussian random noise will be added to the synthetic seismic

volume. The standard deviation of the noise is determined according to the expected SNR of the noisy seismic volume, which

is set to vary between 5 dB and 10 dB. During the training process, the mean squared error (MSE) between the original and315

reconstructed seismic volumes will be calculated as the training loss, and the multi-scale structural similarity (MS-SSIM) will

be used as metrics to evaluate the network’s generalization performance on the test set.

Figure 16 shows the evolution of training loss and test set metrics over the training epochs. The training loss decreases rapidly

in the first 25 epochs, and reaches fully convergence after 200 epochs. Meanwhile, the reconstruction of seismic volumes in the

test set achieves an average MS-SSIM of 0.96, in spite of some minor fluctuations. The reconstruction of a synthetic seismic320

volume from the test set is demonstrated in Figure 17a. Seismic events, including those related to the paleochannels (indicated

by the yellow arrows) are mostly reconstructed. However, as shown in the residual volume, random noise, artifacts related

to faults, and some weak seismic reflections within geologic layers (i.e., between seismic events) are not fully recovered.

The reconstruction results of the three field seismic volumes with meandering, tributary channels and submarine canyons are

respectively demonstrated in Figure 17b, c, and d. The general patterns (i.e., geometries, relative seismic amplitudes) of the325

seismic events and paleochannels have been successfully reconstructed. However, we can see from the residual volumes that

many detailed seismic reflections related to the geologic layers and paleochannels have not been recovered, especially for the

seismic volumes from the Parihaka survey (Figure 17b and c). Table 1 lists the metrics of the autoencoder for reconstructing

synthetic and field seismic volumes shown in Figure 17. The reconstruction of the Parihaka seismic volumes (Figure 17b and

d) is less accurate compared to that of the synthetic seismic volume (Figure 17a). However, the autoencoder is capable of330

reconstructing the NW seismic volume (Figure 17c) with a quality comparable to that of the synthetic seismic volume.

Table 1. Metrics of the autoencoder for reconstructing synthetic and field seismic volumes.

Seismic/channel type Source MS-SSIM∗ ↑ MSE∗ ↓

Synthetic/assorted (Figure 17a) cigChannel Dataset 0.93 0.17

Field/meandering (Figure 17b) Parihaka survey 0.86 0.23

Field/tributary (Figure 17c) NW survey 0.95 0.04

Field/submarine (Figure 17d) Parihaka survey 0.79 0.23

∗ MS-SSIM: Multi-scale structural similarity
∗ MSE: Mean squared error
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Figure 17. The original, reconstructed and residual volumes of (a) synthetic seismic data with assorted channels, and field seismic data with

(b) meandering channels, (c) tributary channels and (d) submarine canyon.
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The difference in reconstruction performance on field seismic volumes is likely related to the variability in seismic data.

Compared with the two Parihaka seismic volumes (Figure 17b and d), the NW seismic volume (Figure 17c) has less variations

in seismic amplitude along seismic events, and the seismic amplitude within paleochannels is relatively uniform. These

characteristics are similar to the synthetic seismic volumes, and therefore the autoencoder can reconstruct the NW seismic335

volume as effectively as the synthetic ones. In conclusion, the synthetic seismic volumes have captured the general patterns in

field seismic data, such as the geometries of structures and paleochannels. However, they cannot capture the detailed variations

in seismic data that are related to wave propagation and changes in rock properties. This may lead to generalization issues for

deep learning models trained on this dataset when applied to field seismic volumes with significant variability. Applying more

realistic seismic forward modeling methods such as full-waveform modeling and considering the variations in rock properties340

within geologic layers and paleochannel facies could help improve the plausibility of the synthetic seismic volumes.

5.2 Limitations of the dataset

Although the application of the cigChannel dataset has shown its capability of training deep learning models to identify

paleochannels in field seismic volumes, there are several limitations of this dataset that users should be aware of. The first

one lies in the diversity of terrestrial channel and submarine canyon models. The widths of terrestrial channels are set to345

be relatively small (≤ 500 m) in order to be more distinguishable with submarine canyons. However, much wider terrestrial

channel systems (e.g., ≥ 1 km) have also been reported (Gibling, 2006), which could be comparable in size with a relatively

narrow submarine canyon such as the La Jolla canyon (Paull et al., 2013). Therefore, if the aim is to train a deep learning model

to differentiate between terrestrial and submarine channel systems, then the model trained on the assorted channel subset may

face challenges when distinguishing small submarine canyons from large terrestrial channels. Moreover, as we mentioned, our350

modeling of submarine canyons aims to replicate the characteristics of the submarine channel-levee system, which requires

enough fine-grained sediments to form levees. Relatively coarse grained sediments (e.g., conglomeratic channel lag deposits)

that correspond to a sandier depositional environment are not captured in our submarine canyon models. Consequently, deep

learning models trained on the submarine canyon subset may struggle to accurately identify submarine canyons that contain a

significant amount of coarse-grained sediments.355

The second limitation concerns the realism of seismic impedance within channels. We assign a relatively uniform seismic

impedance to terrestrial channels, introducing slight random perturbations to capture natural variability. The seismic impedance

of these channels is determined based on a predefined contrast with the surrounding layers. However, these simplifications

reduce the realism of the impedance representation. In reality, terrestrial channel fills exhibit variations in facies and lithologies

(Miall, 2014; Mueller and Pitlick, 2013), which can result in considerable seismic impedance heterogeneity. Although under360

certain circumstances this heterogeneity could be diminished due to the relatively small size of terrestrial channels and

the inherent limitations of seismic resolution, assigning a relatively uniform impedance to terrestrial channels limits the

comprehensiveness of their seismic response. As a result, deep learning models trained on the meandering or tributary channel

subset may face challenges to accurately identify channels that exhibit heterogeneous seismic amplitudes, such as the example

shown in Figure 12. Additionally, for submarine canyons, seismic impedance variations related to grain size distribution within365
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sedimentary facies are not accounted for. The spatial transition from coarse-grained sediments in the channel thalweg to fine-

grained sediments along the channel margins (Jobe et al., 2017) is not represented in our impedance models, which further

limits the diversity and realism of the synthetic seismic volumes. Consequently, deep learning models trained on the submarine

canyon subset may face generalization challenges when applied to identify submarine canyons in field seismic volumes.

The third limitation relates to the realism of non-channel areas in the synthetic seismic volumes. In addition to not fully370

capturing various characteristics of wave propagation due to the use of 1D convolution for seismic synthesis, the synthetic

seismic volumes also lack structural diversity and stratigraphic variability. While folds and faults are included, their scales

are enlarged to be comparable to the horizontal extent of the seismic volumes (i.e., 6.4 km). Small-scale (e.g., hundreds

of meters) structural deformations, particularly those forming localized U- or V-shaped geometries, are not incorporated,

despite their common occurrence in field seismic volumes. Consequently, deep learning models trained on our dataset may375

struggle to distinguish between small-scale concave structures and U- or V-shaped channels, which could lead to false positive

results. Moreover, each layer in the seismic impedance model is assigned a uniform thickness and a relatively consistent

seismic impedance, resulting in a lack of stratigraphic variability in the synthetic seismic volumes. Given this limitation, it

is not surprising that a deep learning model trained on our dataset may infer that the primary distinction between channel

and non-channel areas is the presence of stratigraphic variability. This inference arises because, in the synthetic seismic380

volumes, channels—particularly submarine canyons—are the only structures exhibiting such variability. However, in field

seismic volumes, stratigraphic variability is widespread among non-channel areas. Consequently, deep learning models trained

on our dataset may produce false positives in non-channel areas with significant stratigraphic variability.

6 Conclusions

In this paper, we present a workflow for generating a large number of 3D synthetic seismic volumes containing paleochannels385

along with their corresponding segmentation labels. Using this approach, we construct the cigChannel dataset, which comprises

1,600 seismic volumes featuring three distinct types of paleochannels. This dataset is designed to address the scarcity of training

data for deep learning-based paleochannel identification in seismic volumes. Compared to previously used datasets (Pham et al.

(2019) and Gao et al. (2021)), the cigChannel dataset offers a more diverse and comprehensive collection of paleochannels.

The effectiveness of this dataset is demonstrated through its application to three field seismic volumes, where a simplified390

U-Net, trained on the cigChannel dataset, successfully identifies paleochannels with promising results. This highlights the

feasibility of using synthetic data to train deep learning models for paleochannel identifications, bridging the gap between

limited field seismic volume annotations and the need for efficient and robust seismic paleochannel interpretation. Beyond

providing a rich source of training samples for deep learning models, the cigChannel dataset and its generation workflow

hold potential for advancing seismic modeling techniques and supporting educational applications. For example, rock physics395

models incorporating fluvial or turbiditic facies could be developed to evaluate new seismic modeling approaches, while

the synthetic seismic volumes could serve as effective tools for demonstrating the influence of geological heterogeneities on

seismic data. However, synthetic seismic volumes in the cigChannel dataset still lack the diversity and realism of field seismic
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volumes, primarily due to the simplifications of channel modeling, seismic impedance representation, and the synthesis of

seismic volumes.400

In the future, we aim to enhance our workflow to improve the realism and diversity of the generated seismic volumes.

Terrestrial meandering and tributary channels will be modeled using stratigraphic approaches to better capture sedimentary

processes, thereby enhancing geological realism. The dataset will also be expanded to include a broader range of channel

types, such as braided and deltaic systems, further increasing its diversity. To improve seismic impedance modeling, we plan to

account for grain size distribution and its impact on impedance variations within channel sedimentary facies. Additionally, the405

current simplistic 1D convolution will be replaced with 3D convolution or full-waveform modeling to better capture seismic

data variability. These advancements will enhance the geological realism and diversity of our dataset, ultimately improving its

effectiveness for deep learning-based seismic paleochannel interpretation.

7 Code and data availability

The cigChannel dataset (Wang et al., 2024) can be accessed via Zenodo. It has been organized into four subsets, whose links410

are provided as followed:

1. Meandering channels: https://doi.org/10.5281/zenodo.11078794;

2. Tributary channel networks: https://doi.org/10.5281/zenodo.11073030;

3. Submarine canyons: https://doi.org/10.5281/zenodo.11079950;

4. Assorted channels: https://doi.org/10.5281/zenodo.11044512.415

Codes corresponding to the dataset generation workflow are provided on GitHub (https://github.com/wanggy-1/cigChannel).

The three seismic volumes demonstrated in the Application section can be downloaded from the following links:

1. Meandering channel example: https://drive.google.com/file/d/1ItOmdluWUfApzamA4mCeJNhnz_CYUZuf/view?usp=

drive_link;

2. Tributary channel example: https://drive.google.com/file/d/1l4-gBRE-SEoQkx7souERjtiRLpyABrJ-/view?usp=drive_link;420

3. Submarine canyon example: https://drive.google.com/file/d/1qxO8-onWFlffp7t3UHMtm-rHUmkkMvQx/view?usp=drive_

link.
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Appendix A: Channel modeling parameters

Table A1. Channel modeling parameters.

Channel type Parameter Value Reference

Meandering

channel

Width 200 m - 500 m 30 m - 15 km (Gibling, 2006)

Maximum depth 20 m - 50 m 1 m - 38 m (Gibling, 2006)

Strike N0◦E - N360◦E

Migration rate constant 40 m/yr - 50 m/yr Exaggerated to accelerate simulation; reference

range: 0.5 m/yr - 15 m/yr (Donovan et al., 2021;

Schook et al., 2017; Heo et al., 2009)

Dimensionless Chezy’s friction fractor 0.06 - 0.08 Exaggerated to accelerate simulation; reference

range: 0.002 - 0.005 (Chow, 1988)

Iteration time step 0.1 yr

Number of iterations 1000 - 2000

Tributary

channel

Maximum width 200 m - 400 m 10 m - 1000 m (Trigg et al., 2012)

Width/depth ratio 10 - 12 2 - 870 (Gibling, 2006)

Maximum number of iterations 8192

Number of Particles for early-termination 0

Submarine

canyon

Channel width 300 m - 400 m 195 m - 6.8 km (Shumaker et al., 2018)

Maximum depth 30 m - 40 m 4 m - 132 m (Shumaker et al., 2018)

Strike N0◦E - N360◦E

Migration rate constant 50 m/yr - 60 m/yr Exaggerated to accelerate simulation; reference

range: 2 m/yr - 14 m/yr (Biscara et al., 2013)

Dimensionless Chezy’s friction factor 0.07 - 0.08 Exaggerated to accelerate simulation process;

reference range: 0.002 - 0.005 (Chow, 1988)

Iteration time step 0.1 yr

Number of iterations 500 - 2000

Natural levee deposition rate 5 m/yr Exaggerated to accelerate simulation; reference

value: 0.66 m/kyr (Allen et al., 2022)

Natural levee width 6 km - 8 km Restrained to fit model’s extension; reference

range: 25 km - 40 km (Klaucke et al., 1998)

Channel incision rate 8 m/yr Exaggerated to accelerate simulation; reference

value: 80 m/myr (Englert et al., 2020)

Channel aggradation rate 8 m/yr Exaggerated to accelerate simulation; reference

value: 300 m/myr (Englert et al., 2020)
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Appendix B: Components of the cigChannel dataset

Table B1. Components of the cigChannel dataset.

Name Sample 
amount Contents Features Example

Meandering 
channel subset 400

1. Seismic volumes
2. Binary label volumes
3. Seismic impedance volumes

1. Meandering channels only
2. Horizontal, inclined, folded and faulted 

structures
3. Noise-free

Tributary 
channel 
network subset

400
1. Seismic volumes
2. Binary label volumes
3. Seismic impedance volumes

1. Tributary channel network only
2. Horizontal, inclined, folded and faulted 

structures
3. Noise-free

Submarine 
canyon subset 400

1. Seismic volumes
2. Binary label volumes
3. Seismic impedance volumes
4. Sedimentary facies volumes

1. Submarine canyons only
2. Horizontal, inclined, folded and faulted 

structures
3. Noise-free

Assorted 
channel subset 400

1. Seismic volumes
2. Multi-class label volumes
3. Seismic impedance volumes

1. Meandering channels, tributary channel 
networks and submarine canyons

2. Horizontal, inclined, folded and faulted 
structures

3. Noise-free

27



Appendix C: Illustrative codes of the dataset generation workflow425

1: # I mp or t a l l f u n c t i o n s .

2: from f u n c t i o n s import *
3:

4: # Number o f models .430

5: n_model = 400

6: # Data g e n e r a t i o n .

7: f o r i in range ( n_model ) :

8: # I n i t i a l i z e t h e model .

9: model = GeoModel ( )435

10: # A s s i g n P−wave v e l o c i t i e s .

11: model . add_vp ( )

12: # Add meander ing c h a n n e l s .

13: model . a d d _ m e a n d e r i n g _ c h a n n e l ( )

14: # Add t r i b u t a r y c h a n n e l s .440

15: model . a d d _ t r i b u t a r y _ c h a n n e l ( )

16: # Add submar ine canyons .

17: model . add_submar ine_canyon ( )

18: # Add i n c l i n a t i o n .

19: model . a d d _ d i p p i n g ( )445

20: # Add f o l d s .

21: model . a d d _ f o l d ( )

22: # Add f a u l t s .

23: model . a d d _ f a u l t s ( )

24: # Resampl ing model ' s z−c o o r d i n a t e s .450

25: model . r e s a m p l e _ z ( )

26: # Compute P−wave impedance .

27: model . compute_Ip ( )

28: # Compute r e f l e c t i o n c o e f f i c i e n t s .

29: model . compute_rc ( )455

30: # Make s y n t h e t i c s e i s m i c da ta .

31: model . m a k e _ s y n s e i s ( )

32: # Save da ta .

33: model . Ip . t o f i l e ( ) # Impedance volume .

34: model . s e i s m i c . t o f i l e ( ) # S e i s m i c volume .460

35: model . s e i s _ l a b e l . t o f i l e ( ) # Channel l a b e l volume .

36: model . f a c i e s . t o f i l e ( ) # S e d i m e n t a r y f a c i e s volume .
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Appendix D: Parameters of the seismic impedance model and Ricker wavelet

Table D1. Parameters of the seismic impedance model, Ricker wavelet and their reference values.

Parameter Value

Model extension

X 0 m - 6400 m

Y 0 m - 6400 m

Z 0 m - 1280 m

Grid spacing 25 m × 25 m × 5 m (X × Y × Z)

Layer

Seismic impedance 7000 m/s.g/cm3 - 16000 m/s.g/cm3

Impedance perturbation 300 m/s.g/cm3 - 500 m/s.g/cm3

Thickness 60 m - 150 m

Meandering channel Impedance contrast with covering layer (ε) 0 - 1

Tributary channel Impedance contrast with covering layer (ε) 0 - 1

Submarine canyon

Point bar impedance 6000 m/s.g/cm3 - 8400 m/s.g/cm3

Natural levee impedance 8400 m/s.g/cm3 - 14400 m/s.g/cm3

Abandoned meander impedance 8400 m/s.g/cm3 - 14400 m/s.g/cm3

Ricker wavelet Peak wavenumber 20 km-1 - 60 km-1
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