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Abstract. Identifying buried channels
::::::::::::
paleochannels in 3D seismic volumes is essential for characterizing hydrocarbon reservoirs

::::::::::
georesource

:::::::::::
development and offering insights into paleoclimate conditions, yet .

::::::::
However,

:
it remains a labor-intensive and

time-consuming task. The data-driven deep learning methods are highly promising to automate the
:::::
Deep

:::::::
learning

:::
has

::::::
shown

::::
great

:::::::
promise

::
in

::::::::::
automating seismic channel interpretation with high efficiency and accuracy, as they have already achieved

significant success
:::::::::::
demonstrated in similar image segmentation tasks within the field of

:
in
:
computer vision (CV). However

::
Yet,5

unlike the CV domain, the field of seismic exploration lacks a comprehensive benchmark dataset for channels, severely

limiting
::::::
labeled

:::::
dataset

:::
for

::::::::::::
paleochannels,

:::::::::::
significantly

::::::::
hindering the development, application, and evaluation of deep learning

approaches in seismic channel interpretation. Manually labeling
::::::
models

::
in

:::
this

:::::
field.

:::::::
Manual

:::::::
labeling

::
of 3D channels in field

seismic volumes can be a
:::::::::::
paleochannels

::
is
:
tedious and subjectivework and most importantly, many field seismic volumes are

proprietary and not accessible to most of the researchers. To overcome these limitations,
:::::::::
potentially

::::::
leading

:::
to

::::::::::
mislabeling10

:::
that

::::::::
degrades

:::::
model

::::::::::::
performance.

::
To

:::::::
address

::::
this,

:
we propose a comprehensive workflow of geological channel simulation

and geophysical forward modeling to create a massive-scale
:::::::
workflow

:::
to

:::::::
generate

::
a
:
synthetic seismic datasetcontaining

:
,

:::::::::
cigChannel

:
,
::::::::
consisting

::
of

:
1,200

:::
600 256×256×256 seismic volumes with labels of more than

:::
over 10,000 diverse channels and

their associated sedimentary facies
:::::
labeled

::::::::::::
paleochannels. It is by far the most comprehensive dataset for channel identification,

providing realistic and
:::
the

:::::
largest

:::::::
dataset

::
to

::::
date

:::
for

:::::::
seismic

:::::::::::
paleochannel

::::::::::::
interpretation,

::::::::
featuring

:
geologically reasonable15

seismic volumes with meandering
::::::::
accurately

::::::
labeled

::::::::::
meandering

::::::::
channels,

:::::::
tributary

:::::::
channel

:::::::
networks, distributary, and submarine

channels. Trained with this synthetic dataset, a
:::::::
canyons.

::
A convolutional neural network (simplified from the U-Net) model

performs well in identifying various types of channels in
::::::
trained

:::
on

:::
this

::::::
dataset

::::::::
achieves

:::
F1

:::::
scores

:::
of

::::
0.52,

:::::
0.73,

::::
and

::::
0.63

::
in

:::::::
detecting

:::::::::::
meandering

::::::::
channels,

:::::::
tributary

:::::::
channel

::::::::
networks,

::::
and

:::::::::
submarine

:::::::
canyons

::
in

:::::
three field seismic volumes, which

indicates the diversity and representativeness of
::::::::::
respectively.

::::::::
However,

:::
the

::::::::
synthetic

::::::
seismic

:::::::
volumes

:::
in

:::::::::
cigChannel

:::
still

::::
lack20

::
the

:::::::::
variability

::::
and

::::::
realism

::
of
:::::

field
::::::
seismic

:::::
data,

:::::::::
potentially

::::::::
affecting

:::
the

::::
deep

:::::::
learning

:::::::
model’s

:::::::::::::
generalizability.

:::
To

::::::::
facilitate

:::::
further

::::::::
research,

:::
we

::::::::
publicly

::::::
release

:
the dataset. We have made the dataset, codes generating the data , and trained model

publicly available for facilitating further research and validation of
:::
data

::::::::::
generation

:::::
codes,

::::
and

:::
the

::::::
trained

::::::
model,

:::::::
aiming

::
to

:::::::
advance deep learning approaches for seismic channel interpretation.
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Figure 1. Workflow for generating the cigChannel dataset. First, we create topographic
:::
3D models of

:::
three

:::::
types

::
of

::::::::::::
paleochannels:

meandering
::::::
channels, distributary

:::::::
tributary

::::::
channel

:::::::
networks

:
and submarine channels

:::::
canyons. Second, we build 3D seismic impedance

models with layered structure
::::::
multiple

::::
layers

:
and place the

::::
these

:
channels at layer boundaries as impedance anomalies. Third, the impedance

models are used to calculate seismic reflection coefficients, which are subsequently convolved with the Ricker wavelet
::::::
wavelets to create

::::::
synthetic

:
seismic volumes. Finally, seismic reflections of the paleochannels are automatically labeled.

::::
Note

:::
that

::::
both

::
the

:::::::
channel

::::::
models,

:::::
seismic

:::::::::
impedance

:::::
models

:::
and

::::::
seismic

:::::::
volumes

::
are

::
in
:::::
depth

::::::
domain.

1 Introduction25

Paleochannels are buried river channels that have been preserved in the geological record. They can serve as reservoirs

for hydrocarbons (Clark and Pickering, 1996; Bridge et al., 2000; Hein and Cotterill, 2006) and
:::
not

::::
only provide insights into
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paleoclimate conditions (Leigh and Feeney, 1995; Nordfjord et al., 2005; Sylvia and Galloway, 2006)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Leigh and Feeney, 1995; Nordfjord et al., 2005; Sylvia and Galloway, 2006)

:
,
::
but

::::
also

:::::
serve

::
as

::::::::
reservoirs

:::
for

::::::::::
groundwater

::::::::::::::::::::::::::::::::::::::
(e.g., Revil et al., 2005; Samadder et al., 2011),

::::::::::
geothermal

:::::
energy

:::::::::::::::::::::::::::::::::::::::
(e.g., Crooijmans et al., 2016; Kang et al., 2022)

:
,
::
ore

:::::::
deposits

::::::::::::::::::::::::::::::::::::
(e.g., Heim et al., 2006; Oraby et al., 2019)

:::
and

:::::::::::
hydrocarbons

::::::::::::::::::::::::::::::::::::::::::
(e.g., Clark and Pickering, 1996; Bridge et al., 2000)30

. Paleochannels can be identified in seismic volumes by their distinct shapes and sedimentary structures that differ from the

surrounding rock formations. Although paleochannels are considered as geobodies, interpreters are limited to view them slice-

by-slice in seismic volumes. This limitation significantly increases the complexity and time of interpreting paleochannel bodies

in large seismic volumes. Moreover, the historical tectonic movement may introduce deformations such as foldings to the

paleochannels, making them even more difficult to recognize.35

To address those issues, automatic paleochannel identification methods based on 3D convolutional neural networks (CNNs)

(Pham et al., 2019; Gao et al., 2021) are
::::
have

:::::
been developed. The 3D CNNs are designed to capture volumetric features

by performing 3D convolutions (Ji et al., 2012). They treat paleochannels as bodies rather than slices as human interpreters

typically see, which gives them the advantage in identifying paleochannels
:::
have

::::
the

::::::::
advantage

:::
of

::::::::
handling

::::::::::::
paleochannels

::::::::
according

::
to

:::::
their

:::
3D

::::::
nature,

:::
as

:::::::
opposed

::
to
::::

the
:::::::::::
slice-by-slice

::::::
visual

:::::::::::
investigation

::
of

::
a
::::::
human

::::::::::
interpreter.

::::
This

:::::::::
advantage40

:
is
::::::::::

particularly
:::::::::

significant
:::::

when
::::

the
::::::::::::
paleochannels

::::
have

:::::
been deformed by historical tectonic movements

::::
(e.g.,

::::::
folding

::::
and

:::::::
faulting),

::::::
which

::::::
disrupt

:::::
their

:::::::::
continuity

:::
and

::::::
makes

:::::
them

:::::
more

::::::::::
challenging

::
to

:::::
track

::
in

::
a
:::::::::
slice-wise

::::
view. Another notable

advantage is their efficiency. Once trained, the network can rapidly identify paleochannels in a large seismic volume. However,

the main limitation of applying CNNs for paleochannel identification is the lack of labeled paleochannel samples for training.

Unlike deep learning for computer vision, which benefits from numerous large datasets with labeled images such as ImageNet45

(Deng et al., 2009) and COCO (Lin et al., 2014), currently there is no publicly available dataset of field seismic volumes

with labeled paleochannels. To create such a dataset, one needs to have access to
:::::
access

:
a large amount of field seismic

volumes and correctly label the paleochannels. However, many field seismic volumes are proprietary and not available to

most of the researchers (Vizeu et al., 2022). Besides, the
:::::::
labeling

::::::::::::
paleochannels

:::
can

::
be

::::::::::
challenging

::::
due

::
to

:::
the

:
complexity of

field seismic volumesadds difficulty to correctly labeling the paleochannels,
::::

and
::::::
human

::::
bias

::::
may

:::::::::
introduce

:::::::::
uncertainty

:::
to50

::
the

::::::
labels

:::::::::::::::
(Bond et al., 2007). The label noise produced by mislabeling will deteriorate the performance of supervised learning

(Pechenizkiy et al., 2006; Nettleton et al., 2010).
::::::::::
Additionally,

:::
the

:::::::
labeling

::::::
process

::::
will

::
be

::::::::::::::
time-consuming

:::
and

:::::::::::::
labor-intensive.

While training the networks with a large amount of labeled
::::::
creating

::
a

::::::
dataset

::
by

::::::::
labeling

::::::::::::
paleochannels

::
in field seismic

volumes is currently not an option
::::::::
expensive, an alternative solution is to use the synthetic seismic volumes, which are generated55

by
::::::
through

:
a series of simulation processes in order to mimic the field seismic volumes. Although lacking in sophisticated

features, the synthetic seismic volumes are controllable, allowing us to tailor the objectives that we want the network to learn

::::::
features

::::
that

:::
our

::::::::
network

::::
will

::::
learn

:::
to

:::::::
segment. Moreover, mislabeling can be avoided in synthetic seismic volumes since

the locations of objectives are known during the simulation process. Synthetic seismic volumes have been proven effective as

training data for networks to identify various objectives in field seismic volumes, such as faults (Wu et al., 2019; Zheng et al.,60

2019), seismic horizons (Bi et al., 2021; Vizeu et al., 2022), paleokarsts (Wu et al., 2020b; Zhang et al., 2024) and paleochannels

(Pham et al., 2019; Gao et al., 2021). As for paleochannel identification, the synthetic seismic datasets created by Pham et al.
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(2019) and Gao et al. (2021) only simulate stacked and single meandering channels, respectively, while the frequently observed

distributary (Payenberg and Lang, 2003; Li et al., 2016) and submarine (Deptuck et al., 2007; Gee et al., 2007) channels
:::::::
tributary

::::::
channel

::::::::
networks

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Nordfjord et al., 2005; García et al., 2006; Darmadi et al., 2007)

:::
and

::::::::
submarine

:::::::
canyons

::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Deptuck et al., 2007; Gee et al., 2007; Covault et al., 2021)65

are not included. Considering the diversity of paleochannels in field seismic volumes, creating a dataset with various types of

paleochannels is necessary for enhancing the networks’ generalizability.

In this paper, we propose a comprehensive workflow (Figure 1) for generating a massive-scale dataset of synthetic seismic

volumes and labels of diverse paleochannels . In this workflow, we
:::
with

:::::
three

:::::
types

::
of

::::::::::::
paleochannels

:::
and

::::
their

::::::
labels.

:::
We

:
first

build numerous 3D models of meandering , distributary and submarine channelsfollowing the modeling methods developed70

by Howard and Knutson (1984), ? and Sylvester et al. (2011), respectively
::::::::
channels,

:::::::
tributary

:::::::
channel

::::::::
networks

:::
and

:::::::::
submarine

:::::::
canyons. Parameters that control the modeling process are randomized within a reasonable range

:::::::::
reasonable

::::::
ranges in order

to increase the diversity of channel models. Second, we build seismic impedance models with layered structure
:::::::
multiple

:::::
layers and place the channels at layer boundaries as impedance anomalies. Third, the impedance models are used to calculate

seismic reflection coefficients, which are subsequently convolved with the Ricker wavelet
:::::
Ricker

::::::::
wavelets to create synthetic75

seismic volumes. Finally, channels in the seismic volume can be automatically labeled since their positions are already known.

Using this workflow, we have created a benchmark dataset named cigChannel for deep learning-based seismic paleochannel

interpretation. This dataset , to our best knowledge, is by far the largest one that contains 1,200
:::
600

:
256×256×256 seismic

volumes and labels of more than 10,000 diverse paleochannels. The effectiveness of this dataset is
:::
has

::::
been validated by training

a CNN to identify various types of paleochannels in
::::::::::
meandering

::::::::
channels,

:::::::
tributary

:::::::
channel

:::::::
networks

::::
and

:::::::::
submarine

:::::::
canyons80

::
in

::::
three

:
field seismic volumes

:
,
::::::::::
respectively. It should be noted that although we have significantly improved the diversity of

paleochannels compared with previous datasets, there is no guarantee that this dataset covers every form of paleochannel in field

seismic volumes. Therefore, a Python package of the dataset generation workflow (https://github.com/wanggy-1/cigChannel
:
,

see Appendix C for illustrative
:::::::::::
demonstration

:
codes) is also provided for customizing the paleochannels and facilitating further

development.85

2 Dataset generation workflow

In this section, we will elaborate
::::::
outline the dataset generation workflowto explain details of the geological and geophysical

modeling in generating the dataset. First, we will describe ,
::::::::

covering
:::
the

:::::
steps

:::
for

:::::::::::
constructing

:::
3D

:::::::
channel

:::::::
models

::::
and

::::::::::
synthesizing

:::::::
seismic

:::::::
volumes.

::::
We

:::
will

:::::
begin

:::
by

:::::::::
describing the modeling process for meandering

:::::::
channels,

::::::::
tributary

:::::::
channel

:::::::
networks

::::
and

:::::::::
submarine

:::::::
canyons.

:::::::::
Following

::::
that, distributary and submarine channels. Then, we will explain how to create90

synthetic seismic volumes
:::::
build

::::::
seismic

::::::::::
impedance

:::::::
models based on these channel models , including designing folded

impedance models with channels and simulating realistic
:::
and

:::
use

:::
the

:::::::::
impedance

::::::
models

::
to

:::::::
generate

::::::::
synthetic seismic volumes.

4
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Figure 2. Meandering channel modeling process based on the open-source Python package meanderpy (?)
:::::::::::::
(Sylvester, 2021). First, we create

(a) a straight channel with some minor perturbations. Then, (b) the channel begins to migrate, leading to the formation of multiple meanders.

(c) The channel curvature increases as the migration continues, eventually causing a channel intersection, where (d) the channel cutoff will

occur, forming the oxbow lake. Lastly, (e) the U- and (f) V-shaped channel cross-sections are used to define the channel topography.

2.1 Meandering channel modeling

Meandering channels are among the most frequently observed river channels
:
a
:::::::
common

:::::
type

::
of

::::
river

::::::::
channels

::::
that

:::
can

:::
be

:::::
found

::
in

:::::
many

::::::
seismic

::::::::
volumes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Noah et al., 1992; Carter, 2003; Wood, 2007; Wang et al., 2012; Alqahtani et al., 2017)

:
.95

::::
They

:::
are distinguished by their sinuous paths. The continuous interaction between water and the riverbed can lead to erosion on

the outer bank and deposition on the inner bank, causing the channel to migrate over time and increasing its curvature. The key

to create a realistic meandering channel is to simulate its migration. We use the open-source Python package meanderpy (?)

::::::::::::::
(Sylvester, 2021) for this purpose, which employs a kinematic simulation method that computes the river migration rate as a

weighted sum of upstream curvatures (Howard and Knutson, 1984; Sylvester et al., 2019).
::::
This

::::::
simple

::::::::
kinematic

:::::
model

:::::::
focuses100

::
on

:::
the

::::::::
influence

::
of

::::::::
upstream

:::::::::
curvatures

::
on

::::
river

:::::::::
migration

:::
and

::::::
cannot

::::::
capture

::::::::
complex

::::::::
processes

::::
such

::
as

:::::::::
compound

::::::::
meander

::::::::
formation

::::::
without

::::::
cutoffs

::::::::::::::::::::::::
(Frascati and Lanzoni, 2009).

::::::::
However,

::
it
:::::::
remains

::::::::
sufficient

::
for

:::::::::
generating

::::::::::::::
morphologically

:::::::
realistic

:::::::::
meandering

::::::::
channels.

:
The meandering channel simulation process is demonstrated in Figure 2. We start with a straight channel

with some minor perturbations, which provide initial curvatures for channel migration (Figure 2a). The channel migrates over

time and forms meanders at its upstream (Figure 2b). As the migration continues, curvature of the meander increases and105
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eventually leads to channel intersection (Figure 2c), where the channel cutoff will occurand form the oxbow lake ,
::::::::
resulting

::
in

::
an

:::::::::
abandoned

:::::::
channel (Figure 2d). The channel migration ends when it reaches the maximum number of iteration. We neglect

the oxbow lake
::::::::
abandoned

:::::::
channel

:
and extract the centerline from a random segment of the most recent

:::::::::
meandering

:
channel,

which has to be long enough to span a 256×256 square grid with a cell size of 25 m after arbitrary rotation.

The centerline is randomly placed on the grid and rotated by a random
:::::
certain

:
angle between 0◦and 360◦. We define the110

channel topography using the simplified
:::::
Since

::::::::::
meandering

:::::::
channels

:::
in

::::
field

::::::
seismic

::::::::
volumes

:::::::
typically

:::::::
exhibit U- and

:
or

:
V-

shaped channel cross-sections (
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Zhuo et al., 2015; Alqahtani et al., 2017; Zeng et al., 2020; Manshor and Amir Hassan, 2023)

:
,
::
we

::::
use

::::::::
simplified

:::
U-

::
or

::::::::
V-shaped

:::::::
profiles

::
to

::::::
define

:::
the

::::::
channel

:::::::::::
topography,

::
as

::::::
shown

::
in Figures 2e and 2f). The U-shaped

channel is typically found in gentle terrain, formed mainly by lateral erosion. On the contrary, the V-shaped channel usually

appears in areas with steep gradients, shaped primarily by vertical erosion. The .
::::
The simplified U-shaped channel is defined115

as a parabolic function:

Z(x) =

4Dc(x/Wc)
2 −Dc, x≤Wc

0, x >Wc

, (1)

where x is the Euclidean distance from the centerline to any point on the grid, Dc is the maximum depth of the channel (which

will be denoted as channel depth hereafter for simplicity) and Wc is the channel width. The simplified V-shaped channel is

defined as a combination of Gaussian and parabolic functions:120

Z(x) =

min[p(x),g(x)], x≤Wc

0, x >Wc

, (2)

where p(x) is the parabolic function in Equation (1) and

g(x) =−Dce
− x2

2(Wc/4)2 . (3)

Although these simplified channel cross-sections may not precisely represent the real ones, they can capture the
::::
their

:
main

features at a low computational cost. We create diverse topographic models of the meandering channel by randomizing the125

modeling parameters within a reasonable range
:::::::::
reasonable

::::::
ranges (see Table A1). Some examples are demonstrated in Figure

5a, showing various meandering channels with different widths, depths and meander wavelengths.

2.2 Distributary channel modeling

:
It
::::::
should

::
be

:::::
noted

::::
that

::
in

:::
this

::::::
study,

::
we

:::::
focus

:::
on

:::::::::
identifying

:::
the

:::::
most

:::::
recent

::::::::::
meandering

:::::::
channels

::
in
:::::
their

::::::::
migration

::::::::
histories.

::::::::
Therefore,

:::
all

:::
the

::::::::::
meandering

:::::::
channel

::::::
models

::::
only

::::::
include

:::
the

::::
last

::::::
channel

:::::
form

::
of

:::
the

::::::::
migration

:::::::
process.

::::
The

::::::::::::
corresponding130

::::::::::
sedimentary

:::::
facies

::::::
formed

::::::
during

:::
the

::::::
channel

:::::::::
migration

:::::::
process,

::::
such

::
as

::::
point

:::::
bars,

::::::
natural

:::::
levees

:::
and

:::::::::
abandoned

::::::::
channels

:::
(or

:::::
oxbow

::::::
lakes),

:::
are

:::
not

::::::::
included.

::
It
::
is

::::
also

:::::
worth

::::::
noting

:::
that

:::
the

:::::
width

::::
and

::::::::
maximum

:::::
depth

:::
of

::::
each

:::::::
channel

:::
are

:::::
fixed,

:::::
while

::
in

:::::
nature

::::
they

::::::::
generally

::::::
exhibit

::::::
certain

::::::
degree

::
of

:::::::::
variability.
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Distributary channel modeling process based on the open-source C++ package soillib (?). First, we generate (a) a map of normalized water

discharge using the soillib package. Second, we create (b) the river mask by binarizing the normalized water discharge with a threshold

value of 0.4, where values greater than this threshold are considered as rivers. Third, we compute (c) the Euclidean distance to rivers and (d)

the normalized width of the nearest river, which are subsequently used as parameters in a parabolic function to define

(e) the channel topography. Finally, to avoid abrupt topographic shifts, a Gaussian filter is applied to create (f) a smoothed channel topography.

(b)(a) (c)

(d) (e) (f)

Figure 3.
::::::
Tributary

:::::::
channel

::::::
network

::::::::
modeling

::::::
process

::::
based

:::
on

::
the

::::::::::
open-source

::::::
package

::::::
soillib

::::::::::::::
(McDonald, 2020b)

:
.
::::
First,

:::
we

:::::::
generate

::
(a)

:
a
::::
map

::
of

::::::::
normalized

:::::
water

:::::::
discharge

:::::
using

::
the

:::::
soillib

::::::
package.

::::::
Second,

:::
we

:::::
create

::
(b)

:::
the

::::
river

::::
mask

::
by

::::::::
binarizing

:::
the

::::::::
normalized

:::::
water

:::::::
discharge

:::
with

::
a
:::::::
threshold

::::
value

::
of

:::
0.4,

:::::
where

:::::
values

:::::
greater

::::
than

:::
this

:::::::
threshold

::
are

::::::::
considered

::
as
:::::
rivers.

:::::
Third,

:::
we

::::::
compute

:::
(c)

::
the

::::::::
Euclidean

::::::
distance

::
to

::::
rivers

::::
and

::
(d)

:::
the

:::::::::
normalized

::::
width

:::
of

::
the

::::::
nearest

::::
river,

:::::
which

:::
are

::::::::::
subsequently

::::
used

::
as

:::::::::
parameters

:
in
::

a
:::::::
parabolic

:::::::
function

::
to

::::
define

:::
(e)

:::
the

::::::
channel

:::::::::
topography.

::::::
Finally,

::
to

::::
avoid

:::::
abrupt

::::::::::
topographic

:::::
shifts,

:
a
:::::::
Gaussian

::::
filter

::
is

::::::
applied

:
to
:::::

create
:::
(f)

:
a
::::::::
smoothed

::::::
channel

:::::::::
topography.

2.2
::::::::

Tributary
:::::::
channel

::::::::
network

::::::::
modeling

Distributary channels are commonly observed in river deltas, where the river channel splits into multiple smaller channels135

as it approaches the river mouth and spreads out into the sea or lake. Numerous numerical modeling methods based on

hydrodynamics and morphodynamics have been proposed to simulate river deltas and the associated distributary channels

(Seybold et al., 2007; Edmonds and Slingerland, 2007; Geleynse et al., 2011; Liang et al., 2015). However, these methods are

time-consuming since they are designed to simulate detailed fluid dynamics.
:
A

:::::::
tributary

:::::::
channel

:::::::
network

::
is

:
a
:::::
result

::
of

:::::::
smaller

::::
rivers

::::::::::
(tributaries)

:::::::
flowing

::::
into

:
a
::::
large

:::::
main

::::
river.

::
It
::::::::
generally

::::::
exhibit

::
a

::::::::
branching

::
or

:::::::
tree-like

::::::::
structure.

:
To efficiently generate140
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a large number of distributary channel models
::::::::
extensive

:::::::
tributary

:::::::
channel

:::::::::
networks

:::
that

::::
are

::::::::::::::
morphologically

:::::::::
reasonable,

we adopt the open-source C++ package soillib (?), which is
::::::::::::::::
(McDonald, 2020b),

::::::
which

:::::
offers

:
a fast implementation of

particle-based hydraulic erosion
:::
that

:::
can

::::::
create

:
a
::::::::::::::
morphologically

::::::::
resonable

:::::::
tributary

:::::
river

:::::::
network

::
in

:::::
about

::
10

::
to
:::
20

:::::::
seconds

::::::::::::::::
(McDonald, 2020a).

The soillib
:::::::
package is programmed to spawn hundreds of thousands of water particles at random positions on a

:::::::::::
mountainous145

terrain generated by layered random Perlin noise. The
::::
water

:
particles move across the terrain following classical mechanics and

engage in mass transfer with the surface, eventually forming the distributary rivers
:
a

:::::::
tributary

::::
river

:::::::
network. Figure 3a shows

the normalized water discharge map of a distributary
:::::::
tributary

:
river network generated by the soillib package on a 256×256

square grid with a cell size of 25m. To define the river channel topography, we first binarize the water discharge by a threshold

(e.g., 0.4), where values greater than this threshold are considered as rivers (Figure 3b). Next, we compute the Euclidean150

distance from the river to each point on the grid (Figure 3c) and the normalized width of the nearest river (Figure 3d), which

is represented by the normalized water discharge. We then define the channel topography using a parabolic function similar to

that in Equation (1):

Zi(xi) = min[4Dc(
xi

Wcαi
)2 −Dc,0], (4)

where the subscript i denotes the i-th point on the grid, x is the distance to river, Dc is the
::::::::
maximum channel depth, Wc155

is the maximum channel width and α is the normalized width of the nearest river. The main modification is replacing the

constant channel width Wc with a point-wise channel width Wcαi. By doing so, we are able to create channels with varying

widths, as demonstrated in Figure 3e. The variation in channel width is controlled by α, where the mainstream is wider and the

distributaries
::::::::
tributaries are narrower. However, the channel topography demonstrated in Figure 3e exhibits abrupt shifts at the

channel edge due to the inherent width of the river mask. Therefore, we subsequently apply a Gaussian filter to smooth it and160

the final channel topography is shown in Figure 3f. When implementing the particle-based hydraulic erosion, randomness in

the initial terrain and positions of water particles ensure the diversity of distributary
:::::::
tributary

:
channels, which is demonstrated

in Figure 5b. Diversity of the channel topographic models can be further increased by using random
::::::::::
randomizing

:::::::::
maximum

channel widths and depths within a reasonable range
:::::::::
reasonable

::::::
ranges (see Table A1).

::::::
Similar

:::
to

:::
the

::::::::::
meandering

:::::::
channel

::::::
models,

::::
our

::::::
models

:::
of

:::::::
tributary

:::::::
channel

::::::::
networks

:::
are

::::
also

::::::::
designed

:::
for

:::::::
training

::::
deep

::::::::
learning

::::::
models

::
to
:::::::

identify
:::

the
:::::

final165

::::
form

::
of

:::
the

::::::::
tributary

:::::::
channel

::::::::
networks.

:::::::::
Therefore,

::::
they

:::
do

:::
not

::::::
include

::::
any

::::::::::
sedimentary

:::::::
process

::::::
during

:::
the

::::::::
formation

:::
of

:::
the

:::::::
tributary

:::::::
channel

::::::::
network.

::
As

::
a
::::::
result,

:::
our

::::::::
workflow

:::::
only

::::::::
generates

::::::::::::::
morphologically

:::::::::
reasonable

::::::::::
meandering

::::::::
channels

::::
and

:::::::
tributary

:::::::
channel

::::::::
networks.

:::::
They

::::
lack

:::::::::::
stratigraphic

::::::::::
components

:::::::::
compared

::
to

:::::
those

::::::::
generated

:::
by

:::::::::::
stratigraphic

::::::
models

:::::
(e.g.,

:::::
Flumy

:::::::::::::::::
(Cojan et al., 2005)

:::
and

::::::
Sedsim

:::::::::::::::
(Wild et al., 2019)

:
),
::::::
which

:::
are

::::
more

:::::::::::
geologically

:::::::
realistic.

2.3 Submarine channel
::::::
canyon modeling170

The submarine channel is a type of underwater channel formed on the ocean floor, particularly on the margin of continental

shelf
:::::::::
Submarine

:::::::
canyons

:::
are

::::::::::
steep-sided

::::::
valleys

:::
cut

::::
into

:::
the

:::::::::
continental

::::
shelf

::
at
:::

the
::::::::::

shelf/slope
:::::
break

::::::::::::::::::
(Normark et al., 1993)

:
.

::::
They

:::
are

::::::
similar

::
to

:::::
river

:::::::
canyons

::
on

::::
land

:::
but

:::
are

:::::::
formed

::
by

:::
the

:::::::::
movement

::
of

::::::::
turbidity

:::::::
currents.

::::
The

:::::::
pathway

::
of

:::
the

::::::::
turbidity

8
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Figure 4. Submarine channel
::::::
canyon modeling using the open-source Python package meanderpy (?)

::::::::::::
(Sylvester, 2021). (a) Lateral migration

of the
:
a submarine channel

::::
within

:::
the

::::::::
submarine

::::::
canyon. (b) Channel erosional surface.

:::::
erosion (c) Deposition of point bars and natural

levees. (d) The channel migrates towards the outer bend and erode parts of the sediments. (e) Vertical component of the channel trajectory

during the migration process, which is modified from Sylvester et al. (2011), showing an initial channel incision and a later aggradation. (f)

The channel cross-section
::
of

::
the

::::::::
submarine

::::::
canyon at the red dashed line in (a), showing a large-scale erosional surface, a layered structure

within the channel and a wedge-like natural levee after 1,000 times
::::::
iterations

:
of

:::::
channel

:
migration.

::::::
current

::
is

:::::::
referred

::
to

::
as

::
a

:::::::::
submarine

:::::::
channel.

::
In

::::
this

:::::
work,

:::
we

:::
aim

:::
at

::::::::
modeling

:
a
:::::::
specific

::::
type

::
of

:::::::::
submarine

:::::::
canyon

::::::
related

::
to

:::
the

:::::::::
submarine

:::::::::::
channel-levee

::::::
system

::::::::::::::::::::::::::::::::::::::::::::::::::
(Deptuck et al., 2003; Kane et al., 2007; Catterall et al., 2010)

:
,
::::::::
assuming

:::
the

::::::::
turbidity175

::::::
current

::::::
carries

::::::
enough

:::::::::::
fine-grained

::::::::
sediments

:::
to

::::
form

:::::::
natural

:::::
levees. These channels are primarily carved out by turbidity

currents, which carry loads of sediment from shallow coastal areas and move downslope to deeper parts of the ocean under

the influence of gravity. Similar to terrestrial river channels which
:
a
::::::::
terrestrial

::::
river

:::::::
channel

::::::
which

:::
can

:
meander across the

floodplain , submarine channels also exhibit meandering patterns on the ocean floor, especially in areas of gentle slope. The

meanders of submarine channels
::
on

:::::
land,

:
a
:::::::::
submarine

:::::::
channel

:::
can

:
also migrate laterally and undergo cutoffs

::
on

:::
the

::::::
seabed.180

However, a major difference
:::
key

:::::::::
distinction

:
between terrestrial and submarine channels lies in the significant

::::::::::
pronounced

9



vertical incision and aggradation of submarine channels,
:::::
which

:::
are driven by the powerful erosive and depositional

:::::
erosion

::::
and

::::::::
deposition

:
processes associated with turbidity currents

::
the

::::::::
turbidity

::::::
current. As a result, submarine channels generally pocess

:::::::
canyons

:::::::
generally

::::::
exhibit

:
a large-scale erosional surface and a layered structure within the channel

::::::
erosion

::::::
surface

:::
and

:::::::
layered

::::::::
sediments

::::::
within

:::
the

::::::
canyon, which are discernible in high-resolution seismic profile (Kolla et al., 2007).185

To model the large-scale erosional surface and layered structure within the channel
::::::::
sediments

:::::
within

:::
the

:::::::::
submarine

::::::
canyon,

we adopt the a
:
modeling method based on submarine channel trajectories (Sylvester et al., 2011), which is also implemented in

the meanderpy. The modeling process is illustrated in Figure 4. We first simulate
:
It
::::
first

::::::::
simulates the lateral migration of the

:
a

submarine channel (Figure 4a) using the same algorithm to simulate that of the meandering channel. At each iteration during

the migration process, a parabolic function shown in Equation (1) is used to define the surface of channel erosion (Figure 4b),190

which is followed by the deposition of point bars and natural levees (Figure 4c). Point bars are accumulated sediments on the

inner bends of the channel where the flow velocity is lower. Their top surface is defined using a combination of parabolic and

Gaussian function as shown in Equation (2) and (3). For modeling convenience, point bars are created on both inner and outer

bends, with those on the outer bends will be subsequently eroded. Natural levees are structures that form along the sides of

submarine channels
:
a
:::::::::
submarine

::::::
channel

:
when the turbidity currents

:::::
current

:
overflow the channel banks. They typically exhibit195

a wedge-like shape because the turbidity currents
:::::
current

:
lose energy and sediments as they

::
it move away from the channel

margins. The natural levee thickness is defined as follows:

T (x) =


Tmax
Wl

(x− Wc−Wl

2 ), x≥Wc

Tmax, x <Wc

, (5)

where x denotes the distance to channel centerline, Tmax is the maximum levee thickness, Wl is the levee width on one side of

the channel and Wc is the channel width. After the deposition of point bars and natural levees, the channel will migrate towards200

its outer bends and erode parts of these sediments (Figure 4d). The erosion and deposition processes repeat until the channel

migration ends. In the meantime of lateral migration, the channel also experience vertical incision and aggradation (Figure

4e). At the end of migration, the submarine channel will exhibit
::::::::
movement

::
of

:::::::::
submarine

:::::::
channel

:::
and

:::::::::
deposition

::
of

:::::::::
sediments

:::
will

:::::
create

:
a large-scale erosional surface,

:::::::::
submarine

::::::
canyon

::::
with

:
a wedge-like natural levee , and a layered structure within

the channel, which consists of oxbow lake sediments and
::::
outer

:::::
levee

:::
and

:::::::
layered

:::::::::
sediments

::::::
within

:::
the

:::::::
canyon.

:::::::::
Sediments205

:::::
within

:::
the

:::::::
canyon

::::::
consist

::
of

:
interbedded layers of

::::
sandy

:
point bars and natural levees

:::::
muddy

:::::
inner

::::::
levees,

::
as

::::
well

:::
as

:::::
muds

::
of

:::::::::
abandoned

::::::::
meanders

:
(Figure 4f). To create diverse submarine channels

:::::
forms

::
of

:::::::::
submarine

:::::::
canyons, we use a random set

of modeling parameters within a reasonable range
::::::::
reasonable

::::::
ranges

:
(see Table A1), and some of the resulting topographic

models are demonstrated
:::::::::
submarine

::::::
canyon

::::::
models

:::
are

::::::
shown in Figure 5c.

2.4 Seismic volume simulation210

After constructing over 10,000
::::::
channel

:
topographic models covering meandering

::::::::
channels,

:::::::
tributary

:::::::
channel

::::::::
networks

::::
and

::::::::
submarine

::::::::
canyons, distributary and submarine channels, we proceed to create synthetic seismic volumes based on these

models. The first step is to define the seismic impedance, which is a crucial parameter for simulating seismic events. In
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Figure 5. Diverse topographic models of (a) meandering
:::::::
channels, (b) distributary

:::::::
tributary

::::::
channel

::::::::
networks

:
and (c) submarine

channels
::::::
canyons.

seismic exploration, seismic waves from an artificial source travel through the subsurface rock mass, and part of the waves

will be reflected back to the surface at the boundaries of two geological layers with a contrast in seismic impedance. The215

reflected seismic waves will form the seismic events, which are considered to be
::
as

:
representatives of layer boundaries, and

their amplitudes are related to the contrast in seismic impedance. We start by generating 3D seismic impedance models with

horizontal layers. In each layer, we add some minor random perturbations to the impedance to make it more realistic. Details

about the configuration of the impedance model are listed in Table D1. The channel topographic models are then placed at the

layer boundaries, and the seismic impedance of the channel is defined according to the channel type.220

Within meandering and distributary
:::::::
channels

::::
and

:::::::
tributary channels, we fill them with uniform impedance. The impedance

value
:::::::
relatively

:::::::
uniform

::::::::::
impedance

::::
with

:::::
some

:::::
minor

:::::::::::
perturbations

:::::::::::::
(approximately

::::
100

::::::::::
m/s.g/cm3).

::::
The

::::::
average

::::::::::
impedance

::::
value

:::
of

:::
the

::::::
channel

:
is determined by a parameter ε, which is defined as the impedance contrast between the channel and its
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Figure 6. Seismic impedance and amplitude volumes of
:::::::
containing

:
meandering and distributary channels

::
and

:::::::
tributary

::::::
channel

:::::::
networks,

showing different levels of impedance contrast between the channel
::::::
channels

:
and its

::::
their covering layer

::::
layers. (a) to (d) correspond to

channels with high impedance contrast, (f) to (h) correspond to channels with low impedance contrast, and (i) to (l) correspond to channels

with no impedance contrast
:::
with

::::
their

:::::::
covering

:::::
layers.

covering layer:

ε=
|Zf −Zu|

Zu
, (6)225

where Zf denotes the impedance filling in channels
::
the

:::::::
channel, and Zu denotes the impedance of the covering layerof the

channel. The value of ε varies between zero and one, with the value of one indicating the highest impedance constrast between

12



the channel and its covering layer, and the value of zero indicating the impedance of channel is the same as that of its covering

layer. Figures 6a and 6b demonstrate the horizontal and vertical slices of a 3D impedance model, which consists of meandering

and distributary
:::::::
tributary channels with high impedance contrast (ε= 1). The impedance model is then used for computing the230

seismic reflectivity as follows:

Ri =
Zi+1 −Zi

Zi+1 +Zi
, i= 1,2, ...,N − 1, (7)

where the subscript i denotes the i-th point in the vertical direction of the model, and N denotes the total number of points in

the vertical direction. The reflectivity model is subsequently convolved with the
:
a
:
Ricker wavelet (see Figures 8a and 8b for

examples), which is commonly used to create synthetic seismic data. The mathematical expression of the
:
a
:
Ricker wavelet in235

::
the

:
depth-domain is:

f(s) = (1− 2π2k2ms2)e−π2k2
ms2 , (8)

where s denotes the distance and km denotes the peak wavenumber of the wavelet. Figure 6c shows the synthetic seismic

volume corresponding to a high impedance contrast between the channel and its covering layer. We can observe that the

channels have strong seismic amplitudes, appearing as bright spots on the vertical slice of the seismic volume (Figure 6d). As240

the value of ε decreases to 0.2, the impedance contrast between the channel and its covering layer becomes lower, as shown

in Figures 6e and 6f. The corresponding seismic volume (Figure 6g) also indicates a reduction in seismic amplitude of the

channels, which exhibit an infilling feature on the vertical slice of the seismic volume (Figure 6h). When the value of ε is set to

zero, the impedance of channel will be the same as that of its covering layer (Figures 6i and 6j). As a result, the channels show

no seismic response except at their erosion boundaries (Figure 6k), and an incision feature can be observed on the vertical slice245

of the seismic volume (Figure 6l).

The impedance of submarine channels
::::::
canyons

:
is determined based on their sedimentary facies, which include point bars,

natural levees and oxbow lakes
:::::::::
abandoned

::::::::
meanders. Figure 7a shows the sedimentary facies of a submarine channel

::::::
canyon,

which is primarily filled with layers of point bars as a result of continuous channel migration
::
the

::::::::::
continuous

::::::::
migration

:::
of

:
a
:::::::::
submarine

:::::::
channel. Additionally, the channel

::::::
canyon is also filled with oxbow lake sediments

::::::::
sediments

::
of

::::::::::
abandoned250

::::::::
meanders and inner natural levees. As shown in Figure 7b, the

::::::::
sediments

::
of point bars are assigned lower impedance because

they generally consist of sand, whereas the
::::::::
sediments

::
of

:
natural levees and oxbow lake

:::::::::
abandoned

::::::::
meanders

:
sediments are

assigned higher impedance due to their muddy composition. The reference impedance ranges of
:::::::::
impedance

::::::
ranges

::
we

::::::::
assigned

::
for

:
the point bars, natural levees and oxbow lakes

:::::::::
abandoned

::::::::
meanders

:
are listed in Table D1. It should be noticed

::::
noted

:
that

an impedance discrepancy exists between the neighboring layers of point bars, such that the channel
::::::
canyon

:
will exhibit a255

layered feature on the vertical slice of seismic volume and a meander belt on the horizontal slice, as shown in Figure 7c.
:::::
Minor

:::::::::
impedance

:::::::::::
perturbations

:::::
(±100

::::::::::
m/s.g/cm3)

::::
also

:::::
exists

:::::
within

::::
each

:::::::::::
sedimentary

:::::
facies.

:

By far, all the channels and layers in the impedance model are horizontal. However, the channels and layers in practice

often undergo structural deformations, such as inclination and folding , which can be observed
::::::
folding

::::
and

:::::::
faulting,

::::::
which

::
are

::::::::
common

:
in many field seismic volume. To increase the diversity and realism of synthetic seismic volumes, we introduce260
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Figure 7. Illustration of creating a seismic impedance model and seismic amplitude volume containing a submarine channel according to its

sedimentary facies, showing vertical and orthogonal slices of the (a) sedimentary facies, (b) seismic impedance and (c) amplitude volume.

inclinationand folding ,
:::::
folds

:::
and

:::::
faults

:
into the impedance model following the workflow proposed by Wu et al. (2020a).

An example of the resulting impedance model with inclined and folded layers
::::::::
structural

::::::::::
deformation

:
is shown in Figure 8c.

Another way to increase the diversity of synthetic seismic volumes is to use wavelets with various peak wavenumbers. This

is also necessary because the peak wavenumber of seismic waves reflected by the channel can be diverse in field seismic

volumes. It depends on various factors, such as the absorption effect of subsurface media and the characteristics of the seismic265

source. Figure 8 shows two synthetic seismic profiles with different wavelets computed from the same impedance model.

Using a wavelet with small peak wavenumber (Figure 8a) will generate a low-resolution seismic profile with thick seismic

events (Figure 8d), where some thin layers within the submarine channel
::::::
canyon

:
at the bottom part of the profile is hard

to distinguish. On the contrary, using a large-wavenumber wavelet (Figure 8b) will create a high-resolution seismic profile
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Figure 8. Synthetic seismic profile with different wavelets computed from the same seismic impedance model. (a) A small-wavenumber

Ricker wavelet with a peak wavenumber of 20 km-1
:::::::::::
(corresponding

::
to

:
a
::::
peak

:::::::
frequency

::
of

::
20

::::
Hz) in depth-domain and wavenumber-domain.

(b) A large-wavenumber Ricker wavelet with a peak frequency of 60 km-1
:::::::::::
(corresponding

::
to

:
a
::::
peak

::::::::
frequency

::
of

::
60

:::
Hz)

:
in depth-domain

and wavenumber-domain. (c) Seismic impedance model with inclined and folded structure. (d) Low-resolution seismic profile generated by

using the small-wavenumber wavelet. (e) High-resolution seismic profile generated by using the large-wavenumber wavelet.

(Figure 8e), where those thin layers within the submarine channel
::::::
canyon become discernible. The peak wavenumber range of270

the Ricker wavelet that
::
we

:
used to generate the synthetic seismic volume

:::::::
synthetic

:::::::
seismic

:::::::
volumes is listed in Table D1.

3 Results

Using the aforementioned

:::::
Using

:::
the

::::::::
proposed workflow, we create

:::::::
construct the cigChannel datasetcontaining ,

::::::
which

::::::
consists

:::
of 1,200

:::
600

:
synthetic

seismic volumes with more than
::::::::
containing

::::
over 10,000 labeled paleochannels. Each seismic volume has a size of 256×256×256.275

Four
:::
The

::::::
dataset

::
is
:::::::::

organized
::::
into

::::
four

:
task-specific subsetsare included in the :

:::::::::::
meandering

::::::::
channels,

::::::::
tributary

:::::::
channel

::::::::
networks,

:::::::::
submarine

:::::::
canyons,

::::
and

:::::::
assorted

::::::::
channels.

::
In

:::::::
addition

::
to
:::

the
:::::::

seismic
::::::::
volumes,

:::
the cigChannel dataset, namely the

meandering , distributary, submarine and assorted channel subsets, whose detailed components can be found
::::::
dataset

:::::::
includes

::
the

::::::::::::
corresponding

:::::::
seismic

:::::::::
impedance

:::::::
models.

:::::::::::
Furthermore,

:::
the

:::::::::
submarine

::::::
canyon

:::::
subset

::::::::
provides

::::::::::
sedimentary

:::::
facies

:::::::
volume

::::::::
associated

::::
with

:::::::::
submarine

::::::::
canyons.

::
A

:::::
detail

:::::::::
breakdown

::
of

:::
the

:::::::
dataset’s

:::::::::::
components

:
is
:::::::::
presented in Table B1.280
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(a)
Horizontal Inclined Folds Folds + faults

(b)

(c)

(d)

Figure 9.
:::::::
Synthetic

::::::
seismic

::::::
volumes

:::
and

::::::::::
paleochannel

:::::
labels

::::
from

:::
the

::
(a)

:::::::::
meandering

::::::
channel,

:::
(b)

:::::::
tributary

::::::
channel

::::::
network,

:::
(c)

::::::::
submarine

:::::
canyon

:::
and

:::
(d)

:::::::
assorted

::::::
channel

::::::
subsets

::
of

:::
the

:::::::::
cigChannel

::::::
dataset,

::::::
showing

::::::
various

:::::
types

::
of

::::::::
structures.

:::
The

::::
first

::::
three

::::::
subsets

:::::::
provides

:::::
binary

::::
class

:::::
labels

::
to

::::::::
distinguish

:::::::
between

:::::::
channels

:::
and

:::
the

::::::::::
background

:::
(i.e.

:::
the

::::::::::
non-channel

:::::
areas),

:::::
while

:::
the

::::::
assorted

:::::::
channel

:::::
subset

::::::
provides

:::::::::
multi-class

::::
labels

::
to

::::::::
distinguish

:::::::
between

:::::::
terrestrial

:::::::
channels,

::::::::
submarine

:::::::
canyons

:::
and

::
the

::::::::::
background.
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Aiming to train deep learning models to identify specific types of channels, each of the meandering, distributary and

submarine channel subsets provides 300
::
the

:::::::
subsets

::
of

::::::::::
meandering

:::::::::
channels,

::::::::
tributary

:::::::
channel

::::::::
networks

::::
and

:::::::::
submarine

:::::::
canyons

::::
each

:::::::
provides

:::
400

:
seismic volumes containing

::::
only the corresponding type of channel. Binary class labels are provided

in these subsets, which are designed solely to distinguish between channels and the background (i.e. the
:::
with

::
0
::::::::
denoting non-

channel areas )
:::
and

::
1
::::::::
denoting

:::::::
channels. As shown in Figure 9, each subset contains seismic volumes featuring horizontal,285

inclinedand folded
:
,
:::::
folded

::::
and

::::::
faulted

:
structures, serving as training data for deep learning models to identify channels

with various
::::
types

::
of

:::::::::
structures.

::::::
These structures . The inclined and folded structures are randomly generated to introduce

variability in the seismic volumes. The number of channels in each individual seismic volume varies according to the size of

channel. A single seismic volume may contain multiple meandering or distributary channelsyet no more than three submarine

channels
::::
Since

:::::::::
submarine

:::::::
canyons

:::
are

::::::::
generally

:::::
wider

:::
and

::::::
deeper

:::
than

::::::::
terrestrial

::::::::
channels

::::::::::::::::::::::::::::::::::::::::::::::::::
(Normark et al., 2003; Kolla et al., 2007; Covault et al., 2021)290

:
,
:::
we

:::::
honor

::::
this

::::::
nature

::
in

:::
the

::::::::::
cigChannel

::::::
dataset

:::
by

:::::::::
generating

:::::::::
submarine

:::::::
canyons

::::::
larger

::::
than

::::::::::
meandering

::::
and

::::::::
tributary

:::::::
channels.

Synthetic seismic volumes and paleochannel labels (visualized as coloured masks and bodies) from (a) the meandering, (b)

distributary, (c) submarine and (d) assorted channel subsets of the cigChannel dataset, showing horizontal, inclined and folded

structures. Each of the meandering, distributary and submarine channel subsets provides binary class labels to distinguish295

between channels and the background (i.e. the non-channel areas), while the assorted channel subset provides multi-class

labels to distinguish between terrestrial, submarine channels and the background.

The assorted channel subset contains 300 seismic volumeswith
::::
also

:::
has

:::
400

:::::::
seismic

:::::::
volumes.

:::::
Each

::::::
seismic

:::::::
volume

:::::::
contains

:::::::
multiple

::::::::
terrestrial

::::::::
channels

::::::::
(including

:::::::::::
meandering

:::::::
channels

::::
and

:::::::
tributary

:::::::
channel

:::::::::
networks)

:::
and

::
a

:::::::::
submarine

:::::::
canyon.

::::
This

:::::
subset

::::::::
provides

:
multi-class channel labels. It is designed to train deep learning models not only to identify but also to300

distinguish terrestrial and submarine channels in seismic volumes, which is important because they are indicators for different

environments. As
:::::
labels

::
of

::::::::::
non-channel

:::::
areas,

:::::::::
terrestrial

:::::::
channels

:::
and

:::::::::
submarine

::::::::
canyons,

::
as shown in Figure 9d, the terrestrial

channels, which are represented by meandering and distributary channels in this dataset, have different characteristics from

those of submarine channels. The most apparent one is their difference in size. Submarine channels are generally larger than

terrestrial channels for many reasons. For instance, the turbidity currents that form the submarine channels are denser than their305

terrestrial counterparts, and the absence of vegetation on the ocean bottom eliminates a main limitation on channel erosion

and sediment transport. Regarding the potential problems of the class imbalance problem and the size discrepancy between

terrestrial and submarine channels, we simulate
:
.
:::::
They

::
are

:::::::
denoted

:::
by

::
0,

::
1,

:::
and

::
2

::
in

:::
the

::::
label

:::::::
volume,

::::::::::
respectively.

::::
The

::::::
reason

::
of

:::::::::
simulating multiple terrestrial channels but only one submarine channel

::::::
canyon in a single seismic volume in order to make

:
is
::
to
:::::::

balance
:
their voxel amountsas balanced as possible,

:::::
since

:
a
::::::
model

::::::
trained

:::
on

::
an

::::::::::
imbalanced

::::::
dataset

:::::::
perform

::::::
poorly

:::
on310

::
the

::::::::
minority

::::
class

:::::
(i.e.,

:::
the

:::::::::::::
class-imbalance

::::::::
problem). However, there is still a huge gap in voxel amounts between channels

and the background. Therefore, it is suggested
::::::::::
non-channel

:::::
areas.

::::
This

:::
gap

:::::
exists

::
in

:::
all

::::
four

::::::
subsets.

:::::::::
Therefore,

:::
we

:::::::
suggest to

adopt strategies for addressing the class imbalance
:::::::::::::
class-imbalance problem when using the

:::::::::
cigChannel dataset to train a deep

learning model, such as employing the weighted loss functions
::::::::::::
class-balanced

:::::::::::
cross-entropy

::::
loss

:::::::
function

::::::::::::::::
(Xie and Tu, 2015).
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Figure 10. A simplified U-Net for paleochannel identification
:::
used

::
to

::::::
identify

:::::::::::
paleochannels in seismic volumes.

:::
The

:::::
inputs

::
of

:::
the

:::::
U-Net

::
are

::::::
seismic

:::::::
volumes

:::
and

::
the

::::::
outputs

:::
are

::::::
channel

:::::::::
probabilities

:::::::
between

:
0
:::
and

::
1.

4 Applications315

(a) Field seismic volume from the Parihaka seismic survey (courtesy of New Zealand Crown Minerals), showing multiple

meandering channels (indicated by the yellow arrows), their river mouth sediments (indicated by the white arrow) and a nearby

fault (indicated by the red arrow). (b) The channel identification result of the U-Net trained by the cigChannel dataset.

(a) Field seismic volume acquired in the Tarim basin (courtesy of China National Petroleum Corporation), showing several

distributary channels (indicated by the yellow arrows) with a V-shaped cross-section (indicated by the red arrow). (b) The320

channel identification result of the U-Net trained by the cigChannel dataset.

We use the cigChannel dataset to train a simplified U-Net and apply it
::::
Three

::::::
U-Nets

:::
are

::::::
trained

:::
on

:::
the

::::::
subsets

::
of

::::::::::
meandering

:::::::
channels,

::::::::
tributary

:::::::
channel

::::::::
networks

:::
and

:::::::::
submarine

::::::::
canyons,

:::::::::::
respectively,

:::::
which

:::
are

::::
then

:::::::
applied to identify paleochannels

in
::::
three

:
field seismic volumes. This is a preliminary test mainly to verify the effectiveness of the dataset for training a deep

learning model to distinguish between channels and the background in a field seismic volume. Therefore, the multi-class325

labels in the assorted channel subset are converted into binary labels like those in the other subsets. Architecture of the

simplified
:::
The

:
U-Net

:::::::::
architecture

:
is demonstrated in Figure 11, which has fewer

:::
10,

:::::
which

::
is
::::::::

reduced
::
in

:
convolutional

layers and feature maps than its original architecture proposed by
::::::::
compared

:::
to

:::
the

:::::::
original

::::::::::
architecture

:::
in Ronneberger

et al. (2015) to save memory and computational costs. The
::::::::
network’s input is a

::::::::::::
224×224×224

:::::::
seismic

:::::::
volume,

::::::
which

::
is

::::::
cropped

:::::
from

:::
the

:::::::
original

:
256×256×256 seismic volume .

::::::
volume

:::
due

::
to
::::

the
:::::::
memory

::::
limit

:::
of

:::::
GPU.

::::
Each

:::::::
seismic

:::::::
volume330

:
is
::::::::::
normalized

:::::
using

:::
the

::::::::::::
mean-variance

::::::::::::
normalization

:::::::
method,

::::
and

:
Gaussian random noise is added to the

:::::::
synthetic

:
seismic

volume to make the training process more robust and reduce the tendency towards overfitting. The
::::
noise

::
is

:::::::::
zero-mean

::::
and

::
its

:::::::
standard

::::::::
deviation

::
is
::::::::::
determined

:::::::::
according

::
to

:::
the

::::::::
expected

::::::::::::
signal-to-noise

::::
ratio

::::::
(SNR)

:::
of

:::
the noisy seismic volume.

::::
We
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Figure 11.
::::::
Training

:::::::
progress

::
of

:::
the

:::::
U-Net

::
on

:::
the

::::::
subsets

::
of

:::::::::
meandering

::::::::
channels,

::::::
tributary

:::::::
channel

:::::::
networks,

::::
and

::::::::
submarine

:::::::
canyons,

::::::
showing

:::
(a)

::::::
training

:::
loss

:::::::::::
(class-balanced

:::::::::::
cross-entropy)

:::
and

:::
(b)

::
F1

::::
score

:::
on

::
the

:::
test

:::
set

:::
over

::::::
epochs.

::
set

:::
the

:::::
SNR

::
of

::::
each

:::::::
seismic

::::::
volume

::
to
:::::

vary
:::::::
between

:
5
:::
dB

::::
and

::
10

::::
dB,

:::::
which

::
is
::
a

:::::::::
reasonable

:::::
range

:::
for

::::
field

::::::
seismic

::::::::
volumes

:::::::::::::::::::::::::::::
(Zhang et al., 2017; Wu et al., 2021)

:
.
:::
The

:::::
noisy

:::::::
seismic

::::::
volume

:
goes through the contracting path and expansive path of the335

U-Net for feature extraction. The final output layer is a 1
::
of

:::
the

:::::::
network

::
is
::

a
::
3×1

:
3×1

:
3
:

convolutional layer followed by a

sigmoid activationto map the feature vector into channel probability values. Regarding the
:
,
:::::
which

:::::
maps

:::
the

::::::::
extracted

::::::
feature

:::
into

:::::::
channel

:::::::::::
probabilities

:::::::
between

::
0

:::
and

::
1.
::::

We
:::::::
binarize

:::
the

:::::::
channel

:::::::::
probability

::::::
values

:::::
using

::
a
::::::::
threshold

::
of

:::
0.5

:::
in

::::
order

:::
to

:::::::
compare

::::
with

:::::::::::
human-made

:::::::
channel

:::::::::::
interpretation.

:

::
To

:::::::
evaluate

::::
the

:::::::
training

:::::::::::
performance,

::::
each

::::::
subset

::
is

:::::::
divided

::::
into

:::::::
training

:::
and

::::
test

:::
set.

::::
The

:::::::
training

::::
and

:::
test

:::
set

:::::::
contain340

::::
70%

:::
and

:::::
30%

::
of

::::
the

::::
total

::::::::
samples,

::::::::::
respectively.

::::
The

:::::::::::::
class-balanced

::::::::::::
cross-entropy

::
is

::::
used

:::
as

::::
loss

:::::::
function

::::::::
regarding

::::
the

huge gap in voxel amounts between channels and the background, we use the balanced cross-entropy as the loss function

for networktraining.
::::::::::
non-channel

:::::
areas.

::::
The

:::
F1

:::::
score

::
is

::::
used

::
as

::
a
::::::
metric

::
to

:::::::
evaluate

:::
the

:::::::::
network’s

::::::::::
performance

:::
on

:::
the

::::
test

:::
set.

:::
We

:::
use

:::
the

:::::
Adam

:::::::
method

::::::::::::::
(Kingma, 2014)

:
to

::::::::
optimize

:::
the

::::::::
network’s

:::::::::
parameters

::::
and

::
set

:::
the

::::::::
learning

:::
rate

::
to

::
be

:::::::
0.0001.

:::
As

:::::
shown

::
in

::::::
Figure

:::
11,

:::
the

:::::::
training

::::
loss

::
of

::::
each

:::::::
network

:::::::::
converges

::::
after

:::
200

:::::::
epochs,

:::
and

:::
the

:::
F1

::::::
scores

::
of

:::
the

:::
test

::::
sets

::::::::
gradually345

:::::::
increase

::
to

::::::
around

:::
0.9.

::::
The

::::::::
networks

::::
from

:::
the

:::
last

:::::
epoch

:::
are

:::::
used

::
to

::::::
identify

::::::::::::
paleochannels

::
in

::::
field

:::::::
seismic

::::::::
volumes.

We first use the trained U-Net to identify meandering channels in a seismic

:::
The

::::::
U-Net

:
is
::::::
trained

:::
on

:::
the

::::::::::
meandering

::::::
channel

::::::
subset

:::
and

:::::::
applied

::
to

:
a
:
volume from the Parihaka seismic survey , which is

a publicly available dataset provided by the New Zealand Crown Minerals. As demonstrated in Figure 11
:
(https://wiki.seg.org/

wiki/Parihaka-3D
:
).
:::
As

::::::
shown

::
in

:::::
Figure

:::
12a, the seismic volume shows

::::::
reveals several meandering channels and the sediments350

of their river mouths where they enter the ocean. Channel
::::::
feeding

::::
into

:
a
::::::

larger
:::::::
channel

::::
(may

:::
be

:
a
:::::::::

submarine
::::::::

canyon).
::::
The
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(a) Seismic volume (b) U-Net interpretation (c) Human-made interpretation

-1000 -500 0 500 1000
Amplitude

meandering channels

Figure 12.
::
(a)

::
A

:::
field

::::::
seismic

::::::
volume

:::::
from

::
the

:::::::
Parihaka

::::::
seismic

::::::
survey

:::::::
(courtesy

::
of
::::

New
:::::::

Zealand
:::::
Crown

::::::::
Minerals),

:::::::
showing

:::::::
multiple

::::::::
meandering

:::::::
channels

::::::::
(indicated

::
by

:::
the

::::::
yellow

::::::
arrows).

:::
(b)

::::::
Channel

:::::::::::
interpretation

::::
result

::
of

:::
the

:::::
U-Net

:::::
trained

:::
on

:::
the

:::::
subset

::
of

:::::::::
meandering

:::::::
channels.

:::
The

::::
blue

:::::
arrows

::::::
indicate

::::::
channel

::::
areas

:::
that

:::
fail

::
to

::
be

::::::::
identified,

:::
and

:::
the

::::
green

::::::
arrows

::::::
indicate

::::
false

::::::
positive

::::::
channel

::::::::::
identification

:::::
results.

:::
(c)

::::::::::
Human-made

::::::
channel

::::::::::
interpretation

:::::
result.

::::::
channel

:
identification result of the U-Net is shown in Figure 11b, where the meandering channels are all mapped with moderate

to high probability. However, there is a mistaken identification of a fault at the bottom left corner of the image
:::
12b.

:::::
which

:::
has

::
a

::
F1

:::::
score

::
of

::::
0.52

:::::
when

::::::::
compared

::
to
:::
the

:::::::::::
human-made

:::::::
channel

:::::::::::
interpretation

:::::::
(Figure

::::
12c).

:::::
Some

:::::::
channel

:::::
areas

::::
with

:::::::::
significant

::::::::
variations

::
in

:::::::
seismic

:::::::::
amplitude

::
or

::::::
where

:::
the

:::::::
channel

:::::
width

::::::::
suddenly

:::::::
increase

::::
are

:::
not

::::::::
correctly

::::::::
identified,

:::
as

::::::::
indicated

:::
by355

::
the

:::::
blue

::::::
arrows

::
in

::::::
Figure

::::
12b.

:
This is probably because the layers are dragged downward by the normal faulting, making

them exhibit an incised feature like the channels. Other noisy clusters with high channel probability may indicate segments

of channels which are separated by folds or faults
::::
likely

::::
due

::
to

::::
that

::::
each

::::::::::
meandering

:::::::
channel

::
in
:::

the
:::::::

training
:::

set
::::
has

:
a
:::::
fixed

::::::
channel

::::::
width,

:::
and

:::
the

:::::::
seismic

:::::::::
amplitude

:::::
within

:::::
each

::::::
channel

::
is
::::::::
relatively

::::::::
uniform.

:::::::::
Moreover,

::::
there

:::
are

::::::
many

::::
false

:::::::
positive

::::::
channel

:::::::::::
identification

::::::
results,

:::
as

:::::::
indicated

:::
by

:::
the

:::::
green

:::::
arrows

::
in
::::::
Figure

::::
12b,

:::::
which

::::::
might

::
be

::::
local

::::::::
structural

:::::::::::
deformations

::::
that360

:::::::
resemble

:::
the

::::::
feature

::
of

::
a
::
U-

:::
or

::::::::
V-shaped

::::::
channel.

In the second example, the network is applied to identify distributary channels in a seismic volume acquired in the Tarim

basin, which is provided by China National Petroleum Corporation

:::
The

::::::
second

::::::
U-Net

::
is

::::::
trained

::
on

:::
the

::::::::
tributary

:::::::
channel

:::::::
network

:::::
subset

::::
and

::::::
applied

::
to
::

a
::::::
volume

:::::
from

::
an

::::::::::
anonymous

:::::::
seismic

:::::
survey

::::::::
(denoted

:::
as

::::
NW

:::::::
seismic

::::::
survey

::::::::
hereafter). As demonstrated in Figure 12

::
13a, this seismic volume shows several365
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(a) Seismic volume (b) U-Net interpretation (c) Human-made interpretation
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Figure 13.
::

(a)
:
A
::::

field
::::::
seismic

::::::
volume

::::
from

:::
an

::::::::
anonymous

::::::
seismic

::::::
survey

:::::::
(denoted

::
as

:::
NW

::::::
seismic

:::::::
survey),

::::::
showing

::
a
:::::::
tributary

::::::
channel

::::::
network

::::::::
(indicated

::
by

:::
the

:::::
yellow

::::::
arrows)

::::
with

:::::::
V-shaped

:::::::::::
cross-sections.

::
(b)

:::::::
Channel

::::::::::
interpretation

:::::
result

::
of

::
the

:::::
U-Net

::::::
trained

::
on

:::
the

:::::
subset

:
of
:::::::

tributary
::::::
channel

::::::::
networks.

::::
Some

::::
false

::::::
positive

::::::
channel

::::::::::
interpretation

:::::
results

:::
are

:::::::
indicated

::
by

:::
the

::::
green

::::::
arrows.

::
(c)

:::::::::::
Human-made

::::::
channel

::::::::::
interpretation

:::::
result.

distributary
::::::
tributary

:
channels with a V-shaped cross-section. Seismic amplitudes within the channel are

::::::::
relatively homogeneous,

indicating a relatively uniform seismic impedance within the channel as we designed in our dataset
:::
data

:
generation workflow.

The channel identification result of the U-Net is demonstrated in Figure 12
::
13b, showing that most of the channels are correctly

identifiedexcept some extremely narrow branches.

In the last example, we identified a submarine channel in the seismic volume from the Parihaka seismic survey, which370

is pointed out by the yellow .
:::::::::

However,
:::::
there

:::
are

:::
still

::
a
:::::::
number

:::
of

::::::::::
small-scale

::::::::
structural

:::::::::::
deformations

::::
that

:::
are

::::::::::
mistakenly

::::::::
identified

::
as

::::::::
channels,

:::
as

::::::::
indicated

::
by

:::
the

::::::
green arrows in Figure 13a. Its large-scale erosional surface can be seen on the

vertical slice of the seismic volume , which is distinct from the small-scale erosional surface of terrestrial channels, such as the

one indicated in Figure 13a. This submarine channel has a medium to
:
b.

::::
The

::
F1

:::::
score

:::::::
between

::::
the

:::::
U-Net

::::
and

:::::::::::
human-made

:::::::::::
interpretation

:::::
result

::::::
(Figure

::::
13c)

::
is

::::
0.73.

:
375

:::
The

:::
last

::::::
U-Net

::
is

::::::
trained

::
on

:::
the

:::::::::
submarine

:::::::
canyon

:::::
subset

::::
and

::::::
applied

::
to

:::::::
another

::::::
volume

:::::
from

:::
the

:::::::
Parihaka

:::::::
seismic

::::::
survey.

::
As

::::::::::::
demonstrated

::
in

::::::
Figure

::::
14a,

:
a
:::::::::
submarine

:::::::
canyon

::::
with

:
a
:::::
large

::::::
erosion

:::::::
surface

:::
can

:::
be

:::::::
observed

:::
in

:::
this

:::::::
seismic

:::::::
volume.

::
It

:::
has

:
a
::::::::
relatively

:
low seismic amplitude compared with that of its surrounding layer, which indicates

:::::
layers,

:::::::::
indicating a low

discrepancy in seismic impedance within the channel
::::::
canyon. However, a layered structure is

::::
some

:::::::
layered

::::::::
structures

:::
are

:
still

visible within the channel. The horizontal slice that intersects this submarine channel shows its meander belt with a notable380

boundary. Figure 13
::::::
canyon.

::::::
Figure

::
14b demonstrates the channel identification result of the U-Net. We observe that most

::::
Most

areas of the submarine channel are correctly mapped with high probability.
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(a) Seismic volume (b) U-Net interpretation (c) Human-made interpretation
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Submarine canyon

Figure 14.
::
(a)

::
A
::::
field

::::::
seismic

::::::
volume

::::
from

::
the

:::::::
Parihaka

::::::
seismic

:::::
survey

:::::::
(courtesy

::
of
::::

New
:::::::
Zealand

:::::
Crown

::::::::
Minerals),

::::::
showing

::
a
::::::::
submarine

:::::
canyon

::::::::
(indicated

:::
by

::
the

::::::
yellow

::::::
arrows).

:::
(b)

:::::::
Channel

::::::::::
interpretation

:::::
result

::
of

:::
the

:::::
U-Net

::::::
trained

::
on

:::
the

:::::
subset

:::
of

::::::::
submarine

::::::
canyon.

:::
(c)

::::::::::
Human-made

::::::
channel

::::::::::
interpretation

:::::
result.

These applications also reveal some limitations of this dataset. As indicated in Figure 11, the network trained by our dataset

cannot discriminate faults and channels, which is likely due to that faults are not included in the seismic volumes in this

dataset
:::::
canyon

:::
are

::::::::
correctly

::::::::
identified

:::
but

:::
the

::::::
U-Net

::::::
cannot

::::::::
delineate

:::
the

::::::
canyon

::::::::
boundary

:::::::::
accurately.

::::
The

:::
F1

::::
score

::::::::
between385

::
the

::::::
U-Net

:::
and

:::::::::::
human-made

::::::::::::
interpretation

::::
result

:::::::
(Figure

::::
14c)

::
is

::::
0.63. Therefore, adding faults to the seismic volume

5
:::::::::
Discussion

5.1
:::::::::

Plausibility
::
of

::::
the

::::::::
synthetic

::::::
seismic

::::::::
volumes

:::::
While

:::
the

::::::::::
cigChannel

::::::
dataset

:::::::
provides

::::::
various

:::::::
samples

:::
for

:::::::
training

::::
deep

:::::::
learning

:::::::
models

::
to

::::::
identify

::::::::::::
paleochannels

::
in

:::::::
seismic

:::::::
volumes,

:::
the

::::::::::
plausibility

:::
of

:::
the

::::::::
synthetic

:::::::
seismic

::::::
volume

:::::::
remains

:::::::::
uncertain.

:::::::
Several

::::::::::::
simplifications

::::
are

::::::
applied

:::
to

::::::
reduce390

:::::::::::
computational

:::::
costs

::::::
during

:::
the

:::::::::
generation

::
of

::::::::
synthetic

::::::
seismic

::::::::
volumes.

:::
For

::::::::
instance,

:::
the

:::::::::::
configuration

::
of

:::::::
seismic

:::::::::
impedance

::::::
models

::::::
ignores

::::
the

:::::::::
variability

::::::
within

:::::
layers

::::
and

:::::::
channel

::::::
facies.

::::::::
However,

::::
this

:::::::::
variability

::
is

:::::::::
ubiquitous

:::
in

:::
the

::::::::::
subsurface.

::::::::
Moreover,

:::
the

:::::::
forward

:::::::
seismic

::::::::
modeling

::::
uses

:::
the

:::::::
simplest

:::
1D

::::::::::
convolution

::::::::
between

::::::
seismic

::::::::
(P-wave)

:::::::::
impedance

::::
and

::::::
Ricker

:::::::
wavelet.

:
It
:::::::::
disregards

:::::
many

::::::
aspects

::
of

:::::
wave

::::::::::
propagation

::
in

:::
the

::::::::::
subsurface,

::::::::
including

:::
the

::::::::::
contribution

::
of

:::::
shear

::::::
waves,

:::::::
separate

:::::::::::
contributions

::::
from

:::::::
P-wave

:::::::
velocity

::::
and

:::::::
density,

:
and labeling them as the background would help reduce the

:::::::::
multi-path395
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Figure 15.
:::::::::
U-Net-based

::::::::::
autoencoder

:::::::::
architecture

:::
for

:::::::::::
reconstructing

:::::::
seismic

:::::::
volumes.

::::::::
Compared

:::
to

:::
the

:::::
U-Net

::::::::::
architecture

::::
used

:::
for

:::::::::
paleochannel

:::::::::::
identification,

::
the

::::
skip

:::::::::
connections

::
are

::::::::
removed,

:::
and

::
the

::::
final

::::
layer

:
is
::
a

::::::
3×3×3

::::::::::
convolutional

::::
layer

::::::
without

::::::
sigmoid

::::::::
activation.

:::
The

:::::
inputs

::
of

::
the

:::::::::
autoencoder

:::
are

:::
the

::::::
original

::::::
seismic

::::::
volumes

:::
and

:::
the

::::::
outputs

::
are

::::
their

:::::::::::
reconstruction

:::::
results.

(a) (b)

Figure 16.
::::::
Training

:::::::
progress

::
of

:::
the

:::::::::
U-Net-based

::::::::::
autoencoder,

:::::::
showing

::
(a)

::::::
training

::::
loss

:::::
(mean

::::::
squared

::::
error)

:::
and

:::
(b)

::::::::
multi-scale

::::::::
structural

:::::::
similarity

:::::::::
(MS-SSIM)

::
on

:::
the

:::
test

::
set

::::
over

::::::
epochs.

::::::::
reflection.

::::::
These

::::::::::::
simplifications

::::::
reduce

:::
the

:::::::
realism

:::
of

::::::::
synthetic

::::::
seismic

::::::::
volumes.

::
It
::

is
:::::::::::

questionable
::::::::

whether
:::
the

::::::::
synthetic

::::::
seismic

:::::::
volumes

::::
can

::::::
capture

:::
the

:::::::
patterns

::
in

:::
the

::::
field

::::::
seismic

::::::::
volumes.
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::
To

::::::
answer

:::
this

::::::::
question

:::::::::::
quantitatively,

:::
we

:::
use

:::
the

:::::::
synthetic

:::::::
seismic

:::::::
volumes

::
in

:::
the

:::::::::
cigChannel

:::::
dataset

::
to

::::
train

:::
an

::::::::::
autoencoder

::
to

:::::::::
reconstruct

:::::::
seismic

:::::::
volumes.

::
If
::::
this

::::::::::
autoencoder

:::
can

::::::::::
reconstruct

:::
the

::::
field

:::::::
seismic

:::::::
volumes

::
as

::::
well

::
as
:::

the
::::::::

synthetic
:::::
ones,

::
it

:::::
means

::::
that

:::
the

::::::::
synthetic

:::::::
seismic

:::::::
volumes

::::
are

::::::::
plausible

:::
and

::::::::::::
representative

:::::::
enough

::
of

:::::
field

::::::
seismic

::::::::
volumes.

::::::::::
Otherwise,

::
it400

:::::::
indicates

:::::
room

:::
for

:::::::::::
improvement.

:::
To

:::::::
construct

:::::::
training

:::
and

:::
test

::::
set,

::
we

::::::::
randomly

::::::
choose

:::
70

:::::::
samples

::
for

:::::::
training

:::
and

:::
30

:::::::
samples

::
for

::::::
testing

:::::
from

::::
each

:::::::
subsets.

::::
That

::::::
makes

::
a

::::
total

:::::::
number

::
of

:::
280

:::::::
training

:::::::
samples

::::
and

::::
120

:::
test

::::::::
samples.

:::
The

::::::::::
architecture

:::
of

::
the

:::::::::::
autoencoder

::
is

::::::
adapted

:::::
from

:::
the

:::::
U-Net

::::
used

:::
for

::::::::::
identifying

::::::::::::
paleochannels.

:::
As

:::::
shown

::
in

::::::
Figure

:::
15,

:::
we

::::::
remove

:::
all

:::
the

::::
skip

::::::::::
connections

::::
from

:::
the

::::::
U-Net

:::
and

:::
the

:::::::
sigmoid

:::::::::
activation

::::
from

:::
the

:::::
final

:::::::::::
convolutional

:::::
layer.

:::::
Each

::::::::
synthetic

::::::
seismic

:::::::
volume

::
is

::::::
cropped

::::
into

:
a
::::
size

::
of

:::::::::::::
224×224×224.

:::::
They

::::
will

::::
serve

::
as

:::::
both

:::::
inputs

:::
and

:::::
labels

:::
to

::::
train

:::
the

::::::::::
autoencoder.

::::
The

::::::
seismic

::::::::
volumes405

::::
(both

::::::::
synthetic

:::
and

::::
field

:::::
ones)

::::
will

::
be

:::::::::
normalized

::::
and

:::::::::
zero-mean

:::::::
Gaussian

:::::::
random

:::::
noise

:::
will

::
be

::::::
added

::
to

:::
the

:::::::
synthetic

:::::::
seismic

::::::
volume.

::::
The

:::::::
standard

::::::::
deviation

::
of

:::
the

:::::
noise

::
is

:::::::::
determined

:::::::::
according

::
to

:::
the

:::::::
expected

:::::
SNR

::
of

:::
the

:::::
noisy

::::::
seismic

:::::::
volume,

::::::
which

:
is
:::
set

::
to

::::
vary

::::::::
between

:
5
:::
dB

::::
and

::
10

::::
dB.

::::::
During

:::
the

:::::::
training

:::::::
process,

:::
the

:::::
mean

:::::::
squared

::::
error

::::::
(MSE)

:::::::
between

:::
the

:::::::
original

::::
and

:::::::::::
reconstructed

::::::
seismic

::::::::
volumes

:::
will

:::
be

::::::::
calculated

::
as

:::
the

:::::::
training

::::
loss,

:::
and

:::
the

::::::::::
multi-scale

::::::::
structural

::::::::
similarity

::::::::::
(MS-SSIM)

::::
will

::
be

::::
used

::
as

:::::::
metrics

::
to

:::::::
evaluate

:::
the network’s tendency to mis-identification between faultsand channels. It can also be seen that410

:::::::::::
generalization

:::::::::::
performance

::
on

:::
the

::::
test

:::
set.

:::::
Figure

:::
16

:::::
shows

:::
the

::::::::
evolution

::
of

::::::
training

::::
loss

:::
and

:::
test

:::
set

::::::
metrics

::::
over

:::
the

:::::::
training

::::::
epochs.

:::
The

:::::::
training

::::
loss

::::::::
decreases

::::::
rapidly

::
in

::
the

::::
first

::
25

:::::::
epochs,

:::
and

:::::::
reaches

::::
fully

::::::::::
convergence

::::
after

::::
200

::::::
epochs.

::::::::::
Meanwhile,

:::
the

::::::::::::
reconstruction

::
of

:::::::
seismic

:::::::
volumes

::
in

:::
the

:::
test

:::
set

:::::::
achieves

::
an

:::::::
average

:::::::::
MS-SSIM

::
of

:::::
0.96,

::
in

::::
spite

::
of

:::::
some

::::::
minor

::::::::::
fluctuations.

::::
The

::::::::::::
reconstruction

::
of

:
a
::::::::
synthetic

:::::::
seismic

::::::
volume

::::
from

:::
the

::::
test

::
set

::
is

:::::::::::
demonstrated

::
in
::::::
Figure

::::
17a.

:::::::
Seismic

::::::
events,

::::::::
including

:::::
those

:::::
related

::
to
:::
the

::::::::::::
paleochannels

:::::::::
(indicated415

::
by

:::
the

::::::
yellow

:::::::
arrows)

:::
are

::::::
mostly

::::::::::::
reconstructed.

:::::::::
However,

::
as

::::::
shown

::
in

:::
the

:::::::
residual

:::::::
volume,

:::::::
random

:::::
noise,

::::::::
artifacts

::::::
related

::
to

:::::
faults,

::::
and

:::::
some

:::::
weak

:::::::
seismic

:::::::::
reflections

:::::
within

::::::::
geologic

::::::
layers

::::
(i.e.,

:::::::
between

:::::::
seismic

:::::::
events)

:::
are

:::
not

:::::
fully

:::::::::
recovered.

:::
The

::::::::::::
reconstruction

::::::
results

::
of

:::
the

:::::
three

::::
field

::::::
seismic

::::::::
volumes

::::
with

::::::::::
meandering,

::::::::
tributary

:::::::
channels

::::
and

:::::::::
submarine

:::::::
canyons

:::
are

::::::::::
respectively

:::::::::::
demonstrated

::
in

::::::
Figure

::::
17b,

::
c,

::::
and

::
d.

::::
The

::::::
general

:::::::
patterns

::::
(i.e.,

::::::::::
geometries,

:::::::
relative

::::::
seismic

::::::::::
amplitudes)

:::
of

:::
the

::::::
seismic

::::::
events

:::
and

::::::::::::
paleochannels

::::
have

:::::
been

::::::::::
successfully

::::::::::::
reconstructed.

::::::::
However,

:::
we

:::
can

:::
see

:::::
from

:::
the

:::::::
residual

:::::::
volumes

::::
that420

::::
many

:::::::
detailed

:::::::
seismic

:::::::::
reflections

::::::
related

::
to

:::
the

:::::::
geologic

::::::
layers

:::
and

::::::::::::
paleochannels

::::
have

:::
not

::::
been

:::::::::
recovered,

:::::::::
especially

:::
for

:::
the

::::::
seismic

:::::::
volumes

:::::
from

:::
the

:::::::
Parihaka

::::::
survey

:::::::
(Figure

:::
17b

::::
and

::
c).

:::::
Table

::
1
::::
lists

:::
the

::::::
metrics

::
of

:::
the

:::::::::::
autoencoder

:::
for

::::::::::::
reconstructing

:::::::
synthetic

::::
and

::::
field

::::::
seismic

::::::::
volumes

:::::
shown

::
in
::::::
Figure

:::
17.

::::
The

::::::::::::
reconstruction

::
of

:::
the

::::::::
Parihaka

::::::
seismic

:::::::
volumes

:::::::
(Figure

:::
17b

::::
and

::
d)

::
is

:::
less

::::::::
accurate

::::::::
compared

::
to

::::
that

::
of

:::
the

::::::::
synthetic

:::::::
seismic

::::::
volume

:::::::
(Figure

::::
17a).

:::::::::
However, the channel identification result

in Figure 11 is not as good as that in Figure 12, where the distributary channels in Figure 12 are mapped with uniformly high425

probability while some parts of the meandering channels in Figure 11 are mapped with moderate probability. It is probably

because that the distributary channels in Figure 12 are filled with uniform seismic amplitude as we designed in our dataset ,

while the meandering channels in Figure 11 are filled with heterogenous seismic amplitude, which is an exceptional case for

our dataset. Therefore, the identification performance of channels with heterogeneous seismic amplitude would be improved if

meandering and distributary channels with heterogeneous seismic amplitude can be included in this dataset. As we mentioned,430

these are preliminary tests mainly to find out whether this dataset can help the network discriminate channels and
::::::::::
autoencoder

24



:
is
:::::::
capable

::
of

::::::::::::
reconstructing

:::
the

::::
NW

:::::::
seismic

:::::::
volume

::::::
(Figure

::::
17c)

::::
with

::
a
::::::
quality

::::::::::
comparable

::
to

::::
that

::
of

:::
the

::::::::
synthetic

:::::::
seismic

::::::
volume.

:

Table 1.
::::::
Metrics

::
of

:::
the

:::::::::
autoencoder

::
for

:::::::::::
reconstructing

:::::::
synthetic

:::
and

::::
field

::::::
seismic

:::::::
volumes.

::::::::::::
Seismic/channel

::::
type

:::::
Source

::::::::::
MS-SSIM∗ ↑

::::::
MSE∗ ↓

:::::::::::::
Synthetic/assorted

::::::
(Figure

::::
17a)

::::::::
cigChannel

::::::
Dataset

:::
0.93

: ::::
0.17

:::::::::::::
Field/meandering

::::::
(Figure

:::
17b)

: ::::::
Parihaka

:::::
survey

: :::
0.86

: ::::
0.23

:::::::::::
Field/tributary

:::::
(Figure

::::
17c)

:::
NW

:::::
survey

: :::
0.95

: ::::
0.04

::::::::::::
Field/submarine

::::::
(Figure

:::
17d)

: ::::::
Parihaka

:::::
survey

: :::
0.79

: ::::
0.23

∗ MS-SSIM: Multi-scale structural similarity
∗ MSE: Mean squared error
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:::
The

:::::::::
difference

::
in

::::::::::::
reconstruction

:::::::::::
performance

:::
on

::::
field

::::::
seismic

::::::::
volumes

::
is

:::::
likely

::::::
related

::
to
::::

the
::::::::
variability

:::
in

::::::
seismic

:::::
data.

::::::::
Compared

::::
with

:::
the

::::
two

:::::::
Parihaka

:::::::
seismic

:::::::
volumes

::::::
(Figure

::::
17b

:::
and

:::
d),

:::
the

:::
NW

:::::::
seismic

::::::
volume

:::::::
(Figure

::::
17c)

:::
has

:::
less

:::::::::
variations435

::
in

::::::
seismic

:::::::::
amplitude

::::::
along

::::::
seismic

:::::::
events,

::::
and

:::
the

:::::::
seismic

:::::::::
amplitude

::::::
within

::::::::::::
paleochannels

::
is

::::::::
relatively

::::::::
uniform.

::::::
These

:::::::::::
characteristics

::::
are

::::::
similar

::
to

:::
the

::::::::
synthetic

:::::::
seismic

::::::::
volumes,

:::
and

::::::::
therefore

:::
the

:::::::::::
autoencoder

:::
can

::::::::::
reconstruct

:::
the

::::
NW

:::::::
seismic

::::::
volume

::
as

:::::::::
effectively

::
as

:::
the

::::::::
synthetic

:::::
ones.

::
In

:::::::::
conclusion,

:::
the

::::::::
synthetic

:::::::
seismic

:::::::
volumes

::::
have

:::::::
captured

:::
the

:::::::
general

:::::::
patterns

::
in

::::
field

::::::
seismic

::::
data,

::::
such

:::
as

::
the

::::::::::
geometries

::
of

::::::::
structures

:::
and

:::::::::::::
paleochannels.

::::::::
However,

::::
they

:::::
cannot

:::::::
capture

:::
the

::::::
detailed

:::::::::
variations

::
in

::::::
seismic

::::
data

:::
that

:::
are

::::::
related

::
to
:::::
wave

::::::::::
propagation

::::
and

:::::::
changes

::
in

::::
rock

:::::::::
properties.

::::
This

::::
may

::::
lead

::
to

::::::::::::
generalization

:::::
issues

:::
for440

::::
deep

:::::::
learning

::::::
models

::::::
trained

:::
on

:::
this

::::::
dataset

:::::
when

::::::
applied

::
to

::::
field

:::::::
seismic

:::::::
volumes

::::
with

:::::::::
significant

:::::::::
variability.

::::::::
Applying

:::::
more

::::::
realistic

:::::::
seismic

:::::::
forward

::::::::
modeling

:::::::
methods

::::
such

::
as

::::::::::::
full-waveform

::::::::
modeling

::::
and

::::::::::
considering

:::
the

::::::::
variations

::
in

::::
rock

:::::::::
properties

:::::
within

:::::::
geologic

::::::
layers

:::
and

:::::::::::
paleochannel

:::::
facies

:::::
could

::::
help

:::::::
improve

:::
the

::::::::::
plausibility

::
of

:::
the

::::::::
synthetic

::::::
seismic

::::::::
volumes.

5.2
:::::::::

Limitations
:::
of

:::
the

::::::
dataset

::::::::
Although

:::
the

:::::::::
application

:::
of

:::
the

::::::::::
cigChannel

::::::
dataset

:::
has

::::::
shown

:::
its

::::::::
capability

:::
of

:::::::
training

::::
deep

::::::::
learning

::::::
models

:::
to

:::::::
identify445

:::::::::::
paleochannels

:::
in

::::
field

::::::
seismic

::::::::
volumes,

:::::
there

:::
are

::::::
several

::::::::::
limitations

::
of

::::
this

::::::
dataset

::::
that

::::
users

::::::
should

:::
be

:::::
aware

:::
of.

::::
The

::::
first

:::
one

:::
lies

:::
in

:::
the

::::::::
diversity

::
of

::::::::
terrestrial

:::::::
channel

::::
and

:::::::::
submarine

:::::::
canyon

:::::::
models.

::::
The

::::::
widths

::
of

::::::::
terrestrial

::::::::
channels

:::
are

:::
set

:::
to

::
be

::::::::
relatively

:::::
small

:::
(≤

:::
500

:::
m)

::
in

:::::
order

::
to

:::
be

:::::
more

::::::::::::
distinguishable

::::
with

:::::::::
submarine

::::::::
canyons.

::::::::
However,

:::::
much

:::::
wider

:::::::::
terrestrial

::::::
channel

:::::::
systems

:::::
(e.g.,

::
≥

:
1
::::

km)
:::::
have

:::
also

:::::
been

:::::::
reported

:::::::::::::
(Gibling, 2006),

::::::
which

:::::
could

::
be

::::::::::
comparable

::
in
::::
size

::::
with

::
a

::::::::
relatively

::::::
narrow

::::::::
submarine

:::::::
canyon

::::
such

::
as

:::
the

::
La

::::
Jolla

:::::::
canyon

:::::::::::::::
(Paull et al., 2013).

:::::::::
Therefore,

::
if

:::
the

:::
aim

::
is

::
to

::::
train

:
a
::::
deep

:::::::
learning

::::::
model450

::
to

::::::::::
differentiate

:::::::
between

::::::::
terrestrial

::::
and

::::::::
submarine

:::::::
channel

:::::::
systems,

::::
then

:::
the

::::::
model

::::::
trained

::
on

:::
the

::::::::
assorted

::::::
channel

::::::
subset

::::
may

:::
face

:::::::::
challenges

:::::
when

::::::::::::
distinguishing

:::::
small

:::::::::
submarine

:::::::
canyons

::::
from

::::
large

::::::::
terrestrial

::::::::
channels.

:::::::::
Moreover,

::
as

:::
we

::::::::::
mentioned,

:::
our

::::::::
modeling

::
of

:::::::::
submarine

:::::::
canyons

::::
aims

:::
to

:::::::
replicate

:::
the

::::::::::::
characteristics

:::
of

:::
the

:::::::::
submarine

:::::::::::
channel-levee

:::::::
system,

::::::
which

:::::::
requires

::::::
enough

::::::::::
fine-grained

:::::::::
sediments

::
to

::::
form

::::::
levees.

:::::::::
Relatively

::::::
coarse

::::::
grained

:::::::::
sediments

::::
(e.g.,

::::::::::::
conglomeratic

:::::::
channel

:::
lag

::::::::
deposits)

:::
that

:::::::::
correspond

:::
to

:
a
::::::
sandier

:::::::::::
depositional

::::::::::
environment

:::
are

::::
not

:::::::
captured

::
in

:::
our

:::::::::
submarine

:::::::
canyon

::::::
models.

::::::::::::
Consequently,

:::::
deep455

:::::::
learning

::::::
models

::::::
trained

::
on

:::
the

:::::::::
submarine

:::::::
canyon

:::::
subset

::::
may

:::::::
struggle

::
to

:::::::::
accurately

:::::::
identify

::::::::
submarine

:::::::
canyons

::::
that

::::::
contain

::
a

::::::::
significant

:::::::
amount

::
of

::::::::::::
coarse-grained

:::::::::
sediments.

:

:::
The

::::::
second

:::::::::
limitation

:::::::
concerns

:::
the

:::::::
realism

::
of

:::::::
seismic

:::::::::
impedance

::::::
within

::::::::
channels.

:::
We

::::::
assign

:
a
::::::::
relatively

:::::::
uniform

:::::::
seismic

:::::::::
impedance

::
to

::::::::
terrestrial

::::::::
channels,

:::::::::
introducing

:::::
slight

:::::::
random

:::::::::::
perturbations

::
to

::::::
capture

::::::
natural

:::::::::
variability.

:::
The

:::::::
seismic

:::::::::
impedance

::
of

::::
these

::::::::
channels

::
is
::::::::::
determined

:::::
based

:::
on

:
a
:::::::::

predefined
:::::::

contrast
:::::

with
:::
the

::::::::::
surrounding

::::::
layers.

::::::::
However,

:::::
these

:::::::::::::
simplifications460

:::::
reduce

:::
the

:::::::
realism

::
of

:::
the

:::::::::
impedance

::::::::::::
representation.

::
In

::::::
reality,

::::::::
terrestrial

:::::::
channel

:::
fills

::::::
exhibit

::::::::
variations

::
in
::::::
facies

:::
and

:::::::::
lithologies

::::::::::::::::::::::::::::::::
(Miall, 2014; Mueller and Pitlick, 2013)

:
,
:::::
which

::::
can

:::::
result

::
in

:::::::::::
considerable

::::::
seismic

:::::::::
impedance

::::::::::::
heterogeneity.

:::::::::
Although

:::::
under

:::::
certain

:::::::::::::
circumstances

:::
this

::::::::::::
heterogeneity

:::::
could

:::
be

::::::::::
diminished

::::
due

::
to

:::
the

:::::::::
relatively

:::::
small

::::
size

:::
of

::::::::
terrestrial

::::::::
channels

::::
and

::
the

::::::::
inherent

:::::::::
limitations

:::
of

:::::::
seismic

:::::::::
resolution,

::::::::
assigning

::
a
::::::::
relatively

::::::::
uniform

:::::::::
impedance

:::
to

::::::::
terrestrial

::::::::
channels

:::::
limits

::::
the

:::::::::::::::
comprehensiveness

:::
of

::::
their

::::::
seismic

::::::::
response.

:::
As

:
a
::::::
result,

::::
deep

:::::::
learning

::::::
models

::::::
trained

:::
on

:::
the

::::::::::
meandering

::
or

:::::::
tributary

:::::::
channel465

:::::
subset

::::
may

::::
face

:::::::::
challenges

::
to

::::::::
accurately

:::::::
identify

::::::::
channels

:::
that

::::::
exhibit

::::::::::::
heterogeneous

:::::::
seismic

:::::::::
amplitudes,

::::
such

:::
as

::
the

::::::::
example

:::::
shown

::
in

::::::
Figure

:::
12.

:::::::::::
Additionally,

::
for

:::::::::
submarine

::::::::
canyons,

::::::
seismic

:::::::::
impedance

:::::::::
variations

:::::
related

::
to
:::::
grain

::::
size

:::::::::
distribution

::::::
within
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::::::::::
sedimentary

:::::
facies

:::
are

::::
not

:::::::::
accounted

:::
for.

::::
The

::::::
spatial

:::::::::
transition

::::
from

:::::::::::::
coarse-grained

:::::::::
sediments

::
in

:::
the

:::::::
channel

:::::::
thalweg

:::
to

::::::::::
fine-grained

::::::::
sediments

:::::
along

:::
the

:::::::
channel

::::::
margins

::::::::::::::::
(Jobe et al., 2017)

:
is

:::
not

::::::::::
represented

::
in

:::
our

:::::::::
impedance

:::::::
models,

:::::
which

::::::
further

:::::
limits

::
the

::::::::
diversity

:::
and

::::::
realism

:::
of

:::
the

:::::::
synthetic

:::::::
seismic

:::::::
volumes.

::::::::::::
Consequently,

::::
deep

:::::::
learning

:::::::
models

::::::
trained

::
on

:::
the

:::::::::
submarine470

::::::
canyon

:::::
subset

::::
may

::::
face

::::::::::::
generalization

:::::::::
challenges

:::::
when

::::::
applied

::
to

:::::::
identify

:::::::::
submarine

:::::::
canyons

::
in

::::
field

::::::
seismic

::::::::
volumes.

:::
The

:::::
third

::::::::
limitation

::::::
relates

::
to

:::
the

:::::::
realism

::
of

:
non-channel areas . Future work could involve using this dataset to train a

network to classify terrestrial and submarine channels,
:
in

:::
the

::::::::
synthetic

:::::::
seismic

::::::::
volumes.

::
In

:::::::
addition

:::
to

:::
not

::::
fully

:::::::::
capturing

::::::
various

::::::::::::
characteristics

::
of
:::::

wave
:::::::::::

propagation
:::
due

:::
to

:::
the

:::
use

:::
of

:::
1D

::::::::::
convolution

:::
for

:::::::
seismic

:::::::::
synthesis,

:::
the

::::::::
synthetic

:::::::
seismic

:::::::
volumes

:::
also

::::
lack

::::::::
structural

::::::::
diversity

:::
and

::::::::::
stratigraphic

:::::::::
variability.

::::::
While

::::
folds

::::
and

::::
faults

:::
are

::::::::
included,

::::
their

::::::
scales

::
are

::::::::
enlarged475

::
to

::
be

::::::::::
comparable

::
to

:::
the

::::::::
horizontal

:::::
extent

::
of
:::
the

:::::::
seismic

:::::::
volumes

::::
(i.e.,

:::
6.4

::::
km).

::::::::::
Small-scale

::::
(e.g.,

::::::::
hundreds

::
of

:::::::
meters)

::::::::
structural

:::::::::::
deformations,

::::::::::
particularly

:::::
those

:::::::
forming

::::::::
localized

:::
U-

::
or

::::::::
V-shaped

::::::::::
geometries,

::::
are

:::
not

:::::::::::
incorporated,

:::::::
despite

::::
their

::::::::
common

:::::::::
occurrence

::
in

::::
field

:::::::
seismic

::::::::
volumes.

::::::::::::
Consequently,

::::
deep

:::::::
learning

:::::::
models

::::::
trained

::
on

::::
our

::::::
dataset

::::
may

:::::::
struggle

::
to

::::::::::
distinguish

:::::::
between

:::::::::
small-scale

::::::::
concave

::::::::
structures

::::
and

:::
U- or to interpret the sedimentary facies of the submarine channels.

::::::::
V-shaped

:::::::
channels,

::::::
which

:::::
could

:::::
lead

::
to

:::::
false

:::::::
positive

::::::
results.

:::::::::
Moreover,

:::::
each

::::
layer

:::
in

:::
the

:::::::
seismic

:::::::::
impedance

::::::
model

::
is
::::::::

assigned
::
a480

::::::
uniform

::::::::
thickness

::::
and

:
a
::::::::
relatively

:::::::::
consistent

::::::
seismic

::::::::::
impedance,

:::::::
resulting

::
in
::
a
::::
lack

::
of

::::::::::
stratigraphic

:::::::::
variability

::
in

:::
the

::::::::
synthetic

::::::
seismic

::::::::
volumes.

:::::
Given

:::
this

:::::::::
limitation,

::
it

::
is

:::
not

::::::::
surprising

::::
that

:
a
:::::
deep

:::::::
learning

:::::
model

::::::
trained

:::
on

:::
our

::::::
dataset

::::
may

::::
infer

::::
that

:::
the

::::::
primary

:::::::::
distinction

::::::::
between

:::::::
channel

:::
and

:::::::::::
non-channel

::::
areas

::
is
:::

the
::::::::

presence
::
of

:::::::::::
stratigraphic

:::::::::
variability.

::::
This

:::::::::
inference

:::::
arises

:::::::
because,

::
in

:::
the

::::::::
synthetic

::::::
seismic

::::::::
volumes,

::::::::::::::::::
channels—particularly

:::::::::
submarine

::::::::::::
canyons—are

:::
the

::::
only

::::::::
structures

:::::::::
exhibiting

::::
such

:::::::::
variability.

::::::::
However,

::
in

::::
field

::::::
seismic

::::::::
volumes,

::::::::::
stratigraphic

:::::::::
variability

::
is

:::::::::
widespread

::::::
among

:::::::::::
non-channel

:::::
areas.

::::::::::::
Consequently,485

::::
deep

:::::::
learning

::::::
models

:::::::
trained

::
on

::::
our

::::::
dataset

::::
may

:::::::
produce

:::::
false

:::::::
positives

::
in
:::::::::::

non-channel
:::::
areas

::::
with

:::::::::
significant

:::::::::::
stratigraphic

:::::::::
variability.

(a) Field seismic volume from the Parihaka seismic survey (courtesy of New Zealand Crown Minerals), showing a large-scale

submarine channel (indicated by the yellow arrows). (b) The channel identification result of the U-Net trained by the cigChannel

dataset.490

6 Conclusions

The
::
In

:::
this

::::::
paper,

::
we

:::::::
present

:
a
::::::::
workflow

::
for

:::::::::
generating

::
a

::::
large

::::::
number

::
of

:::
3D

::::::::
synthetic

::::::
seismic

:::::::
volumes

:::::::::
containing

::::::::::::
paleochannels

::::
along

:::::
with

::::
their

::::::::::::
corresponding

:::::::::::
segmentation

::::::
labels.

:::::
Using

::::
this

::::::::
approach,

:::
we

::::::::
construct

:::
the

:
cigChannel datasetis dedicated to

overcome the shortage ,
::::::
which

::::::::
comprises

:::::
1,600

:::::::
seismic

:::::::
volumes

::::::::
featuring

:::::
three

::::::
distinct

:::::
types

::
of

::::::::::::
paleochannels.

:::::
This

::::::
dataset

:
is
::::::::
designed

::
to

:::::::
address

:::
the

:::::::
scarcity of training data for deep learning-based paleochannel identification in seismic volumes. It495

provides a more
::::::::
Compared

::
to

:::::::::
previously

::::
used

:::::::
datasets

::::::::::::::::
(Pham et al. (2019)

:::
and

::::::::::::::
Gao et al. (2021)

:
),
:::
the

::::::::::
cigChannel

::::::
dataset

:::::
offers

:
a
:::::
more

::::::
diverse

:::
and

:
comprehensive collection of paleochannelsthan its predecessors. Workflow for generating this dataset was

designed to produce synthetic seismic volumes with realistic characteristics of paleochannels, which exhibit large variability

due to the randomization of many parameters that control the workflow. .
:

The effectiveness of this dataset is demonstrated
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by its application on several
::::::
through

:::
its

:::::::::
application

::
to
:::::
three

:
field seismic volumes, which shows that even

:::::
where a simplified500

U-Networks well in identifying paleochannels after being trained with our dataset.

Other than providing training data ,
::::::
trained

:::
on

:::
the

::::::::::
cigChannel

::::::
dataset,

::::::::::
successfully

::::::::
identifies

::::::::::::
paleochannels

::::
with

:::::::::
promising

::::::
results.

::::
This

:::::::::
highlights

:::
the

::::::::
feasibility

:::
of

:::::
using

:::::::
synthetic

::::
data

:::
to

::::
train

::::
deep

::::::::
learning

::::::
models

:::
for

:::::::::::
paleochannel

:::::::::::::
identifications,

:::::::
bridging

:::
the

:::
gap

:::::::
between

:::::::
limited

::::
field

::::::
seismic

:::::::
volume

::::::::::
annotations

:::
and

:::
the

::::
need

:::
for

:::::::
efficient

::::
and

:::::
robust

:::::::
seismic

:::::::::::
paleochannel

:::::::::::
interpretation.

:::::::
Beyond

::::::::
providing

:
a
::::
rich

::::::
source

::
of

::::::
training

:::::::
samples

:
for deep learning modelsto identify paleochannels in seismic505

volumes, this dataset can also serve as a publicly available benchmark dataset for validating the performance of various deep

learning models and training strategies. This dataset can be further improved by incorporating new elements into the dataset

generation workflow, such as adding faults to create a more complex structure and introducing heterogeneous seismic amplitude

to the meandering and distributary channels . As the codes corresponding to the dataset generation workflow are also made

publicly available, users can customize the controlling parameters and create datasets that used to identify specific forms of510

paleochannels
:
,
:::
the

::::::::::
cigChannel

::::::
dataset

:::
and

:::
its

:::::::::
generation

::::::::
workflow

::::
hold

:::::::
potential

:::
for

:::::::::
advancing

:::::::
seismic

::::::::
modeling

:::::::::
techniques

:::
and

:::::::::
supporting

::::::::::
educational

:::::::::::
applications.

:::
For

::::::::
example,

::::
rock

::::::
physics

:::::::
models

:::::::::::
incorporating

::::::
fluvial

::
or

::::::::
turbiditic

:::::
facies

:::::
could

:::
be

::::::::
developed

::
to

::::::::
evaluate

:::
new

:::::::
seismic

::::::::
modeling

::::::::::
approaches,

::::::
while

:::
the

:::::::
synthetic

:::::::
seismic

:::::::
volumes

::::::
could

::::
serve

:::
as

:::::::
effective

:::::
tools

::
for

:::::::::::::
demonstrating

:::
the

::::::::
influence

::
of

:::::::::
geological

:::::::::::::
heterogeneities

:::
on

:::::::
seismic

::::
data.

:::::::::
However,

::::::::
synthetic

:::::::
seismic

:::::::
volumes

:::
in

:::
the

:::::::::
cigChannel

:::::
dataset

::::
still

::::
lack

:::
the

:::::::
diversity

:::
and

:::::::
realism

::
of

::::
field

::::::
seismic

::::::::
volumes,

::::::::
primarily

::::
due

::
to

:::
the

::::::::::::
simplifications

::
of

:::::::
channel515

::::::::
modeling,

:::::::
seismic

:::::::::
impedance

::::::::::::
representation,

:::
and

:::
the

::::::::
synthesis

::
of

:::::::
seismic

::::::::
volumes.

::
In

:::
the

::::::
future,

:::
we

::::
aim

::
to

:::::::
enhance

::::
our

::::::::
workflow

::
to
::::::::

improve
:::
the

:::::::
realism

:::
and

::::::::
diversity

::
of

:::
the

:::::::::
generated

:::::::
seismic

::::::::
volumes.

::::::::
Terrestrial

::::::::::
meandering

::::
and

:::::::
tributary

::::::::
channels

::::
will

::
be

::::::::
modeled

:::::
using

:::::::::::
stratigraphic

:::::::::
approaches

::
to
::::::

better
::::::
capture

:::::::::::
sedimentary

::::::::
processes,

:::::::
thereby

:::::::::
enhancing

:::::::::
geological

:::::::
realism.

::::
The

::::::
dataset

::::
will

::::
also

:::
be

::::::::
expanded

::
to

:::::::
include

:
a
:::::::

broader
:::::
range

:::
of

:::::::
channel

:::::
types,

::::
such

::
as

::::::
braided

::::
and

::::::
deltaic

:::::::
systems,

::::::
further

::::::::
increasing

:::
its

:::::::
diversity.

:::
To

:::::::
improve

::::::
seismic

::::::::::
impedance

::::::::
modeling,

:::
we

::::
plan

::
to520

::::::
account

:::
for

:::::
grain

:::
size

::::::::::
distribution

:::
and

:::
its

::::::
impact

::
on

:::::::::
impedance

:::::::::
variations

:::::
within

:::::::
channel

::::::::::
sedimentary

::::::
facies.

:::::::::::
Additionally,

:::
the

::::::
current

::::::::
simplistic

:::
1D

::::::::::
convolution

::::
will

::
be

::::::::
replaced

::::
with

:::
3D

::::::::::
convolution

::
or

::::::::::::
full-waveform

::::::::
modeling

:::
to

:::::
better

::::::
capture

:::::::
seismic

:::
data

:::::::::
variability.

::::::
These

:::::::::::
advancements

::::
will

:::::::
enhance

:::
the

:::::::::
geological

::::::
realism

::::
and

:::::::
diversity

::
of

:::
our

:::::::
dataset,

:::::::::
ultimately

::::::::
improving

:::
its

::::::::::
effectiveness

:::
for

::::
deep

:::::::::::::
learning-based

::::::
seismic

:::::::::::
paleochannel

::::::::::::
interpretation.

7 Code and data availability525

The cigChannel dataset (Wang et al., 2024) can be accessed via Zenodo. It has been organized into four subsets, whose links

are provided as followed:

1. Meandering channels: https://doi.org/10.5281/zenodo.11078794;

2. Tributary channel networks: https://doi.org/10.5281/zenodo.11073030;

3. Submarine canyons: https://doi.org/10.5281/zenodo.11079950;530

4. Assorted channels: https://doi.org/10.5281/zenodo.11044512.

Codes corresponding to the dataset generation workflow are provided on GitHub (https://github.com/wanggy-1/cigChannel).
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The three seismic volumes demonstrated in the Application section can be downloaded from the following links:

1. Meandering channel example: https://drive.google.com/file/d/1ItOmdluWUfApzamA4mCeJNhnz_CYUZuf/view?usp=

drive_link;535

2. Tributary channel example: https://drive.google.com/file/d/1l4-gBRE-SEoQkx7souERjtiRLpyABrJ-/view?usp=drive_link;

3. Submarine canyon example: https://drive.google.com/file/d/1qxO8-onWFlffp7t3UHMtm-rHUmkkMvQx/view?usp=drive_

link.
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Figure 17.
:::
The

::::::
original,

:::::::::::
reconstructed

:::
and

::::::
residual

::::::
volumes

::
of

:::
(a)

:::::::
synthetic

:::::
seismic

::::
data

::::
with

::::::
assorted

:::::::
channels,

:::
and

::::
field

::::::
seismic

:::
data

::::
with

::
(b)

:::::::::
meandering

:::::::
channels,

:::
(c)

::::::
tributary

:::::::
channels

:::
and

:::
(d)

::::::::
submarine

::::::
canyon.
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Table A1. Channel modeling parameterswith their reference values.

Channel type Parameter Value

:::::::
Reference

Meandering

channel

Width 200 m - 500 m

::
30

::
m

:
-
::
15

:::
km

:::::::::::
(Gibling, 2006)

Maximum depth 20 m - 50 m

:
1
::
m

:
-
::
38

::
m

::::::::::::
(Gibling, 2006)

Strike N0◦E - N360◦E

Migration rate constant ∗ 40 m/year
:
yr
:
- 50m

::
50

::
m/year

:
yr

:

:::::::::
Exaggerated

::::
to
::::::::::

accelerate
:::::::::::

simulation;

:::::::
reference

::::::
range:

::::
0.5

::::::
m/yr

::
-
::::

15
:::::

m/yr

:::::::::::::::::::::::::::::::::::::::::::
(Donovan et al., 2021; Schook et al., 2017; Heo et al., 2009)

:::::::::::
Dimensionless Chezy’s friction fractor ∗

0.06 - 0.08

:::::::::
Exaggerated

::
to

:::::::
accelerate

:::::::::
simulation;

:::::::
reference

::::
range:

:::::
0.002

:
-
:::::
0.005

::::::::::
(Chow, 1988)

Iteration time step ∗ 0.1 year
::
yr

Number of iterations ∗ 1000 - 2000

Tributary

channel

Maximum width 200m
::
200

::
m
:
- 400 m

::
10

::
m

:
-
::::
1000

::
m

::::::::::::::
(Trigg et al., 2012)

Width/depth ratio 10 - 12

:
2
:
-
:::
870

::::::::::::
(Gibling, 2006)

Maximum number of iterations † 8192

Number of Particles for early-termination † 0

Submarine

canyon

Width
::::::
Channel

::::
width

:

300 m - 400 m

:::
195

::
m

:
-
::
6.8

:::
km

:::::::::::::::::
(Shumaker et al., 2018)

Maximum depth 30 m - 40 m

:
4
::
m

:
-
:::
132

::
m

:::::::::::::::::
(Shumaker et al., 2018)

Strike N0◦E - N360◦E

Migration rate constant ∗ 50m
::
50

::
m/year

::
yr - 60m

::
60

::
m/year

:
yr
:

:::::::::
Exaggerated

::
to

:::::::
accelerate

:::::::::
simulation;

:::::::
reference

::::
range:

::
2
::::
m/yr

:
-
::
14

::::
m/yr

:::::::::::::::
(Biscara et al., 2013)

:::::::::::
Dimensionless Chezy’s friction factor ∗

0.07 - 0.08

:::::::::
Exaggerated

::
to

::::::::
accelerate

::::::::
simulation

:::::::
process;

:::::::
reference

:::::
range:

::::
0.002

:
-
:::::
0.005

::::::::::
(Chow, 1988)

Iteration time step ∗ 0.1 year
::
yr

Number of iterations ∗ 500 - 2000

Natural levee maximum thickness∗
:::::::
deposition

:::
rate

0.5
:
5
:
m/iteration

::
yr

:::::::::
Exaggerated

::
to

:::::::
accelerate

:::::::::
simulation;

:::::::
reference

::::
value:

::::
0.66

:::::
m/kyr

::::::::::::::
(Allen et al., 2022)

Natural levee width 6000 m
:
6
:::
km - 8000 m

:
8
:::
km

::::::::
Restrained

::
to

::
fit

:::::::
model’s

::::::::
extension;

:::::::
reference

::::
range:

:::
25

::
km

::
-
::
40

:::
km

::::::::::::::::
(Klaucke et al., 1998)

Incision rate ∗
::::::
Channel

::::::
incision

:::
rate

8 m/year
:
yr
:

:::::::::
Exaggerated

::
to

:::::::
accelerate

:::::::::
simulation;

:::::::
reference

::::
value:

:::
80

:::::
m/myr

:::::::::::::::
(Englert et al., 2020)

Aggradation rate ∗
::::::
Channel

:::::::::
aggradation

:::
rate

8 m/year
:
yr
:

:::::::::
Exaggerated

::
to

:::::::
accelerate

:::::::::
simulation;

:::::::
reference

::::
value:

::::
300

:::::
m/myr

:::::::::::::::
(Englert et al., 2020)
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Appendix B: Components of the cigChannel dataset540

Table B1. Components of the cigChannel dataset.

Name Sample 
amount Contents Features Example

Meandering 
channel subset 400

1. Seismic volumes
2. Binary label volumes
3. Seismic impedance volumes

1. Meandering channels only
2. Horizontal, inclined, folded and faulted 

structures
3. Noise-free

Tributary 
channel 
network subset

400
1. Seismic volumes
2. Binary label volumes
3. Seismic impedance volumes

1. Tributary channel network only
2. Horizontal, inclined, folded and faulted 

structures
3. Noise-free

Submarine 
canyon subset 400

1. Seismic volumes
2. Binary label volumes
3. Seismic impedance volumes
4. Sedimentary facies volumes

1. Submarine canyons only
2. Horizontal, inclined, folded and faulted 

structures
3. Noise-free

Assorted 
channel subset 400

1. Seismic volumes
2. Multi-class label volumes
3. Seismic impedance volumes

1. Meandering channels, tributary channel 
networks and submarine canyons

2. Horizontal, inclined, folded and faulted 
structures

3. Noise-free
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Appendix C: Illustrative codes of the dataset generation workflow

1: # I mp or t a l l f u n c t i o n s .

2: from f u n c t i o n s import *
3:545

4: # Number o f models .

5: n_model = 400

6: # Data g e n e r a t i o n .

7: f o r i in range ( n_model ) :

8: # I n i t i a l i z e t h e model .550

9: model = GeoModel ( )

10: # A s s i g n P−wave v e l o c i t i e s .

11: model . add_vp ( )

12: # Add meander ing c h a n n e l s .

13: model . a d d _ m e a n d e r i n g _ c h a n n e l ( )555

14: # Add t r i b u t a r y c h a n n e l s .

15: model . a d d _ t r i b u t a r y _ c h a n n e l ( )

16: # Add submar ine canyons .

17: model . add_submar ine_canyon ( )

18: # Add i n c l i n a t i o n .560

19: model . a d d _ d i p p i n g ( )

20: # Add f o l d s .

21: model . a d d _ f o l d ( )

22: # Add f a u l t s .

23: model . a d d _ f a u l t s ( )565

24: # Resampl ing model ' s z−c o o r d i n a t e s .

25: model . r e s a m p l e _ z ( )

26: # Compute P−wave impedance .

27: model . compute_Ip ( )

28: # Compute r e f l e c t i o n c o e f f i c i e n t s .570

29: model . compute_rc ( )

30: # Make s y n t h e t i c s e i s m i c da ta .

31: model . m a k e _ s y n s e i s ( )

32: # Save da ta .

33: model . Ip . t o f i l e ( ) # Impedance volume .575

34: model . s e i s m i c . t o f i l e ( ) # S e i s m i c volume .

35: model . s e i s _ l a b e l . t o f i l e ( ) # Channel l a b e l volume .

36: model . f a c i e s . t o f i l e ( ) # S e d i m e n t a r y f a c i e s volume .
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Appendix D: Parameters of the seismic impedance model and Ricker wavelet580

Table D1. Parameters of the seismic impedance model, Ricker wavelet and their reference values.

Parameter Value

Model extension

X 0 m - 6400 m

Y 0 m - 6400 m

Z 0 m - 1280 m

Grid spacing 25 m × 25 m × 5 m (X × Y × Z)

Layer

Seismic impedance 7000 m/s.g/cm3 - 16000 m/s.g/cm3

Impedance perturbation 300 m/s.g/cm3 - 500 m/s.g/cm3

Thickness 60 m - 150 m

Meandering channel Impedance contrast with covering layer (ε) 0 - 1

Distributary
:::::::
Tributary channel Impedance contrast with covering layer (ε) 0 - 1

Submarine canyon

Point bar impedance 6000 m/s.g/cm3 - 8400 m/s.g/cm3

Natural levee impedance 8400 m/s.g/cm3 - 14400 m/s.g/cm3

Oxbow lake
:::::::::
Abandoned

::::::
meander

:
impedance 8400 m/s.g/cm3 - 14400 m/s.g/cm3

Ricker wavelet Peak wavenumber 20 km-1 - 60 km-1
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