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Abstract. Since 2008, the Yellow Sea has experienced a world's largest-scale marine disasters, known as the green tide, 

marked by the rapid proliferation and accumulation of large floating algae. Leveraging advanced AI models, namely 

AlgaeNet and GANet, this study comprehensively extracted and analyzed green tide occurrences using optical Moderate 

Resolution Imaging Spectroradiometer (MODIS) images and microwave Sentinel-1 Synthetic Aperture Radar (SAR) images. 10 

Most importantly, this study presents a continuous and seamless weekly average green tide coverage dataset with the 

resolution of 500 m, by integrating high precise daily optical and SAR data during each week during the green tide breakout. 

The uncertainty assessment of this weekly product shows it is completely consistent with the overall direct average of the 

daily product (R2=1 and RMSE=0). Additionally, the individual case verification in 2019 also shows that the weekly product 

conforms to the life pattern of green tide outbreaks and exhibits parabolic curve-like characteristics, with an low uncertainty 15 

(R2=0.89 and RMSE=275 km2).This weekly dataset offers reliable long-term data spanning 15 years, facilitating research in 

forecasting, climate change analysis, numerical simulation and disaster prevention planning in the Yellow Sea. The dataset is 

accessible through the Oceanographic Data Center, Chinese Academy of Sciences (CASODC), along with comprehensive 

reuse instructions provided at http://dx.doi.org/10.12157/IOCAS.20240410.002 (Gao et al., 2024). 

1 Introduction 20 

Situated between China and Korea, the Yellow Sea (illustrated in Fig. 1) is a marginal sea with abundant biodiversity. The 

Yellow Sea green tide presents a formidable ecological challenge within this maritime expanse. Comprising primarily of 

large floating algae, notably Enteromorpha, these algae proliferate and aggregate under particular environmental conditions, 

culminating in marine ecological disasters. The Yellow Sea green tide showcases distinctive seasonal and spatiotemporal 

distribution patterns. Since 2008, they have occurred annually from early May to late August, traversing from the Subei 25 

Shoal in the western Yellow Sea to the Shandong Peninsula in the northern Yellow Sea (Fig. 1). Throughout this migration, 

green algae undergo rapid proliferation and aggregation, forming the world's most extensive green algal belts (Liu et al., 

2013; Wang et al., 2015; Valiela et al., 2018). Changes in the drift patterns and strength of these green tide blooms could 
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significantly affect the offshore fishery resources, ecological environment, and tourism industry of the Yellow Sea (Cao et al., 

2020). Consequently, monitoring and analyzing the Yellow Sea green tide remain imperative and pressing tasks. 30 

Due to its extensive coverage and rapid revisit capabilities, satellite remote sensing technology has emerged as the 

predominant method for spatiotemporal monitoring of large floating algae. Previous research has leveraged optical and 

synthetic aperture radar (SAR) satellite imagery to track the entire life cycle of green tides (see Fig. 1a-b). Optical satellite 

sensors, typified by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, 

the Multi-Spectral Scanner (MSS),Thematic Mapper (TM),Enhanced Thematic Mapper Plus(ETM+), Operational Land 35 

Imager (OLI) and Thermal Infrared Sensor(TIRS) onboard Landsat (A series of Earth-observing satellite missions since 

1972), Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (Suomi 

NPP) spacecraft, and Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean and Meteorological 

Satellite (COMS) have become the primary data source for extracting green tide information (Xing et al., 2016 and 2018). 

As illustrated in Fig. 1a, green algae manifests as a distinct red strip in the false-color image synthesized from near-40 

infrared,red, and green bands, presenting a stark contrast with the surrounding seawater. However, owing to the spectral 

reflectance similarity between green algae and terrestrial vegetation, numerous biological indices (such as Normalized 

Difference Vegetation Index (NDVI), Floating Algae Index (FAI), and Alternative Floating Algae Index (AFAI) have been 

proposed and utilized for green algae extraction (Hu, 2009; Son et al., 2012; Fang et al., 2018). Yet, due to the coarse 

resolution and mixed pixels of optical satellite images, only relatively large green algae strips can be identified, resulting in 45 

both overestimation and underestimation issues in optical imagery (Cui et al., 2018 and 2020). Moreover, despite the daily 

transit of optical satellites over the Yellow Sea area, the continuous observation of green tide information is impeded by the 

presence of clouds and rain.  

SAR presents an alternative effective tool for monitoring green tides, exemplified by Sentinel-1 and Gaofen-3. Unaffected 

by clouds and rain, SAR sensors operates under all-weather conditions and is unaffected by clouds and rain (Qi et al., 2022b). 50 

SAR emits radar pulses using several polarization modes and retrieves backscattering signals from the sea surface, known as 

normalized radar cross section (NRCS). NRCS is commonly affected by Bragg waves generated by winds and currents. As 

green algae float on the sea surface and mimic solid objects, they produce significant volume scattering or double- triple-

bouncing in the incoming radar signal due to their solid structure. Numerous methods have been proposed to extract green 

tide information from radar NRCS data under different polarization modes, including threshold-based automatic approaches 55 

and empirical human threshold methods (Yu et al., 2020; Ma et al., 2022). Essentially, these methods classify green algae 

based on the contrast between algae and seawater. With higher resolution, narrower observation swaths, and long revisit 

cycles (e.g., Sentinel-1's single satellite with a 12-day cycle, and a constellation of two satellites enabling global image 

capture every 6 days), microwave SAR imagery can capture even the smallest patches of green algae (Fig. 1b). However, 

their coverage of the entire Yellow Sea remains incomplete, as depicted in Fig. 1b. Green algae strips exhibit strong 60 

reflectivity, appearing as bright white patches on SAR images, while seawater seems black. As microwaves cannot penetrate 
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seawater, SAR sensors only capture green algae completely floating on the sea surface, thus omitting information about 

green algae below the seawater surface (Gao et al., 2022).  

Therefore, integrating the green algae extraction results from both optical MODIS and microwave SAR systems not only 

enhances the effective number of daily observations throughout the algae's life cycle but also addresses the limitations of 65 

each system. While optical MODIS typically observes large green algae strips due to their coarse resolution, SAR primarily 

detects green algae on the sea surface. Combining these datasets generates a weekly product, providing a comprehensive 

representation of continuous green tide changes. 
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Figure 1. The occurrence scale of green tides in the Yellow Sea. (a) False-color image synthesized from near-infrared, red, and green 70 

bands; (b) Sentinel-1 SAR image captured within the Yellow Sea and corresponds to the location indicated by the green box in Figure (a); 

(c) Schematic diagram depicting the optical and SAR imaging processes; (d) Randomly selected daily green tide coverages in 2019-2021, 

revealing a distinct "parabola-like" pattern. 

 

In recent years, propelled by the rapid advancements in artificial intelligence (AI) technology (Jordan et al., 2015; LeCun et 75 

al., 2015; Li et al., 2020; Dong et al., 2022; Li et al., 2022; Chen et al., 2023;Wang and Li, 2024), several green tide 
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extraction algorithms based on deep learning have emerged. Notably, models such as the AlageNet (Gao et al., 2022) and 

GANet (Guo et al., 2022) leverage image texture enhancement mechanisms and attention mechanisms, effectively 

addressing the challenge of algae-water imbalance for the optical MODIS and Sentinel-1 SAR imagery. These models boast 

superior detection accuracy and generalization capabilities compared to some state-of-the-art models, e.g., classic U-Net, 80 

VGG-16, Random Forest (RF) and normalized difference vegetation index (NDVI). They eliminate the need for fixed 

threshold selection, ensuring consistent green algae detection across diverse imaging conditions. However, the efficacy of AI 

models hinges on the availability of abundant representative green algae training samples across various environmental 

scenarios, necessitating labor-intensive and time-consuming manual labeling efforts. Consequently, manual labeling and 

sharing representative sample labels have posed persistent challenges. Moreover, despite the plethora of green algae 85 

extraction algorithms proposed in previous studies, the time series of historical green tide coverage datasets, dating back to 

the inception of green tide records, have yet to be made publicly available and shared (Hu et al., 2019; Hu et al., 2023; Cao 

et al., 2023). These datasets serve as the foundation of green tide research and provide essential data for the mutual 

comparison and verification of various extraction algorithms. 

Recently, through in-depth research efforts, there has been some preliminary understanding of the mechanisms underlying 90 

green tide outbreaks (Zhang et al., 2019; Feng et al., 2020; Cao et al., 2023). The genesis of green tide is commonly 

attributed to Porphyra mariculture in the Subei Shoal, as depicted in Fig. 1a-b (Xing et al., 2019). It is believed that green 

algae seed spores detach from Porphyra mariculture rafts and disperse into the seawater, proliferating rapidly under favorable 

environmental conditions, such as suitable sea surface temperature (SST) and nutrient richness, ultimately leading to large-

scale outbreaks (Li et al., 2015; Li et al., 2016). The outbreak of green tide is influenced by a combination of environmental 95 

and anthropogenic factors, with significant inter-annual variations in outbreak magnitude (Guo et al., 2016), including the 

conspicuous "parabola-like" pattern, illustrated in Fig. 1d. However, due to the lack of a comprehensive and scientific 

understanding of the green tide bloom mechanism, the root cause of the "jumping" changes in green algae coverage area 

remains elusive. Particularly when various factors are interdependent and mutually influencing each other (Jin et al., 2018; 

Li et al., 2021a and 2021b), the absence of collaborative joint analysis impedes accurate elucidation of the critical response 100 

mechanism and interactions between environmental factors and green tide outbreaks. Hence, it is imperative to investigate 

the interplay between green tide occurrences and the environment by examining the correlation between environmental 

factors and outbreaks of green algae. 

The objectives of this article are twofold, as shown in Fig. 2: 

1) Develop a weekly green algae coverage dataset by integrating optical and SAR data. This dataset addresses 105 

limitations such as missing small strips in optical images due to low resolution and the inability of SAR to observe green 

algae not completely floating on the sea surface. It also aims to overcome the "discontinuous" characteristics of previous 

daily green algae coverage datasets. 
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2) Analyze the relationship between green tide coverage and various environmental factors influencing its occurrence, 

leveraging the spatiotemporal characteristics of green tide outbreaks. This analysis aims to identify the factors contributing 110 

to variations in outbreak scale and assess the impact of green tide activities on the ecological environment. 

This study manually annotates optical and SAR images across diverse environmental conditions to achieve these goals and 

creates and shares representative green tide sample datasets tailored to multi-environment scenarios. These sets will be 

training data for developing other AI-based green algae extraction models. The AlageNet and GANet models will also be 

refined and retrained for detecting green tides in optical MODIS and microwave Sentinel-1 SAR images, respectively. This 115 

continued training step facilitates the creation of daily green tide coverage datasets. The accuracy of daily green tide 

detection will be evaluated by comparing the results with the manually annotated sample dataset and fully annotated images. 

Furthermore, differences in green tide detection under the two observation modes of optical and microwave will be analyzed, 

followed by the validation of uncertainty in the weekly datasets using skillful assessment strategies. 

 120 

 

Figure 2. Overall flow chart of green tide coverage products generation. 

2 Data and Methods 

2.1 Datasets acquisition. 

The optical MODIS and Microwave SAR images and the ancillary environmental factors affecting green tide changes in the 125 

Yellow Sea are acquired. These datasets are utilized to construct our green tide coverage time series and to analyze the 

relationship between green tide bloom and the environment. 
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2.1.1 Optical MODIS imagry 

MODIS, comprising Terra and Aqua satellites launched in 1999 and 2002, respectively, has maintained stable operations, 

enabling daily observations covering the entire Yellow Sea. Since 2008, the Yellow Sea green tide began to be recorded by 130 

satellites. This study utilizes optical MODIS surface reflectance products, specifically MYD09GA and MOD09GA, which 

offer data for Bands 1-7 in a daily gridded L2G product. Different combinations of these bands produce distinct false-color 

images. Notably, within the electromagnetic spectrum, near-infrared (Band 2) bands exhibit prominent peaks compared to 

red (Band 1) and green (Band 4) bands (Qi et al., 2017). Consequently, in false-color images generated by these bands (Fig. 

3a), the green tide appears red, providing enhanced contrast with the surrounding seawater. This approach offers notable 135 

advantages over true-color images created using the red (Band 1), green (Band 4), and blue (Band 3) bands depicted in Fig. 3. 

From 2008 to 2022, we collected a total of 577 daily optical images, comprising 258 from Aqua and 319 from Terra, with a 

resolution of 500 meters in the Yellow Sea. These MODIS images are geometrically and radiometrically corrected. Since 

optical sensors possess certain underwater detection capabilities, MODIS can effectively detect green algae on the water 

surface and submerged portions. 140 

 

 

Figure 3. Synthetic images of near-infrared, infrared, and green bands (date: June 23, 2021). 

 

2.1.2 Microwave SAR imagery 145 

The Sentinel-1 satellite, composed of SAR satellites A and B launched in 2014 and 2016 respectively, operates on a 12-day 

repeat cycle, providing global coverage every 6 days through a satellite constellation. It began retrieving green algae data in 

the Yellow Sea from 2015 onwards. As a result, the daily green tide coverage dataset released spans from 2015 to 2022, with 

a time resolution of a 6-day cycle based on Sentinel-1 SAR satellite images. This study utilizes microwave Sentinel-1 SAR 

satellite imagery. We collected 216 Sentinel-1 Level-1 ground range detected high-resolution (GRDH) images with VV and 150 

VH polarizations spanning the Yellow Sea from 2015 to 2022. These SAR images are acquired in interferometric wide (IW) 

mode, featuring a 250-kilometer swath and 10-meter initial resolution. At this high resolution, Sentinel-1 images can detect 
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small algae patches. However, due to the rapid absorption of microwave signals in the water, the SAR sensor can only 

capture reflected signals from green algae entirely floating on the sea surface, resulting in the observed green tide appearing 

as a bright white strip in SAR imagery. The dataset comprising SAR images covering the Yellow Sea is extensive, with 155 

individual images exceeding 1 gigabit in size. To enhance the processing efficiency of satellite images containing green tides, 

we resampled the original 10-meter resolution to 30 meters. 

2.1.3 Ancillary environmental factor data 

The environmental data utilized in this study are sourced from various atmosphere-ocean models, as referenced in works 

such as Li et al. 2022a and 2022b. These data stem from four primary model assimilation/reanalysis sources, detailed in 160 

Table 1: the HYbrid Coordinate Ocean Model (HYCOM) provided sea surface temperature (SST), sea surface salinity (SSS), 

and sea surface circulation (SSC) at a resolution of 0.08º; The the fifth-generation atmospheric reanalysis data (ERA5) of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) offers sea surface wind (SSW) and precipitation (PRCP) 

at a resolution of 0.25º; The Copernicus Marine Environment Monitoring Service (CMEMS) provided nutrients and 

dissolved oxygen (O2) at the same resolution of 0.25º. Additionally, the Goddard Space Flight Center (GSFC) contributes 165 

solar radiation (SIR) at a resolution of 0.25º. These sources amalgamate model data with global observations, yielding a 

comprehensive and consistent dataset that effectively simulates the coastal waters of the China Sea (Xu et al., 2011; Wang et 

al., 2020). To ensure consistency across different data sources, we resampled all aforementioned environmental elements to a 

resolution of 500 meters, aligning with the resolution of MODIS. 

Table 1. Major environmental elements 170 

Data source 
Potential 

environmental factors 

Original 

Resolution 
Download address Derived data 

HYCOM 

SST: sea surface 

temperature 

0.08° 

https://developers.google.com/earth-engine/datas

ets/catalog/HYCOM_sea_temp_salinity 
Derived gradient field 

SSS: sea surface 

salinity 

https://developers.google.com/earth-engine/datas

ets/catalog/HYCOM_sea_temp_salinity 

SSC:sea surface 

circulation 

https://developers.google.com/earth-engine/datas

ets/catalog/HYCOM_sea_water_velocity 
 

ECMWF/ERA5 

SSW: sea surface 

wind 

0.25° 

https://developers.google.com/earth-engine/datas

ets/catalog/ECMWF_ERA5_DAILY 

 

PRCP: precipitation  

CMEMS 

Nutrients (Nitrate, 

Phosphate) 

https://data.marine.copernicus.eu/product/GLOB

AL_ANALYSIS_FORECAST_BIO_001_028/de

scription 

Derived gradient field 

O2: Dissolved oxygen  

GSFC/ NASA 

Earth Observations 
SIR:Solar radiation https://oceandata.sci.gsfc.nasa.gov/  
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2.2 Data annotation 

To develop an AI-based green algae extraction model, precise training samples are imperative as ground truth for model 

training. We conduct expert-level visual interpretation and manual annotation of optical MODIS and Sentinel-1 SAR images 

to achieve this. 175 

2.2.1 Optical image annotations 

To establish precise ground-truth labels for optical images, we rely on a carefully selected set of 48 false-color images 

derived from the near-infrared, red, and green bands as the basis for visual interpretation and labeling of green tides. In 

regions encompassing oceanic deep water areas devoid of clouds, offshore shallow water regions without clouds, thin cloud 

areas, dense and sparse algae strip regions, and cloud edge zones, algae-containing pixels are manually identified on optical 180 

images using Labelme software (Russell et al., 2008). A total of 5,296 pairs of samples are labeled as training sets and 662 

pairs as testing sets, with each labeled sample standardized to 128128 pixels. 

2.2.2 SAR image annotations. 

To enhance the feature learning capabilities of the green tide detection model across diverse environmental contexts, 

including dense green algae strip areas, sparse strip areas, oceanic deep water regions, and offshore shallow water areas, we 185 

utilize a resolution of 30 meters while maintaining a size of 256256 pixels for the training samples. Maintaining the size of 

the training sample while transitioning to a 30-meter resolution enables a broader representation of green tide characteristics, 

owing to the increased spatial scale compared to the original 10-meter resolution. For instance, a training sample featuring 

green algae features across both deep and shallow water regions allows the detection model to learn from these varied 

features concurrently. Conversely, training samples at 10-meter resolution often exhibit uniform green tide characteristics, 190 

limiting the deep-learning model's learning capacity. Similarly, we manually annotate algae-containing pixels on a 

meticulously selected set of 22 SAR images using Labelme software. This annotation process results in a total of 4,535 pairs 

of samples, comprising 4,268 pairs for training and 267 pairs for testing, facilitating comprehensive model training and 

evaluation across a spectrum of environmental scenarios. 

2.3 Deep-learning models 195 

Recently, we introduced two AI-based algorithms, AlgaeNet (Gao et al., 2022) and GANet (Guo et al., 2022), designed for 

the rapid and precise extraction of green tide coverages from optical and SAR imagery (see Fig. 4). Both models 

demonstrate significant scalability and can be readily applied to various satellite images, including optical 

MODIS/GOCI/Landsat and microwave Sentinel-1/Gaofen-3/RadarSat. 
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2.3.1 AlgaeNet model 200 

AlgaeNet model addresses both physical-ware input and algae-water imbalance in training samples, mitigating potential 

biases inherent in traditional threshold-based segmentation methods. It outperforms other models, such as random forest and 

VGG16, in accuracy for optical MODIS imagery and achieves higher recall and precision than optical index methods like 

NDVI/FAI/EVI (Gao et al., 2022). Figure 4a shows the AlgaeNet model's system diagram based on the U-Net framework, 

including input, encoder, decoder, and prediction modules. Unlike the original AlageNet model, this study further modified 205 

the input module. We used the unique physical multichannel combination of all bands of MODIS surface reflectance 

products as input, and the improved AlgaeNet model can perform green algae detection in the optical image. All pixels of the 

entire area are divided into two categories: seawater pixels and algae pixels. 

We employed the AlgaeNet model to extract daily green tide coverages from optical MODIS images. Unlike previous 

methods that solely utilized true-color bands (Gao et al., 2022), our approach incorporates MYD09GA and MOD09GA 210 

channels (MODIS surface reflectance products), enabling more precise detection in areas affected by thin clouds, shallow 

waters, and turbid seawater. We further enhanced extraction accuracy by retraining the model with a new annotation dataset 

(see Table 2), achieving a mean intersection over union (mIOU) of 67.51%. However, MODIS images are susceptible to 

cloud edge effects (see Fig. 5), leading to the misidentification of some of the green algae pixels. To address this challenge, 

we implemented a filtering strategy, eliminating green algae patches smaller than 1.10 km2 to mitigate misidentifications at 215 

broken cloud boundaries while retaining algae information in cloud-free and thin cloud areas. 

2.3.2 GANet model 

GANet model, incorporating attention mechanisms, sample imbalance loss functions, and texture enhancement mechanisms, 

surpasses alternative algorithms (Guo et al., 2022). Figure 4b illustrates the system diagram of the GANet model, built upon 

the U-Net framework. It comprises the input, encoder, decoder, and prediction modules. Distinguished from the original 220 

GANet model, two significant enhancements have been introduced to the texture enhancement mechanisms utilizing 30 m 

resolution SAR images, replacing the prior 10 m resolution images. Primarily, the input module now integrates VV-/VH-

polarized NRCS data and textural feature maps derived from the SAR dataset, specifically employing the gray-level co-

occurrence matrix (GLCM). GLCM features are also extracted into pooling layers, generating feature maps within the 

encoder and decoder modules. The resulting multiscale GLCM features are then concatenated with feature tensors generated 225 

by the convolutional layers. Moreover, when feeding image slices into the AlgaeNet model, we apply random brightness 

enhancements to the image slices to improve the model's adaptability to different sea conditions. These enhancements 

empower the GANet model to effectively discern green algae in SAR images, thereby partitioning all pixels across the entire 

area into seawater and algae classifications. 

We employed the GANet model to extract daily green tides from Sentinel-1 SAR images and augmented the model's 230 

accuracy by integrating additional training samples from shallow nearshore waters. Furthermore, adopting 30 m resolution 

https://doi.org/10.5194/essd-2024-125
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

samples with a size of 256 256 pixels expanded the model's feature learning ability compared to the previous 10 m 

resolution. These enhancements have raised the model's performance to 85.41% (see Table 2), although this appears similar 

to the original model's accuracy of 86.31%, it's important to note that the comparison is affected by inconsistent label sample 

sizes. Additionally, these enhancements have significantly improved processing performance and efficiency across the entire 235 

imagery of the Yellow Sea region, transcending the limitations of a limited number of labeled samples. 

 

 

Figure 4. Green tide detection network. (a) Proposed AlgaeNet model based on the basic UNet framework; (b) Proposed GANet model 

based on the basic U-Net framework. 240 
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Figure 5. Size statistics of misidentified patches at the cloud edge (date: June 23, 2021). (a) Randomly selected MODIS optical image, 

where red patches represent green algae pixels and yellow dots indicate cloud shadows derived from MODIS product; (b) an enlarged 

view of the white square part in (a), with the red pixels representing algae pixels that were mistakenly identified due to the presence of 

cloud edges. Initially, they were supposed to be eliminated using yellow shadows. However, since the two do not coincide, the 245 

misidentification cannot be rectified. 

 

https://doi.org/10.5194/essd-2024-125
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

Table 2. Accuracy of daily green tide detection model based on the testing set (%) 

Type Accuracy Precision Recall F1-score mIOU Number of testing samples  

Optical 
99.26 87.67 73.88 80.60 67.51 662 This study 

97.03 75.36 57.73 65.38 48.57 316 Gao et al., 2022 

SAR 
99.82 94.69 89.71 92.13 85.41 267 This study 

98.36 93.29 92.03 92.65 86.31 2124 Guo et al., 2022 

 

2.4 Integrating daily optical and SAR products 250 

The direct outputs from the AlgaeNet and GANet models are daily green tide coverage and distribution, with a spatial 

resolution of 500 m from MODIS images and 30 m from Sentinel-1 SAR images, respectively. While MODIS images 

provide comprehensive coverage of the entire Yellow Sea during the green tide period, cloud and rain interference limit 

effective green tide observations to 2-4 times per week under cloud-free or thin cloud conditions. Consequently, daily green 

tide coverages derived from optical images may still exhibit several missing frames on certain days. On the other hand, the 255 

Sentinel-1 satellite operates with a time resolution of a 6-day cycle. However, the effective observation range of green tides 

by Sentinel-1 SAR sensors is primarily limited to most regions of the Yellow Sea (Fig. 1b) but not the entire Yellow Sea. 

This discontinuous green tide coverage challenges practical applications such as green tide forecasting. Therefore, a fusion 

of these two types of daily products is necessary to produce continuous and seamless green tide data products. 

Previous studies, including Li et al. (2021b), have proposed various methods to integrate green tide datasets derived from 260 

optical and SAR images, aiming to enhance compatibility and extend the temporal sequences of daily green tide observations. 

Figure 6 illustrates simultaneously observed optical and SAR images alongside their corresponding green tide coverages (Fig. 

6a-b). The optical green tide coverage pattern aligns seamlessly with that captured by SAR imagery (Fig. 6c). However, 

while optical sensors can detect algae strips both on the sea surface and beneath a certain water depth, SAR sensors only 

capture signals from algae strips entirely floating on the surface (as illustrated in Fig. 1c). Consequently, the boundaries of 265 

algae strips detected by optical sensors tend to appear wider for larger green algae strips. Additionally, due to the relatively 

coarse resolution of the optical MODIS sensor, very small green algae patches may be missed (Fig. 6d). For instance, Li et al. 

(2021b) proposed a method to standardize algae detection results from high-resolution images to a coarser resolution. 

However, this approach is primarily suitable for larger green algae strips detectable by both sensors and may not adequately 

address tiny green algae patches overlooked in optical images. This forced standardization strategy inadvertently introduces 270 

artifacts, resulting in inconsistent green algae time series patterns. Hence, caution is warranted when jointly utilizing daily 

optical and SAR data, particularly for green tide simulation and forecasting purposes. 
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Figure 6. Comparison of randomly selected optical and SAR image detection results (date: June 30, 2021). (a) and (b) are the optical 275 

and SAR images observed on the same day; (c) are the overlapping green algae coverages devried from (a) and (b); and (d) is the zoom of 

partial area in (c). 

 

To address this limitation and to generate a continuous and comprehensive green tide coverage dataset for the entire Yellow 

Sea, we present a fusion dataset consisting of weekly average green tide coverage data by merging the two datasets. 280 

Following the methodology outlined by Hu et al. (2023) for defining monthly green tide data, the specific process of 

integrating daily optical and SAR green tide products in this article is as follows: 

1) Resample the daily SAR green tide coverage data, originally acquired at a resolution of 30 meters, to a resolution of 

500 meters. This step ensures consistency with the resolution of the MODIS green tide product. 

2) Our analysis indicates at least one valid daily green tide observation in the Yellow Sea every week. To integrate the 285 

daily optical and SAR green tide coverage products, we divide them into weekly intervals, forming a time unit consisting of 

daily data each week. We count the number of images (N) where green tides are observed within a given time unit without 

distinguishing between sensors. This count represents the total valid observations within the time unit. 

3) For a specific pixel in the study area, we count the number of green algae occurrences (recorded as M), where M is 

less than or equal to N. When a pixel is identified as containing green algae by the AlgaeNet or GANet model, we assume it 290 
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contains 100% algae. Therefore, the proportion of algae in a pixel of the weekly product is calculated as M/N * 100%, and 

the corresponding coverage area of the pixel is M/N * 100% * 0.5 * 0.5 (in km2). 

Taken June 17-23, 2019, as an example, throughout this week, there were seven daily optical and SAR green tide coverages, 

as depicted in the left image (Fig. 7a), while the right image displays the combined weekly green tide coverage (Fig. 7b), 

following the data fusion steps mentioned above. 295 

 

 

Figure 7. Weekly integration sample of daily optical and SAR products from July 17-23, 2019. 

3 Results Validation and Discussion 

Comparisons with other datasets are challenging due to the scarcity of internationally available similar datasets. The weekly 300 

product comes from the daily green tide product fusion. The data accuracy of the initial daily product directly affects the 

accuracy of the final fusion product. Therefore, the verification of the weekly product includes two parts. The first is 

verifying the daily product, and the second is verifying the final weekly fusion product. 

3.1 Verification of daily green tide datasets in the Yellow Sea 

Besides validating AlageNet and GANet models using the testing set, as described in the methodological section, it's crucial 305 

to comprehensively evaluate the daily green algae dataset extracted from the entire remote sensing image of the Yellow Sea 

region. 
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3.1.1 Daily MODIS product validation 

For this study, MODIS images under cloud-free and thin cloud conditions on June 19, 2021, were randomly selected (Fig. 8). 

The overall evaluation (mIOU) of the green tide data reached 85.86%, 69.81%, 84.23%, and 89.61%, respectively, for the 310 

entire Yellow Sea, open water, cloud area, and Subei Shoal area. Furthermore, through visual inspection of three randomly 

selected typical regions (Box 1-3), the green tide dataset demonstrated excellent accuracy (see Table 4 and Fig. 8). 

 

 

Figure 8. Green tide detection result analysis from randomly selected optical images. Box 1 is an enlarged view of the open sea area 315 

under cloud-free conditions; Box 2 is an enlarged view of the thin cloud area; Box 3 is an enlarged view of a portion of the nearshore area 

of Subei Shoal. (Date: June 19, 2021). 

 

We categorize the entire algae tide outbreak process into two stages: the growth period (from satellite's initial algae coverage 

to the largest coverage) and the dissipation period (from the largest algae coverage to complete disappearance). Considering 320 

the differences in imaging capabilities between the two optical satellites, Aqua and Terra, Figure 9 presents histogram 

statistics of the size of green algae strips detected from MODIS images. It was observed that during the growth stage, the 

size of green algae strips was primarily concentrated at <50 km2, with the maximum algae strip reaching 400 km2. In the 

dissipation stage, the size of algae strips was concentrated at <20 km2, and the largest strip measured less than 150 km2. 

Theoretically, the lower detection limit for MODIS 250 m resolution bands is approximately 1% of the pixel size, i.e., 625 325 

m2 (Li et al., 2022b). However, based on the statistical results, the smallest detected strip of green algae (~1 km2) is much 

larger than the theoretical threshold (625 m2) due to resampling to 500 m resolution. 
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Figure 9. Statistical analysis of green algae patch size derived from optical imagery. 330 

3.1.2 Daily SAR product validation 

In SAR images, the GANet model demonstrates its poorest detection capability in the shallow water area of the Subei Shoal 

(Guo et al., 2022). This deficiency is primarily attributed to the turbid seawater in the Subei Shoal, which reflects strongly on 

the SAR image, thereby reducing the contrast between seawater and green algae. Consequently, the accuracy of green algae 

extraction is lower compared to that in open sea areas. However, the new GANet model has significantly improved green 335 

algae detection capabilities by incorporating labeled samples from this area. As depicted in Fig. 10, the evaluation indices 

mIOU of a randomly selected green tide dataset in the Subei Shoal on June 22, 2018, reached 99.22%, showcasing 

reasonable performance (Fig. 10a-d). Moreover, for the MODIS image of the corresponding area on the same day (Fig. 10d-
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e), green tide extraction also exhibits high accuracy, reaching 84.92%. The distribution pattern remains consistent for SAR 

datasets (as shown in subfigures 10b and 10e). The relevant assessment of the entire image for the green tide dataset is 340 

provided in Table 4. Additionally, SAR observation images covering the Yellow Sea were randomly selected (Fig. 10f-i), 

where the overall mIOU reached 87.62%, further highlighting the excellent detection capability of the model. 
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 345 

Figure 10. Randomly selected SAR image detection results on the Subei Shoal (a-e) and the entire Yellow Sea (f-i) regions. (Date: 

June 22, 2018, and June 30, 2021). 

 

Table 4. Green tide detection result analysis (random entire image examples) 

Type Area Accuracy (%) Precision(%) Recall(%) F1-score(%) mIOU(%) 

MODIS image on 

June 19, 2021 

Entire imagery 99.72 93.23 91.57 92.39 85.86 

Thin cloud area 99.90 76.35 89.07 82.22 69.81 

Subei Shoal 99.95 93.15 89.79 91.44 84.23 
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Open water 99.79 96.71 92.42 94.52 89.61 

Corresponding to 

SAR Subei Shoal area 

below 

99.82 96.36 87.73 91.84 84.92 

SAR image 

Subei Shoal (on June 

22, 2018) 
99.99 99.61 99.60 99.61 99.22 

Yellow Sea (on June 

30, 2021) 
99.84 99.85 87.73 93.40 87.62 

3.2 Verification of weekly green tide datasets in the Yellow Sea 350 

3.2.1 Overall uncertainty verification 

The specific process is as follows： 

1) Utilize the fused weekly green tide data for a specific week to count the green algae coverage area for that week;  

2) Calculate the daily green algae coverage areas for each day within that week as S1, S2, ..., SK. If the total number of 

green tide observations in that week is K, the average green tide coverage area for that week is given by: (S1 + S2 + ... + 355 

SK)/K;  

3) Compare the weekly average green tide coverage area obtained from the fused dataset with the one calculated from 

the daily observations. Calculate the correlation and root mean square error (RMSE) between the two kinds of coverage area 

from 2008-2022.  

Figure 11 indicates that compared to the second average green tide area used as the benchmark, the weekly green tide dataset 360 

in this article demonstrates a completely consistent result (R2=1 and RMSE=0). 

 

Figure 11. Overall verification of weekly green tide datasets. 

https://doi.org/10.5194/essd-2024-125
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



21 

 

3.2.2 Uncertainty verification of individual cases 

To verify whether the weekly product conforms to the parabolic green tide outbreak pattern shown as Fig. 1d in each year, 365 

the specific process is as follows: 

1). Generate Green Tide Outbreak Curve: Fit the outbreak parabolic curve of the entire life cycle of the green tide 

bloom using the satellite's daily green algae coverage data and the Gompertz curve model. The Gompertz curve model 

formula is shown below: 

y
cxbeae

                                                                                               (1) 370 

y is the accumulative coverage of the satellite's daily green tide, x  is the corresponding date (Here it is expressed in 

terms of Day Of Year, DOY).a, b, and c represent the fitted constant terms obtained by utilizing daily green tide coverage to 

fit the Gompertz curve model. We derived the life parabola curve by conducting piecewise fitting based on the green tide 

growth and dissipation periods. 

2). Comparison with Daily Observations: Compare the daily green tide coverage obtained from satellite daily 375 

observations with the daily green tide coverage predicted by the parabolic curve. 

3). Assessment of Daily Observation Uncertainty: Calculate the observation uncertainty (R2 and RMSE, recorded as U1) 

of the satellite daily product by comparing it with the fitted parabolic curve. 

4). Calculate Theoretical Weekly Average Green Tide Coverage: Based on the green tide parabolic curve, compute all 

theoretically weekly average green tide coverage values throughout the entire outbreak cycle. 380 

5). Assessment of Weekly Product Uncertainty: Assess the uncertainty (R2 and RMSE, recorded as U2) between the 

weekly product in this article and the theoretically weekly average data obtained from the parabolic curve. 

6). Comparison of Weekly and Daily Uncertainty: Evaluate the difference level between the uncertainty of the weekly 

product and the daily uncertainty, i.e., U1 v.s. U2. 

We randomly chose the green tide outbreak in 2019 as a case study, as demonstrated in Fig. 12. The fused weekly green tide 385 

data not only conforms to a parabolic outbreak trend but also its variance is close to the theoretical outbreak curve with an R2 

value of 0.89 and an RMSE of 275 km2 (U2, see Fig. 12b). Moreover, Figure 12a shows the uncertainty associated with the 

weekly data exhibits a stronger correlation and smaller RMSE value than the daily data, with an R2 value of 0.61 and an 

RMSE of 794 km2 (U1). Furthermore, we noted a decrease in the uncertainty of the fused weekly product, corresponding to 

an increase in the effectiveness of daily satellite observations over the week. 390 
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Figure 12. Uncertainty assessment of green tide products based on green tide outbreak pattern (2019). (a) Uncertainty in daily 

product and (b) Uncertainty in weekly product. 

3.3 Spatial characteristics of green tide coverage. 395 

In Fig. 13, the frequency of algae-containing pixels over the years is depicted, accompanied by a hotspot map illustrating the 

distribution of green algae. The analysis reveals that over 90% of green algae occurrences are concentrated in the shallow 

waters of the central Yellow Sea (water depth ≤ 30 m). This region exhibits higher water transparency than the shallow 

coastal waters off Subei Shoal, facilitating enhanced light absorption by floating algae during their drift, thereby promoting 

their growth. Additionally, the area surrounding the Shandong Peninsula experiences a notable influx of green algae 400 

(highlighted in the black box in Fig. 13), attributed primarily to the influence of wind forces and ocean currents. 
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Figure 13. Green tide distribution hotspot map obtained from daily optical (a) and SAR (b) products, and weekly products (c). 

https://doi.org/10.5194/essd-2024-125
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

3.4 Temporal characteristics of green tide coverage 

Based on daily and weekly green tide datasets derived from optical and SAR images, we analyzed to determine the annual 405 

maximum area coverage of algae observed by both satellites. The resulting maximum coverage time series aligns with 

findings from Cao et al. (2023) and Hu et al. (2023). As shown in Fig. 14a, from 2008 to 2012, there was a notable 

downward trend in annual variations of green tide coverage. However, since 2012, there has been a rapid expansion in the 

scale of green tide outbreaks, particularly evident since 2018. Notably, the outbreak in 2019 reached unprecedented levels, 

partially influenced by proposed prevention and control measures. However, these measures have not been entirely effective 410 

in curbing large-scale green tide outbreaks (Feng et al., 2020; Hao et al., 2020; Sun et al., 2022). It's worth noting that SAR 

sensors only detect green algae completely exposed on the sea surface (as depicted in Fig. 1c), resulting in slightly smaller 

coverage areas compared to daily optical detection (indicated by the red polyline in Fig. 14a). This discrepancy can also be 

attributed to variations in the dates corresponding to the maximum coverage areas monitored by the two satellites. For 

instance, in 2021, the maximum daily coverage on MODIS images occurred on June 23, while the maximum daily green tide 415 

coverage on SAR images was recorded on June 12. Furthermore, analysis in Fig. 14b highlights 2012 and 2019 as the years 

with the lowest and largest values in the historical green tide coverage time series. Notably, the onset of a large-scale green 

tide outbreak typically occurs much earlier than periods without such outbreaks. Therefore, the scale of a green tide outbreak 

is directly proportional to its initial onset time. Earlier observations of green algae by satellites correspond to larger expected 

outbreak scales. Additionally, the final scale of the green tide outbreak is also directly proportional to the initial outbreak 420 

scale (Cao et al., 2023). 
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Figure 14. (a)Time series of the maximum coverage area of the green tide from 2008 to 2022 and (b) green algae coverage in 2012 

and 2019. 425 
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3.5 The mechanism and impact of green tide outbreaks 

Variations in green tide coverage encompass both physical drift and diffusion processes alongside biological proliferation, 

which is influenced by environmental factors and reciprocally affects environmental conditions. Originating from the Subei 

Shoal (Fig. 1a-b), the green tide drifts from south to north into the central Yellow Sea driven by currents and wind fields, 

corroborated by dynamic time series data from optical MODIS and Sentinel-1 SAR (see supplementary animation). Previous 430 

research indicates the scale of green tide outbreaks is linked to Porphyra mariculture along the Subei Shoal coast (Xing et al., 

2019; Cao et al., 2023). Green algae spores released from mariculture rafts can trigger large-scale green tide events under 

favorable conditions. Analysis of Sentinel-1 SAR imagery (Fig. 15) reveals a declining trend in mariculture areas from 2019 

to 2021, yet significant green tide outbreaks still occurred in those years. Consequently, predicting green tide outbreaks 

solely based on mariculture raft areas is unreliable, as the precise number of spores entering the seawater cannot be 435 

accurately determined. 

 

 

Figure 15. Analysis of changes in the Porphyra mariculture region in the Subei Shoal area. Its position corresponds to Figure 1a-b. 

 440 

In addition to the influence of Porphyra mariculture, environmental factors such as SST, SSS, SSC, SSW, O2, and nutrients, 

including the derived gradients of these key elements, play crucial roles in the growth and dissipation of green tide. 

Recognizing the interdependency among these environmental elements, we leveraged the advantages of a deep-learning-

based model to conduct a multi-factor collaborative analysis, establishing a mapping model between these factors and daily 

green tide coverage. As illustrated in Fig. 16, we utilized the XGBoost model to correlate environmental elements with daily 445 

green tide coverage. The Permutation Importance and SHAP methods based on the XGBoost model were employed to rank 

the importance of each environmental element influencing green tide changes. Our findings indicate that O2 holds the 

highest rank in importance, followed by SSS and nutrients, particularly nitrate. Additionally, the derived gradients of SSS, 

O2, and SST also ranked high in importance. O2 in the Yellow Sea exhibits a declining trend throughout the green tide's life 

cycle from May to August yearly (Fig. 17a). During the growth period, the initial high concentration of O2 negatively 450 

correlates with the rapid growth of green tide coverage (Fig. 16c). 
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In contrast, during the dissipation period, the decreasing O2 concentration positively correlates with the rapid dissipation of 

green algae (Fig. 16f). Similarly, nutrient levels, especially nitrates, in the Yellow Sea show an initial increase followed by a 

downward trend from May to August each year (Fig. 17b). Nutrient concentration consistently correlates positively with 

changes in green tide coverage throughout its entire lifecycle (Figures 16c and 16f). Thus, the proliferation process of green 455 

tides significantly influences the water quality of the Yellow Sea, consuming substantial amounts of O2 and nutrients and 

leading to clearer water conditions after September. The concentration of O2 and nutrients in different years partly 

determines the scale of green tide outbreaks (Wang et al., 2023b). For instance, the smaller scale of the green tide outbreak 

in 2020 compared to 2019 and 2021 can be attributed to lower nitrate concentrations (see Fig. 1d and Guo et al., 2022). 

Therefore, the combined action of green tide proliferation and drift processes results in significant yearly variations in the 460 

scale of green tide outbreaks. 

 

 

Figure 16. Importance ranking of main environmental factors in the growth (a-c) and dissipation (d-f) stages. Subfigures (a) and (d) 

the Permutation Importance; Subfigures (b) and (e) the Importance of SHAP; and Subfigures (c) and (f) the correlation between 465 

environmental factors and green tide coverage based on SHAP theory. 
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Figure 17. Changes in marine dissolved oxygen (a) and nitrate concentrations (b) during the green tide outbreak from 2008 to 2022. 

4 Code and data availability 470 

Weekly green tide products and deep-learning models in this study. The following datasets and models will be released, 

as detailed in Table 3:  

1) The study releases the weekly green tide coverage datasets by integrating optical MODIS and Sentinel-1 SAR 

images spanning the periods of 2008-2022 with 500 m spatial resolution, which can be used as foundational data for green 

tide model simulation and forecasting; the weekly product conforms to the life pattern of green tide outbreaks and exhibits 475 

parabolic curve-like characteristics, with an uncertainty of R2=0.89 and RMSE=275 km2. The weekly green tide product is 

provided in Tagged Image File (TIF) format. 

2) The continuous weekly datasets were derived from daily green tide datasets, and what the AI-based AlgaeNet and 

GANet model directly detects is also daily green tide coverage, therefore daily green tide dataset with 500 m spatial 

resolution from MODIS images and 30m spatial resolution from SAR images are also released as verification datasets for 480 

other green tide extraction models (e.g., Zhou et al., 2021; Qi et al., 2022a; Wang et al., 2023); the overall indices 

demonstrated a higher mIOU, reaching 85.86% and 87.62%, respectively, based the optical and SAR images covering the 

entire Yellow Sea. The daily green tide product is provided in shapefile format. 

3) The annotated green tide sample dataset will also be shared as ground truth. This ground truth dataset can be utilized 

as a training and testing set for developing other AI-based green algae extraction models. Optical green algae labels from 485 

MODIS images with 500 m spatial resolution and the green algae labels from SAR images with 30 m spatial resolution are 

provided in Portable Network Graphic (PNG) format. 

4) The retrained AI-based green tide detection models—AlgaeNet and GANet. The models achieved a comprehensive 

metric mIOU of 67.51% (85.41%) based on optical (SAR) testing labels. These models offer scalable and effective tools for 

future green tide extraction tasks. Furthermore, they can serve as pre-trained models for analyzing various satellite imagery 490 

types, including optical GOCI and microwave Gaofen-3 imagery. 
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Table 3. Shared green tide related data products 

Product Type Dataset description Format 
Temporal 

resolution 

Spatial 

resolution 

Green Tide 

Coverage Products 

Optical 
Daily green tide coverage 

under cloudless conditions 
.shp daily 

500 m 

SAR Daily green tide coverage 30 m 

Fusion 

products 

Continuous weekly average 

green tide coverage 
.tif weekly 500 m 

Green Tide 

Annotation Sample 

Dataset 

Optical 
Green wave annotation sample 

set of optical images 
.png daily 

500 m 

SAR 
Green tide annotation sample 

set of SAR images 
30 m 

Green Tide 

Detection Program 

Optical 
AlageNet model for optical 

imagery 

.py / 

SAR 
GANet model for SAR 

imagery 

 

The dataset is openly accessible to the public without any restrictions. It is permanently stored at 495 

http://dx.doi.org/10.12157/IOCAS.20240410.002 (Gao et al., 2024), where green tide coverage dataset is available as 

separate daily and weekly files. Both the daily and weekly datasets utilize the WGS84 spatial reference system and the 

UTM51 projected system. 

Additionally, the green tide annotation sample dataset and the code for the green tide detection program can be freely 

accessed at the same website, providing convenient access to annotated samples and code for algae detection programs. All 500 

code is written in Python. 

5 Conclusions 

The Yellow Sea, located in the northwest Pacific, has been witnessing an ecological anomaly known as the green tide since 

2008. This phenomenon, characterized by the rapid proliferation and accumulation of large floating algae, has escalated into 

one of the world's largest-scale marine disasters caused by green algae blooms, attracting significant international attention. 505 

Satellite remote sensing has emerged as the primary data source for detecting occurrences of the green tide, benefiting from 

its advantages in acquiring data with full coverage, high frequency, and periodic monitoring capabilities. The rapid 

advancement of artificial intelligence (AI) technology in recent years has provided significant advantages over traditional 
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methods for the precise and intelligent extraction of green algae in satellite imagery. In this study, we utilize optimized and 

scalable AI models, namely AlgaeNet and GANet, to conduct a comprehensive extraction and analysis of the Yellow Sea 510 

green tide. Our analysis encompasses optical MODIS images (500 m resolution) from 2008 to 2022 and microwave Sentinel-

1 Synthetic Aperture Radar (SAR) images (30 m resolution) from 2015 to 2022, with a temporal resolution of one day. The 

evaluation of green algae extraction achieved notable results with the two models, reaching a comprehensive evaluation 

index (mIOU) of 67.51% and 85.41% based on 662 and 267 pairs of optical and SAR-labelled testing samples, respectively. 

Moreover, when applied to randomly selected optical and SAR entire images of the Yellow Sea, the indices demonstrated 515 

even higher mIOU, reaching 85.86% and 87.62%, respectively. Most importantly, we present a continuous and seamless 

dataset of weekly average green tide coverage. This weekly dataset is derived from integrating daily optical and SAR green 

tide coverage during each week of the green tide breakout. Through verification, the overall assessment of the uncertainty of 

this weekly product shows it is completely consistent with the overall direct average of the daily product (R2=1 and 

RMSE=0). Additionally, the individual case verification of the green tide outbreak in 2019 also shows that the weekly 520 

product conforms to the life pattern of green tide outbreaks and exhibits parabolic curve-like characteristics, with an 

uncertainty of R2=0.89 and RMSE=275 km2. This weekly green tide dataset provides an independent and reliable source of 

long-term data spanning 15 years in the Yellow Sea, facilitating comprehensive research in various domains such as 

forecasting, numerical model simulation, regional and national-scale climate change analysis, and formulation of disaster 

prevention plans. 525 

Supplement. An animation of weekly green tide datasets from 2008 to 2022 has been uploaded as supplementary material. 
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The MODIS surface reflectance products can be accessed through the following URLs: MYD09GA 

(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD09GA) and MOD09GA 535 

(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09GA). 

The European Space Agency (ESA) and NASA provided the Sentinel-1 SAR images via https://scihub.copernicus.eu and 

https://search.asf.alaska.edu/. 
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Daily sea surface temperature (SST), sea surface salinity (SSS), and sea surface circulation (SSC) data were sourced from 

HYCOM data (https://developers.google.com/earth-engine/datasets/catalog/HYCOM_sea_water_velocity and 540 

https://developers.google.com/earth-engine/datasets/catalog/HYCOM_sea_temp_salinity). Daily precipitation and sea 

surface wind (SSW) at 10m data were provided by the fifth-generation atmospheric reanalysis data (ERA5) of ECMWF 

(https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY). 

Nutrients (such as phosphates (PO4) and nitrates (NO3)) and dissolved oxygen (O2) data with a resolution of 0.25° were 

obtained from CMEMS/Global Ocean Biogeochemistry Analysis and Forecast 545 

(https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description and 

https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_BIO_001_028/description). Solar radiation 

(SIR) with a resolution of 0.25° was retrieved from the GSFC data portal 

(https://neo.gsfc.nasa.gov/view.php?datasetId=CERES_INSOL_M). 
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