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Abstract Internal waves (IWs) are an important ocean phenomenon facilitating energy transfer between multiscale ocean 

processes. Understanding such processes necessitates the collection and analysis of extensive observational data. IWs 10 

predominantly occur in marginal seas, with the South China Sea (SCS) being one of the most active regions, characterized by 

frequent and large-amplitude IW activities. In this study, we present a comprehensive IW dataset for the northern SCS, 

covering the area from 112.40°E to 121.32°E and from 18.32°N to 23.19°N, spanning the period from 2000 to 2022 with a 

250 m spatial resolution. During the 22 years, a total of 15830 MODIS images were downloaded for further processing.  Out 

of these, 3085 high-resolution MODIS true-color images were identified to contain IW information and were included in the 15 

dataset with precise IW positions extracted using advanced deep learning techniques. IWs in the northern SCS are categorized 

into four regions based on extracted IW spatial distributions. This classification enables detailed analyses of IW characteristics, 

including their spatial and temporal distributions across the entire northern SCS and its specific sub-regions. Interestingly, our 

temporal analysis reveals characteristic "double-peak" patterns aligned with the lunar day, highlighting the strong connection 

between IWs and tidal cycles. Furthermore, our spatial analysis identifies two IW Quiescent Zones within the IW clusters 20 

influenced by underwater topography, highlighting regional variations in IW characteristics and suggesting underlying 

mechanisms merit further investigation. There are also three gap regions between distinct IW clusters, which may indicate 

different IW sources. The constructed dataset holds significant potential for studying IW-environment interactions, developing 

monitoring and prediction models, validating numerical simulations, and serving as an educational resource to promote 

awareness and interest in IW research. 25 

1 Introduction 

Oceanic internal waves (IWs) are prominent phenomena in marginal seas and continental shelf areas, characterized by their 

long-distance horizontal propagation and large amplitude within stratified waters (Haury et al., 1979; Magalhaes et al., 2020; 

Magalhaes et al., 2022; Pan et al., 2007; Zhang et al., 2022; Zhao et al., 2014). Their significance lies in their role in transmitting 

energy between multiscale ocean processes and their critical impact on the ocean environment, acoustics, and underwater 30 
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navigation (Jia et al., 2019; Ramp et al., 2022b). IWs manifest as either a periodic wave series with distinct amplitude and 

crest length or solitary solitons. While the IW crest length extends several hundreds of kilometers, their wavelength in the 

propagation direction spans only a few hundred meters to a few kilometers. Their isolated nature and infrequent occurrence 

make these waves difficult to capture. Understanding IWs requires extensive collection and analysis of observational data. 

Traditional methods using oceanographic instruments are costly, labor-intensive, and unsuitable for large-scale observations 35 

due to the submerged nature of IWs.  

 

A viable solution to this challenge is offered by remote sensing techniques benefitting from repeated orbits, large spatial 

coverage, and cost-efficiency (Li et al., 2008; Zhang et al., 2019). Over the past 20 years, the amount of satellite data has 

grown exponentially, enabling the construction of an IW dataset at a larger and longer scale. Active satellite sensors can detect 40 

the sea surface manifestations of IWs because the convergent and divergent motions they induce modulate the sea surface 

roughness (Alpers, 1985; Zheng et al., 2001), a predominant factor affecting the backscattering intensity of active microwave 

sensors, such as the synthetic aperture radar (SAR) (Furtney et al., 2024; Jia et al., 2018; Zhao et al., 2004). Passive satellite 

sensors, such as radiometers, can also detect the IW-induced sea surface roughness signatures by receiving sunlight reflected 

by the ocean surface (De Macedo et al., 2023; Hu et al., 2021; Sun et al., 2021). Because passive satellite sensors can provide 45 

images with higher temporal resolution, wider image swath, and free access, we mainly use passive satellite sensors for the 

investigation. For instance, since 2000, data with nearly daily global monitoring at a spatial resolution of 250 m has been 

provided by the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra satellites, suitable for 

more in-depth IW investigation since it achieves the best possible balance between orbital duration and spatial coverage (De 

Macedo et al., 2023).  50 

 

The advent of cloud computing platforms, like the Earth Observation (EO) Browser from ESA, the WorldView from NASA, 

and the Google Earth Engine (GEE) from Google, have streamlined the repetitive and arduous image pre-processing steps 

(e.g., radiometric, atmospheric, and geometric corrections). Therefore, the primary challenge in constructing IW datasets is 

accurately detecting and obtaining the limited quasi-linear IW features dispersed across extensive satellite observations. 55 

Manually extracting the IW crest can reduce errors but significantly increase processing time. Consequently, researchers have 

developed automated tools to extract IW features from satellite observations. These tools typically employ conventional or 

semi-automated extraction methods, utilizing basic image processing techniques such as image segmentation and edge 

detection (Kurekin et al., 2020).  However, edge detection algorithms often produce discontinuous edge pixels, which may not 

represent a complete IW crest. Meanwhile, image segmentation techniques struggle to establish consistent threshold values 60 

and require additional processing steps to detect boundary pixels. 

  

In recent years, Deep convolutional neural networks (DCNNs) have showcased their capacity in image pattern classification 

and have become a dependable tool for extracting accurate pixel-level targets from oceanic remote sensing imagery (Li et al., 
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2022; Li et al., 2020; Liu et al., 2019; Wang and Li, 2023). Numerous machine-learning techniques have been put forth for the 65 

automatic extraction of the IW crest from geostationary optical and space-borne SAR imagery (Bao et al., 2019; Ma et al., 

2023; Tao et al., 2022; Zheng et al., 2021). However, these studies have only been tested and validated on individual sensors 

and limited geographical areas with few images, making them insufficient to create a comprehensive IW database over a long 

period. Recently, Zhang et al. (2023) developed a robust DCNN-based IWE-Net (IW extraction network) model for 

automatically extracting IW signatures from several satellite sensors with different spatial resolutions, even in difficult imaging 70 

circumstances. Implementing IWE-Net allows for fast and accurate processing of a large volume of satellite images. 

 

The northern South China Sea (SCS) serves as an exceptional natural laboratory for studying IWs of large amplitude (Alford 

et al., 2015; Bai et al., 2017; Bai et al., 2014; Cai et al., 2012; Guo and Chen, 2014; Liang et al., 2019; Liu and Hsu, 2004; 

Ramp et al., 2022a). IW propagation characteristics, such as the reflection, refraction, and shoaling process, have been 75 

extensively studied in the literature. In addition to active IW activity, the northern SCS is influenced by circulation patterns, 

eddies, Kuroshio intrusion, and other dynamic processes, which can affect IW characteristics. (Dong et al., 2016; Liu et al., 

2014; Liu and Abernathey, 2023; Liu et al., 2022; Liu et al., 2016; Xu et al., 2020). Given the multiscale dynamics and active 

IW activity, a long-term IW dataset would enhance the study of these interactions. The purpose of this study is to utilize IWE-

Net to extract IWs from the complete set of MODIS images spanning 22 years in the northern SCS. Following essential post-80 

processing steps, we create a comprehensive and accessible IW dataset, providing valuable resources for research on various 

IW life stages and their interactions with surrounding dynamic processes. 

 

The paper is organized as follows: Section 2 describes the satellite images and the deep-learning model; Section 3 presents the 

results; Section 4 highlights the new findings from the constructed dataset; and Section 5 provides the conclusion and future 85 

outlook. 

2 Data and Methods 

2.1 MODIS Imagery Collection 

The MODIS sensors, positioned at approximately 700 kilometers in sun-synchronous orbits, are onboard NASA's Terra and 

Aqua satellites, launched in December 1999 and May 2002, respectively. These sensors provide near-daily global coverage, 90 

capturing imagery over a 2,300-km-wide swath with spatial resolutions ranging from 250 m to 1 km (bands 1 and 2 at 250 m, 

bands 3–7 at 500 m, and bands 8–36 at 1 km). MODIS data processing involves several steps, including data download, 

geometric correction, radiometric calibration, atmospheric correction, and re-projection.  
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Figure 1. True-color MODIS image captured by Aqua on Jul. 14, 2021, showing IW signatures around Dongsha Atoll in the northern 

South China Sea.  

 

Through an interactive browsing experience, users can explore global and full-resolution satellite images stored by the Global 

Image Browse Services (GIBS) system using NASA's Worldview (https://worldview.earthdata.nasa.gov/). The MODIS 100 

Corrected Reflectance products (Figure 1) use Level 1B data (calibrated, geolocated radiances) to produce true-color images 

with three channels: red from band 1, green from band 4, and blue from band 3. This process also involves the removal of 

significant atmospheric effects, including Rayleigh scattering, to enhance the image quality. Worldview offers Terra MODIS 

products from Feb. 25, 2000, and Aqua products from Jul. 4, 2002. The target area covers 112.40-121.32°E and 18.32-23.19°N. 

We collected 15830 MODIS true-color images from 2000 to 2022 as model input, with 8345 from Terra and 7485 from Aqua. 105 

All these images have a 250 m spatial resolution and are stored in a GeoTIFF format, which embeds geospatial information 

into image files.  

2.2 Deep Learning Model 

The deep-learning model IWE-Net (Zhang et al., 2023) is designed to identify IW locations across a wide range of satellite 

imagery, including data from both optical and SAR sensors operating in sun-synchronous and geostationary orbits with varying 110 

spatial resolutions. This model underwent training and testing using a dataset comprising 1115 satellite images, encompassing 

116 full-swath Environmental Satellite (ENVISAT) Advanced SAR (ASAR) images, 839 Terra/Aqua MODIS images, and 

160 geostationary Himawari-8 Advanced Himawari Imager (AHI) images. All these satellite images have clear IW signatures 
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in the SCS, Sulu, and Celebes Sea. Three major improvements are incorporated into IWE-Net to increase its resilience and 

accuracy: squeeze and excitation blocks, online data augmentation, and the Matthews correlation coefficient loss function, 115 

which takes into consideration the distinct properties of IW under various imaging techniques. The structure of the IWE-Net 

is presented in Figure 2. 

 

Figure 2. IWE-Net model structure with three tailored modifications adapted from Zhang et al. (2023).  

 120 

We employ the Pixel Accuracy, Precision, Recall, and F1-score as metrics to evaluate the positional differences between the 

IW dataset and the ground truths. Pixel Accuracy represents the proportion of the image's pixels that were properly classified. 

When there is a significant percentage of negative samples (non-IWs), such as in this task, the Pixel Accuracy often approaches 

1 and exhibits a limited responsiveness. Precision, Recall, and F1-score are suitable metrics to evaluate the classifier's output 

quality when managing uneven classes. Precision reflects the proportion of the false IW pixels in the dataset, while Recall 125 

indicates the proportion of the missed ones. The F1-score is the harmonic mean of these two metrics, balancing Precision and 

Recall. The testing set boasts an overall mean precision of 85.75%, a recall of 85.67%, and an F1-score of 85.71%, 

demonstrating the model's accuracy in extracting IW signatures. 

2.3 Post-processing 

IWE-Net's performance in the SCS using MODIS images demonstrates an average precision of 87.90%, indicating that around 130 

12% of the model's classifications are false positives. These inaccuracies are primarily due to a small subset of features 

resembling IWs, such as aircraft trails, linear and sparse clouds, and surface signals related to shallow water topography and 

plumes. These small-scale misclassifications, characterized by their varying shapes and orientations but consistent positions, 
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can be readily eliminated manually, thus contributing to an overall improvement in the accuracy of this IW dataset. Since the 

model-produced IW locations are stored in longitude and latitude, users can do more post-processing procedures as needed. 135 

2.5 Data Records 

This study generated two sets of data: true-color MODIS Imagery and IW overlay information. All data has been archived and 

stored in the http://dx.doi.org/10.12157/IOCAS.20240409.001 repository. 

⚫ MODIS IW imagery 

• Repository Location: http://dx.doi.org/10.12157/IOCAS.20240409.001 140 

• Data Format: GeoTIFF. The GeoTIFF format is ideal for storing MODIS imagery of IWs, as it embeds georeferencing 

information (WGS 84) directly into the file, ensuring accurate pixel-to-geography mapping. Its widespread 

compatibility with GIS platforms and robust support for large datasets make it a reliable choice for precise and 

versatile data handling. 

• File Structure: 145 

• Naming Convention: MODIS_TrueColor_YYYY-MM-DD_SSS.tiff (where YYYY-MM-DD represents the 

acquisition date of the image and SSS represents the satellite Terra or Aqua) 

• Image Size: 4061 (width) x 2218 (length) pixels 

• Ground pixel Resolution: 250 m x 250 m  

• Data Layers: The following data layers are included: 150 

• Red channel (Band 1): Data range [0, 255] 

• Green channel (Band 4): Data range [0, 255] 

• Blue channel (Band 3): Data range [0, 255] 

• Georeferencing Information (in the Metadata): Includes projection system, image size, resolution, etc. 

⚫ IW Overlay Information 155 

• Repository Location: http://dx.doi.org/10.12157/IOCAS.20240409.001 

• Data Format: Shapefile. This format excels in archiving IW position data due to its board compatibility with GIS 

software, enabling seamless interoperability and effective data dissemination. It supports advanced spatial analysis, 

preserves data integrity, and efficiently manages large datasets for quick and reliable access. 

• File Structure: 160 

• Naming Convention: IW_YYYY-MM-DD.shp (where YYYY-MM-DD represents the date the IWs 

occurred) 

• Column Names and Data Types: 

• longitude: Float, precision to 4 decimal places 

• latitude: Float, precision to 4 decimal places 165 

3 IW Signature Extraction and Validation 

IWE-Net is an end-to-end model where both input and output are images. It frames IW location extraction as a binary 

classification, with the output image containing only two values: 1 for IW presence and 0 for non-IW features. Figure 3 

illustrates an example of the output and the corresponding input image acquired on Aug. 28, 2002. The extraction results show 

that most of the IWs are concentrated around the Dongsha Atoll, consistent with the distribution observed in previous studies. 170 

In addition, IWE-Net can also effectively identify IWs even in darker regions, as shown in the lower-left part of Figure 3, far 

from the sun glint area and can barely be visible to the naked eye without image enhancement. It suggests that deep-learning-

http://dx.doi.org/10.12157/IOCAS.20240409.001
http://dx.doi.org/10.12157/IOCAS.20240409.001
http://dx.doi.org/10.12157/IOCAS.20240409.001
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based extraction models can potentially exceed the accuracy of visual interpretation, especially when processing large datasets. 

3,085 MODIS images containing IW signatures were identified out of the 15,830 input images. 

 175 

Figure 3. An example of IWE-Net's output (b) alongside the original MODIS image (a) was acquired on Aug. 28, 2002. Panels (c) 

and (d) show enlarged views of the regions highlighted by the white box in (a) and (b). The red lines in (c) correspond to the white 

lines in (d). 

 

In Figure 3, white points indicate values predicted as 1 by the model, while black points represent predictions of 0, reflecting 180 

the precision of IW position detection. However, due to the complex imaging conditions of MODIS in the SCS, no standard 

IW products are available, and manual extraction remains the most accurate method. We created ground-truth maps based on 

visual interpretation labels to evaluate the model's performance. A new layer was added to the MODIS image for practical 

implementation to match the IW reference image size. IW locations were then marked with white lines on a black background.  
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Figure 4. The Terra MODS image from Jul. 2007 (left) and corresponding IW locations in the dataset (right). The red star marks 

the field observation site from Zhao et al. (2012), and the red arrow points to the IW observed in the field study. 

 

Figure 4 illustrates an example of IW detection using a MODIS image captured on Jul. 20, 2007, at 02:45 UTC, alongside 

field observations detailed by Zhao et al. (2012). The red star marks the locations of the field observations, while the red arrow 190 

indicates the IW observed in these field studies. According to Zhao et al. (2012), the IW had several tens of meters amplitude 

and vertical wave-induced currents exceeding 0.5 m/s (see Figure 3 in their work). This IW was effectively detected through 

field observations and subsequently captured by the Terra MODIS image approximately 7 hours later. The near-synchronous 

detection of IWs from satellite imagery and field observations provides strong validation for the accuracy of the applied model 

and produced dataset. 195 

4 Statistical Analysis 

4.1 IW Spatial Distributions in the Northern SCS 

We superimpose the IWE-Net-produced IW crest lines using MODIS images from 2000 to 2022 in Figure 5. The spatial 

resolution of the superimposed map is 250 m, which is the same as the input MODIS image. Most IWs are concentrated around 
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the Dongsha Atoll, with four distinct clusters in deep and shallow ocean areas. More IWs are generally found in continental 200 

shelf regions than in the deep ocean, and their distribution closely aligns with the topographic features. 

 

As shown in Figure 5, we divided the detected IW locations into four regions 1-4, which cover the area from 112.5°E to 

114.2°E and from 18.5°N to 20.9°N, from 114.2°E to 118.1°E and from 19.5°N to 22.2°N, from 118.1°E to 120.0°E and from 

22.0°N to 23.0°N and from 118.1°E to 120.5°E and from 19.5°N to 22.0°N. The division was based on the geometry of IW 205 

crests, indicating different sources for Regions 1 and 3 and various life stages of IWs before and after IWs propagate from the 

deep ocean to the continental shelf areas in Regions 2 and 4. IWs in Regions 1, 2, and 4 mainly propagate westward, while 

those in Region 3 propagate southward,  suggesting different IW generation sources. More IWs are observed in Region 2 than 

in Region 4 because the IWs in Region 4 are primarily solitons. As these solitons move into the shallower waters of Region 2, 

where the depth is less than 1000 meters, they break into multiple IW packets (Li et al., 2013; Ramp et al., 2022b). In addition, 210 

the existence of the Dongsha Atoll causes IW reflection or refraction, complicating the IW characteristic (Jia et al., 2018; Li 

et al., 2013). The IW wave crests in Region 1 do not always align with IWs in Regions 2 and 4, indicating different IW 

generation sources or mechanisms.  

 

Figure 5.  Overlay of IW detection results from MODIS images (2000-2022). Colors represent the frequency of IW observations at 215 

each location. The map resolution is 250 m, matching the input MODIS image resolution. Two dashed boxes indicate the locations 

of the enlarged view (boxes a and b), as shown in Figure 9. Three gaps between different IW clusters and the corresponding spatial 

distances are labeled with red annotations. 
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 220 

Figure 6. Histograms showing the number of IW pixels versus water depth for (a) the entire northern SCS (orange) and (b-e) the 

four regions highlighted in Figure 4 (blue). 

 

Underwater topography significantly influences IW evolution. Figure 6 illustrates IW distribution relative to water depth, 

indicating a prevalence of IWs in open ocean areas with depths under 1000 m. Interestingly, there are more IWs at depths of 225 

3000 m than 2000 m, hinting at an IW evolution mechanism that warrants further study. In Regions 2 and 4 (Figure 4), the 

distribution of IW clusters corresponds to specific depth characteristics. Region 1 has IWs concentrated at depths less than 600 

m despite a total depth range of 100 m to 2000 m. In Region 2, most IWs occur at depths under 1000 m, closely following 

contours between 100 and 1000 m.  In Region 2, most IWs occur at depths under 1000 m, closely following contours between 
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100 m and 1000 m. Region 3 sees IWs primarily at 100 m depths, with their presence decreasing as they move away from the 230 

continental shelf and disappearing beyond 2000 m. In Region 4, IWs are mostly found between 2600 to 3600 m, rarely 

occurring below 2000 m, reflecting a strong correlation between IW distribution and water depth. 

4.2 ISW Temporal Distributions-Monthly Variations 

Stratification plays a crucial role in IW generation and propagation, with its seasonal variations in the northern SCS causing 

changes in IW distribution variation. Figure 7 shows that IW occurrences peak from May to August, with significantly fewer 235 

detections in other months. This temporal disparity underscores the influence of seasonal changes on the stratification and IW 

activity. Shallow mixed layer depths and intensified stratification during summer months promote IW activity, enhancing their 

generation and propagation across the northern SCS. Notably, in Region 3, the distribution is more concentrated in July, 

suggesting that IWs in this area may require more stringent conditions for generation. In winter, intensified monsoon activity 

leads to deeper and weaker stratification, reducing the modulation of surface features and making conditions less favorable for 240 

IW generation and propagation, resulting in fewer observed IWs. The four classified regions exhibit a similar trend to the 

entire northern SCS. These findings emphasize the seasonal modulation of stratification and its impact on IW dynamics. They 

reveal the complex interplay between atmospheric factors like monsoonal circulations and solar radiation in driving seasonal 

variations in IW activity within the northern SCS.  
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 245 

Figure 7. Monthly distributions histograms of IW days for (a) the entire northern SCS (orange) and (b-e) the four regions (blue). 
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4.3 Lunar Day Influence on IW Variations  

The IW generation is closely linked to the astronomical tide, with tidal magnitude directly influencing the IW scale. 

Astronomical tides follow a fortnightly cycle, peaking on the first and fifteenth lunar days during spring tides. As a result, IW 

characteristics display fortnightly variations. Figure 8 shows these variations relative to the lunar day, revealing a typical 250 

"double-peak" distribution for IWs in the northern SCS. Peak IW occurrences occur approximately four days after the spring 

tide, as it takes about four days for IWs to travel from the generation site, Luzon Strait, to the observational continental shelf 

regions before dissipating. 

 

All four regions display a "double-peak" pattern linked to tidal dynamics. Regions 2 and 4 are the main channels for IW in the 255 

northern SCS, recording the highest number of IW observation days—446 and 240 days, respectively. In contrast, Region 3 

exhibits the fewest IW observation days, with a maximum of just 35 days, suggesting that the generation and propagation of 

IWs are less favorable in this region. Region 4 exhibits sharper and more defined peaks due to the dominance of IW solitons, 

whereas Region 2 shows broader peaks typical of IW packet behavior. The shallower water in Region 2 slows IW propagation 

speed compared to Region 4, resulting in the wider peaks observed. 260 
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Figure 8. Statistical histograms of IW pixel count vs lunar day for (a) the entire northern SCS (orange) and (b-e) the four regions 

(blue) 

4.4 IW Quiescent Zones  

Figure 5 shows two distinct blank areas in Regions 1 and 2 within IW clusters. One area in Region 2 covers the well-studied 265 

Dongsha Atoll, while the less-known area behind it has received minimal attention in previous research. These blank spaces 

signify limited or absent IW activity, delineating IW Quiescent Zones. Figure 9 reveals the presence of a chain of small 

underwater ridges situated in the northwest direction of the Dongsha Atoll. As two black arrows indicate, these ridges 
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correspond to a series of IW Quiescent Zones. The unique underwater topography contributes to forming IW Quiescent Zones 

within the northern SCS.  270 

 

The IW Quiescent Zones adjacent to the Dongsha Atoll extend approximately 110 km towards the continental shelf area, with 

less than 100 m water depths. Conversely, the IW Quiescent Zones in Region 1 are comparatively smaller, characterized by 

conspicuous underwater ridges aligned along the direction of IW propagation. These underwater ridges segregate IW crests, 

with subsequent reconnection occurring at 112.7°E. 275 

 

Figure 9. IW Quiescent Zones (black arrows) within IW clusters in Region 2 (a) and Region 1 (b). The locations correspond to two 

dashed boxes in Figure 5. 

 

IWs exhibit a widespread distribution across the northern SCS, yet noticeable gaps (Gaps 1-3) between distinct IW clusters 280 

are evident. Figure 5 shows two IW gap zones, Gap 2 and 3, in Regions 2 and 4, separated by 31.7 km and 63.6 km. The 

occurrence of Gap 2 and Gap 3 is due to the solitonic nature of IWs, which have fast phase speeds of over 3.0 m/s. The fast 

propagation of IWs and the observation gaps between two daily MODIS snapshots likely cause Gaps 2 and 3. Additionally, 

Gap 1, a 62.6 km gap, is clearly observed between Regions 1 and 2, where the differing orientations of IW wave crests suggest 

distinct IW generation sources. Notably, IW crests show discontinuous features between Regions 2 and 3, coinciding with 285 

abrupt underwater topography and small underwater ridges. As a result, IWs originating from different sources undergo 

separate evolution processes and fail to connect.  
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5. Conclusion and Outlooks 

In this study, we have constructed a comprehensive oceanic IW dataset spanning 2000 to 2022 by applying the deep-learning-

based IWE-Net model to MODIS satellite imagery. The model accurately extracts IW locations, providing precise longitude 290 

and latitude coordinates of IS crests, which were then compiled into a Shapefile format for easy access and analysis.  

 

The generated IW dataset potentially advances our understanding of IW characteristics in the northern SCS. In the first order, 

we gain insights into the region's prevalent locations and seasonal variations of IW activity by analyzing the spatial and 

temporal distributions of IWs based on the collected MODIS images. This dataset also provides valuable information for 295 

studying the interactions between IWs and mesoscale ocean phenomena, such as eddies, facilitating further investigations into 

ocean dynamics (Li et al., 2016; Xie et al., 2016). Cyclonic and anticyclonic mesoscale eddies can cause vertical fluctuations 

in ocean temperature isopleths and generate accompanying currents, influencing IW characteristics such as amplitude and 

propagation direction. We can examine IW characteristic changes after passing through different eddy types by analyzing the 

IW spatial and temporal information provided in this dataset. Additionally, other dynamic ocean phenomena, such as the 300 

intrusion of the Kuroshio current, also affect the generation and propagation of IWs in the SCS. Analyzing the statistical 

characteristics of IWs across different seasons and years can enhance understanding of how dynamic phenomena like the 

Kuroshio affect the IW behavior, thereby advancing the study of multiscale dynamic interactions in the SCS. 

 

Moreover, the availability of this extensive IW dataset is crucial for advancing artificial intelligence oceanography studies (Li 305 

et al., 2022; Wang and Li, 2023). It serves as valuable ground truth data for validating IW generation or forecast models, 

allowing researchers to assess the performance of AI models by comparing their predictions with the IW locations in the 

dataset. The dataset can also be used to validate numerical simulations (Gong et al., 2023), enabling researchers to refine and 

improve these numerical models based on observed IW distributions. It can also serve as a benchmark for collaborative 

observations of IWs in the SCS with other satellite sensors or field campaigns, thereby facilitating the construction of matched 310 

datasets to support IW research with artificial intelligence technologies. 

 

It is important to recognize that the constructed IW dataset has two main sources of error. First, while optical imagery can 

capture most IW features, weather conditions such as clouds and rain can obstruct MODIS imagery, preventing the detection 

of IWs even when they are present. Second, the uneven coverage and gaps between polar-orbiting satellites' orbits can lead to 315 

missed IW detections in the model's results. Future efforts should consider adding additional satellite sensors, especially SAR 

imagery, to improve the comprehensiveness of the IW dataset. 

 

Overall, the IW dataset presented in this paper is a valuable resource for oceanography, aiding in studying IW dynamics, 

validating AI models, and refining numerical simulations. This dataset is expected to stimulate further research and 320 
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advancements in understanding the complex dynamics of oceanic IWs. Mooring observations offer vertical structural 

information on IWs. By integrating this dataset with mooring observation data and applying artificial intelligence technology, 

researchers can extend from two-dimensional sea surface information to a three-dimensional understanding of IW structure. 

6. Data availability 

The internal wave dataset can be freely downloaded from http://dx.doi.org/10.12157/IOCAS.20240409.001 (Zhang and Li, 325 

2024) or https://datapid.cn/CSTR:33685.11.IOCAS.20240409.001.  
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