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Abstract Internal waves (IWs) are an important ocean process in transmitting energy between multiscale ocean dynamics, 

making them a crucial oceanic phenomenon. The South China Sea (SCS) is renowned for its frequent large-amplitude IW 

activities, emphasizing the importance of collecting and analyzing extensive observational data. In this study, we present a 10 

comprehensive IW dataset covering the northern SCS covering the area from 112.40°E to 121.32°E and from 18.32°N to 

23.19°N, spanning from 2000 to 2022 with a 250 m spatial resolution. The IW dataset comprises 3085 high-resolution MODIS 

true-color IW images paired with precise IW position information extracted from 15830 MODIS images using advanced deep 

learning techniques (DOI: 10.12157/IOCAS.20240409.001). IWs in the northern SCS are divided into four regions based on 

extracted IW spatial distributions, facilitating detailed analyses of IW characteristics, including spatial and temporal 15 

distributions across both the entire northern SCS and its sub-regions. Notably, we uncover typical "double-peak" distributions 

corresponding to the lunar day, underscoring IWs' close relationship with tides. Furthermore, we identify two IW-free silence 

regions attributed to underwater topography influences, indicating varied IW characteristics across regions and suggesting 

underlying mechanisms warrant further investigation. The constructed dataset holds significant potential for applications in 

studying IW-environment interactions, developing monitoring and prediction models, validating and enhancing numerical 20 

simulations, and serving as an educational resource to foster awareness and interest in IW research. 

1 Introduction 

Oceanic internal waves (IWs) are a featured phenomenon in marginal seas and continental shelf ocean areas, characterized by 

their horizontal propagation over long distances and large amplitude within stratified water (Haury et al., 1979; Magalhaes et 

al., 2020; Magalhaes et al., 2022; Pan et al., 2007; Zhang et al., 2022; Zhao et al., 2014). Their significance lies in their role as 25 

transmitting energy between multiscale ocean dynamics and their critical impact on the ocean environment, ocean acoustics, 

and underwater navigation (Jia et al., 2019; Ramp et al., 2022b). Internal waves appear either as a periodic series of waves 

distinguished by their amplitude and crest length or as solitary solitons. While the IW crest length extends several hundreds of 

kilometers, the characteristic length of IWs along its propagation direction extends only several hundred meters to a few 

kilometers. The isolation feature and infrequent occurrence render these waves challenging to capture. However, 30 
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comprehending IWs needs extensive collection and analysis of observational data. Traditional methods using oceanic 

exploration instruments are costly, labor-intensive, and unsuitable for large-scale observations due to the submerged nature of 

IWs.  

 

A viable solution to this challenge is offered by remote sensing techniques benefitting from its rapid response, large spatial 35 

coverage, and cost-efficiency (Li et al., 2008; Zhang et al., 2019). Over the past 20 years, the amount of satellite data has 

grown exponentially which has enabled the construction of an IW dataset at a larger and longer scale. Leveraging the ocean 

surface convergent and divergent motions induced by IWs, satellite-based IW imaging relies on identifying surface patterns 

of calm and roughened waters (Zheng et al., 2001). Sea surface roughness is a predominant factor affecting the backscattering 

intensity of active microwave sensors, such as the synthetic aperture radar (SAR) (Furtney et al., 2024; Jia et al., 2018; Zhao 40 

et al., 2004). However, passive sensors, such as radiometers, can detect the IW-induced sea surface roughness signatures by 

receiving sunlight reflected by the ocean surface (De Macedo et al., 2023; Hu et al., 2021; Sun et al., 2021). For instance, since 

2000, data with nearly daily global monitoring at a spatial resolution of 250 m has been provided by the Moderate-resolution 

Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites, suitable for more in-depth IW investigation since it 

achieves the best possible balance between orbital duration and spatial coverage (De Macedo et al., 2023).  45 

 

The advent of cloud computing platforms, like the Earth Observation (EO) Browser from ESA, the WorldView from NASA, 

and the Google Earth Engine (GEE) from Google, have liberated us from the repetitive and arduous image pre-processing 

steps (e.g., radiometric, atmospheric, and geometric corrections). Therefore, the foremost challenge encountered during dataset 

construction is accurately detecting and obtaining the limited IW information concealed in the massive satellite observations. 50 

While extracting the IW crest manually can reduce errors, it also increases processing time. The primary foundations of 

conventional automatic or semi-automated extraction approaches utilizing fundamental image processing techniques are image 

segmentation and edge detection (Kurekin et al., 2020). Nonetheless, the edge detection algorithm often results in 

discontinuous edge pixels that may not characterize a complete IW crest. On the other hand, image segmentation techniques 

fail to determine consistent threshold values and need additional processing steps to detect boundary pixels. 55 

  

Deep convolutional neural networks (DCNNs) have showcased their capacity in image pattern classification and have become 

a dependable tool for extracting accurate pixel-level targets from oceanic remote sensing imagery (Li et al., 2022; Li et al., 

2020; Liu et al., 2019; Wang and Li, 2023). Numerous machine-learning techniques have been put forth for the automatic 

extraction of the IW crest from geostationary optical and space-borne SAR imagery (Bao et al., 2019; Ma et al., 2023; Tao et 60 

al., 2022; Zheng et al., 2021). Nevertheless, these studies solely conducted experimentation and validation on individual 

sensors and restricted geographical regions with few images, which are inadequate for producing a comprehensive IW database 

over an extended temporal period. Recently, Zhang et al. (2023) developed a robust DCNN-based IWE-Net (IW extraction 
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network) model for automatically extracting IW signatures from several satellite sensors with different spatial resolutions, 

even in difficult imaging circumstances.  65 

 

The northern South China Sea (SCS) serves as an exceptional natural laboratory for studying IWs of large amplitude (Alford 

et al., 2015; Bai et al., 2017; Bai et al., 2014; Cai et al., 2012; Guo and Chen, 2014; Liang et al., 2019; Liu and Hsu, 2004; 

Ramp et al., 2022a). IW propagation characteristics, such as the reflection, refraction, and shoaling process have been 

extensively studied by scholars. Besides active IW activity, the northern SCS also has circulation patterns, eddies, Kuroshio 70 

intrusion, and other dynamic processes, which may influence the IW features (Dong et al., 2016; Liu et al., 2014; Liu and 

Abernathey, 2023; Liu et al., 2022; Liu et al., 2016; Xu et al., 2020). Considering the multi-scale dynamic process and active 

IW activity, a long-time series IW dataset could benefit the study of multi-scale dynamic process interactions. In this study, 

we initially employ the IWE-Net to extract IWs from the entire set of MODIS images acquired over 22 years in the northern 

SCS. After essential post-processing steps, we establish an accessible and extensive IW dataset to enhance the availability of 75 

resources for pertaining research, such as different life stages of IWs. 

 

The paper is organized as follows: section 2 describes the satellite images and the deep-learning model; Section 3 presents the 

results; Section 4 presents the new findings from the built dataset; and Section 5 shows the conclusion and outlook of the 

dataset. 80 

2 Data and Methods 

2.1 MODIS Imagery Collection 

MODIS sensors are situated at a height of roughly 700 kilometers in sun-synchronous orbits. The National Aeronautics and 

Space Agency (NASA) launched Terra and Aqua, two Earth Observation System (EOS) satellites, in December 1999 and May 

2002, respectively. With a range of spatial resolutions from 250 m to 1 km (bands 1 and 2 are 250 m resolution, bands 3–7 are 85 

500 m resolution, and bands 8–36 are 1 km resolution), the satellite constellation provides almost daily coverage of the whole 

Earth by gathering imagery over a 2300-km wide swath. Pre-processing MODIS data typically involves several steps, such as 

downloading the original hierarchical data format (HDF) files, geographical correction, radiometric calibration, atmospheric 

correction, re-projection, etc. These intricate procedures act as necessities but impede the analysis of long-term and large-scale 

ocean phenomena, falling short of meeting the demands of dataset construction.  90 
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Figure 1. An example of Worldview's natural color MODIS image in the northern South China Sea with IW signatures at the 

Dongsha Atoll was acquired on Jul. 14, 2021, by Aqua.  

Through an interactive browsing experience, users can explore global and full-resolution satellite images stored by the Global 95 

Image Browse Services (GIBS) system using NASA's Worldview (https://worldview.earthdata.nasa.gov/). The MODIS 

Corrected Reflectance products (Figure 1) leverage Level 1B data (the calibrated, geolocated radiances) to provide natural 

color images (the red channel derived from band 1, the green channel from band 4, and the blue channel from band 3). This 

process also involves the removal of significant atmospheric effects, including Rayleigh scattering, to enhance the image 

quality. Worldview offers Terra MODIS products from Feb. 25, 2000, and Aqua products from Jul. 04, 2002. The target area 100 

covers 112.40-121.32°E and 18.32-23.19°N. We collected 15830 MODIS natural color images from 2000 to 2022 as model 

input, with 8345 from Terra and 7485 from Aqua. All these images have a 250 m spatial resolution and are stored in a GeoTIFF 

format, which embeds geospatial information into image files.  

2.2 Deep Learning Model 

The goal of the deep-learning model IWE-Net (Zhang et al., 2023) is to extract IW locations from numerous satellite images 105 

obtained from optical and SAR sensors operating in sun-synchronous or geostationary orbits with different spatial resolutions. 

This model underwent training and testing using a dataset comprising 1115 satellite images, encompassing 116 full-swath 

Environmental Satellite (ENVISAT) Advanced SAR (ASAR) images, 839 Terra/Aqua MODIS images, and 160 Himawari-8 

Advanced Himawari Imager (AHI) images. All these satellite images have clear IW signatures in the SCS, Sulu Sea, and 

Celebes Sea. Three major improvements are incorporated into IWE-Net to increase its resilience and accuracy: squeeze and 110 
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excitation blocks, online data augmentation, and the Matthews correlation coefficient loss function, which takes into 

consideration the distinct properties of IW under various imaging techniques. The structure of the IWE-Net is presented in 

Figure 2. 

 

Figure 2. IWE-Net model structure with three tailored modifications adapted from Zhang et al. (2023). 115 

We employ the Pixel Accuracy, Precision, Recall, and F1-score as metrics to evaluate the positional differences between the 

IW dataset and the ground truths. Pixel Accuracy represents the proportion of the image's pixels that were properly classified. 

When there is a significant percentage of negative samples (non-IWs), such as in this task, the Pixel Accuracy often approaches 

1 and exhibits a limited responsiveness. When managing uneven classes, Precision, Recall, and F1-score are suitable metrics 

to evaluate the classifier's output quality. Precision reflects the proportion of the false IW pixels in the dataset, while Recall 120 

indicates the proportion of the missed ones. F1-score is the harmonic mean of these two metrics, offering a balance between 

Precision and Recall. The testing set boasts an overall mean precision of 85.75%, recall of 85.67%, and F1-score of 85.71%, 

demonstrating the model's accuracy in extracting IW signatures. 

2.3 Post-processing 

IWE-Net's performance in the SCS using MODIS images exhibits a mean Precision of 87.90%, which implies that there are 125 

approximately 12% false classifications within the model's results caused by a small minority of IW-like features, such as 

aircraft trails, linear and sparse clouds, as well as surface signals of shallow water topography and plumes. These small-scale 

misclassifications, characterized by their varying shapes and orientations but consistent positions, can be readily eliminated 

using manual methods, thus contributing to an overall improvement in the accuracy of this IW dataset. Since the model-

produced IW locations are stored in longitude and latitude, users can do more post-processing procedures as they need. 130 
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2.5 Data Records 

This study generated two sets of data: true color MODIS Imagery with IW occurring and the positional information of the IWs. 

All data has been archived and is stored in the XXXXXX repository. 

⚫ MODIS IW imagery 

• Repository Location: https://XXXXXXXXXXXXXX 135 

• Data Format: GeoTIFF. The format stands out as an advantageous choice for storing MODIS imagery of IWs, 

primarily due to its capability for embedding georeferencing information (in the World Geodetic System 84) directly 

into the TIFF (Tag Image File Format) file, ensuring precise mapping of pixels to geographical locations. Given its 

broad-based endorsement, GeoTIFF guarantees interoperability across various Geographic Information System (GIS) 

platforms and image manipulation utilities, concurrently providing robust support for extensive datasets. 140 

• File Structure: 

• Naming Convention: MODIS_TrueColor_YYYY-MM-DD_SSS.tiff (where YYYY-MM-DD represents the 

acquisition date of the image and SSS represents the satellite Terra or Aqua) 

• Image Size: 4061 (width) x 2218 (length) pixels 

• Resolution: A 250 m x 250 m region on the ground is represented by each pixel.  145 

• Data Layers: The following data layers are included: 

• Red channel (Band 1): Data range [0, 255] 

• Green channel (Band 4): Data range [0, 255] 

• Blue channel (Band 3): Data range [0, 255] 

• Georeferencing Information (in the Metadata): Includes projection system, image size, resolution, etc. 150 

⚫ IW Position Information 

• Repository Location: https://XXXXXXXXXXXX 

• Data Format: Shapefile. This format distinguishes itself in the archival of IW position data, attributable to its pervasive 

compatibility with diverse GIS software, thereby assuring seamless interoperability and efficacious data 

dissemination. It permits the execution of sophisticated spatial analyses directly upon the data, engendering a nuanced 155 

understanding of IW phenomena. The robust framework of this format encapsulates both geometric and attributive 

information, upholding the integrity of the data, while its proficiency in handling voluminous datasets guarantees 

expeditious and reliable access to pertinent information. 

• File Structure: 

• Naming Convention: IW_YYYY-MM-DD.shp (where YYYY-MM-DD represents the date the IWs 160 

occurred) 

• Column Names and Data Types: 

• longitude: Float, precision to 4 decimal places 

• latitude: Float, precision to 4 decimal places 

3 Signature Extraction and Validation 165 

IWE-Net is designed as an end-to-end model, signifying that both the input and output of the model are images. The task of 

IW location extraction is framed as a binary classification problem, where the output image exclusively contains two values: 

1 denoting the presence of IWs and 0 representing non-IW features. The natural color product's red channel (derived from 

Band 1) was selected as the input of IWE-Net. Figure 3 illustrates an example of the output and the corresponding input image 

acquired on Aug. 28, 2002. The extraction results show that most of the IWs were located around the Dongsha Atoll, like the 170 

distribution in previous studies. However, it is noteworthy that IWE-Net can successfully identify IWs even in darker regions, 
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as exemplified in the southwest portion of Figure 3, which is distantly located away from the sun glint area and can hardly be 

seen with the naked eye if no image enhancement is performed. It suggests that deep-learning-based extraction models have 

the potential to generate results that could surpass the accuracy achieved through visual interpretation, particularly when 

handling extensive datasets. Altogether, 3085 MODIS images containing IW signatures were identified among the 15830 input 175 

images. 

 

Figure 3. An example of IWE-Net's output (b) with the MODIS image (a) was acquired on Aug. 28, 2002. Panels (c) and (d) are 

enlarged regions denoted by the white box in panels (a) and (b). The red lines in panel (c) correspond to the white lines in panel (d). 

 180 

As shown in Figure 3, the white points within the image matrix represent values predicted as 1 by the model, while the 

remaining points are all predicted as 0 (rendered in black). Consequently, evaluating the model's extraction accuracy hinges 

on IWs' positional extraction precision. Nonetheless, no corresponding IW products are available in the SCS, and the precision 

of manual extraction surpasses that of other current approaches due to the complicated imaging conditions for MODIS images 

in the SCS. Ground-truth maps derived from labels provided with visual interpretation were used to assess the overall accuracy 185 

of this IW crest dataset. In practical implementation, we initiated the process by introducing a new layer atop the MODIS 

image to maintain consistency in the referenced IW image size. Subsequently, we carefully indicate the IW spots using white 

lines and then give the layer a black background. 
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Figure 4. The Terra MODS image was acquired on 20 July 2007 (left) and IW locations in the dataset (right). The red star 190 

indicates the field observation sites in Zhao et al. (2012) and the red arrow indicates the IW observed by the field observation. 

Figure 4 illustrates an example of IW detection using a MODIS image captured on 20 July 2007 at 02:45 UTC, alongside field 

observations detailed by Zhao et al. (2012). The red star marks the locations of the field observations, while the red arrow 

indicates the IW observed in these field studies. According to Zhao et al. (2012), the IW had an amplitude of several tens of 

meters and vertical wave-induced currents exceeding 0.5 m/s (see Figure 3 in their work). This IW was effectively detected 195 

through field observations and subsequently captured by the Terra MODIS image approximately 7 hours later. The near-

synchronous detection of IWs from both satellite imagery and field observations provides strong validation for the accuracy 

of the applied model and produced dataset. 

4 Statistical Analysis 

4.1 ISW Spatial Distributions in the Northern SCS 200 

We superimpose the IWE-Net-produced IW crest lines using MODIS images from 2000 to 2022 and the result is shown in 

Figure 5. The spatial resolution of the superimposed map is 250 m, which is the same as the input MODIS image. We can find 

that most IWs are located around the Dongsha Atoll, and four IW clusters are located in deep and shallow ocean areas. 
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Generally, more IWs are found in the continental shelf regions than in the deep ocean region. The IW distributions agree well 

with the topography feature.  205 

 

As shown in Figure 5, we divided the detected IW locations into four regions 1-4, which cover the area from 112.5°E to 

114.2°E and from 18.5°N to 20.9°N, from 114.2°E to 118.1°E and from 19.5°N to 22.2°N, from 118.1°E to 120.0°E and from 

22.0°N to 23.0°N and from 118.1°E to 120.5°E and from 19.5°N to 22.0°N, respectively. The division was based on the 

geometry of IW crests, which suggest distinct sources for Regions 1 and 3, and different life stages of IWs before and after 210 

IWs propagate from the deep ocean to the continental shelf areas in Regions 2 and 4. IWs in Regions 1, 2, and 4 mainly 

propagate westward, while IWs in Region 3 propagate southward, which implies different IW generation sources. More IWs 

are observed in Region 2 because IWs in Region 4 are mainly solitons. When these IW solitons propagate into shallower 

regions in Region 2, where water depth is less than 1000 m, IW soliton will fission into IW packets. In addition, the existence 

of the Dongsha Atoll will cause IW reflection or refraction, which makes the IW characteristic more complicated (Jia et al., 215 

2018; Li et al., 2013). The IW wave crests in Region 1 are not always aligned with IWs in Region 2 and Region 4, which also 

promise different IW generation sources or mechanisms.  

 

 

Figure 5.  Superimpose the IW detection results from MODIS images from 2000 to 2022. The color indicates the frequency of IW 220 

observed at each location. The map resolution is 250 m which is the same as the input MODIS image. 
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Figure 6. Statistical histograms of IW pixel number vs the water depth for (a) the whole northern SCS (orange) and (b-e) four 

regions as shown in Figure 4 (blue) 225 

 

Underwater topography significantly influences internal wave (IW) evolution. Figure 6 illustrates IW distribution relative to 

water depth, indicating a prevalence of IWs in open ocean areas with depths under 1000 m. Interestingly, there are more IWs 

at depths of 3000 m than 2000 m, hinting at an IW evolution mechanism that warrants further study. In Regions 2 and 4, as 

shown in Figure 4, the distribution of IW clusters reflects specific depth characteristics. Specifically, Region 1 features IWs 230 

mainly in depths less than 600 m despite the overall range from 100 m to 2000 m. For Region 2, IWs predominantly occur at 

depths under 1000m, aligning closely with water depth contours between 100 m and 1000 m. In Region 3, IWs are primarily 
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found at 100 m depths, moving away from the continental shelf and vanishing beyond 2000m. Region 4's IWs are mostly at 

2600 to 3600 m depths, rarely below 2000 m, showcasing a general correlation between IW distribution and water depth 

contours. 235 

4.2 ISW Temporal Distributions-Monthly Variations 

Stratification stands out as its pivotal influence on the generation and propagation dynamics of IWs. Stratification shows 

significant seasonal variations in the northern SCS and thus results in IW distribution variation. Figure 7 illustrates the monthly 

variations of IWs detected by the IWE-Net. One can find that IW occurrences are prevalent from May to August, whereas 

sightings diminish notably in other months. This temporal disparity underscores the influence of seasonal changes on the 240 

stratification and IW activity. Shallower depths and intensified stratification during these warmer months favor heightened IW 

activity, facilitating their generation and propagation across the northern SCS. Conversely, stratification deepens while 

weakening during winter, attributed to factors such as intensified winter monsoons. The resultant stratification dynamics during 

this period are less conducive to IW generation and propagation, contributing to fewer observed IW events. Moreover, the 

weakened modulation of surface features by IWs during winter further diminishes their detectability. The classified four 245 

regions exhibit a similar trend to the entire northern SCS. However, it's noteworthy that in Region 3, the distribution is more 

concentrated in July, suggesting that IWs in this area may require more stringent conditions for generation. These findings 

underscore the seasonal modulation of stratification and its consequential impact on IW dynamics. They highlight the intricate 

interplay between atmospheric phenomena, such as monsoonal circulations and solar radiation, in shaping the observed 

seasonal variations in IW activity within the northern SCS.  250 
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Figure 7. Statistical histograms of monthly distributions of IW days for (a) the whole northern SCS (orange) and (b-e) four regions 

(blue). 

4.3 IW Variations with the Lunar Day 

The generation of IW exhibits a close correlation with the astronomical tide. The magnitude of the tide directly impacts the 255 

scale of IWs. Astronomical tides follow a fortnightly pattern, with the first and fifteenth lunar days of the month coinciding 

with the period of spring tides. Consequently, IW characteristics display fortnightly variations. Illustrated in Figure 8 are the 

IW variations relative to the lunar day. It is evident that IWs in the northern SCS typically exhibit a "double-peak" distribution 

pattern. The peak IW occurrences occur approximately four days after the spring tide. IWs in this region require roughly four 

days to propagate from the Luzon Strait to the continental shelf regions before eventually dissipating. 260 

 

All four regions display a "double-peak" pattern linked to tidal dynamics. Regions 2 and 4 are the main channels for IW in the 

northern SCS and record the highest number of IW observation days. Region 3, in contrast, has the lowest, with 35 days 

marking the highest count in this region, indicating that IW generation and propagation conditions in Region 3 are more 

stringent and less favorable than in Region 2, which has a minimum of 35 observation days. Region 4 shows more distinct and 265 

focused peaks than Region 2 due to the dominance of IW solitons in Region 4, while Region 2 primarily exhibits IW packet 

behavior. The shallower water in Region 2 results in a slower IW propagation speed than in Region 4, leading to broader peaks 

in Region 2. 
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Figure 8. Statistical histograms of IW pixel number vs the lunar day for (a) the whole northern SCS (orange) and (b-e) four 270 

regions (blue) 



15 

 

4.4 IW Silence Regions 

Figure 5 shows three distinct blank areas in Regions 1 and 2. One such area in Region 2 encompasses the Dongsha Atoll, while 

the other undistinguished area behind the Dongsha Atoll has received minimal attention in prior studies. These blank spaces 

signify limited or absent IW activity, delineating what we refer to as IW-free silence regions. Figure 9 reveals the presence of 275 

a chain of small underwater ridges situated in the northwest direction of the Dongsha Atoll. These ridges correspond to a series 

of IW-free silence regions, as indicated by two black arrows. The unique underwater topography contributes to forming IW-

free areas within the northern SCS.  

 

The IW-free region adjacent to the Dongsha Atoll extends approximately 110 km towards the continental shelf area, with less 280 

than 100 m water depths. Conversely, the IW-free region in Region 1 is comparatively smaller, characterized by conspicuous 

underwater ridges aligned along the direction of IW propagation. These underwater ridges segregate IW crests, with subsequent 

reconnection occurring at 112.7°E. 

 

Figure 9. IW silence regions (black arrows) in (a) Region 2 and Region 1 derived from superimposed IW location 285 

IWs exhibit a widespread distribution across the northern SCS, yet noticeable gaps between distinct IW wave crest clusters are 

evident. Illustrated in Figure 10 are two such IW gaps observed in Region 4, with spatial separations of 63.6 km and 31.7 km. 

This occurrence can be attributed to the predominantly solitonic nature of IW in Region 4, characterized by phase speeds 

exceeding 3.0 m/s. The rapid propagation of IWs, coupled with two MODIS snapshots captured each day, likely contributes 

to the formation of these gaps. 290 

 

Another IW gap, spanning a spatial distance of 62.6 km, is observed between Regions 1 and 2. The disparate directions of IW 

wave crests in the area suggest distinct IW generation sources. As a result, IWs originating from different sources undergo 

separate evolution processes and fail to connect. Additionally, IWs in Region 2 exhibit a gap with Region 1 at the southern 
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edge and another gap with Region 3 at the northern edge. Notably, the gap between Region 2 and Region 3 coincides with 295 

abrupt underwater topography and the presence of small underwater ridges. 

 

Figure 10. Gaps between different IW clusters in the northern South China Sea. 

5. Conclusion and Outlooks 

In this study, we have successfully constructed a comprehensive oceanic IW dataset from 2000 to 2022, utilizing MODIS 300 

satellite imagery and the IWE-Net model. Through applying advanced remote sensing images and deep learning algorithms, 

we have extracted precise IW locations, specifying longitude and latitude coordinates, and organized them into a Shapefile 

format for easy access and analysis.  

 

Meanwhile, it is important to note that the main sources of error in the constructed IW dataset are twofold: on one hand, while 305 

optical imagery can capture most IW features, weather conditions such as clouds and rain may prevent MODIS imagery from 

detecting IWs even if they are present. On the other hand, polar orbiting satellites may have uneven coverage in certain areas 

and gaps between orbits, which can lead to some missed IW detections in the model's results. In the future, considering 

including more satellite sensors for detecting IWs, especially SAR imagery, could enhance the comprehensiveness of the IW 

dataset. 310 
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The generated IW dataset potentially advances our understanding of IW characteristics in the northern SCS. By analyzing the 

spatial and temporal distributions of IWs based on the collected MODIS images, researchers can gain insights into the region's 

prevalent locations and seasonal variations of IW activity. This dataset also provides valuable information for studying the 

interactions between IWs and mesoscale ocean phenomena, such as eddies, facilitating further investigations into ocean 315 

dynamics (Li et al., 2016; Xie et al., 2016). The cyclone and anticyclone mesoscale eddies can cause vertical fluctuations in 

ocean temperature isopleths and accompany currents, affecting characteristics such as the amplitude and propagation direction 

of IWs. By analyzing the IW spatial and temporal information provided in this dataset, changes in IW characteristics after 

passing through different types of eddies can be statistically examined over longer timescales. Additionally, other dynamic 

phenomena, such as the intrusion of the Kuroshio current, also affect the generation and propagation of IWs in the SCS. 320 

Analyzing the statistical characteristics of IWs across different seasons and years can enhance understanding of how dynamic 

phenomena like the Kuroshio affect the IW generation and propagation process, ultimately improving the study and knowledge 

of multi-scale dynamic interactions in the SCS. 

 

Moreover, the availability of this extensive IW dataset is crucial for advancing artificial intelligence oceanography studies. It 325 

serves as valuable ground truth data for validating IW generation or forecast models, allowing researchers to assess the 

performance of AI models by comparing their predictions with the dataset-provided IW locations. The dataset serves as a 

validation tool for numerical simulations (Gong et al., 2023), enabling researchers to refine and improve numerical models 

based on the observed IW distributions. This dataset can also serve as a benchmark for collaborative observations of IWs in 

the SCS with other satellite sensors or field measurements, thereby facilitating the construction of matched datasets to support 330 

IW research with artificial intelligence technologies. 

 

Overall, the IW dataset presented in this paper significantly contributes to oceanography, providing researchers with a valuable 

resource for studying IW dynamics, validating AI models, and refining numerical simulations. This dataset is anticipated to 

stimulate further research and advancements in understanding the complex dynamics of oceanic IWs. Mooring observations 335 

can provide vertical structural information of IWs. By matching this dataset with mooring observation data and combining it 

with artificial intelligence technology, it is hoped to extend from two-dimensional sea surface information of IWs to a three-

dimensional IW structure. 

6. Data availability 

The built IW dataset can be freely downloaded from http://dx.doi.org/10.12157/IOCAS.20240409.001 (Zhang and Li, 2024) 340 

or https://datapid.cn/CSTR:33685.11.IOCAS.20240409.001.  

http://dx.doi.org/10.12157/IOCAS.20240409.001
https://datapid.cn/CSTR:33685.11.IOCAS.20240409.001
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