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Abstract. Long time series of spatiotemporally continuous phytoplankton functional type (PFT) products are essential for 

understanding marine ecosystems, global biogeochemical cycles, and effective marine management. In this study, by 

integrating artificial intelligence (AI) technology with multi-source marine big data, we have developed a Spatial–Temporal–10 

Ecological Ensemble model based on Deep Learning (STEE-DL), and then generated the first AI-driven Global Daily gap-

free 4 km PFTs product from 1998 to 2023 (AIGD-PFT), significantly enhancing the accuracy and spatiotemporal coverage 

of quantifying eight major PFTs (i.e., Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, Green Algae, 

Prokaryotes, and Prochlorococcus). The input data encompass physical oceanographic, biogeochemical, spatiotemporal 

information, and ocean color data (OC-CCI v6.0) that have been gap-filled using a Discrete Cosine Transform with a Penalized 15 

Least Square (DCT-PLS) approach. The STEE-DL model utilizes an ensemble strategy with 100 ResNet models, applying 

Monte Carlo and bootstrapping methods to estimate optimal PFT values and assess model uncertainty through ensemble means 

and standard deviations. The model's performance was validated using multiple cross-validation strategies—random, spatial-

block, and temporal-block—combined with in-situ data, demonstrating STEE-DL's robustness and generalization capability. 

The daily updates and seamless nature of the AIGD-PFT product capture the complex dynamics of coastal regions effectively. 20 

Finally, through a comparative analysis using a triple-collocation (TC) approach, the competitive advantages of the AIGD-

PFT product over existing products were validated. The AIGD-PFT product not only provides the foundation for detailed 

analyses of PFT trends, interannual variability, and the impacts of climate change on phytoplankton composition across various 

temporal and spatial scales, but also has the potential to facilitate precise quantification of marine carbon flux and enhances 

the accuracy of biogeochemical models. A video demonstration is available at https://doi.org/10.5446/67366 (Zhang and Shen, 25 

2024a). The complete product dataset (1998-2023) can be freely downloaded at 

https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024b).  

1 Introduction 

Marine phytoplankton contribute to approximately half of the earth's primary productivity (Field et al., 1998), driving the 

operation of marine ecosystems (Beaugrand et al., 2010).  These minute organisms are classified into different phytoplankton 30 
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functional types (PFTs), playing a crucial role in global biogeochemical cycles, biodiversity, and climate feedbacks (Le Quéré 

et al., 2005; Gruber et al., 2019). Comprehensive monitoring and research on the spatiotemporal distribution patterns of PFTs 

are foundational for understanding marine ecosystems, predicting the impacts of climate change (Kramer et al., 2024; 

Falkowski, 2012). Particularly, for accurately quantification of global ocean carbon fluxes and the improvement of 

biogeochemical models (Guidi et al., 2016), long-term, high-resolution PFT data is a scientific priority (Nair et al., 2008). 35 

Furthermore, as human reliance on marine resources increases, ensuring the sustainability of fisheries (Chassot et al., 2010), 

effective management of coastal areas, and safeguarding against the risks posed by harmful algal blooms (Xi et al., 2023) all 

underscore the value of the diversity data of phytoplankton represented by PFTs (Henson et al., 2021). 

For the quantification of global PFTs, many analytical techniques and inversion algorithms have been developed in recent 

years. Among the field sampling analysis methods for quantifying global phytoplankton community composition from water 40 

samples, including optical microscopy (Karlson et al., 2010), flow cytometry (Veldhuis and Kraay, 2000), and recent genomics 

(Catlett et al., 2020), the separation of phytoplankton diagnostic pigments through High-Performance Liquid Chromatography 

(HPLC) with the assistance of Diagnostic pigment analysis (DPA) or CHEMTAX (Mackey et al., 1996) algorithms remains 

the most cost-effective and quality-controlled method to date (Swan et al., 2016). The advent of ocean color satellites has 

enabled continuous global observation. In situ HPLC pigment data and ocean color satellite data have laid the foundation for 45 

the development of remote sensing inversion methods, primarily including abundance-based and spectral-based approaches 

(Mouw et al., 2017; Bracher et al., 2017). Abundance-based indirect methods use chlorophyll-a (Chl-a) concentration as model 

input, modelling the statistical relationship between Chl-a concentration and diagnostic pigments to retrieve PFTs globally 

(Hirata et al., 2011; Uitz et al., 2006). Spectral-based methods directly construct relationships between remote sensing 

reflectance, or absorption spectra, scattering spectra, and the concentrations of different groups, incorporating spectral 50 

transformation strategies (such as Principal Component Analysis (Xi et al., 2020), differential spectra (Bracher et al., 2009), 

etc.) to improve inversion accuracy (Sun et al., 2022). Considering that marine ecological environmental variables (temperature, 

nutrients, etc.) shape the distribution of different groups through their impact on phytoplankton growth, physiology, and 

competition, introducing more marine environmental covariates into ecological approaches (Zhang et al., 2023; Raitsos et al., 

2008) has become a current research focus: further introducing other biogeochemical and physical oceanographic data on the 55 

basis of ocean color satellite data and integrating advanced machine learning methods like random forests and ensemble 

learning can significantly enhance the accuracy of PFTs modelling.  

Based on the aforementioned approaches, several global PFT products have been developed (Table 1), such as (1) a global 

seasonal surface marine climatology dataset based on CHEMTAX and a global HPLC dataset (Swan et al., 2016); (2) the OC-

PFT product based on abundance (Hirata et al., 2011); (3) the PhytoDOAS product based on phytoplankton differential optical 60 

absorption spectroscopy (Bracher et al., 2009) ; (4) the synergistic product SynSenPFT that integrates satellite multispectral 

information with retrievals based on high-resolution PFT absorption properties derived from hyperspectral satellite 
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measurements (Losa et al., 2017); (5) the EOF-PFT product based on remote sensing reflectance and the empirical orthogonal 

functions (EOF) algorithm(Xi et al., 2020), along with its modification, the EOF-SST hybrid algorithm (Xi et al., 2021) which 

incorporates sea surface temperature (SST). In addition to these remote sensing products, the NASA Ocean Biogeochemical 65 

Model (NOBM, https://gmao.gsfc.nasa.gov/reanalysis/MERRA-NOBM/data/data_description.php) has been developed, 

which coupled circulation and radiative models (Gregg and Casey, 2007). 

Table 1 Summary of Existing Open-Source PFT Products 

Product Method Spatial resolution Time resolution Reference 

CHEMTAX-

PFT 

Application of CHEMTAX to a global 

climatology of pigment data 

1°×1°  

global grid points 

Seasonal 

climatology 

Swan et al. (2016) 

OC-PFT Synoptic relationships between Chl-a and 

its fractional contribution from PFTs 

~4 km Daily Hirata et al. 

(2011) 

PhytoDOAS Differential Optical 

Absorption Spectroscopy (DOAS) 

0.5° Monthly Bracher et al. 

(2009) 

SynSenPFT Combine synergistically OC-PFT and 

PhytoDOAS 

~4 km Daily Losa et al. (2017) 

EOF Empirical orthogonal functions (EOF), 
using CMEMS GlobColour merged 

products 

~4 km Monthly Xi et al. (2020) 

EOF-SST EOF-SST hybrid algorithm ~4 km Monthly Xi et al. (2021) 

NOBM NASA Ocean Biogeochemical Model 1.25° longitude， 

2/3° latitude 

Daily, Monthly Gregg and Casey 

(2007) 

Despite advancements in current algorithms for retrieval PFTs, significant challenges persist in terms of prediction accuracy, 

spatial coverage, and spatiotemporal resolution. First, abundance-based methods, which rely on Chl-a remote sensing products 70 

and empirical formulas to deduce the composition of various PFTs, are computationally straightforward but suffer from limited 

accuracy and robustness globally (Bracher et al., 2017). Spectral-based methods encounter challenges because of the spectral 

resolution limitations of current ocean color satellites, which restrict their ability to detect weak phytoplankton signals in 

optically complex waters. In such environments, non-algal particulate absorption and significant near-infrared water 

reflectance can obscure diagnostic pigment absorption, potentially rendering spectral-based methods ineffective (Nair et al., 75 

2008). Another significant limitation is the presence of data gaps due to unfavorable conditions, such as orbital configurations, 

cloud cover, sunlight contamination, and large sensor viewing angles (Mikelsons and Wang, 2019). For instance, the 

probability of cloud-free conditions over the global ocean for MODIS is only between 25% and 30% (Liu and Wang, 2018). 
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Although merging images from different satellite missions (e.g., MODIS, VIIRS, OLCI) into the merged product (such as OC-

CCI products (Sathyendranath et al., 2019) and CMEMS GlobColour merged products (Garnesson et al., 2019)) has effectively 80 

reduced data gaps, the issue of data loss remains severe. This not only results in numerous voids in PFT products but may also 

introduce biases in trend analysis, obscuring key signals of environmental change and hindering a comprehensive 

understanding of marine ecosystem dynamics. Such limitations restrict potential applications in climate change research and 

marine health monitoring. Monthly averaging of data can mitigate the issue of missing data to some extent. However, this 

approach may conceal significant short-term ecological changes, such as ocean heat waves (Chauhan et al., 2023) and algal 85 

blooms (Sadeghi et al., 2012). Additionally, the absence of data also limits the full utilization of on-site data: due to the 

incompleteness of remote sensing data, many in-situ data cannot be effectively paired with it. This results in the potential 

inability of models to fully utilize on-site sampling data for calibration or optimization, thereby wasting expensive sampling 

resources and possibly diminishing the model's generalization capability (Xi et al., 2020). While biogeochemical models offer 

a global, spatiotemporally continuous PFT modelling approach, their spatial resolution often lacks the detail necessary to 90 

accurately reflect local changes and the dynamic characteristics of marine ecosystems.  

In summary, although there have been positive developments, current PFT models and products have an imbalance in accuracy, 

spatio-temporal resolution, spatial coverage and temporal span when compared to existing requirements, suggesting that there 

is still room for improvement in terms of practicality. The advent of the ocean big data era, coupled with the rise of artificial 

intelligence technologies such as machine learning, offers new prospects for overcoming the inherent challenges faced by PFT 95 

inversion models that currently rely solely on ocean color satellite data (Zhang et al., 2023). Algorithms for data reconstruction 

and the integration of multi-source data can effectively bridge the observational gaps caused by clouds or orbital, enhancing 

data utilization efficiency and the continuity of global phytoplankton community monitoring. Furthermore, the application of 

machine learning and deep learning technologies has the potential to improve the extraction of useful information from vast 

oceanic datasets. These technologies, capable of processing and analysing large-scale datasets to identify complex patterns 100 

and trends, hold the promise of developing high-precision PFT products. 

Here, we propose a novel Spatial–Temporal–Ecological Ensemble model based on deep learning (STEE-DL), designed to 

produce a long time series PFT product. STEE-DL leverages an ensemble of 100 ResNet models, incorporating inputs from 

reconstructed missing ocean color data, physical reanalysis, biogeochemical, and spatiotemporal information. Utilizing the 

STEE-DL model, we have produced the first AI-driven Global Daily gap-free 4 km resolution Phytoplankton Functional Type 105 

products (AIGD-PFT), include eight major PFTs (i.e., Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, 

Green Algae, Prokaryotes, and Prochlorococcus) from 1998 to 2023. The STEE-DL model's accuracy has been tested through 

three types of cross-validation (CV) methods: standard, spatial-block, and temporal-block CV. Moreover, we have performed 

a comprehensive comparison and validation of the AIGD-PFT against other products using triple collocation analysis. 
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2 Methodology 110 

2.1 Overall framework 

The structure and function of phytoplankton communities are influenced by numerous environmental factors, such as sunlight, 

nutrient concentration/supply, temperature, carbon chemistry characteristics, and their fluid dynamic environment. We regard 

the inversion process of PFTs as a nonlinear mapping (𝑓𝑓𝑥𝑥) problem, aiming to overcome the limitations of relying solely on 

bio-optical algorithms for predicting the spatial distribution of phytoplankton. This process integrates environmental predictive 115 

factors 𝑝𝑝, including bio-optical properties, biogeochemical parameters, physical conditions, and spatio-temporal factors, as 

shown in equation (1): 

𝑃𝑃𝑃𝑃 = 𝑓𝑓𝑥𝑥�𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵−𝐵𝐵𝑜𝑜𝑜𝑜𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑜𝑜ℎ𝐵𝐵𝑒𝑒𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜,𝑝𝑝𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑝𝑝𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝐵𝐵𝐵𝐵−𝑜𝑜𝐵𝐵𝑒𝑒𝑜𝑜𝐵𝐵𝑡𝑡𝑜𝑜𝑜𝑜� (1) 

Building on the work of Zhang et al. (2023), this study further modifies and constructs a STEE-DL model based on a ResNet 

ensemble to establish 𝑓𝑓𝑥𝑥. An overview of the proposed approach is shown in Figure 1. It specifically includes: (1) based on the 

global in-situ HPLC dataset compiled by Zhang et al. (2023), this study has expanded and updated it to increase the quantity 120 

and diversity of the in-situ data; (2) to address the issue of missing OC data, we utilized the Discrete Cosine Transform with a 

Penalized Least Square (DCT-PLS) method to reconstruct the data and fill in the missing pixel values; (3) We have integrated 

multiple sources of marine environmental data as input variables for the regression model; (4) addressing the complex 

supervised regression problem encountered in multi-source data processing, we trained an ensemble of 100 ResNet models, 

named the STEE-DL model, to generate daily PFT products for the period from 1998 to 2023. 125 
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Figure 1 Schematic flow of the methodological approach in this study.  
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2.2 Input Datasets and Preprocessing 

We first compiled and integrated in situ data obtained by high-performance liquid chromatography (HPLC), and then collected 

predictor data including ocean color, physical oceanography, and ocean biogeochemistry for model training and product 130 

generation. 

2.2.1 HPLC Pigment Data 

Building upon the updates presented by Zhang et al. (2023), this study integrates additional, newly available HPLC pigment 

data collected between 1998 and 2023 (refer to Figure 2 for details). This data was primarily sourced from open-access data 

repositories such as SeaBASS (https://seabass.gsfc.nasa.gov/), PANGAEA(https://www.pangaea.de/), the British 135 

Oceanographic Data Centre (BODC, https://www.bodc.ac.uk/), the Australian Ocean Data Network (AODN, 

https://portal.aodn.org.au/), and Google Dataset Search (https://datasetsearch.research.google.com/). This initiative has 

resulted in the acquisition of further HPLC open-source data, leading to the creation of a new global in-situ HPLC pigment 

database spanning the years 1998 to 2023. In cases of duplicate samples, whether across spatial or temporal dimensions, the 

average of the replicates was calculated. By utilizing an updated Diagnostic Pigment Analysis (DPA) methodology, along with 140 

newly adjusted weighting coefficients, we conducted DPA to ascertain in-situ PFT Chl-a concentrations. The adjusted 

coefficients for DPA were referenced from Alvarado et al. (2022) and Xi et al. (2023), with specifics available at 

https://doi.pangaea.de/10.1594/PANGAEA.954738. From these global HPLC pigment datasets, we selected 6 long-term 

observation sites as independent validation data. The locations of these sites are shown in Figure 2. 

 145 

Figure 2 (a) depicts the spatial distribution of in-situ HPLC pigment datasets, with red hexagons and numbers indicating the locations of six 
independent long-term time series stations. (b) presents a ridge plot of the probability density distribution for eight types of PFTs. 
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2.2.2 Ocean Color Data and Missing Value Filling 

Satellite ocean color remote sensing data is currently the most important data source for the retrieval of PFT. We obtained 

daily merged ocean color data from the Ocean-Colour Climate Change Initiative (OC-CCI, version 6.0, 150 

https://www.oceancolour.org/) for the period 1998-2023. This data combines measurements from SeaWiFS, MERIS, MODIS-

Aqua, and VIIRS sensors and has a spatial resolution of 4 km (Sathyendranath et al., 2019).The raw daily OC-CCI dataset 

exhibits considerable instances of missing data: Figure 3 illustrates the percentage of valid pixels in the OC-CCI dataset, based 

on per-pixel statistics spanning the years 1998 to 2023. The results indicate that the majority of marine areas exhibit less than 

50% coverage of valid observations, with pronounced gaps particularly evident in higher latitudes. 155 

 

Figure 3 The percentage of valid pixels in the OC-CCI v6.0 daily dataset.  

Given the importance of ocean color data in generating seamless space-time PFT products, it is essential to reprocess missing 

pixels to fill gaps, thereby maximizing the availability of in-situ and remote sensing data. Previous studies have developed 

various methods for reconstructing missing pixels in remote sensing data, such as DINEOF (Data Interpolation Empirical 160 

Orthogonal Function) (Liu and Wang, 2022), Optimal Interpolation (Liston and Elder, 2006), and Kriging (Gunes et al., 2006). 

However, these methods are very time-consuming when dealing with large datasets. For long-term and daily product 

reconstructions, balancing accuracy and computational efficiency is crucial. Therefore, we adopted the DCT-PLS algorithm, 

which was initially proposed for automatic smoothing of multidimensional incomplete data (Garcia, 2010). The primary 

advantage of the DCT-PLS is its faster speed, while it requires only a small amount of memory storage, and achieves high 165 

reconstruction accuracy, making it suitable for processing large datasets. It has been successfully applied to fill data gaps in 

soil moisture (Wang et al., 2012), NDVI (Yang et al., 2022),  coastal ocean surface current (Fredj et al., 2016), and Chl-a 

(Wang et al., 2022) products. To further improve the computational efficiency of the DCT-PLS algorithm, we modified the 

original DCT-PLS code, utilizing the built-in FFT computation in PyTorch for GPU-accelerated DCT operations. 
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Based on the DCT-PLS algorithm, we designed a gap-fill process (as shown in Figure 4), summarized briefly as follows: (1) 170 

Data preparation: The original ocean satellite data (e.g., OC-CCI remote sensing reflectance Rrs, Chl-a concentration, and 

diffuse attenuation coefficient Kd490) are stored in a three-dimensional spatiotemporal data cube. To avoid seams, we directly 

input the entire global 30-day data cube, with dimensions of 4320×8640×30, representing spatial resolution and a 30-day date-

time span, without using regional segmentation. (2) Normalization: To minimize differences in dimensions and magnitudes of 

data across different spatial regions, the dataset is standardized by dividing by the spatial mean. (3) DCT-PLS completion: The 175 

DCT-PLS method is used to fill in missing values for the target day. We modified Garcia (2010)’s original code 

(https://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d-2-d-3-d-nd-

arrays?s_tid=prof_contriblnk) to a GPU-accelerated form, significantly improving speed compared to the Matlab-based 

original code. The entire 30-day time series data undergo a hundred iteration cycles in the DCT-PLS process to fill in the 

missing values for the target date. (4) Rolling filling: To enhance the robustness of the filling effect, we adopt a rolling filling 180 

strategy. Specifically, for each target day, a 30-day time window is progressively moved forward day by day until the data 

window moves past that day. This process is repeated 30 times for each target day, with the average of these fillings taken as 

the final result for the target day. (5) Long time series filling: Following the process described, the entire dataset is traversed 

and filled day by day, ultimately resulting in a daily continuous and spatially complete data cube from 1998-2023. 

This method effectively utilizes time series information to estimate missing values while avoiding discontinuities that might 185 

be introduced by data segmentation. Through iteration and averaging, it further improves the accuracy and stability of the filled 

data. Additionally, through GPU acceleration, this method achieves higher efficiency compared to traditional methods (such 

as DINEOF). It is important to note that in areas of high latitude with extremely high missing values (exceeding 80%), these 

data will be directly removed (as demonstrated in the video example available at https://doi.org/10.5446/67366), because 

reconstruction under such conditions is impractical. 190 

 

Figure 4 Gap-fill process with DCT-PLS algorithm. 
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2.2.3 Ocean Physics, Biogeochemistry data, and spatio-temporal information 

Incorporation of physical oceanographic data, including Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), 

alongside biogeochemical data  (Table 2). was performed. These data are provided by the Copernicus Marine Data Store 195 

(https://data.marine.copernicus.eu/products). The SST data are sourced from the ESA SST CCI (Climate Change Initiative) 

and C3S (Copernicus Climate Change Service) global Sea Surface Temperature Reprocessed product 

(https://doi.org/10.48670/moi-00169). The SSS data are obtained from The Operational Mercator global ocean analysis and 

forecast system (https://doi.org/10.48670/moi-00016). Biogeochemical data include nitrate concentration (NC), phosphate 

concentration (PC), silicate concentration (SC), and dissolved oxygen (DO). These variables are critical for understanding the 200 

nutrient dynamics in marine ecosystems, which are fundamental factors influencing phytoplankton growth and distribution. 

The data for these biogeochemical variables are sourced from the global biogeochemical multi-year hindcast products 

(https://doi.org/10.48670/moi-00019). All data undergo the following preprocessing steps: (1) resampling, where all data is 

resampled to a 4km resolution using the pysample library (https://doi.org/10.5281/zenodo.3372769). This resampling process 

may lead to missing pixels, which are then filled using the nearest neighbor method; (2) standardization: For Rrs, L2 norm 205 

normalization is performed, meaning each band (i.e., Rrs412, Rrs443, Rrs490, Rrs510, Rrs560, Rrs665) is divided by the square root of 

the sum of squares of all bands. For Chl-a and Kd490, as well as NC, PC, SC, DO, SST, and SSS, standardization is carried 

out using the “StandardScaler” function from the scikit-learn library (https://scikit-learn.org/). 

Spatial and temporal components were quantified using polar coordinates to facilitate the capture of complex environmental 

changes. The spatial term is characterized in Euclidean space using three spherical coordinates [𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3] to reflect 210 

autocorrelation and spatial differences. These coordinates represent a point's position in three-dimensional space, calculated 

as follows: (1) 𝑆𝑆2  describes the component in the east-west direction, calculated by longitude, with the formula 𝑆𝑆1 =

sin �2𝜋𝜋 lon
360
�; (2) 𝑆𝑆2  combines longitude and latitude to provide the position in the north-south direction and the vertical 

distance from the equator, calculated as 𝑆𝑆2 = cos �2𝜋𝜋 lon
360
� sin �2𝜋𝜋 lat

180
�; (3) 𝑆𝑆3 represents the straight-line distance from the 

center of the Earth to the point, calculated as 𝑆𝑆3 = cos �2𝜋𝜋 lon
360
� cos �2𝜋𝜋 lat

180
�. Furthermore, the temporal term (𝑇𝑇~[𝑇𝑇1,𝑇𝑇2]) is 215 

represented by two sine and cosine functions of the day of the year (DOY), enabling the capture of both daily variations and 

seasonal patterns of PFT. Here, 𝑇𝑇1 = cos �2𝜋𝜋 ⋅ DOY
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

� and 𝑇𝑇2 = sin �2𝜋𝜋 ⋅ DOY
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

�, where 𝑁𝑁𝑑𝑑𝑜𝑜𝑦𝑦  is the total number of days in the 

corresponding year. 

 

 220 
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Table 2 Predictors and corresponding data products. 

Dataset Abbreviation Definition Resolution 

Ocean color data 

Rrs412-670 
Remote sensing reflectance at 412, 443, 490, 

510,555 and 670 nm ~4 km, 

Daily, 

1998.1.1-2023.12.31 Kd490 diffuse attenuation coefficient at 490 nm 

Chl-a Chlorophyll-a concentration 

Biogeochemistry data 

NC Nitrate concentration 
1/4 °, 

Daily, 

1998.1.1-2023.12.31 

PC Phosphate concentration 

SC Silicate concentration 

DO Dissolved oxygen 

Ocean Physical data 

SST sea surface temperature 

1/20°, 

Daily, 

1998.1.1-2023.12.31 

SSS sea surface salinity 

1/12°, 

Daily, 

1998.1.1-2023.12.31 

Spatio-temporal 

information 

S1 𝑆𝑆1 = sin �2𝜋𝜋
lon
360

� 

̶ 

S2 𝑆𝑆2 = cos �2𝜋𝜋
lon
360

� sin �2𝜋𝜋
lat

180
� 

S3 𝑆𝑆3 = cos �2𝜋𝜋
lon
360

� cos �2𝜋𝜋
lat

180
� 

T1 𝑇𝑇1 = cos�2𝜋𝜋 ⋅
DOY
𝑁𝑁𝑑𝑑𝑜𝑜𝑦𝑦

� 

T2 𝑇𝑇2 = sin �2𝜋𝜋 ⋅
DOY
𝑁𝑁𝑑𝑑𝑜𝑜𝑦𝑦

� 
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2.3 Spatial–Temporal–Ecological Ensemble model based on deep learning 

2.3.1 Network Architecture 

Ensemble learning has emerged as a powerful approach to enhancing prediction performance by combining the outputs of 225 

multiple models. STEE-DL Models that use deep ensemble learning combine the advantages of deep learning with those of 

ensemble learning to achieve better generalization. STEE-DL model framework introduces an ensemble consisting of N 

residual neural networks (ResNet) as its components. The ResNet is known for their shortcut connections, which help in 

maintaining a smooth flow of gradients during the learning process. To ensure efficiency, each component model is built with 

two residual blocks designed to reduce computational demands while preserving the effectiveness of a deep network. These 230 

blocks comprise a fully connected layer, a ReLU activation function, and a shortcut connection for uninterrupted information 

transmission. This setup decreases the dimensionality of features from 19 to 16, and then to 10, before a final fully connected 

layer maps these features to an output value for predicting the target variable. Research, such as the work by Gen and colleagues, 

has shown that ensemble stability improves significantly when the number of component models, N, exceeds 50, but the 

marginal gains in reducing standard error diminish after reaching 100 models. Therefore, aiming for a balance between 235 

accuracy and computational efficiency, we have chosen an ensemble size of N=100. Based on this architecture, we have 

implemented the STEE-DL models using PyTorch (https://pytorch.org/). 

2.3.2 Model Ensemble and Uncertainty 

Each ResNet within the ensemble focuses on different subsets and features of the training data, The mean (μ) of the outputs 

from the 100 independent models is considered the optimal estimation of the target variable 240 

𝜇𝜇𝑜𝑜𝑝𝑝𝑜𝑜 = � PFT𝐵𝐵𝑦𝑦𝑜𝑜𝐵𝐵𝑒𝑒𝑜𝑜𝑜𝑜𝐵𝐵𝑑𝑑(𝐵𝐵)

𝐵𝐵=100

𝐵𝐵=1

100�  (2) 

The variability among ensemble model outputs, quantified by the standard deviation (𝜎𝜎) of the 100 independent models, 

provides a measure of uncertainty in predictions. This uncertainty reflects the variability in predictions due to differences in 

training sets, initializations, and learning dynamics. A higher standard deviation indicates greater disagreement among models, 

suggesting lower confidence in the prediction. 

𝜎𝜎 = � � �PFT𝐵𝐵𝑦𝑦𝑜𝑜𝐵𝐵𝑒𝑒𝑜𝑜𝑜𝑜𝐵𝐵𝑑𝑑(𝐵𝐵) − 𝜇𝜇𝑜𝑜𝑝𝑝𝑜𝑜�
2

𝐵𝐵=100

𝐵𝐵=1

100�  (3) 

this approach differs from statistical methods based on error propagation, which evaluate prediction uncertainty by analyzing 245 

input data uncertainties (e.g., measurement errors) and their transmission through the model to the outputs. Such methods 
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require a clear understanding of input error distributions and typically assume these errors are independent. Given the STEE-

DL model’s reliance on diverse marine and in situ High-Performance Liquid Chromatography (HPLC) data of varying quality 

control, accurately applying error propagation for uncertainty measurement is challenging. Our ensemble-based approach 

primarily addresses model uncertainty but also indirectly reveals data uncertainties by demonstrating how predictions respond 250 

to variations in representation and data subsets. 

2.3.3 Training Procedure 

To compile the training dataset, we align in-situ HPLC data with reconstructed OC-CCI and environmental data, both spatially 

and temporally. This alignment projects the data onto a 4km grid according to the latitude, longitude, and date of the HPLC 

measurements. In cases where several HPLC measurements are located within the same 4km grid cell, we average these 255 

measurements to consolidate corresponding predictor variables. 

The STEE-DL model utilizes a Monte Carlo and bootstrapping ensemble learning approach to boost model stability and 

predictive accuracy. By resampling, it randomly selects two-thirds of the total dataset as the training set for each iteration, 

repeating this procedure 100 times. This method is designed to create a varied collection of models by multiple rounds of 

sampling, significantly improving the model’s ability to generalize. This reduces the model’s reliance on specific data 260 

distributions, thereby increasing both the accuracy and the robustness of its predictions. 

Throughout the training phase, the model optimization relies on the Adam optimizer, complemented by L1 regularization to 

promote sparsity within the model and prevent overfitting. Gradient clipping is applied to manage potential issues with 

exploding gradients, thus ensuring a more stable training process. An Exponential Moving Average (EMA) strategy is 

employed to stabilize the model weights by averaging them over time, which helps to minimize variations and secure a 265 

consistent performance from the final model. 

To circumvent the issue of the model predicting unreasonably high values during training, we have crafted a specialized loss 

function. This function incorporates the traditional Mean Squared Error (MSE) while imposing extra penalties on predictions 

that surpass set thresholds. Not only does this effectively prevent the model from making unrealistic predictions, but it also 

guides the model towards more accurate parameter adjustments, assuring that its predictions stay within feasible limits. 270 

2.4 Evaluation strategies 

To comprehensively test the accuracy and robustness of the model, the evaluation of the STEE-DL model comprises two parts: 

first, the model performance is validated using a five-fold cross-validation method in three different ways; second, the 

evaluation is based on a tripartite matching analysis algorithm. 
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2.4.1 Cross-validation Approach 275 

Cross validation (CV) is a commonly used method for analyzing model performance, allowing for a comprehensive assessment 

of a model's accuracy, stability, and generalization. This study implements three types of CV methods: random five-fold CV, 

time-block five-fold CV, and spatial-block five-fold CV, to deeply evaluate the model’s multifaceted performance. Standard 

five-fold cross-validation: This method randomly divides all data into five equal-sized subsets. In each round of validation, 

one subset is selected as the test set, while the remaining four subsets serve as the training set, ensuring that each data point is 280 

used as test data. This method primarily evaluates the model’s performance and generalization on the entire dataset. Time-

block five-fold cross-validation: Data is divided into five consecutive time periods in chronological order. In each iteration, 

data from one time period is chosen as the test set, with the data from the remaining periods serving as the training set (as 

shown in Figure 5). This method takes into account the continuity and dependency of time series, helping to evaluate the 

model’s ability to capture time trends and seasonal variations.  285 

 

Figure 5 Temporal block CV procedure. 

Spatial-block five-fold cross-validation: Similar to time-block cross-validation, but data is divided based on spatial location. 

A hexagonal grid was created at 20° horizontal and vertical intervals, and regions without sampling points were removed for 

hexagonal regions. In each round, data from one geographical block is left out as the testset, while data from other blocks are 290 

used for training(as shown in Figure 6). This method prevents potential data leakage due to spatial autocorrelation and helps 

to assess the model's spatial prediction capability and its generalization across different geographical locations. 

The coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and symmetric mean 

absolute percentage error (sMAPE) were utilized to quantify the performance of the model, according to: 

𝑅𝑅2 = 1 −
� [𝑝𝑝𝐵𝐵 − �̂�𝑝𝐵𝐵]2

𝑁𝑁
𝐵𝐵=1

∑ [𝑝𝑝𝐵𝐵 − �̅�𝑝]2𝑛𝑛
𝐵𝐵=1

 (4) 
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RMSE = �
1
𝑁𝑁
�(𝑝𝑝𝐵𝐵 − �̂�𝑝𝐵𝐵)2
𝑁𝑁

𝐵𝐵=1

�

1 2⁄

 (5) 

MAE =
1
𝑁𝑁
�|𝑝𝑝𝐵𝐵 − �̂�𝑝𝐵𝐵|
𝑁𝑁

𝐵𝐵=1

 (6) 

sMAPE =
100
𝑁𝑁

�
|�̂�𝑝𝐵𝐵 − 𝑝𝑝𝐵𝐵|

(�̂�𝑝𝐵𝐵 − 𝑝𝑝𝐵𝐵) 2⁄
𝑁𝑁

𝐵𝐵=1
 (7) 

where 𝑝𝑝𝐵𝐵  and  �̂�𝑝𝐵𝐵  are the log10-scaled observed and estimated of each PFT for sample i, N is the number of observations, �̅�𝑝 is 295 

the log10-scaled mean of the observed values.  

 

Figure 6 Spatial block CV procedure. 
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2.4.2 Triple Collocation Analysis 

The Triple Collocation Analysis (TCA) method was also utilized for a global evaluation of the AIGD-PFT product. TCA is a 300 

technique that allows for the assessment and quantification of error characteristics in three independent data sources without 

relying on reference data pre-assumed to be “true”(Mccoll et al., 2014). This method has been widely adopted in the uncertainty 

evaluation of remote sensing products across various fields, including soil moisture (Kim et al., 2023), sea surface salinity 

(Hoareau et al., 2018), and sea surface temperature (Saleh and Al-Anzi, 2021).  

For error statistics based on TCA, we selected the fractional Mean Squared Error (fMSE) and the squared correlation coefficient. 305 

These metrics offer direct insights into data precision and accuracy. fMSE, in particular, is beneficial because it quantifies the 

relative error in a product, scaling from 0 to 1, where a lower value indicates higher precision. fMSE calculated as follows: 

𝑓𝑓𝑓𝑓𝑆𝑆𝑓𝑓𝐵𝐵 =
𝜎𝜎ɛ𝑖𝑖
2

𝜎𝜎𝐵𝐵2
=

𝜎𝜎ɛ𝑖𝑖
2

𝛽𝛽𝐵𝐵2𝜎𝜎Θ2 + 𝜎𝜎ɛ𝑖𝑖2
=

1
1 + 𝑆𝑆𝑁𝑁𝑅𝑅𝐵𝐵

 (8) 

With 𝑖𝑖 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽𝐵𝐵𝛩𝛩 + ɛ𝐵𝐵 , corresponds to three spatially and temporally collocated datasets [𝑋𝑋,𝑌𝑌,𝑍𝑍]. 𝜎𝜎ɛ𝑖𝑖
2  is the TCA-based error 

variance of an individual product. 𝛽𝛽𝐵𝐵 and 𝛼𝛼𝐵𝐵represents the scaling factor and systematic additive biases between the unknown 

true signal 𝛩𝛩 and the datasets 𝑖𝑖. 𝜎𝜎𝐵𝐵2 is the variance of the individual data, 𝜎𝜎Θ2  is the variance of the true signal, and SNR is the 310 

Signal-to-Noise Ratio. The fMSE value below 0.5 suggests that the true signal is a more significant component of the data than 

the estimation noise, indicating a precise product. Similarly, the squared correlation coefficient (𝑅𝑅𝐵𝐵2) is defined as: 

𝑅𝑅𝐵𝐵2 =
𝛽𝛽𝐵𝐵2𝜎𝜎Θ2

𝛽𝛽𝐵𝐵2𝜎𝜎Θ2 + 𝜎𝜎ɛ𝑖𝑖2
=

𝑆𝑆𝑁𝑁𝑅𝑅𝐵𝐵
1 + 𝑆𝑆𝑁𝑁𝑅𝑅𝐵𝐵

 (9) 

The foundational assumptions of TCA are important for its application (Kim et al., 2023): (1) a linear relationship exists 

between each dataset and the true signal, (2) the errors among the datasets are orthogonal, and (3) there's no correlation among 

the errors of different datasets. These principles ensure the robustness of the TCA method in providing an unbiased error and 315 

quality assessment of products. 

Several other PFT products were introduced and organized into triads for TCA analysis. First, SynSenPFT 

(https://doi.org/10.1594/PANGAEA.875873)  and NOBM-daily products were obtained, forming a daily product triplets.  Both 

SynSenPFT and NOBM-daily contain three PFTs - diatoms, cyanobacteria (prokaryotes), and coccolithophores (main 

contributing PFT to Haptophytes). TCA evaluations were conducted separately for these three PFTs. The TCA calculation 320 

process selected overlapping time periods of SynSenPFT, NOBM-daily, and the proposed AIGD-PFT products, from August 

1, 2002, to March 31, 2012, totaling 3,515 days. All three products were resampled to a 1° resolution. Similarly, we also 

obtained EOF-PFT data (https://doi.org/10.48670/moi-00281) and NOBM-monthly product to form a monthly triplets, again 
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conducting TCA assessments for diatoms, prokaryotes, and Haptophytes. Before evaluation, the AIGD-PFT products were 

merged monthly and resampled to 1° resolution along with EOF-PFT and NOBM-monthly. The temporal span of monthly 325 

TCA triplets products was from January 2003 to December 2017, totaling 180 months. NOBM's daily and monthly data are 

all obtained from Giovanni website (https://giovanni.gsfc.nasa.gov/). We additionally employed RECCAP2 ocean regions for 

regional TCA statistics, as shown in Figure 7. 

 

Figure 7 Map of RECCAP2-ocean regions (Regional Carbon Cycle Assessment and Processes, Canadell et al. (2011),  https://reccap2-330 
ocean.github.io/regions/), include Arctic (Ar), Subtropical Atlantic (StA), Equatorial Atlantic (EA) , South Atlantic (SA), Subtropical 
Pacific (StP) , Equatorial Pacific (EP) , South Pacific (SP), Indian Ocean (IO), Southern Ocean (SO). 

3 Result 

3.1 Model verification 

3.1.1 Three CV Methods 335 

To comprehensively assess the performance of the proposed STEE-DL model, three five-fold cross-validation (CV) methods 

were implemented: random, temporal-block, and spatial-block CV. The results are shown in Table 3. The random CV analysis 

revealed generally high prediction accuracy across all 8 PFTs, as visualized by the scatter plot in Figure 8. Diatoms exhibited 

highest performance, achieving R2 of 0.8. This confirms the STEE-DL model's strong capability in Diatom prediction. 

Conversely, Pelagophytes displayed the weakest performance, reflected by a R2 of just 0.5. Further examination through the 340 

probability distribution histograms and Cumulative Distribution Function (CDF) curves of predicted versus actual values 

revealed a good alignment, indicating the model's overall ability to accurately mimic observed data distributions. However, a 

notable limitation observed was the STEE-DL model's tendency towards overestimating lower values and underestimating 

higher values. This suggests a bias towards predicting smoother values, potentially resulting in less accurate predictions for 

extreme high or low actual values. 345 
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Table 3 Model performance metrics (R2, MAE, RMSE, and sMAPE, based on random, temporal-block, and spatial-block five-fold CV 
procedure) 

PFT Metrics 
Cross-validation approach 

random CV temporal-block spatial-block 

Diatoms 

R2 0.86 0.82 0.81 
MAE 0.26 0.29 0.30 

RMSE 0.33 0.37 0.40 
sMAPE 51.21 55.53 54.25 

Dinoflagellates 

R2 0.71 0.62 0.64 
MAE 0.26 0.30 0.30 

RMSE 0.33 0.39 0.40 
sMAPE 23.91 27.16 28.75 

Haptophytes 

R2 0.60 0.50 0.51 
MAE 0.21 0.23 0.23 

RMSE 0.26 0.30 0.31 
sMAPE 17.73 20.24 20.49 

Pelagophytes 

R2 0.50 0.39 0.42 
MAE 0.23 0.26 0.25 

RMSE 0.29 0.33 0.34 
sMAPE 11.45 12.83 12.55 

Cryptophytes 

R2 0.68 0.57 0.61 
MAE 0.29 0.34 0.33 

RMSE 0.36 0.43 0.43 
sMAPE 26.31 30.55 29.56 

Green algae 

R2 0.72 0.65 0.64 
MAE 0.22 0.25 0.25 

RMSE 0.27 0.31 0.33 
sMAPE 33.16 36.57 36.11 

Prokaryotes 

R2 0.68 0.59 0.59 
MAE 0.23 0.26 0.26 

RMSE 0.28 0.33 0.34 
sMAPE 13.82 15.76 15.78 

Prochlorococcus 

R2 0.55 0.19 0.32 
MAE 0.22 0.29 0.28 

RMSE 0.28 0.40 0.41 
sMAPE 14.71 18.37 17.06 
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Figure 8 Scatter diagrams, probability distribution and CDF (based on random five-fold CV procedure) of the predicted vs. measured Chl-350 
a concentrations of 8 PFTs. 

By comparing the model performance under three different CV strategies, we delved further into the STEE-DL model's 

generalization abilities in terms of time and space.  Figure 9 reveals that the STEE-DL model's accuracy decreases under 
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temporal and spatial cross-validation compared to standard random cross-validation. Notably, the predictive accuracy for 

diatoms was minimally affected by the different validation strategies, with R2 values remaining above 0.8 for all three methods. 355 

This demonstrates the model's robust generalization capability in both temporal and spatial aspects. Except for the 

Prochlorococcus, the decrease in accuracy was modest for other PFTs in spatial cross-validation (with about a 0.1 decrease in 

R2 and a 0.5 increase in MAE), suggesting that the STEE-DL model is relatively robust and can accurately estimate regions 

lacking in situ observational data. Compared to spatial validation, there was a slight decrease in accuracy for temporal cross-

validation, but it still maintained a good level. Except for a significant drop in temporal generalization for the Prochlorococcus, 360 

the temporal cross-validation accuracy for other PFTs remained favorable. 

 

Figure 9 Comparison of the results obtained using different CV methods, including random CV, spatial block CV, and temporal block CV.  
Blue indicates variations in the R2 under the three cross-validation methods, while red represents changes in MAE. 

During the training process of the STEE-DL model, two types of training data are utilized: “original match” training data and 365 

“reconstructed match” training data. The “original match” training data refers to data successfully matched directly from the 

in situ HPLC database and the OC-CCI original data; the “reconstructed match” training data refers to matched data obtained 

after completing the missing parts of OC-CCI data using the DCT-PLS technique. By comparing the model's prediction 

accuracy on these two types of data, we can assess not only the STEE-DL model's adaptability to changes in data completeness 

but also verify the effectiveness and accuracy of the DCT-PLS technique in reconstructing missing ocean color data. If the 370 

STEE-DL model's performance on the “reconstructed match” data is similar to its performance on the “original match” data, 

it not only indicates that the DCT-PLS method is effective and reasonable for reconstructing ocean color data, but also confirms 

that the STEE-DL model can provide reliable PFT predictions under varying data quality and completeness conditions. 

We calculated the R² between predicted and actual values for both original and reconstructed pixels using the three cross-

validation methods (Figure 10). Except for a significant difference in performance for Prochlorococcus, the accuracy of 375 
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reconstructed pixels was generally consistent with that of the original pixels, demonstrating good performance. This indicates 

that the reconstructed pixels did not degrade model performance, thus confirming both the high congruency of our data 

reconstruction method with actual conditions and the robustness of the STEE-DL model. 

 

Figure 10 Model performance comparison on original (blue dashed), reconstructed (orange dashed), and all pixels (orange solid) using (a) 380 
random CV, (b) temporal CV, and (c) spatial CV.   

3.1.2 Long-time Series Observations 

The effectiveness of the proposed STEE-DL model was validated using data from six independent long-term observation sites. 

The results, as shown in the Figure 11, display the correlation coefficients between predicted and actual values at these six 

sites. The STEE-DL model demonstrated varying degrees of predictive capability across different sites and PFTs. Firstly, the 385 

model achieved high prediction accuracy for key ecological types such as Diatoms, Dinoflagellates, and Green algae, with 

significant advantages at certain sites: for instance, at sites 4 and 5, the prediction correlation coefficients for Diatoms were as 

high as 0.90 and 0.88, respectively. Sites 5 exhibited high correlations for Dinoflagellates and Green algae predictions, reaching 

0.69 and 0.83, respectively, highlighting the model's ability to accurately capture the dynamics of these major ecological types. 

However, it is noteworthy that predictions for certain ecological types showed considerable fluctuations at specific sites. For 390 

example, site 3 had a prediction correlation coefficient of 0.90 for Pelagophytes but a relatively lower coefficient of 0.48 for 

Dinoflagellates. In terms of ecological types like Prokaryotes and Prochlorococcus, the model's predictions were generally 

more balanced, with site 2 showing a high correlation coefficient of 0.80 for Prochlorococcus. Overall, despite some 

fluctuations and differences, these results emphasize the STEE-DL model's capability to capture the temporal trends of 

different PFTs with relative accuracy. 395 
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Figure 11 STEE-DL model performance at six independent time series stations. Correlation coefficient (bar chart) and number of 
successfully matched pixels (blue dashed line). 

3.2 Gap-free PFT product and Uncertainties 

Following the validation of the STEE-DL model, it was retrained with the entirety of the data available, enabling the generation 400 

of a long time series and spatiotemporally continuous AIGD-PFT product for the period from 1998 to 2023. An example from 

this dataset, depicted in Figure 12 for March 10, 2020, demonstrates the results of the AIGD-PFT. Notably, while nearly half 

of the original OC-CCI data contained missing values (as shown in Figure 12a), our reconstructed dataset has achieved spatial 

completeness with good continuity. Within this dataset, the distribution patterns of the eight PFTs showed significant 

variability. For example, diatoms were primarily found in the oceanic regions of mid to high latitudes (30°–60°), thriving in 405 

nutrient-rich, cold waters, and areas affected by terrestrial runoff. Dinoflagellates, with a distribution pattern similar to diatoms, 

were mostly present in the nutrient-rich upwelling zones of high latitudes and nearshore areas, though their content was 

relatively lower. Prokaryotes were noted for maintaining higher concentrations in the nutrient-poor, sunlight-abundant waters 

of tropical and subtropical regions (0°–30°), with a significant decrease in biomass at higher latitudes, a characteristic closely 

resembling that of Prochlorococcus. Haptophytes and green algae were observed more frequently in the subtropical regions of 410 

the Pacific, Atlantic, and the Southern Ocean, reaching into mid to high latitudes. In contrast, Pelagophytes and Cryptophytes 

were found to be more prevalent in tropical and subtropical regions, showing lower concentrations in areas of lower latitude. 
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Figure 12 The global distribution (2020-03-10) of the Chl-a concentration for (a) original OC-CCI, (b) Diatoms, (c) Dinoflagellates, (d) 
Haptophytes, (e) Green Algae, (f) Prochlorococcus, (g) Prokaryotes, (h) Pelagophytes and (i) Cryptophytes. The grey areas represent lands. 415 

Figure 13 delineated the corresponding uncertainties. Overall, the uncertainty relatively low in the open ocean, suggesting that 

the model performs with a high degree of confidence. However, in coastal regions such as the East China Sea and the Amazon 

River estuary, uncertainties escalate. This increase likely results from the complex coastal processes and land-sea interactions 

prevalent in these areas, which can significantly influence the distribution and concentrations of PFTs, thereby challenging the 

model's predictive accuracy. Despite the coastal uncertainties, Figure 13 also reveals that AIGD-PFT maintains globally low 420 

uncertainty levels (below 0.1) for Diatoms, Dinoflagellates, Haptophytes, and Prokaryotes, highlighting the model's overall 

stability and reliability. Additionally, Prochlorococcus exhibits higher uncertainties in the Southern Ocean, while Cryptophytes 

show increased uncertainty in the equatorial Pacific. The reasons for this specific pattern require further investigation. 

 

https://doi.org/10.5194/essd-2024-122
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 

24 

 

 425 

Figure 13 The global distribution (2020-03-10) of the uncertainties for (a) Diatoms, (b) Dinoflagellates, (c) Haptophytes, (d) Green Algae, 
(e) Prochlorococcus, (f) Prokaryotes, (g) Pelagophytes and (h) Cryptophytes. 

Further, Figure 14 illustrated the AIGD-PFT's ability to capture dynamic coastal processes, such as estuary runoff and coastal 

circulations, through time-series images of Diatom distribution in the Amazon River estuary (Figure 11a) and the Gulf of 

Mexico (Figure 11b). The high Diatom concentrations near the Amazon River estuary, as shown in Figure 6a, correlated with 430 

the area's rich nutrient influx, also capturing the influence of the North Brazil Current (NBC) along the Brazilian coastline on 

Diatom dispersion. Figure 6b demonstrated the AIGD-PFT’s efficacy in depicting the characteristics dominated by circulation 

and associated eddies in the Gulf of Mexico. 
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Figure 14 Gap-free Diatoms in (a) Brazil Coast in January, 2014 and (b) Gulf of Mexico in July, 2020. 435 

3.3 TCA-based Assessment 

As depicted in Figure 15, we conducted a TCA on three daily-scaled PFT products: AIGD-PFT, SynSenPFT, and NOBM-

daily. Figure 15a presents the statistical analysis results of correlation coefficients (R) and mean square error (fMSE) on a 

global scale. Meanwhile, Figure 15b, Figure 15c, and Figure 15d detail the comparative assessment results across different 

marine regions. Globally, the AIGD-PFT product outperforms the other two, demonstrating the highest median correlation 440 

values with actual conditions for Diatoms (0.81), Haptophytes (0.80), and Prokaryotes (0.72), respectively. AIGD-PFT product 

also have the lowest fMSE values for all three PFTs, confirming its superiority with values of 0.35, 0.35, and 0.48, respectively. 

Comparatively, the SynSenPFT product underperforms relative to NOBM-daily in estimating Diatoms and Prokaryotes, yet 

excels in estimating Haptophytes. 

The regional analysis (Figure 15b, 15c, and 15d) reveals variation in R and fMSE values across regions and PFTs. AIGD-PFT 445 

consistently outperforms in most regions for Diatom estimation but shows a slight increase in fMSE in the equatorial Pacific, 

indicating a potential dip in estimation accuracy in this area. In contrast, SynSenPFT registers higher fMSE values for 

Haptophytes estimation, particularly in the subtropical and southern Pacific regions. NOBM-PFT, on the other hand, tends to 

have lower correlation in Haptophytes estimation across regions, with a notable deficiency near the equatorial Pacific. 

Additionally, SynSenPFT demonstrates higher global fMSE values for Prokaryotes compared to the other datasets, and NOBM-450 

PFT significantly underperforms in Prokaryotes estimation in the Southern Ocean.  
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Figure 15 TCA result of three daily product (AIGD-PFT, SynSenPFT, and NOBM-daily). 

Further extending our analysis to monthly products (AIGD-PFT, EOF-PFT, NOBM-monthly), detailed in Figure 16. We 

observed that AIGD-PFT and EOF-PFT exhibit closely matched performances for Diatoms, with median R values of 0.87 and 455 

0.86, and fMSE of 0.24 and 0.25, respectively. Their Cumulative Distribution Function (CDF) curves nearly align perfectly. 

Although global assessments for Diatoms are consistent, regional discrepancies exist. For instance, AIGD-PFT and EOF-PFT 

perform similarly in the subtropical Pacific and the Indian Ocean, but AIGD-PFT achieves superior correlation in the equatorial 

Pacific, Southern Ocean, and subtropical Atlantic. Conversely, EOF-PFT performs better in the South Pacific and equatorial 

Atlantic. For Haptophytes and Prokaryotes, in summary, both global and regional assessments suggest that AIGD-PFT is the 460 

most effective dataset, offering the lowest median fMSE and highest median R values. It stands out not only on a global scale 

but also in most regional evaluations, confirming its overall superiority among the comparative datasets. 
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Figure 16 TCA result of three monthly product (AIGD-PFT, EOF-PFT, and NOBM-monthly). 

4 Discussion 465 

Phytoplankton serves as the foundation of marine food chains. Comprehensive monitoring and inversion of the spatiotemporal 

distribution patterns of Photosynthetic Functional Types (PFTs) are crucial for a deeper understanding of marine ecosystem 

functions, predicting and mitigating climate change, and other aspects. Amidst increasing human reliance on marine resources, 

maintaining the sustainability of fisheries and ensuring the stability and health of marine, especially coastal, ecosystems have 

become particularly urgent. This necessitates higher quality and more detailed phytoplankton diversity data to assist decision-470 

making. However, existing satellite PFT products have significant shortcomings in inversion accuracy, spatiotemporal 

resolution, spatial coverage, and temporal span, limiting their application in climate and ocean management research. 
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Therefore, enhancing the quality and coverage of PFT data, with higher temporal resolution, is essential to reveal the immediate 

impacts of environmental changes on PFT distribution. Improved spatial coverage would enable more accurate descriptions of 

local changes in marine ecosystems, providing more precise data support for scientific management strategies. Additionally, 475 

extending the temporal span would enhance the accuracy of long-term trend analysis, thereby better understanding the 

evolution of marine ecosystems. 

Multi-source marine big data exhibits complementary advantages in terms of spatial integrity and accuracy. By merging data 

from various environmental factors, we can produce improved PFT products. In this study, we selected features including 

ocean color data, biogeochemistry, temperature and salinity, and spatiotemporal information. Among these, ocean color data, 480 

as a crucial predictor, was seamlessly reconstructed using a GPU-accelerated DCT-PLS algorithm, filling gaps caused by 

clouds, orbits, and other factors. Compared to traditional reconstruction algorithms, the DCT-PLS algorithm is faster and 

effectively addresses the issue of missing observational data, improving data utilization efficiency and monitoring continuity. 

Further, by leveraging the powerful nonlinear modelling capabilities of deep learning, we enhanced the accuracy of PFT 

inversion. We developed a spatiotemporal ecological integration model based on deep learning, adapting the method proposed 485 

by Zhang et al. (2023) for reconstructing global PFTs from 1998 to 2023. The model, composed of 100 ResNet network models, 

demonstrates strong nonlinear modelling capabilities and robustness. Using the Monte Carlo method, we utilized ensemble 

means and standard deviations as the optimal estimates and uncertainties, generating a temporally continuous global PFT 

product covering the entire period and the corresponding uncertainty fields. The standard deviation reflects the variability of 

model predictions, indicating the consistency between model predictions, i.e., the level of uncertainty. 490 

We also employed three cross-validation methods to comprehensively validate the accuracy. Standard five-fold cross-

validation focuses on the model's performance across the entire dataset, time-block five-fold cross-validation assesses the 

model's handling of time series, and space-block five-fold cross-validation concentrates on the model's ability to capture spatial 

distribution patterns. The results show that the STEE model generally exhibits good accuracy, demonstrating excellent 

performance and stability in addressing temporal and spatial generalization issues. Notably, the model's high adaptability to 495 

reconstructed pixels highlights its potential for handling incomplete or inaccurate data, further proving the effectiveness of 

integrating ecological parameters and machine learning techniques. By applying the STEE model to all data from 1998 to 2023, 

we achieved accurate and robust monitoring of global high-resolution, spatiotemporally continuous PFT products. The TCA 

algorithm was used to compare the AIGD-PFT product with other products, showing that our estimation model achieved 

competitive overall accuracy. 500 

Despite statistical and correlational analyses throughout the paper confirming the reasonable and reliable estimation of global 

PFTs by STEE-DL, some uncertainties and limitations still need to be addressed in further work. Firstly, the variance obtained 

through ensemble learning mainly focuses on model prediction variability, but this does not fully capture or explain the actual 
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product uncertainties. Real product uncertainties are broader, encompassing incompleteness of actual measurements, 

uncertainties in predictors, and limitations in understanding the system. Exploring more comprehensive and precise uncertainty 505 

estimation methods to further enhance model reliability and applicability is necessary. Additionally, the current STEE-DL 

model is solely based on statistical relationships, lacking simulation of biological processes and therefore unable to explain 

mechanisms behind phytoplankton abundance changes. Model interpretability will be a focus of our future work. Incorporating 

prior information constraints such as ecological principles, biogeographical distributions, and seasonal changes into the model, 

constructing physics-guided neural networks, or achieving a symbiotic integration of physical methods and artificial 510 

intelligence, will create models that can accurately predict phytoplankton abundance with high interpretability. 

The AIGD-PFT product demonstrates the potential application of artificial intelligence and marine big data in PFT modelling. 

This study focuses on the production process and product verification of AIGD-PFT, and a deeper analysis of PFT variations 

across different spatial and temporal dimensions will be the next research priority. As the product with the longest current time 

span (1998-2023) and continuous space-time coverage, AIGD-PFT has the potential to avoid false multi-year fluctuations and 515 

trend artifacts caused by data gaps. It helps in understanding the global and local trends of PFTs more broadly and is likely to 

reveal how climate change affects the composition of phytoplankton. This is crucial for predicting changes in marine 

ecosystems in the future, assessing the impact of climate change on the marine carbon cycle, and formulating corresponding 

conservation and management measures. 

5 Data Availability 520 

The AIGD-PFT (1998-2023, daily) dataset is stored in NetCDF format and can be accessed directly through: 

https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024a). A video demonstration is available at 

https://doi.org/10.5446/67366 (Zhang and Shen, 2024b). In addition, a subset of AIGD-PFT (January 2023) can be downloaded 

at:  https://doi.org/10.5281/zenodo.10910206 (Zhang and Shen, 2024c). 

6 Conclusions 525 

Constructing long time series models of global Photosynthetic Functional Types (PFTs) has always been a challenging task, 

with existing PFT products facing a variety of issues. To refine the monitoring of global phytoplankton groups, this study 

developed a deep learning-based spatiotemporal ecological integration model by combining multi-source marine data and 

artificial intelligence technology. This model can utilize a wide range of data sources, including ocean color, reanalysis, and 

in situ observations, to retrieve and generate the world's first daily updated, 4km resolution seamless PFT product, covering 530 

eight major phytoplankton groups. Cross-validation accuracy assessments show that our method can provide accurate and 

temporally consistent PFT predictions, demonstrating good performance in TCA evaluations across different products. As the 

first phytoplankton group product covering a 26-year span on a daily basis, the AIGD-PFT data aids in analyzing trends and 

interannual variations in phytoplankton time series, with the potential to reveal mechanisms by which phytoplankton 
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compositions respond to climate change across multiple time and spatial scales. Additionally, the AIGD-PFT product can 535 

facilitate the quantification of marine carbon fluxes and improve the accuracy of biogeochemical models. By deepening our 

understanding of these key components of marine ecosystems, we can more effectively address the challenges posed by climate 

change, ensuring the health of global ecosystems and the sustainable development of human society. 
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