
Detailed Responses  

Here, we provide detailed responses to the referee #1’ comments. The comments 
from the referees are shown in black. Our responses to the critics of the referees are 
supplied in normal font and blue. The appropriate correction in the manuscript has been 
repeated in red font in the response letter. 

Referee #1: 

General comments: 

The paper by Zhang et al. presents the first AI-driven product for Phytoplankton 
Function Types (PFT) for the global ocean (AIGD-PFT). The AIGD-PFT consists of a 
L4 gap-free product including 8 PFT at daily and 4-km resolution for the period 1998-
2023. AIGD-PFT is generated using an extended ensemble modelling approach (STEE-
DL), which is based on machine and deep learning technologies and includes 100 
models. Each model is built on statistical relationships between the physical 
environment and phytoplankton community and incorporates in situ HPLC data, ocean 
colour satellite observations whose missing data have been reconstructed throughout a 
cost-efficient DCT-PLS method, physical data from reanalysis and biogeochemical 
inputs from hindcast simulations. 

Overall, the study falls within the scope of ESDD, methods are robust, and the 
manuscript is well written and detailed. Moreover, I believe that the AIGD-PFT product 
will be a very useful tool for all scientists interested in detecting climate-induced 
changes in the phytoplankton community. Therefore, I recommend this paper for 
publication, although I feel that some clarifications should be addressed to strengthen 
the way it is presented. 

Response: 

We are very grateful for reviewing our manuscript and providing us with your 
recognition and valuable advices on our work. Your comments and suggestions will 
definitely help us improve the manuscript. 

We have revised the manuscript according to your specific comments and 
improved the quality. Please check the flowing item-by-item response, as well as the 
revised manuscript. Note that the appropriate corrections in the manuscript have been 
repeated in red font in the response letter. 



Specific comments: 

Authors present the AIGD-PFT as the product with the longest time span, covering 26 
years (i.e., 1998-2023). However, I double checked the data sets used to create it and 
found some discrepancies that need to be clarified. In particular, except for the ESA-
OC-CCI data set, which covers the whole period, I found that SST data from 
https://doi.org/10.48670/moi-00169 and biogeochemical variables from 
https://doi.org/10.48670/moi-00019 are available until October 2022 and December 
2022, respectively, while SSS from https://doi.org/10.48670/moi-00016 is available 
from January 2022 to June 2024. So, I am not sure how authors create a 26-year product 
using some data sets that do not cover the same period. 

Response: 

Thank you for your detailed review. We apologize for the errors and confusion in 
our manuscript. We would like to clarify the specifics of the data used in our research 
as follows: 

(1) Sea Surface Temperature (SST) Data: For SST, we utilized data from the 
ESA SST CCI and C3S reprocessed sea surface temperature analyses (DOI: 
https://doi.org/10.48670/moi-00169) which covers up to October 2022. For the period 
from November 2022 onwards, we employed the Global Ocean OSTIA Sea Surface 
Temperature and Sea Ice Analysis (DOI: https://doi.org/10.48670/moi-00165). 

(2) Sea Surface Salinity (SSS) Data: We utilized the dataset Global Ocean 
Physics Reanalysis for SSS data (DOI: https://doi.org/10.48670/moi-00021, Fig. #1-1). 
This dataset includes the subset cmems_mod_glo_phy_my_0.083deg_P1D-m covering 
data before June 2021, and the subset cmems_mod_glo_phy_myint_0.083deg_P1D-
mcovering from June 2021 onwards. 

 

Temporal extent: 1998-01~2021-06

Temporal extent: 2021-07~2023-12

https://doi.org/10.48670/moi-00169
https://doi.org/10.48670/moi-00165
https://doi.org/10.48670/moi-00021


Fig. #1-1 Global Ocean Physics Reanalysis for SSS data. (DOI: https://doi.org/10.48670/moi-00021)  

(3) Biogeochemical Variables: Regarding the biogeochemical variables, we used 
the Global Ocean Biogeochemistry Hindcast dataset (DOI: 
https://doi.org/10.48670/moi-00019, Fig. #1-2), which consists of two subsets. Until 
December 2022, we used the subset cmems_mod_glo_bgc_my_0.25deg_P1D-m, and 
from January 2023 onwards, we employed the subset 
cmems_mod_glo_bgc_myint_0.25deg_P1D-m. 

 

Fig. #1-2 Global Ocean Biogeochemistry Hindcast dataset. (DOI: https://doi.org/10.48670/moi-

00019)  

We have added a clear statement (see line 198-206 on page 11 of revised 
manuscript), as follows: 

“The SST data are sourced from the ESA SST CCI (Climate Change Initiative) 
and C3S (Copernicus Climate Change Service) global Sea Surface Temperature 
Reprocessed product (https://doi.org/10.48670/moi-00169, covering the period from 
January 1998 to October 2022) and Global Ocean OSTIA Sea Surface Temperature and 
Sea Ice Analysis (https://doi.org/10.48670/moi-00165, covering the period from 
November 2022 to December 2023). The SSS data are obtained from Global Ocean 
Physics Reanalysis (https://doi.org/10.48670/moi-00021). Biogeochemical data 
include nitrate concentration (NC), phosphate concentration (PC), silicate 
concentration (SC), and dissolved oxygen (DO). These variables are critical for 
understanding the nutrient dynamics in marine ecosystems, which are fundamental 
factors influencing phytoplankton growth and distribution. The data for these 
biogeochemical variables are sourced from the global biogeochemical multi-year 
hindcast products (https://doi.org/10.48670/moi-00019).” 

2) As reported in Sect. 2.2.3, all physical and biogeochemical data have been resampled 

Temporal extent: 1998-01~2022-12

Temporal extent: 2023-01~2023-12

https://doi.org/10.48670/moi-00019


to a 4 km resolution, and I believe that this was done to match the high spatial resolution 
of the ESA-OC-CCI product. However, any time data are resampled to a higher 
resolution, a greater but false accuracy is introduced due to the assumption that all new 
pixels have the same value when it may only be true for one pixel. This is why, as far 
as I know, the remapping direction is typically from high to low resolution. I would 
therefore ask authors to discuss this choice and, if possible, include a reference to 
previous works applying the same strategy. An interesting paper that may help the 
discussion can be found at 
https://journals.ametsoc.org/view/journals/apme/60/11/JAMC-D-20-0259.1.xml. 

Response: 

Thank you for pointing out this important concern.  

We agree with you. As demonstrated in the study by Rajulapati et al. (2021) that 
you recommended, resampling from a lower to a higher resolution indeed can alter the 
statistical properties of the data, thereby introducing potential inaccuracies. In our study, 
we opted to resample all physical and biogeochemical data to the same high 4 km 
resolution as the ESA-OC-CCI product primarily for consistency across datasets. We 
acknowledge that transforming data from a lower to a higher resolution often assumes 
that the newly generated pixel values are similar to the original ones, potentially 
introducing a so-called "false precision" that could lead to systematic biases. 

To minimize the impact of false precision, the Inverse Distance Weighting (IDW) 
method was employed for spatial interpolation. The IDW identifies all available pixels 
around a target pixel based on a search radius of 8 pixels, and the weights of the 
identified available pixels are then calculated by the reciprocal of the square of the 
distance between the target pixel and the available pixels. This method is more likely 
to provide balanced estimates and reduce the risk of introducing false precision. 

With advancements in technology, the availability of high-resolution ocean data is 
increasing, such as Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature 
data (1km resolution, DOI: https://doi.org/10.5067/GHGMR-4FJ04), which provides 
hope for fundamentally addressing these issues. However, at present, offering datasets 
with varying spatial and temporal resolutions seems impractical. The resampling 
approach we have taken is a compromise intended to maximize the use of existing data 
resources while minimizing the computational and data processing burden. How to 
reduce information loss during data processing will be an important focus for our future 

https://journals.ametsoc.org/view/journals/apme/60/11/JAMC-D-20-0259.1.xml
https://doi.org/10.5067/GHGMR-4FJ04


work. 
Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., and Pomeroy, J. W.: The Perils of Regridding: Examples Using a 

Global Precipitation Dataset, J Appl Meteorol Clim, 60, 1561-1573, https://doi.org/10.1175/Jamc-D-20-0259.1, 

2021. 

 

Follow your concerns, we have added a clear explanation about resampling (see 
line 206-212 on page 11 of revised manuscript): 

“All data undergo the following preprocessing steps: (1) resampling, where all 
data is resampled to a 4km resolution using the pysample library 
(https://doi.org/10.5281/zenodo.3372769). The Inverse Distance Weighting (IDW) 
method was employed for spatial interpolation. The IDW identifies all available pixels 
around a target pixel based on a search radius of 8 pixels, and the weights of the 
identified available pixels are then calculated by the reciprocal of the square of the 
distance between the target pixel and the available pixels. This resampling process may 
lead to missing pixels, which are then filled using the nearest neighbor method;” 

Additionally, the Discussion section has been expanded to include the following 
content (see line 523-528 on page 30-31 of revised manuscript): 

“Firstly, in this study, all physical and biogeochemical data were resampled to 
match the high resolution of 4 km, consistent with the OC-CCI product, primarily to 
ensure uniformity across datasets, and to maximize the use of existing data resources. 
However, resampling from a lower to a higher resolution can indeed alter the statistical 
properties of the data, potentially introducing inaccuracies. In future research, it is 
planned to incorporate more high-resolution data and to minimize the loss of 
information during the data processing stage.” 

 

3) Page 8, line 151: The sentence needs to be reworded because, as reported in the 
Product Guide (https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw), the 
latest ESA-OC-CCI product (v6.0) also merges observations from OLCI-3A and OLCI-
3B. 

Response: 

Thank you for your reminder. We rephrased the relevant text (see line 150 on page 
8 of revised manuscript) as follows: 

“This dataset is generated by band-shifting and bias-correcting SeaWiFS, MODIS, 



VIIRS, and Sentinel 3A and 3B OLCI data to match MERIS data, achieving a spatial 
resolution of 4 km” 

4) I found the method used by authors to fill OC data gaps well described in Sect. 2.2.2. 
However, I think that specifying the number of available data before and after the filling 
procedure would be interesting and emphasize the effort authors have made. This 
information could also be presented by replacing Figure 3 with two Hovmöller 
diagrams showing the number of observations before and after the filling as function of 
time and latitude. 

Response: 

Thank you for your suggestion.  

We have revised Figure 3 to include specific information on the changes in the 
quantity of available data before and after the filling process. Additionally, we have 
introduced two Hovmöller diagrams to visually represent these changes over time and 
latitude. 

 

Figure 3 (a) Percentage of valid pixels in the OC-CCI v6.0 daily dataset; Hovmöller diagrams of (b) 

original OC-CCI data and (c) data after gap filling using the DCT-PLS method; (d) Comparison of 

the number of valid pixels between reconstructed and original data. 

 

5) The choice to include the 8 PFTs as listed in the manuscript should be justified. I 
think that adding reference(s) should be enough to do that. 

Response: 



Thank you for your suggestion. We have added the relevant references (see line 
137 on page 7 of revised manuscript): 

“By utilizing an updated Diagnostic Pigment Analysis (DPA) methodology, along 
with newly adjusted weighting coefficients, we conducted DPA to ascertain in-situ PFT 
Chl-a concentrations. This analysis includes eight major PFTs: Diatoms, 
Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, Green Algae, Prokaryotes, 
and Prochlorococcus, following conventional practices in the field (Xi et al., 2020; Xi 
et al., 2021).” 

Xi, H. Y., Losa, S. N., Mangin, A., Garnesson, P., Bretagnon, M., Demaria, J., Soppa, M. A., 
D'Andon, O. H. F., and Bracher, A.: Global Chlorophyll a Concentrations of Phytoplankton 
Functional Types With Detailed Uncertainty Assessment Using Multisensor Ocean Color and Sea 
Surface Temperature Satellite Products, J Geophys Res-Oceans, 126, e2020JC017127, 
https://doi.org/10.1029/2020JC017127, 2021. 

Xi, H. Y., Losa, S. N., Mangin, A., Soppa, M. A., Garnesson, P., Demaria, J., Liu, Y. Y., D'Andon, 
O. H. F., and Bracher, A.: Global retrieval of phytoplankton functional types based on empirical 
orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI 
data, Remote Sens Environ, 240, 111704,  https://doi.org/10.1016/j.rse.2020.111704, 2020. 

 

6) The definition of ResNet models (i.e., residual neural networks) is given in Sect. 
2.3.1, but I think it should be provided earlier as they are mentioned before Sect. 2.3.1. 

Response: 

Thank you for your suggestion. We have adjusted the definition of ResNet models, 
moving it to the first instance where the concept appears (see line 98-101 on page 4 of 
revised manuscript): 

“Here, we propose a novel Spatial–Temporal–Ecological Ensemble model based 
on deep learning (STEE-DL), designed to produce a long time series PFT product. 
STEE-DL leverages an ensemble of 100 ResNet (residual neural networks) models, 
incorporating inputs from reconstructed missing ocean color data, physical reanalysis, 
biogeochemical, and spatiotemporal information.” 

 

7) I suggest authors to go through the manuscript and split some long sentences to make 
the text more readable. For example, the second sentence in the abstract, which starts 
on line 2 and ends on line 14, can be split into at least three sentences. 



Response: 

Thank you for your suggestion. We rephrased the relevant text (see line 8 on page 
7 of revised manuscript) as follows: 

“In this study, we integrated artificial intelligence (AI) technology with multi-
source marine big data to develop a Spatial–Temporal–Ecological Ensemble model 
based on Deep Learning (STEE-DL). This model generated the first AI-driven Global 
Daily gap-free 4 km PFTs product from 1998 to 2023 (AIGD-PFT). The AIGD-PFT 
significantly enhances the accuracy and spatiotemporal coverage of quantifying eight 
major PFTs: Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, 
Green Algae, Prokaryotes, and Prochlorococcus.” 

 

8) I found some errors in the reference list (e.g., Zhang and Shen, 2024a,b,c). Please, 
check them carefully against the references as cited in the abstract and main text. 

Response: 

 Thank you for the reminder. We have corrected it. 

 

To conclude, I would like to mention that, as stated by authors, model interpretability 
is beyond the scope of this manuscript and will be a focus of a future work. I look 
forward to that. So, keep up the good progress! 

Response: 

Thank you for your encouragement comments. We appreciate your support and 
are committed to making model interpretability a key focus of our future research. 

 

 
 
 
 
 
 
 
 
 



Referee #2: 

The manuscript and datasets submitted by Zhang et al. proposed a thorough 
scheme AIGD-PFT using deep learning techniques to retrieve seamlessly eight 
phytoplankton functional types (PFTs) chlorophyll a concentrations on the global scale. 
The AIGD-PFT is built based on an extensive global in situ pigment data set and 
CMEMS products including satellite ocean color, physical and biogeochemical data 
sets based on model simulations covering the year from 1998 to 2023. All CMEMS 
data were preprocessed to have the same spatial resolution. Before performing the deep 
learning ensemble for PFT retrievals, a gap-filling technique DCT-PLS was firstly 
applied to all the global CMEMS products to generate seamless data on the global scale. 
The STEE-DL model were trained and established based on ResNet models using 
Monte Carlo and bootstrapping methods to finally estimate the PFT chlorophyll a 
concentration with corresponding model uncertainty assessment. Products were 
intercompared with other PFT data based on different methods and model simulations 
and showed outstanding performance. 

This work demonstrated thoroughly the seamless PFT products on the global scale 
over the last 26 years and has shown high potential of machine learning/deep learning 
techniques in ocean color applications, and here especially for PFT information 
retrievals. This study delivered the first gap-free global PFT products. I find it 
significant and the study has put a big step forward for the phytoplankton group 
estimation using multiple products based on big-data deep learning methods. However, 
I have several comments and suggestions (listed below) that the authors may consider 
to hopefully help improve further the quality of this work. 

Response: 

We are grateful for reviewing our manuscript and providing us with your 
recognition and valuable advice on our work. Your comments and suggestions have 
helped us improve the manuscript. 

Please check the flowing item-by-item response, as well as the revised manuscript 
and supplementary materials. Note that the appropriate corrections in the manuscript 
have been repeated in red font in the response letter. 

 

Abstract: ‘PFT values’ here indicate PFT chlorophyll a concentration, correct? This 



should be clarified in the beginning and kept consistent through the whole ms. 

Response: 

Thank you for your reminder. Yes, 'PFT values' here indicate PFT chlorophyll a 
concentration. We have revised it as follows (see Lines 17 on page 1 of the revised 
manuscript) and ensured consistency throughout the manuscript: 

“The STEE-DL model utilizes an ensemble strategy with 100 ResNet models, 
applying Monte Carlo and bootstrapping methods to estimate optimal PFT chlorophyll 
a concentration and assess model uncertainty through ensemble means and standard 
deviations.” 

 

L23-25 Have the time series and impact of climate change been reflected here? 
Otherwise it is not proper to put such statement here but can be more on a perspective 
tone. 

Response: 

Thank you for your comment.  

In the paragraph (Lines 23-25) of the original manuscript, we aim to convey the 
potential applications of the AIGD-PFT product rather than present specific findings 
regarding the impacts of climate change. While the AIGD-PFT product provides 
comprehensive spatiotemporal data that aids in studying phytoplankton dynamics and 
their response to climate change, our current analysis does not directly quantify these 
impacts. 

Based on your suggestion, we have removed the relevant statements. 

 

Intro: L43: Put also reference for DPA, Vidussi et al. 2001 

Response: 

Thank you for your attention to detail. The reference has been correctly cited (see 
line 38-40 on page 2 of the revised manuscript). 

“the separation of phytoplankton diagnostic pigments through High-Performance 
Liquid Chromatography (HPLC) with the assistance of Diagnostic pigment analysis 
(DPA, Vidussi et al. 2001) or CHEMTAX (Mackey et al., 1996) algorithms remains the 



most cost-effective and quality-controlled method to date (Swan et al., 2016).” 

Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J. C.: Phytoplankton pigment distribution in relation 

to upper thermocline circulation in the eastern Mediterranean Sea during winter, J Geophys Res-Oceans, 106, 19939-

19956, https://doi.org/10.1029/1999jc000308, 2001. 

 

L54-55: I think there are a few more references in this regard, e.g.  El Hourany et al 
2024, Li et al 2023 deep learning for pigments 

Response: 

Thank you. These references have been correctly cited (see line 50 on page 2 of 
the revised manuscript): 

“…introducing more marine environmental covariates into ecological approaches 
(Zhang et al., 2023; Raitsos et al., 2008; El Hourany et al. 2024; Li et al. 2023) has 
become a current research focus…” 
 

El Hourany, R., Karlusich, J.P., Zinger, L., Loisel, H., Levy, M., & Bowler, C. (2024). Linking satellites to genes 

with machine learning to estimate phytoplankton community structure from space. Ocean Science, 20, 217-239 

Li, X.L., Yang, Y., Ishizaka, J., & Li, X.F. (2023). Global estimation of phytoplankton pigment concentrations from 

satellite data using a deep-learning-based model. Remote Sensing of Environment, 294 

 

Sect 2.2.1 Indicate how many data were finally collected from all these sources 

Response: 

Thank you for your suggestion.  

We have added Table S1 in the supplementary that details the number of data 
collected from each source: 
Table S1 Reference and website for the publicly available in situ HPLC phytoplankton pigment 
dataset utilized in this study. 

No. Coverage Period Number Website 

1 Global 

Aug 
2000 – 
Apr 
2018 

4481 https://doi.pangaea.de/10.1594/PANGAEA.938703 

2 
South 
Atlantic 
Ocean 

Nov 
2000 – 
Mar 

2173 https://doi.pangaea.de/10.1594/PANGAEA.848591 

https://doi.pangaea.de/10.1594/PANGAEA.938703
https://doi.pangaea.de/10.1594/PANGAEA.848591


2012 

3 Global 

Nov 
2004 – 
Sep 
2012 

146 https://doi.pangaea.de/10.1594/PANGAEA.937536 

4 Global 
Jul 2002 
– Feb 
2012 

484 https://doi.pangaea.de/10.1594/PANGAEA.930087 

5 Global 

Dec 
1988 – 
Aug 
2012 

15216 https://doi.pangaea.de/10.1594/PANGAEA.875879 

6 
Kuroshio 
region 

Oct 
2009 

206 https://doi.pangaea.de/10.1594/PANGAEA.819108 

7 
Peruvian 
upwelling 
zone 

Dec 
2012 

239 https://doi.pangaea.de/10.1594/PANGAEA.864786 

8 Fram Strait 
Jul 2017 
– Aug 
2017 

534 https://doi.pangaea.de/10.1594/PANGAEA.894860 

9 
Australian 
Waters 

Dec 
1997 – 
present 

6951 
https://portal.aodn.org.au/search?uuid=97b9fe73-
ee44-437f-b2ae-5b8613f81042 

10 
Eastern 
China seas 

2015-
2022 

405 - 

 

L161 DINEOF – I think the original studies should be cited here too. 

Response: 

Thank you for your reminder. The reference has been correctly cited (see line 161 
on page 9 of the revised manuscript). 

“Previous studies have developed various methods for reconstructing missing 
pixels in remote sensing data, such as DINEOF (Data Interpolation Empirical 
Orthogonal Function) (Alvera-Azcárate et al., 2011; Liu and Wang, 2022),” 

Alvera-Azcárate, A., Barth, A., Sirjacobs, D., Lenartz, F., and Beckers, J. M.: Data Interpolating Empirical 

Orthogonal Functions (DINEOF): a tool for geophysical data analyses, Mediterr Mar Sci, 12, 5-11, 2011. 

 

L 175 Normalisation: the dataset is standardized by dividing by the spatial mean, for 

https://doi.pangaea.de/10.1594/PANGAEA.937536
https://doi.pangaea.de/10.1594/PANGAEA.930087
https://doi.pangaea.de/10.1594/PANGAEA.875879
https://doi.pangaea.de/10.1594/PANGAEA.819108
https://doi.pangaea.de/10.1594/PANGAEA.864786
https://doi.pangaea.de/10.1594/PANGAEA.894860
https://portal.aodn.org.au/search?uuid=97b9fe73-ee44-437f-b2ae-5b8613f81042
https://portal.aodn.org.au/search?uuid=97b9fe73-ee44-437f-b2ae-5b8613f81042


each day or all 30 days together? 

Response: 

Thank you for your comments. In this study, the data normalization process is as 
follows: we first calculate the spatial mean for the entire dataset (from 1998 to 2023). 
Then, we standardize the data for each day by dividing it by this long-term mean. 

The relevant text has been revised for clarity (see line 175 on page 10 of the revised 
manuscript): 

“(2) Normalization: To minimize differences in dimensions and magnitudes of 
data across different spatial regions, the dataset is standardized by dividing by the 
spatial mean. The spatial mean is calculated from the entire dataset spanning from 1998 
to 2023.” 

 

L186-189: high missing values – not proper, high missing rates? 

Response: 

Apologies for the confusion.  

The term “high missing values” should indeed be more accurately stated as “high 
missing rates”.  We have corrected it (see line 190 on page 10 of the revised 
manuscript). 

“It is important to note that in areas of high latitude with extremely high missing 
rates” 

 

Seems that the authors have cut the data based on latitudes as there is a straight cutoff 
in the maps? 

Response: 

Thank you for your comments.  

We performed data cropping to minimize the common problems of missing data 
and low reliability at high latitudes. This method has been applied in previous research, 
and we have cited the relevant literature in our paper. 

 



L195: Remove the ‘.’ or use comma after Table 2. 

Response: 

Thank you for your reminder. We have removed it. 

 

L198-199: SSS – This CMEMS product contains data from 2019 to 2024 only. I 
suppose you used the physical analysis hindcast too. Should be both cited. 

Response: 

We apologize for the errors and confusion in our manuscript. We would like to 
clarify the specifics of the data used in our research as follows: 

(1) Sea Surface Temperature (SST) Data: For SST, we utilized data from the 
ESA SST CCI and C3S reprocessed sea surface temperature analyses (DOI: 
https://doi.org/10.48670/moi-00169) which covers up to October 2022. For the period 
from November 2022 onwards, we employed the Global Ocean OSTIA Sea Surface 
Temperature and Sea Ice Analysis (DOI: https://doi.org/10.48670/moi-00165). 

(2) Sea Surface Salinity (SSS) Data: We utilized the dataset Global Ocean 
Physics Reanalysis for SSS data (DOI: https://doi.org/10.48670/moi-00021, Fig. #1-1). 
This dataset includes the subset cmems_mod_glo_phy_my_0.083deg_P1D-m covering 
data before June 2021, and the subset cmems_mod_glo_phy_myint_0.083deg_P1D-
mcovering from June 2021 onwards. 

(3) Biogeochemical Variables: Regarding the biogeochemical variables, we used 
the Global Ocean Biogeochemistry Hindcast dataset (DOI: 
https://doi.org/10.48670/moi-00019, Fig. #1-2), which consists of two subsets. Until 
December 2022, we used the subset cmems_mod_glo_bgc_my_0.25deg_P1D-m, and 
from January 2023 onwards, we employed the subset 
cmems_mod_glo_bgc_myint_0.25deg_P1D-m. 

We have added a clear statement (see line 198-207 on page 11 of revised 
manuscript), as follows: 

“The SST data are sourced from the ESA SST CCI (Climate Change Initiative) 
and C3S (Copernicus Climate Change Service) global Sea Surface Temperature 
Reprocessed product (https://doi.org/10.48670/moi-00169, covering the period from 
January 1998 to October 2022) and Global Ocean OSTIA Sea Surface Temperature and 

https://doi.org/10.48670/moi-00169
https://doi.org/10.48670/moi-00165
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00019


Sea Ice Analysis (https://doi.org/10.48670/moi-00165, covering the period from 
November 2022 to December 2023). The SSS data are obtained from Global Ocean 
Physics Reanalysis (https://doi.org/10.48670/moi-00021). Biogeochemical data 
include nitrate concentration (NC), phosphate concentration (PC), silicate 
concentration (SC), and dissolved oxygen (DO). These variables are critical for 
understanding the nutrient dynamics in marine ecosystems, which are fundamental 
factors influencing phytoplankton growth and distribution. The data for these 
biogeochemical variables are sourced from the global biogeochemical multi-year 
hindcast products (https://doi.org/10.48670/moi-00019).” 

 

L205: Resampling from lower resolution to high res might cause irreal data filling 

Response: 

Thank you for pointing out this important concern.  

We agree with you. In our study, we opted to resample all physical and 
biogeochemical data to the same high 4 km resolution as the ESA-OC-CCI product 
primarily for consistency across datasets. We acknowledge that transforming data from 
a lower to a higher resolution often assumes that the newly generated pixel values are 
similar to the original ones, potentially introducing a so-called "false precision" that 
could lead to systematic biases. 

To minimize the impact of false precision, the Inverse Distance Weighting (IDW) 
method was employed for spatial interpolation. The IDW identifies all available pixels 
around a target pixel based on a search radius of 8 pixels, and the weights of the 
identified available pixels are then calculated by the reciprocal of the square of the 
distance between the target pixel and the available pixels. This method is more likely 
to provide balanced estimates and reduce the risk of introducing false precision. 

With advancements in technology, the availability of high-resolution ocean data is 
increasing, such as Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature 
data (1km resolution, DOI: https://doi.org/10.5067/GHGMR-4FJ04), which provides 
hope for fundamentally addressing these issues. However, at present, offering datasets 
with varying spatial and temporal resolutions seems impractical. The resampling 
approach we have taken is a compromise intended to maximize the use of existing data 
resources while minimizing the computational and data processing burden. How to 
reduce information loss during data processing will be an important focus for our future 

https://doi.org/10.5067/GHGMR-4FJ04


work. 

Follow your concerns, we have added a clear explanation about resampling (see 
line 207-212 on page 11 of revised manuscript): 

“All data undergo the following preprocessing steps: (1) resampling, where all 
data is resampled to a 4km resolution using the pysample library 
(https://doi.org/10.5281/zenodo.3372769). The Inverse Distance Weighting (IDW) 
method was employed for spatial interpolation. The IDW identifies all available pixels 
around a target pixel based on a search radius of 8 pixels, and the weights of the 
identified available pixels are then calculated by the reciprocal of the square of the 
distance between the target pixel and the available pixels. This resampling process may 
lead to missing pixels, which are then filled using the nearest neighbor method;” 

Additionally, the Discussion section has been expanded to include the following 
content (see line 523-528 on page 30-31 of revised manuscript): 

“Firstly, in this study, all physical and biogeochemical data were resampled to 
match the high resolution of 4 km, consistent with the OC-CCI product, primarily to 
ensure uniformity across datasets, and to maximize the use of existing data resources. 
However, resampling from a lower to a higher resolution can indeed alter the statistical 
properties of the data, potentially introducing inaccuracies. In future research, it is 
planned to incorporate more high-resolution data and to minimize the loss of 
information during the data processing stage.” 

Standardisation – is this step conflicting with the normalisation step 2 of the DCT-PLS? 

Response: 

Thank you for your comments. Although both standardization processes involve 
data scaling and are technically similar, they serve two distinct purposes and operate 
independently within the processing workflow, with no conflict between them: (1) The 
normalization in DCT-PLS primarily aims at data reconstruction to ensure the 
completeness and continuity of the dataset; (2) The normalization used in the predictive 
model is designed to scale various input variables to a uniform level, thus enhancing 
the stability and effectiveness of model training.  

 

L210-218: any basis/ references for these transformations? 



Response: 

Thank you for your comments. We have included relevant references in the revised 
manuscript to support the scientific basis for using these transformations (see line 216-
217 on page 11 of revised manuscript): 

“Incorporating spatial-temporal encoding into models is an effective strategy to 
enhance prediction accuracy, allowing for better capture of complex spatial-temporal 
interactions within the data (Yang et al., 2022; Wei et al., 2023).” 

Wei, J., Li, Z. Q., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T.: First close 

insight into global daily gapless 1 km PM pollution, variability, and health impact, Nat Commun, 14, 

https://doi.org/10.1038/s41467-023-43862-3, 2023. 

Yang, N. S., Shi, H. Z., Tang, H., and Yang, X.: Geographical and temporal encoding for improving the estimation 

of PM concentrations in China using end-to-end gradient boosting, Remote Sens Environ, 269, 

https://doi.org/10.1016/j.rse.2021.112828, 2022. 

 

L225 Is the STEE-DL model different from that in Zhang et al. 2023? Why did not the 
authors use that approach but developed the current STEE-DL instead? Any advantages? 

Response: 

Thank you for your comments. We responses to the above two questions one by 
one as follows: 

(1) Is the STEE-DL model different from that in Zhang et al. 2023? 

Yes, the proposed STEE-DL model in this study is different from the model 
described in Zhang et al. 2023. The previous STEE model from Zhang et al. (2023) 
combines three different machine learning methods (Gradient Boosting Machine, 1D-
CNN, and TabNet) using ridge regression for ensemble learning. In contrast, the STEE-
DL model is built around an ensemble of 100 ResNet models. 

(2) Why did not the authors use that approach but developed the current STEE-DL 
instead? Any advantages? 

In the previous research by Zhang et al. (2023), the focus was primarily on the 
generation of monthly PFT products, for which the STEE model was developed. The 
STEE model integrates three complex machine learning methods aimed at achieving 
high prediction accuracy. However, when the present study shifted from monthly to 
daily predictions, the computational demand increased significantly, turning the 



processing speed of the model into a critical bottleneck. Additionally, although the 
previous STEE model is capable of making high-precision predictions, it does not 
provide an uncertainty assessment for these predictions, which is a drawback in many 
ecological applications. 

These challenges prompted the development of the STEE-DL model. The 
proposed STEE-DL model represents a significant improvement and expansion over 
the STEE model described in Zhang et al. (2023). It features major enhancements in 
the following two areas: 

(1) Running Speed: The STEE-DL model is entirely based on a deep learning 
architecture and was specifically designed with computational efficiency in mind. By 
employing lightweight network designs and leveraging GPU acceleration, it 
significantly reduces the time required for computations. This enhancement is 
particularly important for our study's application scenario, which involves processing 
massive datasets to generate global, long-term daily PFT (Plant Functional Type) data 
series. 

(2) Uncertainty Assessment: The STEE-DL model incorporates a deep learning 
ensemble framework, which not only improves prediction accuracy but also enables the 
direct assessment of prediction uncertainty—a capability not present in the Zhang et al., 
2023 model. By calculating the ensemble mean and standard deviation of the model 
outputs, the STEE-DL provides a quantified range of uncertainty for each prediction. 
This feature is extremely valuable for scientific research and decision-making support. 

Zhang, Y., Shen, F., Sun, X. R., and Tan, K.: Marine big data-driven ensemble learning for estimating global 

phytoplankton group composition over two decades (1997-2020), Remote Sens Environ, 294, 113596, 

https://doi.org/10.1016/j.rse.2023.113596, 2023. 

To clarify and follow your concerns, we have added a statement (see lines 229-
236 on pages 12-13 of revised manuscript) as follows: 

“In the previous research by Zhang et al. (2023), the focus was primarily on the 
generation of monthly PFT products, for which the STEE (Spatial-Temporal-Ecological 
Ensemble) model was developed. The STEE model integrates three complex machine 
learning methods aimed at achieving high prediction accuracy. However, when the 
present study shifted from monthly to daily predictions, the computational demand 
increased significantly, turning the processing speed of the model into a critical 
bottleneck. Additionally, although the previous STEE model is capable of making high-



precision predictions, it does not provide an uncertainty assessment for these 
predictions, which is a drawback in many ecological applications. To address these 
challenges, the present study further developed the STEE-DL (Spatial–Temporal–
Ecological Ensemble model based on deep learning).” 

 

L232-233: reads strange. Rephrase the sentence - This setup decreases the 
dimensionality of features from 19 to 16, and then to 10, before a final fully connected 
layer maps these features to an output value for predicting the target variable. 

Response: 

We have rephrased the description to more clearly explain the model’s process 
from input to output and the changes in network dimensions (see line 245-247 on page 
13 of revised manuscript): 

“In this model, the input layer receives 19 feature variables, which are then 
reduced to 16 after the first residual block. Subsequently, the second residual block 
further reduces the number of features to 10. Finally, a fully connected layer maps these 
features to an output value for predicting the target variable.” 

L245- put example references for statistical methods 

Response: 

Thank you for your suggestion. The relevant literature has been correctly cited as 
follows (see line 255 on pages 13 of revised manuscript): 

“The variability among ensemble model outputs, quantified by the standard 
deviation (𝜎𝜎 ) of the 100 independent models, provides a measure of uncertainty in 
predictions (Chau et al., 2022).” 

Chau, T. T. T., Gehlen, M., and Chevallier, F.: A seamless ensemble-based reconstruction of surface ocean pCO and 

air-sea CO fluxes over the global coastal and open oceans, Biogeosciences, 19, 1087-1109, 

https://doi.org/10.5194/bg-19-1087-2022, 2022. 

 

L253: Does this show how the matchups between the in situ data and CMEMS products 
were extracted? I would indicate the number of the data points too - also later in the 
stats 



Response: 

Thank you for your comments. In this study, the matchup data were generated 
based on temporal and spatial proximities. Specifically, we used a temporal window of 
one day and a spatial window of four kilometers for the matchups. 

 We have included Figure S1 in the supplementary material to illustrate the 
number of data points (see line 272 on pages 14 of revised manuscript): 

“Figure S1 in the Supplementary material presents the histograms of the Chl-a 
concentrations of the eight PFTs at log-10 scale.” 

 

Figure S1 Log-scale histogram of Chl-a concentrations for eight PFTs and the number of in situ data 

points. 

 

L288-L292: put this together this paragraph with the above one, or using bullets to 
describe the three CV procedures more clearly. 

Response: 

Thank you for your constructive feedback. Based on your suggestion, we have 
combined the mentioned sections and provided a clear description of the three cross-
validation (CV) procedures. The revised section is as follows (see lines 293-309 on 
pages 15 of revised manuscript): 

“Cross validation (CV) is a commonly used method for analyzing model 
performance, allowing for a comprehensive assessment of a model's accuracy, stability, 
and generalization. This study implements three types of CV methods: random five-
fold CV, time-block five-fold CV, and spatial-block five-fold CV, to deeply evaluate the 



model’s multifaceted performance. Specifically, the methods are as follows: 

(1) Standard five-fold cross-validation: This method randomly divides all data into 
five equal-sized subsets. In each round of validation, one subset is selected as the test 
set, while the remaining four subsets serve as the training set, ensuring that each data 
point is used as test data. This method primarily evaluates the model’s performance and 
generalization on the entire dataset.  

(2) Time-block five-fold cross-validation: Data is divided into five consecutive 
time periods in chronological order. In each iteration, data from one time period is 
chosen as the test set, with the data from the remaining periods serving as the training 
set (as shown in Figure 5). This method takes into account the continuity and 
dependency of time series, helping to evaluate the model’s ability to capture time trends 
and seasonal variations.  

(3) Spatial-block five-fold cross-validation: Similar to time-block cross-validation, 
but data is divided based on spatial location. A hexagonal grid was created at 20° 
horizontal and vertical intervals, and regions without sampling points were removed for 
hexagonal regions. In each round, data from one geographical block is left out as the 
testset, while data from other blocks are used for training(as shown in Figure 6). This 
method prevents potential data leakage due to spatial autocorrelation and helps to assess 
the model's spatial prediction capability and its generalization across different 
geographical locations.” 

 

L386: not sure if it is appropriate to call them ecological types. 

Response: 

Thank you for your comments. we have replaced “ecological types” by “functional 
types” in the revised manuscript (see line 404 on pages 23 of revised manuscript), as 
follows: 

“Firstly, the model achieved high prediction accuracy for key functional types such 
as Diatoms, Dinoflagellates, and Green algae, with significant advantages at certain 
sites: for instance, at sites 4 and 5, the prediction correlation coefficients for Diatoms 
were as high as 0.90 and 0.88, respectively.” 

 



L402-404: High missing rates in high latitudes limit the application there. Can the 
authors indicate the range of the latitudes for these seamless PFT products? 

Response: 

Thank you for your comments. Our PFT products are primarily applicable within 
the range of 75°S to 75°N. We have added a clear statement to indicate this range (see 
line 190 on pages 10 of revised manuscript), as follows: 

“It is important to note that in areas of high latitude (above 75°) with extremely 
high missing values (exceeding 80%), these data will be directly removed (as 
demonstrated in the video example available at https://doi.org/10.5446/67366), because 
reconstruction under such conditions is impractical.” 

 

22) Fig 12: Though it is demonstrated in the video, maybe yearly mean maps here can 
better demonstrate the whole global ocean - a daily product cannot cover both polar 
regions. 

Response: 

Thank you for your suggestion. We have included yearly mean maps in the 
supplementary material of the revised manuscript (see line 432 on pages 25 of revised 
manuscript), as follows: 

“Additionally, the yearly mean maps for 2020 are provided in Figure S2 of the 
supplementary, showing the distribution pattern of global ocean PFT throughout the 
year.” 



 

Figure S2 The yearly mean global distribution of Chl-a concentration in 2020 for (a) Diatoms, (b) 

Dinoflagellates, (c) Haptophytes, (d) Pelagophytes, (e) Cryptophytes, (f) Green Algae, (g) 

Prokaryotes and (h) Prochlorococcus. The grey areas represent lands. 

Fig 13 and uncertainty: I see all data were log transformed, how were these uncertainties 
calculated in the original conc.? 

Response: 

We apologize for the mistake in Figure 13. Indeed, all computations of the 



uncertainties in this study were conducted on logarithmically transformed data, which 
follows conventional practice in the field of ocean color research.  

We have corrected Figure 13 and added a detailed explanation (see line 258 on 
pages 13 of revised manuscript), as follows: 

“It should be noted that all computations of the uncertainties in this study were 
conducted on logarithmically transformed data, which follows conventional practice in 
the field of ocean color research (Xi et al., 2021).” 

Xi, H. Y., Losa, S. N., Mangin, A., Garnesson, P., Bretagnon, M., Demaria, J., Soppa, M. A., D'Andon, O. H. F., and 

Bracher, A.: Global Chlorophyll a Concentrations of Phytoplankton Functional Types With Detailed Uncertainty 

Assessment Using Multisensor Ocean Color and Sea Surface Temperature Satellite Products, J Geophys Res-Oceans, 

126, e2020JC017127, https://doi.org/10.1029/2020JC017127, 2021. 

 

Figure 13 The global distribution (2020-03-10) of the uncertainties for (a) Diatoms, (b) 

Dinoflagellates, (c) Haptophytes, (d) Green Algae, (e) Prochlorococcus, (f) Prokaryotes, (g) 

Pelagophytes and (h) Cryptophytes. 

L504-505: From Fig 13 the model uncertainties one can see already large uncertainties 
for certain PFT in some regions, such as diatoms and cryptophytes with very low chla 
values (<0.01 mg m-3) in the gyres but with uncertainty larger than 0.1 mg m-3 and 
also for Prochlorococcus in high latitudes (almost not existing) with very high 
uncertainty. 



Response: 

Thank you for your comments. We apologize once again for the unit error in Figure 
13 and would like to clarify that the uncertainties were actually calculated on a 
logarithmic scale, not in mg m-3, as previously corrected. 

Regarding the high uncertainties in regions with low chlorophyll concentrations 
that you mentioned, there are two main reasons: (1) Insufficient training data. The lack 
of sufficient training data to represent these extreme conditions limits the model's 
ability to generalize the distribution of PFT in these areas, resulting in increased 
predictive uncertainty. (2) Intrinsic detection limits of the model. At very low 
chlorophyll concentrations, the sensitivity and accuracy of remote sensing technology 
can decrease, leading to a significant increase in relative uncertainty of predictions.  

In future research, we are committed to improving the model's performance under 
these extreme conditions by incorporating more diverse and representative data. 

 

L512 Discussion: How easy is it to apply the STEE-DL model to future datasets? I find 
it might be difficult to apply it as one has to prepare and preprocess all input data and 
fill the gaps using the DCT-PLS. That might be an obstacle to put it into operational. 
The authors should discuss on this point too. 

Response: 

Thank you for your reminder.  

The STEE-DL model requires a relatively complex data preprocessing, including 
data cleaning, normalization, and filling gaps using the DCT-PLS method. Although 
these steps increase the workload before deploying the model, they are essential to 
ensure the quality and integrity of the model input data.  

To reduce the complexity of these steps, we are developing more user-friendly data 
preprocessing tools, which will help users prepare data more easily. 

 

Are the authors planning to publish the codes of AIGD-PFT in the future, so that the 
others can test it with their own prepared data sets? 

Response: 



Thank you for your comment. We plan to open source STEE-DL model and related 
tools in the future. This will include the complete data processing pipeline, model 
training, and prediction codes. 
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