
 

 

Response to Referee #2 

We appreciate you for your comments concerning our manuscript entitled 

“Permafrost temperature baseline at 15 meters depth in the Qinghai-Tibet Plateau 

(2010–2019)” (MS No.: essd-2024-114). Those comments are valuable in helping us 

improve the quality of the manuscript. We have carefully addressed all the points raised 

and revised the manuscript accordingly. Changes made are highlighted in blue in the 

revised version. Line and figure numbers refer to the updated manuscript, and a detailed 

point-by-point response to your comments is provided below. 

General comments 

1. Zou et al. present a dataset that extrapolates ground temperatures over the QTP at 

the depth of zero annual amplitude (here determined to be at 15 m depth). They use 

a support vector regression to predict ground temperatures based on nine 

environmental predictors. They justify this approach by claiming that this method 

has been shown to be superior to other supervised learning algorithms such as 

random forest in one study (Ran et al., 2021). While the dataset is novel in the sense 

that no ground temperatures at 15 m depth have been predicted with this method in 

the QTP, I have a few concerns about the methods used to create the dataset and the 

fact that a similar dataset exists on a pan-Arctic scale for the entire permafrost 

region through the permafrost cci ground temperature dataset. Dismissing this 

dataset solely on the grounds of it not reaching as deep as the dataset presented in 

this study is not sufficient in my opinion. Especially considering the fact that the 

authors claim that the DZAA ranges from 10 to 15 m in central Asia and therefore 

would partially be covered by the permafrost cci product. Furthermore, the R2 value 

of the prediction is below 0.5, meaning that less than half of the variance in ground 

temperature can be explained by the model. This suggests that the model could 

potentially be improved or a different model should be tested to see if the 

predictions accuracy can be increased.  

Response: 

We fully agree with your comment that interpreting 15 m as DZAA is evidently 

illogical, which was also pointed out by the other reviewer. This misunderstanding may 

have resulted from unclear description in our writing, as outlined below: 

“The data of MAGT at 15 m in depth are used for spatialization, considering that 

DZAAs generally ranges from 10 to 15 m in the QTP (Zhao et al., 2010).” 

However, the objective of our study was not to generate a map of MAGTDZAA. To 

our knowledge, Ran et al. (2021, 2022) have already conducted comprehensive 

mapping of MAGTDZAA across various regions, including the QTP and the Northern 

Hemisphere, significant contributing to the spatial analysis of MAGTDZAA. In contrast, 

our study aims to provide a fixed-depth deeper ground temperature map to support the 

permafrost thickness estimation, thereby avoiding the spatial variability challenges 



 

 

inherent to DZAA.  

The selection of a depth of 15 m is based on two primary considerations. Firstly, it 

corresponds with the observed DZAA depth range of 10-15 m in the QTP, with the 

choice of the lower end of this range aimed at enhancing the stability of ground 

temperature readings, this particularly beneficial in areas with limited observational 

depth and data availability. Secondly, this depth corresponds with the extent of existing 

boreholes, thereby facilitating the integration of a larger dataset into the mapping 

process. 

Therefore, the MAGT15m presented in this study does not overlap with the CCI 

products. In terms of depth, the CCI data provides permafrost temperatures at a 

maximum depth of 10 m, while our study presents data at a depth of 15 m. Additionally, 

the CCI products cover the permafrost regions of the Northern Hemisphere north of 

30 °N, excluding the southernmost permafrost areas of the QTP. 

Although our MAGT15m map exhibits similar spatial pattern to existing MAGTDZAA 

maps, it is fundamentally distinguished by its theoretical framework within permafrost 

research. The primary difference lies in depth: DZAA varies spatially, whereas 

MAGT15m map represents a fixed depth. 

The adoption of MAGTDZAA as a reference and introduction for our MAGT15m 

mapping stems from the relative scarcity of research on deep permafrost temperatures. 

MAGTDZAA stands out as one of the few indexes with significant advancements in this 

area. In contrast, studies on deeper ground temperatures based on observed data are 

lacking, primarily due to the challenges of acquiring such observations. We have made 

substantial efforts to collect and compile the MAGT15m data for the period 2010-2019 

to support the completion of this study. 

To avoid any ambiguity, we have revised the sentence as follows (Line 58-61): 

“This study aims to establish a fixed-depth deep permafrost temperature baseline 

using data from the QTP for a decade (2010-2019) and a machine learning approach 

to address the limitations associated with the use of MAGTDZAA. Considering the 

availability of ground temperature records, the data of MAGT at 15 m in depth are used 

for spatialization.” 

The lower R2 of the MAGT15m predictions in comparison to MAGTDZAA may be 

attributed to the greater depth of temperature prediction, in the context of same method 

and similar environmental variables. Observations reveal that DZAA in the QTP 

predominantly occurs at depths shallower than 15 m, especially in areas close to the 

permafrost boundary, where DZAA are often even shallower. For instance, in the 

Xidatan area, located at the northern boundary of the QTP, the DZAA is recorded to be 

approximately 5 to 7 meters (Liu et al., 2021). DZAA represents the maximum depth 

that seasonal surface temperature fluctuations can reach, and the MAGTDZAA values are 

closely related to the climatic conditions of nearby years. Utilizing contemporary or 

recent air temperature or ground surface temperature data (such as FDD and TDD) in 

predicting spatial distributions generally yields higher R² values.  



 

 

In comparison, the MAGT15m, due to its greater depth, is more closely linked to long-

term climatic conditions, as the propagation of temperature exhibits a lag effect. In other 

words, the increased depth of the strata is likely the primary factor contributing to the 

lower R2 of the MAGT15m predictions. Nevertheless, a significant relationship exists 

between the predicted and observed MAGT15m values (p<0.001) in this study, and both 

bias and RMSE, along with their standard deviations, are slightly lower than those 

reported in previous studies. Considering these thermal propagation characteristics, we 

have extended the periods for FDD and TDD to 2003-2019 and have calibrated these 

metrics based on observed GST data to enhance the representativeness of surface 

temperature variables.  

I do not want to dismiss the work that the authors have put into this dataset, however 

I am unsure if it offers a significant contribution to the scientific community in its 

current state. I have a few suggestions on how to enhance the impactfulness of the paper, 

but I am unsure if it then still fits the scope of ESSD. 

1.The SVR method has been tested by Ran et al., 2021 and found to be sufficient for 

their purposes. However, their R2 was 0.71 as compared to 0.48 in this study. Further, 

they have tested various different supervised learning algorithms to conclude that SVR 

is the best model to use, which is lacking in the present manuscript. Hence, I would 

suggest the authors also perform a test for the other models in question that can be used 

for this task to get a better idea of their individual performance. 

Response: 

Before the initial submission of this manuscript, we had already tested the methods 

proposed by Ran et al. (2021). The results of these methods exhibited significant 

differences, both in terms of statistical metrics and spatial patterns. Table R1 presents 

the performance of four statistical models. 

In terms of R2, the random forest (RF) model performs the best with a 0.92 value, 

and the R2 of the generalized linear model (GLM) and generalized additive model 

(GAM) being comparable to that of the support vector regression (SVR) model (0.47-

0.48). For bias and RMSE, the RF model shows the lowest values; the RMSE of the 

SVR method is slightly lower than those of the GLM and GAM. From the performance 

(Table R1), the RF is undoubtedly the best model. However, examining the spatial 

pattern of the RF-predicted MAGT15m (Fig. R1.b), most values in the permafrost 

regions are concentrated between -3 °C and -0.5 °C, with a minimum of only -3.2 °C, 

which is not consistent with observational facts. In addition, in several seasonally 

frozen ground regions, such as the Qaidam Basin and southern endorheic zones, the 

predicted MAGT15m falls below 0°C, suggesting the presence of permafrost, which 

contradicts existing permafrost distribution maps. The results produced by the RF 

model may be attributed to overfitting to the observational dataset. Although parameter 

adjustments can enhance certain aspects of the spatial pattern of MAGT15m, the overall 

outcomes still fall short of expectations. 



 

 

For linear-type models such as GLM and GAM, their performance is comparable to 

that of SVR. However, the predicted MAGT15m values often exhibit a seesaw effect, 

where lower values are predicted in high mountain areas and higher values at the 

permafrost margins. This seesaw effect becomes more pronounced when fewer 

variables are selected following collinearity analysis. After comparing the model 

performances and spatial patterns of different methods, we ultimately selected the SVR 

model for predicting MAGT15m in this study. Moreover, SVR is a deterministic 

prediction method, ensuring consistent and reproducible results with a fixed set of 

sample points. This choice aims to establish a methodological foundation for future 

analyses involving the addition of more sample points and comparisons across different 

input datasets. 

Table R1: Predictive performance of mean annual ground temperature at 15 m in depth 

(MAGT15m) for four statistical models*. 

Performance SVR RF GLM GAM 

R2 0.48 (±0.14) 0.92 (±0.03) 0.47 (±0.13) 0.48 (±0.14) 

Bias (°C) -0.01 (±0.11) -0.00 (±0.05) 0.01 (±0.12) 0.01 (±0.13) 

RMSE (°C) 0.71 (±0.13) 0.32 (±0.05) 0.72 (±0.12) 0.72 (±0.12) 

*SVR, support vector regression; RF, random forest; GLM, generalized linear model; GAM, 

generalized additive model. R2, bias, and RMSE with 1 standard deviation. 

 

 Figure R1: Spatial distribution of predicted mean annual ground temperatures at the 15m depth 

(MAGT15m) across the Qinghai-Tibet Plateau during 2010-2019, based on support vector regression 

(a) and random forest (b) models. 



 

 

2. Currently, the dataset is presented as a stand-alone dataset to be published in ESSD. 

However, the overlap with the existing permafrost cci ground temperature dataset 

can not be denied. My suggestion may significantly change the scope of the paper, 

but I wonder if it would make more sense to use the borehole data used in this study 

to assess how useful the ground temperatures could be to inform e.g., boundary 

conditions of permafrost models in the QTP. As the authors describe, the boreholes 

are equipped with thermistor strings, which probably means that measurements are 

available at several depths. This would serve as a basis to compare the borehole data 

directly to the ground temperature dataset at 10 m depth. A comparison to the 

existing dataset could then be a better motivation to conduct your own supervised 

learning method to improve the accuracy. However, if the R2 is similar or higher 

when directly compared to the existing data (permafrost cci), there may not be a 

need for this since depth extrapolations of temperatures below the DZAA could be 

achieved with geothermal heat flux and simpler heat conduction models. 

Regardless of the scope of the final manuscript, I think a comparison to the existing 

datasets is crucial, considering the model in this study explains a relatively low 

amount of variance in the data. 

Response:  

As previously mentioned, the goal of this study is to map the fixed-depth deep ground 

temperature of permafrost on the QTP. Based on advancements in deep ground 

temperature research (MAGTDZAA) and the availability of existing dataset, we selected 

15 m as the mapping depth. This choice differs significantly from the CCI data, both in 

terms of depth and geographic coverage of the QTP. As an independent dataset, our 

results focus on the permafrost temperature at a depth of 15 m, which can serve as an 

upper boundary condition for future studies on deeper permafrost characteristics. 

Due to the inability to establish a strict correspondence in depth, it is not appropriate 

to directly compare the results of this study with the CCI ground temperature data. 

While comparing borehole data with the existing 10 m depth CCI dataset is a valuable 

suggestion, it is somewhat outside the scope of this manuscript's objectives. However, 

we will consider conducting a separate evaluation in future research. Thank you very 

much for your insightful comments. 

Modeling the regional thermal dynamics of permafrost beneath the DZAA remains 

to pose significant challenges for thermal conduction models. A major difficulty lies in 

assessing simulation uncertainty, which is one of the key motivations for adopting a 

fixed depth of 15 m for spatialization of ground temperature in this study. Our objective 

is to establish a baseline using observational data that can facilitate the comparison and 

evaluation of results produced by thermal conduction models. 

Specific comments: 

1. L56: What kind of datasets are you talking about here? Either delete the last part of 



 

 

the sentence or give an overview (for example in a table) about the datasets you are 

talking about here. 

Response:  

We have added specific dataset name “ground temperature”, and the revision is as 

follows (Line 56-57): 

“Over the past two decades, permafrost monitoring efforts on the QTP have 

established a substantial monitoring network and ground temperature datasets have 

been published (Zhao et al., 2021).” 

2. L75: Do I understand correctly that you implemented a procedure to fill temporal 

gaps in 78% of the data based on 22% of the observations? Please clarify. 

Response: 

Of the monitoring sites, 22% have maintained continuous observations over multiple 

years. Before establishing the relationships, we assessed an evaluation of these sites, 

which revealed that the MAGT15m range for this dataset was from -3.95 °C to 0.03 °C. 

This range effectively captures the essential spectrum of permafrost ground 

temperatures across the QTP and closely aligns with the observed thermal 

characteristics of permafrost in the region. 

3. L77-82: From what I understand, you used 51 sites to calculate a linear trend to fill 

the gaps in the remaining 180 sites by assuming they all experience the same 

warming trend. However, your Fig. 2a clearly shows that warming trends are very 

different for cold vs. warm permafrost. I think applying a single warming trend that 

is based on 22% of the data is very problematic here. If I misunderstood this part, 

please clarify. Otherwise I am doubtful of the reliability of this preprocessing step. 

Response: 

We sincerely appreciate your detailed review; it is crucial to clarify that our 

methodology does not rely on a single warming trend for filling missing values. As 

demonstrated in Fig. 2a, there are significant differences in the warming rates between 

cold and warm permafrost; in general, cold permafrost tends to exhibit a more rapid 

warming rate, whereas warm permafrost warms at a comparatively slower rate. Fig. 2b 

illustrates the established relationship between MAGT15m values, organized from low 

to high temperature, and their corresponding warming rates. Based on this relationship, 

we subsequently calculated the warming rates for various monitoring sites using the 

observed MAGT15m values. 



 

 

 

Figure 2: Warming rates of MAGT15m during 2010-2019 (a) and the relationship between 

warming rates and the average MAGT15m (b). 

4. Eq 1. An R2 of 0.45 does not create a lot of trust into your interpolation method (see 

comment above).  

Response: 

Although the R2 value of 0.45 is relatively modest, statistical analysis reveals that 

the relationship between predicted and observed MAGT15m values is highly significant 

(p<0.001). At present understanding, the magnitude of MAGT15m is the dominant factor 

controlling the warming rate of MAGT15m. However, in addition to MAGT15m, the 

warming rate may also be closely related to permafrost characteristics (e.g., soil texture 

and ground ice content) and active layer properties (e.g., soil moisture and active layer 

thickness), as well as the magnitude of climate change. At this stage of the research, 

given the lack of more detailed or accurate site-specific observations of permafrost and 

its environmental characteristics, we primarily attribute the variations in the warming 

rate to differences in MAGT15m. 

5. L107: I am not very familiar with SVR, but is a 90/10 a typical split for this method? 

I was expecting a 80/20 or even a 70/30 split since you do not have a very large 

dataset. Can you provide the model performances with different splits? And how 

high is the risk for overfitting with the 90/10 split? 

Response: 

In the SVR method, a 90/10 split ratio is commonly used, as referenced in Ran et al. 



 

 

(2021), and determined based on the sample size of this study. Considering your 

suggestion, we further evaluated model performance using 80/20 and 70/30 split ratios, 

as shown in Table R2. The R2 and RMSE across the three split ratios (90/10, 80/20, and 

70/30) ranged from 0.45 to 0.48 and 0.71 to 0.73, respectively, with a bias of -0.01 in 

all cases. These results indicate that there are no significant variances between the three 

split ratios when using the SVR method, thereby supporting the validity of the 90/10 

split. 

Table R2: Predictive performance of the support vector regression (SVR) model across various 

split ratios. 

Split ratio (%) R2 Bias (°C) RMSE (°C) 

90/10 0.48 (±0.14) -0.01 (±0.11) 0.71 (±0.13) 

80/20 0.46 (±0.09) -0.01 (±0.07) 0.72 (±0.08) 

70/30 0.45 (±0.07) -0.01 (±0.06) 0.73 (±0.07) 

6. L132: “high accuracy” is inappropriate here. How do you determine it is “high”? 

The indicators you are describing are not creating a lot of confidence. 

Response: 

The term “high accuracy” was inappropriate, as you suggested, we have removed the 

relevant description, as follows (Line 137-139): 

“The cross-validation of 1000 runs demonstrated that the mean values of the three 

statistical indicators, i.e., bias, root-mean-square error (RMSE), and coefficient of 

determination (R2) were -0.01 °C (±0.11 °C), 0.71 °C (±0.13 °C), and 0.48 (±0.14), 

respectively.” 

7. Fig. 3: Please add a label for the red line either in the figure or in the caption. 

Response: 

We have added the label for the red line in Fig.3 as per your suggestion. 



 

 

 

Figure 3: Relationship between predicted and observed mean annual ground temperatures at 15 

m depth (MAGT15m) in permafrost regions on the Qinghai-Tibet Plateau during 2010-2019. 

8. Fig. 4: Maybe I have missed it in the text with all the numbers, but did you say that 

you are masking all values > 0°C? It looks like the final dataset only shows values 

< 0°C. Is that because you do not have confidence in non-frozen conditions? Are 

you assuming that there is no permafrost in regions with T > 0°C? Please clarify 

this throughout your results section.   

Response: 

In Fig. 4 of the original manuscript, we have presented only values > 0°C to highlight 

the MAGT15m in the permafrost region of the QTP, which is the most significant result 

of this study. To show the prediction results for areas with positive temperatures, we 

included the complete set of predictions for the entire QTP in Fig. R2. 

 



 

 

Figure R2: Spatial distribution of predicted mean annual ground temperatures at the 15m depth 

across the Qinghai-Tibet Plateau. 

Positive MAGT15m does not necessarily means absence of permafrost because of 

extensive and increasing presence of supra-permafrost subaerial talik, especially to the 

east of the QTEC from Golmud-Lhasa and along the engineering lines. Thus, a criterion 

of subzero MAGT15m for judging the occurrence of permafrost may underestimate the 

permafrost extent. We have considered keeping some positive MAGT15m values to 

ensure coverage of most permafrost exist regions. However, due to the high variability 

in geothermal gradients of the permafrost base, determining an appropriate positive 

MAGT threshold proved challenging. After carefully reviewing both your comments 

and those of the other reviewer, we have followed the conventions of previous studies 

and retained regions with MAGT15m < 0.5 °C in the revised manuscript, to encompass 

areas where talik is more likely to be widespread. To ensure the reliability of permafrost 

temperature analysis, we did not reanalyze data with MAGT15m > 0 °C in the Result 

section of the revised manuscript. As an alternative, we have included a discussion of 

regions with MAGT15m > 0 °C, as outlined below (Line 255-257): 

 “Additionally, permafrost may still persist in areas where MAGT15m exceeds 0 °C. 

Statistical analysis reveals that the areas with MAGT15m within the ranges of 0-0.1 °C 

and 0-0.2 °C cover approximately 0.05×106 km2 and 0.10×106 km2, respectively.” 

 

 Figure 4: Spatial distribution of predicted mean annual ground temperatures at the 15m depth 

(MAGT15m) across the Qinghai-Tibet Plateau during 2010-2019. 

9. Section 3.2.2: This section is very difficult to read. Would it be possible to put all 

those numbers into a table, refer to it in the text and focus on the conceptual 

characteristics only?  

Response: 

In the classification system based on MAGTDZAA, permafrost can be divided into 



 

 

three types: cold (≤ -3.0 °C), cool (-3 to -1.5 °C), and warm (> -1.5 °C) permafrost (Ran 

et al., 2022). However, there are significant differences in both depths and values 

between MAGT15m and MAGTDZAA, and using this classification system in the Results 

section may lead to confusion. Although we have not placed all the relevant numbers 

into a single table then directly referenced their conceptual characteristics, we have 

made efforts to simplify the numerical descriptions to enhance the readability of the 

text of the Section 3.2.2. 

10. Fig 7.: What are the units in the figure legend? I assume °C? 

Response:  

We have added the legend name and unit (°C) in the revised manuscript. 

 

Figure 7: Distribution (a) and percentage of area in three intervals (b) of MAGT at 15 m depth 

(MAGT15m) in 12 basins of the Qinghai-Tibet Plateau during 2010-2019. 

11. L259-261: This sentence is very confusing and I am not able to follow it. Please see 

Biskaborn et al., 2019, which you are already citing, for an example on how to 

describe the difference between warming of “cold” and “warm” permafrost and how 

it relates to latent heat consumption.Might be worth citing Gruber 2012 (cited later 

in paper) in your introduction where you discuss TP permafrost maps.  

Response:  

Considering the incomplete conclusions, regional misalignment, and the style of the 

ESSD journal (also recommended by the other reviewer), we have decided to remove 

this section of text. This revision aims to maintain a clear focus on the QTP region and 

the data structure and functionality presented in the manuscript. 
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