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Abstract 13 

Due to their persistent widespread severe winds, derechos pose significant threats to human safety 14 

and property, and they are as hazardous and fatal as many tornadoes and hurricanes. Yet, automated 15 

detection of derechos remains challenging due to the absence of spatiotemporally continuous observations 16 

and the complex criteria employed to define the phenomenon. This study proposes a physically based 17 

definition of derechos that contains the key features of derechos described in the literature and allows 18 

their automated objective identification using either observations or model simulations. The automated 19 

detection is composed of three algorithms: the Flexible Object Tracker algorithm to track mesoscale 20 

convective systems (MCSs), a semantic segmentation convolutional neural network to identify bow 21 

echoes, and a comprehensive algorithm to classify MCSs as derechos or non-derecho events. Using the 22 

new approach, we develop a novel high-resolution (4 km and hourly) observational dataset of derechos 23 

over the United States east of the Rocky Mountains from 2004 to 2021. The dataset is analyzed to 24 

document the derecho climatology in the United States. Many more derechos (increased by ~50-400%) 25 

are identified in the dataset (~31 events per year) than in previous estimations (~6-21 events per year), but 26 

the spatial distribution and seasonal variation patterns resemble earlier studies with a peak occurrence in 27 

the Great Plains and Midwest during the warm season. In addition, around 20% of damaging gust (³ 28 

25.93 m s-1) reports are produced by derechos during the dataset period over the United States east of the 29 

Rocky Mountains. The dataset is available at https://doi.org/10.5281/zenodo.10884046 (Li et al., 2024). 30 
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1 Introduction 32 

A derecho is qualitatively defined as a widespread, long-lived straight-line windstorm associated 33 

with a fast-moving mesoscale convective system (MCS). Figure 1 shows two of the most destructive 34 

derechos in the United States: the June 2012 North American derecho and the August 2020 Midwest 35 

Derecho. Both events lasted for over 10 hours, with apparent bow echoes and extensive damaging wind 36 

gusts (³ 25.93 m s-1). Due to the persistent widespread damaging gusts, derechos can severely damage 37 

property and threaten human lives, as exemplified by the extensive power outages and more than ten 38 

fatalities caused by the two derechos. Ashley and Mote (2005) demonstrated that derechos could be as 39 

hazardous as and were comparable in magnitude to most hurricanes and tornadoes in the United States 40 

between 1986 and 2003. 41 

 42 
Figure 1. Spatial evolutions of the (a, b) composite (column-maximum) radar reflectivity (ZHmax) signatures 43 
and (c, d) surface gust speeds (colored dots) of two derechos. The first column is for the June 2012 North 44 
American derecho, which occurred on 29-30 June 2012, and the right column is for the August 2020 Midwest 45 
derecho, which occurred on 10-11 August 2020. Due to spatiotemporal overlapping, multiple ZHmax and gust 46 
speeds may exist for a given grid cell or weather station, in which case only the corresponding maximums are 47 
shown in the figure. The timings of some bow echo occurrences are labeled in (a) and (b). In (a), “20Z”, 48 
“21Z”, and “22Z” refer to 20:00, 21:00, and 22:00 UTC on 29 June 2012. In (b), “17Z”, “18Z”, and “19Z” 49 
refer to 17:00, 18:00, and 19:00 UTC on 10 August 2020. In (c) and (d), the misty rose shading corresponds to 50 
areas with ZHmax ³ 40 dBZ, and the dark gray shading refers to derecho coverage with ZHmax < 40 dBZ. The dot 51 
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sizes in (c) and (d) are proportional to the gust speed magnitudes. Notably, gust speed in (c) and (d) is based on 52 
the hourly maximum gust speed (gusthourly_max), which is the largest gust speed within one hour if multiple gust 53 
speed measurements are available. 54 

A reliable derecho dataset is foundational for understanding the underlying physical mechanism of 55 

derecho initiation and development and their socioeconomic impacts. Johns and Hirt (1987) developed 56 

the first derecho climatology in the warm seasons of 1980-1983 in the United States by quantitatively 57 

defining a derecho as a family of downburst clusters produced by an extratropical MCS. Specifically, they 58 

required a derecho to satisfy the following six criteria. 1) There must be a concentrated area of reports 59 

with wind damage or convective gusts > 25.7 m s-1, with a major axis length of at least 400 km. 2) These 60 

reports must show a pattern of chronological progression, either as a singular swath or a series of swaths. 61 

3) The concentrated area must have at least three reports of either F1 damage (32.7-50.3 m s-1) (Fujita, 62 

1971) or convective gust of at least 33.4 m s-1 separated by ³ 64 km. 4) At most 3 hours can elapse 63 

between successive reports of wind damage or gust > 25.7 m s-1. 5) The associated convective system 64 

must have temporal and spatial continuity in surface pressure and wind fields. 6) If multiple swaths of 65 

wind damage or gust reports > 25.7 m s-1 exist, they must be from the same MCS event. Since then, 66 

several other studies have developed derecho climatologies during other periods using slightly different 67 

criteria (Bentley and Mote, 1998; Evans and Doswell, 2001; Bentley and Sparks, 2003; Coniglio and 68 

Stensrud, 2004; Guastini and Bosart, 2016). For example, Bentley and Mote (1998) removed the third 69 

requirement and reduced the elapsed time in the fourth condition from no more than 3 hours to no more 70 

than 2 hours in their derecho climatology from 1986 to 1996. In Coniglio and Stensrud (2004), the 71 

elapsed time was further changed to no more than 2.5 hours, and the gust reports of at least 33 m s-1 were 72 

used to separate derechos of different intensities. 73 

Although the aforementioned derecho datasets were generated using different criteria and during 74 

different periods (Johns and Hirt, 1987; Bentley and Mote, 1998; Evans and Doswell, 2001; Bentley and 75 

Sparks, 2003; Coniglio and Stensrud, 2004; Guastini and Bosart, 2016), they showed many similar 76 

derecho climatological characteristics in the United States. For example, derechos occur more frequently 77 
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in the warm than cold seasons; the Great Plains, Midwest, and Ohio Valley are regions most favorable for 78 

derecho development, and few derechos occur in the eastern and western coastal areas. Considering the 79 

inconsistent thresholds used in the above studies and the lack of physical mechanisms in their derecho 80 

definitions, Corfidi et al. (2016) proposed a stricter and more physically based derecho definition, which 81 

required the existence of sustained bow echoes with mesoscale vortices or rear-inflow jets and a nearly 82 

continuous wind damage swath of at least 100 km wide along most of its extent and 650 km long. In 83 

addition, the wind damage must occur after the convective system was organized into a cold-pool-driven 84 

forward-propagating MCS. Most derechos satisfying this definition would be classified as “progressive” 85 

but not “serial.” A serial derecho typically originates in strongly forced environments and develops from a 86 

mature squall line with multiple embedded bow echoes. In contrast, progressive derechos generally 87 

originate from small convective clusters that grow upscale into large organized forward-propagating 88 

MCSs in synoptic environments with weak forcing (Squitieri et al., 2023). 89 

It is difficult to develop a derecho climatology using the definition proposed by Corfidi et al. (2016) 90 

with current operational measurements, as it involves the identification of bow echoes, rear-inflow jets, 91 

and cold pools. However, rear-inflow jets and cold pools are generally associated with bow echoes 92 

(Weisman, 1993; Adams-Selin and Johnson, 2010). Once long-lived bow echoes are found in an MCS 93 

event, we can expect the simultaneous existence of rear-inflow jets and cold pools. Nevertheless, 94 

identifying bow echoes, a feature typically identified from radar observations, is still challenging for large 95 

volumes of data, such as the 30+ year National Oceanic and Atmospheric Administration (NOAA) Next 96 

Generation Weather Radar (NEXRAD) archive. The manual examination is time-consuming and sensitive 97 

to subjective biases. This study applies a semantic segmentation convolutional neural network (CNN) to 98 

detect bow echoes automatically from two-dimensional composite (column-maximum) reflectivity (ZHmax) 99 

data in the United States, which are then combined with an MCS tracking dataset and gust speed 100 

measurements from surface meteorological stations to identify derechos using criteria adjusted from 101 

Corfidi et al. (2016). After manual examination and validation, we produce a high-resolution (4 km and 102 
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hourly) observational derecho dataset in the United States east of the Rocky Mountains from 2004 to 103 

2021. As the first derecho climatology that utilizes a machine learning technique following physically 104 

based criteria and covers the recent decades, the dataset provides a reference for future derecho studies 105 

and can be used to investigate the underlying mechanisms for derecho initiation and development, the 106 

climatological impacts of derechos on hazardous weather, and the damage of derechos to infrastructure 107 

and human property. 108 

The remainder of the paper is organized as follows. Section 2 introduces the MCS dataset and gust 109 

speed measurements used to generate the derecho dataset. Section 3 describes the machine learning (i.e., 110 

semantic segmentation CNN) methodology to detect bow echoes, including sampling, training, and 111 

evaluation. Section 4 explains our derecho identification criteria in detail. Section 5 evaluates our derecho 112 

dataset against the observational data from the NOAA Storm Prediction Center (SPC) in 2004 and 2005. 113 

Section 6 analyzes the derecho climatological characteristics. Section 7 shows how to access our derecho 114 

dataset, and the study is summarized in Section 8. 115 

2 Source datasets 116 

2.1 MCS dataset 117 

Since previous MCS datasets only cover the period from 2004 to 2017 (Li et al., 2021; Feng et al., 118 

2019), we use an updated version of the Python FLEXible Object TRacKeR (PyFLEXTRKR) software 119 

(Feng et al., 2023), which exploits collocated radar signatures, brightness temperature, and precipitation 120 

to identify robust MCS events (Feng et al., 2019), to produce an updated MCS dataset in the United States 121 

east of the Rocky Mountains from 2004 to 2021. Several source datasets are used in the generation of the 122 

MCS dataset, including the National Centers for Environmental Prediction (NCEP)/the Climate 123 

Prediction Center (CPP) L3 4 km Global Merged IR V1 brightness temperature dataset (Janowiak et al., 124 

2017), the three-dimensional Gridded NEXRAD Radar (GridRad) dataset (Bowman and Homeyer, 2017), 125 
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the NCEP Stage IV precipitation dataset (CDIACS/EOL/NCAR/UCAR and CPC/NCEP/NWS/NOAA, 126 

2000), and hourly melting level heights derived from ERA5 (European Centre for Medium-Range 127 

Weather Forecasts (ECMWF) Reanalysis v5) (Hersbach et al., 2023). The MCS definition criteria are 128 

almost the same as those in Feng et al. (2019), such as cold cloud shield (CCS) area > 60,000 km2, 129 

precipitation feature (PF, which is a continuous convective or stratiform area with surface rain rate > 2 130 

mm h-1) major axis length > 100 km, the existence of 45-dBZ convective echoes, etc., except that the 131 

duration requirement is lowered to include those convective systems lasting for just 6 hours. This 132 

adjustment allows us to capture slightly shorter-lived MCSs that produce intense wind gusts but are 133 

missed in the previous MCS datasets. Convective and stratiform radar echo classification in 134 

PyFLEXTRKR follows the Storm Labeling in 3D (SL3D) algorithm (Starzec et al., 2017), which uses 135 

horizontal texture and vertical structure of radar reflectivity from the GridRad product. Notably, the 136 

GridRad data are available each month from 2004 to 2017 but only between April and August from 2018 137 

to 2021. Since most derechos occur in the warm season (Ashley and Mote, 2005; Coniglio and Stensrud, 138 

2004), missing the cold months between 2018 and 2021 does not affect our derecho climatological 139 

analyses in Section 6. For brevity, we do not mention the missing cold months between 2018 and 2021 in 140 

the following sections unless stated otherwise. 141 

2.2 Surface gust speed observations 142 

Surface gust speed measurements between 2004 and 2021 are from the Integrated Surface Database 143 

(ISD) (NOAA/NCEI, 2001), developed by the NOAA National Centers for Environmental Information 144 

(NCEI) in collaboration with several other institutions. ISD compiles global hourly and synoptic surface 145 

observations from numerous sources (e.g., the Automated Surface Observing System and the Automated 146 

Weather Observing System) into a single common format and data model. Besides internal quality control 147 

procedures conducted by the source datasets, ISD applies additional quality control algorithms to process 148 

each observation through a series of validity checks, extreme value checks, and internal and external 149 
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continuity checks (Smith et al., 2011). This study uses measurements passing all quality control checks 150 

(NOAA/NCEI, 2018). Notably, there may be multiple measurements at different times within one hour 151 

for some stations. To keep the sampling consistency across different datasets used in the derecho 152 

identification, we calculate gusthourly_max, which is the largest gust speed of all available measurements 153 

within one hour, for each observational site, unless stated otherwise. A total of 4,260 observational sites 154 

provide gust speed measurements between 2004 and 2021 in the study domain, of which 3,954 are over 155 

land, and the rest are over the ocean or lakes (Figure S1). We have excluded one observational site (ISD 156 

station ID: 726130-14755) in the northeastern United States, which has an unrealistic number of 157 

damaging gust measurements (more than 1,000 hours), inconsistent with the surrounding sites. We note 158 

that although we only use measurements passing all the available quality control checks, spatial quality 159 

control is missing in the ISD (Smith et al., 2011). Figure S2a shows that some sites in the eastern United 160 

States have apparently more damaging gust occurrences than their surrounding sites, but the occurrence 161 

frequencies are less than those stations around the Rocky Mountains. We do not have enough evidence to 162 

exclude them from the study. However, the quality of the gust speed measurements will undoubtedly be a 163 

source of uncertainty for our derecho dataset. In addition, only 420 sites have continuous gust 164 

measurements from 2004 to 2021, while the rest have gust measurements only during part of the study 165 

period. The availability of observational sites is another source of uncertainty when identifying derechos. 166 

3 Machine learning identification of bow echoes 167 

A bow echo is a bow-shaped pattern on a radar image, but its vague definition makes it hard to 168 

identify them extensively and efficiently using traditional methods. Instead, we train a semantic 169 

segmentation CNN to identify bow echoes automatically from two-dimensional ZHmax images by 170 

performing pixel-level labeling of the bow echo extent. Compared to the manual examination of radar 171 

images, machine learning can save a tremendous amount of time and eliminate subjective bias. 172 
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3.1 Bow Echo Samples 173 

3.1.1 Initial manual sampling 174 

Our initial bow echo samples are generated based on the named derechos on Wikipedia 175 

(https://en.wikipedia.org/wiki/List_of_derecho_events; last access: 19 March 2023). We identify 54 176 

named derechos in the MCS dataset and manually label times with apparent bow echoes through visual 177 

inspection of ZHmax associated with the tracked MCSs. Each positive sample is a 384 ´ 384-pixel (~1536 178 

km ´ 1536 km) ZHmax image centered at the corresponding derecho with a bow echo embedded (Figure 2). 179 

The number of bow echo samples varies among different derechos, and 566 positive samples are obtained 180 

in total. 5400 negative samples are also randomly selected from the radar reflectivity dataset. 181 

 182 
Figure 2. Four examples of bow echoes from the named derechos. The color shading is for ZHmax. The subplot 183 
titles indicate the bow echo timings. For example, 20130613T04:00:00Z represents 4:00 UTC on 13 June 184 
2013. 185 
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3.1.2 CNN-based selection of additional bow echo samples 186 

Our initial attempt at developing an automated bow echo detection scheme is to train a classifier 187 

CNN ¾ “Dense Net” (Huang et al., 2019) that ingests 384´384-pixel single-channel ZHmax images and 188 

outputs a single classification indicating the presence of a bow echo. Dense Nets are notable for their 189 

large number of skip connections, and they can achieve comparable performance to very large classifier 190 

CNNs with only a fraction of the trainable parameters. Unfortunately, a Dense Net trained on the 191 

aforementioned initial samples has a very high false positive rate when applied to the full radar dataset 192 

(determined by manual inspection). Although this Dense Net is unsuitable for deployment, the collection 193 

of new positive samples it successfully identifies allows us to supplement the list of known bow echoes 194 

and develop a more diverse training set for the following segmentation model. 195 

3.1.3 Pseudo-labeling 196 

By combining the initial samples and the manually selected true positives from the low-quality 197 

Dense Net model, we build a semantic segmentation training dataset of 500 unique bow echo snapshots 198 

and corresponding hand-drawn bow echo masks. While 500 positive samples are relatively small for a 199 

deep learning application, these samples have higher diversity than the initial bow echoes generated from 200 

the named derechos on Wikipedia because they are drawn from more distinct events, and, in general, 201 

semantic segmentation CNNs can be successfully trained with far fewer samples than image classification 202 

CNNs (Bardis et al., 2020). 203 

A relatively low-skill version of the semantic segmentation CNN is trained using the 500 hand-204 

labeled radar images and then applied to the entire ZHmax dataset. We manually review the bow echo 205 

masks produced by this segmentation model and add some of the high-quality masks to a new training 206 

dataset. We also collect some of its false positive masks as new negative samples in the new training 207 

dataset. This is a semi-supervised learning approach known as “pseudo-labeling” or “bootstrapping” (Van 208 
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Engelen and Hoos, 2020; Ouali et al., 2020) and is commonly applied to semantic segmentation problems 209 

because of the high expense of hand-drawn labels (Peláez-Vegas et al., 2023). The pseudo-labels and 210 

hand-labels are combined into a final training dataset with 3677 samples, including 1699 bow echoes and 211 

1978 negative samples, which is used to train the much more skillful semantic segmentation model in 212 

Section 3.2. 213 

3.1.4 Data augmentation 214 

To combat the limited training data further, we use several data augmentation strategies when 215 

constructing training batches. During training, positive and negative samples are selected with equal 216 

probability, and a batch size of 8 is used. First, random salt and pepper noise is added to 10% of the pixels 217 

in each sample with a probability of 0.1. Second, weak random Gaussian noise with a standard deviation 218 

of 5 dBZ is added to all the pixels in each sample with a probability of 0.1. Third, samples are flipped in 219 

up-down and left-right directions, each with a likelihood of 0.5. Fourth, samples are rotated by 0, 90, 180, 220 

or 270 degrees, each with a probability of 0.25. Fifth, samples are randomly shifted vertically and 221 

horizontally by -5 to 5 pixels. Sixth, the brightness of the sample image is adjusted by a random factor of 222 

-0.6 to +0.2, and the image contrast is randomly adjusted by -0.2 to 0.2. Seventh, the binary target bow 223 

echo masks are multiplied by 0.9, and random noise drawn from a uniform distribution between 0 and 0.1 224 

is added. This is known as “soft labels.” Lastly, both positive and negative samples are blended with 225 

randomly selected negative samples by taking the pixel-wise maximum reflectivity values of the two 226 

samples with a 0.5 likelihood. This last data augmentation is unusual but works well in our application 227 

because a) reflectivity features typically occupy only a fraction of the sample area, with most pixels being 228 

clear-sky and b) bow echoes are high-reflectivity features. When the last data augmentation is applied to a 229 

positive sample, the resulting image will typically still contain a bow echo that matches the target mask 230 

well. 231 
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3.2 Training of U-Net 3+ CNN 232 

Our final semantic segmentation CNN model (Figure 3) uses the U-Net 3+ architecture (Huang et 233 

al., 2020). U-Net 3+ is a modern variant of the U-Net architecture (Ronneberger et al., 2015) and differs 234 

from the U-Net primarily in the addition of many more skip connections and its multi-resolution loss, 235 

which computes loss on rescaled classification masks generated from feature representations at various 236 

model levels. 237 

U-Net models were originally developed for the segmentation of biomedical imagery but have been 238 

applied to image segmentation problems in other fields and are broadly useful for any image-to-image 239 

mapping tasks where the input and target data are the same (or similar) size and shape and merging multi-240 

resolution information from the input data is important. U-Net CNNs have been applied to a myriad of 241 

problems in the atmospheric sciences, such as segmentation (Galea et al., 2024; Kumler-Bonfanti et al., 242 

2020), super resolution (Geiss and Hardin, 2020; White et al., 2024), physics parameterization 243 

(Lagerquist et al., 2021), downscaling (Sha et al., 2020), and weather forecasting (Weyn et al., 2021). 244 

Perhaps most closely related to this study is Mounier et al. (2022), who used a U-Net to detect bow 245 

echoes in simulated radar reflectivity images from a forecast model. A U-Net is an appropriate choice for 246 

the segmentation of bow echoes because merging multi-resolution information is crucial for identifying 247 

the feature. For example, bow echoes have high reflectivity at the pixel scale, strong reflectivity gradients 248 

in the transverse direction at the mid-scale (tens of pixels), and the characteristic bow shape at the large 249 

scale (hundreds of pixels). 250 
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 251 
Figure 3. A diagram of our semantic segmentation CNN architecture. The CNN inputs a 384´384-pixel radar 252 
image (ZHmax scaled to 0-255) and outputs a bow echo mask of the same size. The blue ovals represent 3´3 253 
convolutional layers, each followed by a batch normalization layer and a leaky rectified linear unit (ReLU) 254 
activation function. The first number in each blue oval indicates the spatial size (for both the width and height) 255 
of the output tensor, and the second represents the number of output channels. The solid arrows indicate 256 
connections in a standard U-Net architecture, with the downward arrows corresponding to 2´2 max-pooling 257 
and the upward arrows corresponding to 2´2 bilinear upsampling operations. The dashed lines represent the 258 
skip connections introduced in the U-Net 3+ architecture. These skip connections use max-pooling for spatial 259 
downsampling and bilinear interpolation for upsampling, followed by a 16-channel 3´3 convolutional layer 260 
with a linear activation. Layers with multiple inputs use channel-wise concatenation to combine those inputs. 261 
During training, the output tensors from the layers in the upsampling branch (blue ovals with red boundaries) 262 
are scaled to the output spatial resolution and passed through a 1-channel 1´1 convolutional layer with sigmoid 263 
activation. Training loss is computed on all 6 of the resulting masks. At inference time, only the mask 264 
outputted from the upper-rightmost layer is used. 265 

Our U-Net 3+ CNN ingests 384´384-pixel ZHmax images where ZHmax have been clipped to a 0-266 

50dBZ range and then linearly mapped to a range of 0-255. It is trained using binary cross entropy loss on 267 

masks generated from its 384, 192, 96, 48, 24, and 12-pixel resolution feature representations (Huang et 268 

al., 2020), though only the full-resolution (384´384-pixel) output mask is used at inference time. A 269 

detailed diagram of the model architecture is shown in Figure 3. Notably, although the model is trained 270 

using 384´384-pixel samples, it is a fully convolutional model and can process inputs of variable sizes. 271 

 We use the Adam optimizer (Kingma and Ba, 2014) with the Keras default settings (Ketkar, 2017) 272 

and an initial learning rate of 0.001 for training. The U-Net 3+ CNN is first trained for 60 epochs 273 

composed of 1000 randomly generated training batches of 8 samples each. Then, we decrease the learning 274 
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rate to 0.0001 and train the CNN for an additional 20 epochs. The training duration is determined by 275 

performing an initial 5 rounds of training with 5-fold cross-validation and approximating the epoch 276 

numbers to reduce the learning rate and stop training when the mean intersection over union metric 277 

plateaus for the validation set. Instead of random shuffling, the validation sets are separated from the 278 

training dataset in temporally contiguous chunks to avoid any overlap because, sometimes, multiple 279 

samples may be drawn from different times of the same convective system. 280 

3.3 Evaluation of the Semantic Segmentation CNN 281 

We apply the trained U-Net 3+ CNN to the entire ZHmax dataset and obtain potential bow echo masks 282 

over the United States between 2004 and 2021 (Figure 4). As a final post-processing step, we ignore 283 

“bow echo” masks with less than 20 pixels (~320 km2), which are too small to be classified as bow 284 

echoes. 285 

 286 
Figure 4. Examples of the U-Net 3+ CNN identified bow echoes (purple contours) based on ZHmax (color 287 
shading) at 5:00 UTC on 17 June 2014. 288 
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Instead of validating our segmentation model at a pixel scale, as during the training stage, we prefer 289 

evaluating its performance in detecting bulk bow echo features. In other words, we care about whether the 290 

segmentation model can recognize the existence of bow echoes and capture their rough locations. Minor 291 

spatial biases in bow echo coverage do not affect our below derecho identification, which contains 292 

various flexible criteria to minimize their impacts, such as the buffer zone within 100 km of bow echoes. 293 

We also choose to validate the segmentation CNN specifically on MCS events where high reflectivity 294 

features are present. Identifying low-reflectivity and clear-sky images as non-bow echoes is desirable for 295 

our segmentation model but trivial and not of particular interest for creating a derecho climatology. 296 

To build a testing dataset, we randomly select 217 MCS-associated ZHmax images in 2010 based on 297 

the following requirements. Each image is from a different MCS event. The images have variable sizes 298 

and contain the full spatial extents of the MCSs at the selected times; however, they must be at least 299 

192x192 pixels and cannot be drawn from a day that also has a sample in the training dataset. Three of the 300 

authors independently assessed the presence of bow echoes in each image, the results of which are then 301 

compared to the segmentation CNN (Table 1). Overall, the CNN model identifies 57 bow echoes, while 302 

human labelers 1, 2, and 3 identify 46, 76, and 66, respectively. The average human-human agreement 303 

and F1 scores are 82% and 0.69, while the average human-CNN agreement and F1 scores are 82% and 304 

0.67 (Table 1). The test indicates that, on the one hand, the detection of bow echoes in radar images is 305 

prone to subjective bias; on the other hand, the performance of the segmentation CNN is comparable to 306 

that of a human in identifying bow echoes. We emphasize that the CNN bow echo identification is only 307 

one component in our following derecho detection criteria, and the adverse impact of this uncertainty is 308 

mitigated by other constraints (e.g., almost continuous bow echo existence and strong gusts in proximity 309 

with bow echoes). 310 

Table 1 Evaluation of the performance of the segmentation CNN in the bow echo identification1 311 
 CNN (572) Person 1 (46) Person 2 (76) Person 3 (66) 

CNN  84% 79% 83% 
Person 1 0.66  77% 88% 

https://doi.org/10.5194/essd-2024-112
Preprint. Discussion started: 24 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 16 

Person 2 0.66 0.59  81% 
Person 3 0.70 0.77 0.70  

1The upper part of the table shows agreement between two independent identifications (𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡  =312 
  !"#!$
!"#!$#%"#%$

), and the lower part shows F1 scores (𝐹! =
"#$

"#$%&$%&'
), which is a better indication of the 313 

ability to agree on positives when positives are a minority (Taha and Hanbury, 2015). Here, TP denotes true 314 
positive, TN refers to true negative, FP is false positive, and FN is false negative. Notably, for the comparison 315 
between any two independent identifications, we consider one as “true” and evaluate the other against it (and 316 
which set of classifications are considered true does not impact these two metrics). 317 
2The number of identified bow echoes from the 217 images. 318 

We match the segmentation CNN detected bow echoes with MCS events from the MCS dataset and 319 

identify those MCS-associated bow echoes, which are used to identify derechos in the following section. 320 

Figure 5 shows the spatial distribution of MCS-associated bow echo occurrences from 2004 to 2021, 321 

which is similar to the MCS spatial distribution with more occurrences in the Great Plains (Li et al., 322 

2021). 323 

 324 
Figure 5. Spatial distribution of the number of MCS-associated bow echoes from 2004 to 2021. Here, we use 325 
bow echo masks produced by the segmentation CNN and exclude bow echoes that do not overlap with MCS 326 
events. Notably, the PyFELXTRKR-generated MCS dataset contains tropical cyclones (TCs). This figure 327 
excludes bow echoes from those non-derecho MCS events that overlap with TCs from the International Best 328 
Track Archive for Climate Stewardship (IBTrACS) Version 4 data over the North Atlantic basin (Knapp et al., 329 
2010) following the approach of (Feng et al., 2021). 330 
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4 Derecho identification 331 

As mentioned above, we adopt the derecho definition proposed by Corfidi et al. (2016) but revise 332 

some criteria based on previous studies (Johns and Hirt, 1987; Bentley and Mote, 1998) and the limitation 333 

of the observational datasets used in this study so that they can be used in the objective identification of 334 

derechos. Our detailed definition criteria are summarized below. 335 

1) A derecho must be attached to an MCS from the MCS dataset. This is the most straightforward 336 

requirement and one of our advantages. Due to the lack of a reliable MCS dataset, most previous 337 

studies spent much effort identifying spatiotemporally continuously propagating convective 338 

systems (Squitieri et al., 2023). 339 

2) At least one derecho feature (DF) exists in the MCS lifetime. A DF is defined as a continuous 340 

period satisfying the following criteria (Figure 6). 341 

2.1) The DF must last for at least 2 hours, and bow echo occurs during ³ 80% of the DF period. 342 

For example, if the DF lasts for 10 hours, it must have bow echoes in at least 8 hours. In 343 

addition, no more than 2 hours can elapse between successive bow echo occurrences. In other 344 

words, bow echo must exist for at least one hour in any two consecutive hours. The above two 345 

thresholds consider the segmentation CNN identification uncertainty and the diversity of MCS 346 

events. Moreover, a DF requires these bow echoes to be from the same bow echo series. Due to 347 

merging or splitting or the complex nature of some convective systems, a bow echo at one hour 348 

may be far from the bow echoes right after or before that hour or another bow echo during that 349 

hour (Figure 6). In such a rare situation, these bow echoes are unlikely caused by the same 350 

physical process and, therefore, do not belong to the same bow echo series. We separate 351 

different bow echo series in two steps. First, a distance criterion categorizes multiple bow echoes 352 

in the same hour into different series. Any bow echoes more than 100 km from each other 353 

belong to different series. Second, we temporally connect bow echoes from the same series using 354 
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another distance threshold. The distance between two successive bow echoes (no more than 2 355 

hours can elapse between their occurrences) from the same series must be no more than 200 km. 356 

Notably, the second step can overwrite the first step. For example, two bow echoes at hour t 357 

belong to different series in the first step, but in the second step, they are close enough (£ 200 358 

km) to the same bow echo at hour t-1. If so, they are considered from the same bow echo series. 359 

 360 
Figure 6. Schematic of the automated detection algorithm. Red and pink contours represent bow echoes. At 361 
time t2, there are two bow echoes belonging to different bow echo series due to their great distance from each 362 
other. In contrast, the two bow echoes at t3 are from the same bow echo series since they are close to each 363 
other. The pink bow echo at t2 is far from the bow echoes at t1 and t3. Therefore, they belong to different bow 364 
echo series. The sites (green dots) with strong gust reports outside the 100-km buffer zone of the bow echo 365 
series (i.e., the DF area) are excluded from the strong gust swath calculation. The black arrow indicates the 366 
propagation direction of the bow echo series. 367 

2.2) We calculate the DF-associated maximum gust speed for each land observational site during 368 

the DF period. Within 100 km of the DF bow echoes, which we name the DF area, there must be 369 

³ 10 sites with strong gusts (gust speed ³ 17.43 m s-1) and ³ 1 site with damaging gusts (gust 370 

speed ³ 25.93 m s-1). In addition, the fraction of sites with strong gusts should be ³ 20%. This 371 

fraction criterion is intended to exclude potential MCSs associated with extratropical cyclones, 372 

which could produce strong or damaging gusts over limited observational sites but weaker gusts 373 
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at most other sites. Besides, a DF requires that no more than 2 hours can elapse between 374 

successive strong gust reports. Then, we calculate the major and minor axis lengths of the fitted 375 

ellipse swath using the locations of those sites with strong gust reports (Figure 6). As a DF, the 376 

major and minor axis lengths must be at least 650 km and 100 km, respectively. We emphasize 377 

that our gust speed criteria are weaker than those of previous studies (Squitieri et al., 2023; 378 

Bentley and Mote, 1998; Johns and Hirt, 1987), which estimated the gust swath based on 379 

damaging gusts. Moreover, previous studies often required a few reports of gust speed ³ 33 m s-380 

1. Notably, many gust speeds in earlier studies were from post-disaster estimates, while this 381 

study uses ISD surface station measurements. Post-disaster estimates can capture damaging gust 382 

occurrences over a much larger area. In contrast, due to the limited coverage of observational 383 

sites, real-time measurements may miss substantial damaging gust occurrences in nearby 384 

regions. Therefore, we lower the gust speed criteria to capture potential derechos. 385 

2.3) If no DF is identified for a given MCS using the above procedures, we can relax the 386 

distance requirement in (2.2) to be within 200 km of the DF bow echoes that satisfy the 387 

condition that there is no bow echo from the same bow echo series an hour ago or later during 388 

the DF period. If the bow echo is in the first hour of the DF period and there are no CNN-389 

identified bow echoes for the MCS event an hour ago, we can also extend the distance threshold 390 

to 200 km. This is similar to the bow echo in the last hour of the DF period but without any 391 

CNN-identified bow echoes an hour later. Notably, the distance extension is optional. For the 392 

bow echoes satisfying the above conditions, the distance threshold can be either 100 or 200 km. 393 

Using 100 km is superior to using 200 km until we find a DF if it exists. The distance extension 394 

is also intended to minimize the impacts of the bow echo identification error. If a bow echo is 395 

missed in the semantic segmentation procedure, extending the distance threshold can include 396 

strong gusts associated with the missed bow echo, thus slightly reducing the derecho detection 397 

error. 398 
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We identify 537 derechos between 2004 and 2021 using the above objective detection criteria, with 399 

an example of the June 2012 North American derecho shown in Figure 7. Figure 7a displays the CNN-400 

identified bow echoes, and Figure 7b shows the DF area and associated gust speeds. As expected, the 401 

derecho produced extensive strong gusts during its DF period. 402 

Although we have considered the segmentation CNN bow echo identification uncertainties in the 403 

above derecho definition criteria, there is no guarantee that every specific situation is considered. 404 

Therefore, we carefully examine all the identified derechos and remove 32 events that are possibly false 405 

detections primarily due to the false identification of bow echoes (Figure S3). In addition, we manually 406 

examine all MCS events (808 in total, excluding the aforementioned 537 automatically identified 407 

derechos) that produce extensive strong (³ 10 observational sites) and damaging (³ 1) gusts over land 408 

areas with a strong gust swath of at least 650 ´ 100 km2. Our manual examination focuses on bow echo 409 

identification errors but does not change any of the above derecho definition thresholds or parameters. For 410 

those MCSs (55 events in total) that are potential derechos based on our visual inspection, we manually 411 

label their bow echo occurrences that fail the segmentation identification during potential DF periods 412 

(Figure S4) and rerun the automated derecho detection algorithm. Finally, 51 events meet the derecho 413 

detection criteria described above. 414 
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 415 
Figure 7. (a) Spatial evolution of ZHmax (color shading) and CNN-identified bow echoes (purple contours) from 416 
the June 2012 North American derecho. (b) Spatial evolution of the corresponding DF. The DF lasted from 417 
17:00 UTC on 29 June to 6:00 UTC on 30 June 2012. The misty rose shading in (b) corresponds to ZHmax ³ 40 418 
dBZ, while the gray shading refers to the DF area. Colored dots are the same as those in Figure 1c, except only 419 
the DF-associated gust measurements are shown. 420 

5 Dataset evaluation and uncertainty 421 

Finally, we obtain 556 derechos between 2004 and 2021, 505 of which are identified automatically 422 

and 51 of which are added manually. The number of derechos (30.9 per year) is much larger than 423 

previous estimations (6.1-20.9 per year) using a major axis length threshold of 400 km (Squitieri et al., 424 

2023; Johns and Hirt, 1987; Bentley and Mote, 1998; Evans and Doswell, 2001; Guastini and Bosart, 425 

2016; Ashley and Mote, 2005). The number is also much larger than the result of Corfidi et al. (2016), 426 

which identified only 25 derechos in the warm seasons during 2010-2014 using a major axis length 427 
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threshold of 650 km. The large discrepancies are likely related to our usage of strong gusts but not 428 

damaging gusts to calculate wind damage swath and other definition criteria. However, the diverse 429 

observational datasets used in the derecho detections also play a critical role. Previous studies did not 430 

have an available MCS dataset; as a result, many of their definition criteria were intended to capture MCS 431 

events. In contrast, we have developed a high-quality, high-resolution MCS tracking dataset using 432 

PyFLEXTKR and many coincident ground-based and remote-sensing observations. Our definition criteria 433 

purely focus on the derecho properties and generation mechanism. Previous studies may underestimate 434 

the derecho number due to missing MCS events. We confirm this by comparing the derechos from the 435 

NOAA SPC with our derecho dataset in 2004 and 2005 (Table 2). The NOAA SPC data 436 

(https://www.spc.noaa.gov/misc/AbtDerechos/annualevents.htm; last access: November 17, 2023). 437 

provide more detailed timings and locations of derechos in 2004 and 2005 than previous studies (Squitieri 438 

et al., 2023), which is the only available dataset that we can use to evaluate our derecho dataset at the 439 

event scale. Notably, the NOAA SPC data contains not only derechos but also convective windstorms of 440 

near-derecho size, and we do not know which event is a derecho or a convective windstorm of near-441 

derecho size. In addition, the data is based on gust speed measurements and post-disaster estimations. 442 

There is not an underlying MCS dataset for the NOAA SPC data. 443 

The NOAA SPC data contains 50 derechos and convective windstorms of near-derecho size, 22 of 444 

which are directly captured by the automated detection procedure, and 2 of which can be captured after 445 

we manually correct the segmentation CNN bow echo identification errors. Five of the 50 events are 446 

entirely missed in the MCS dataset, possibly because they move too fast and do not meet the 447 

PyFLEXTRKR > 50% areal overlap tracking criterion using the hourly combined satellite and NEXRAD 448 

dataset, or they break other MCS requirements in PyFLEXTRKR (Feng et al., 2019). We emphasize that 449 

10 of the 50 NOAA SPC events are not derechos based on the actual gust speed measurements since we 450 

do not find any land damaging gust reports associated with the MCS events. Seven of the 50 events are 451 

not derechos using the major axis length threshold of 650 km and the minor axis length threshold of 100 452 
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km, even if we consider all the observational sites associated with the events, regardless of whether they 453 

are in proximity with the bow echoes. One event is an extratropical cyclone. These 18 events are excluded 454 

from derechos using more objective or consistent criteria as NOAA SPC. The remaining three of the 50 455 

events are missed in our derecho dataset due to the criteria used in our derecho definition, two of which 456 

are due to too few sites with strong gusts, and one is due to the violation of the bow echo and gust speed 457 

criteria. In summary, after excluding those 18 non-derechos and the five missed events in the MCS 458 

dataset, the identification accuracy of our automated detection approach is !!
"#$%&$"

= 81% (Table 2). 459 

Even if we consider the five missed MCS events, the accuracy can reach up to !!
"#$%&

= 69%. For the final 460 

derecho dataset with the 51 manually added events, the accuracy is !!'!
"#$%&

= 75%. Finally, our derecho 461 

dataset identifies 14 derechos that are entirely missed by NOAA SPC, confirming the underestimation of 462 

derecho numbers in previous studies due to the lack of a reliable MCS dataset (Squitieri et al., 2023). 463 

 464 
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Although the evaluation against the NOAA SPC data indicates the high quality of our derecho 477 

dataset, we must acknowledge its uncertainties caused by several sources. 478 

The first uncertainty source is from the MCS dataset, as mentioned in the evaluation against the 479 

NOAA SPC data. The areal overlap threshold, which is set to 50% and used to connect consecutive CCSs 480 

in the current PyFLEXTRKR configuration, cannot capture those very fast-moving convective systems 481 

with the hourly satellite and NEXRAD datasets. Reducing the threshold will undoubtedly increase the 482 

“MCS” and then the “derecho” number, but it may also increase the number of false tracks that do not 483 

belong to the same type of storm. The threshold of 50% is widely used in the different versions of the 484 

FLEXTRKR algorithms (Li et al., 2021; Feng et al., 2023; Feng et al., 2019) and other tracking 485 

algorithms based on overlap (e.g., (Whitehall et al., 2015)). Therefore, we would like to keep the overlap 486 

threshold as is, but users should realize the uncertainties of the MCS dataset caused by many adjustable 487 

parameters (e.g., area overlap threshold, MCS duration, and major axis length) and the limitations of the 488 

observational datasets used in PyFLEXTRKR (Feng et al., 2019; Li et al., 2021). 489 

The second uncertainty source is related to the segmentation CNN identification of bow echoes. 490 

Although the evaluation in Section 3.3 shows the high accuracy of our bow echo identification and we 491 

consider the bow echo identification uncertainties in the automated derecho detection procedure, we still 492 

miss a small fraction of derechos and falsely classify some non-derechos as derechos due to the bow echo 493 

identification error. To alleviate the CNN identification errors, we spend much effort manually examining 494 

the derecho events identified by the automated algorithm and other MCS events that produce widespread 495 

strong gusts. However, the manual examination is susceptible to subjective biases, and it is difficult to 496 

completely eliminate the bow echo identification uncertainties. 497 

The third uncertainty source is from the gust speed measurements. Although we only use gust 498 

measurements passing the ISD quality control, it is not guaranteed that all gust speeds are reliable and 499 

have the same quality, such as the site we exclude in Section 2.2 due to its unrealistic number of 500 

https://doi.org/10.5194/essd-2024-112
Preprint. Discussion started: 24 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 26 

damaging gust reports. Moreover, we cannot qualitatively evaluate the impact of the gust measurement 501 

uncertainty on the derecho dataset, but users should be aware of the limitations of the gust speed 502 

observations. 503 

The last uncertainty source is related to the derecho definition criteria. Many adjustable parameters 504 

and procedures are used in our algorithm to detect derechos. There is no doubt that changing these 505 

parameters will alter the identified derecho number. For example, if we change the major axis length 506 

threshold of the strong gust swath to 400 km, the derecho number will increase to 654 (a 29.5% increase). 507 

As the first climatological derecho dataset that utilizes bow echoes in the derecho identification and 508 

provides detailed tracking for each event, evaluating the uncertainties of the tunable parameters is 509 

unfeasible and not our priority either. However, based on our sensitivity tests, the derecho spatial 510 

distribution and seasonal variation patterns in Section 6 generally stay mostly the same with different 511 

parameters (e.g., reducing the strong gust fraction threshold to 10% or the threshold of the number of sites 512 

with strong gust reports to 5). The exception is that when we calculate the gust swath length and width 513 

using sites (requiring ³ 10 sites) with damaging gusts as in previous studies (Squitieri et al., 2023), the 514 

derecho number is significantly reduced to 19, highlighting the spatial limitation of ISD gust 515 

measurements. We emphasize that although our derecho definition follows Corfidi et al. (2016), we 516 

exclude the “forward propagating” criterion they proposed. We try several methods to calculate the angles 517 

between the derecho orientations and their propagation directions but cannot obtain satisfying and 518 

accurate results for some events with complex structures. Figure 8 shows the probability density function 519 

(PDF) of the angles between “derecho propagation directions” and “bow echo orientations” for all 520 

derechos from the final derecho dataset. Based on this type of calculation, 78% of derechos have an angle 521 

³ 30°, and 58% of derechos have an angle ³ 45°. For those derechos with angles < 30°, it does not mean 522 

that they are not forward propagating systems, but it is more likely that this type of angle calculation does 523 

not reflect their actual propagation direction. In total, even though we do not use the “forward 524 
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propagating” criterion in the derecho definition, most of the identified derechos are indeed forward 525 

propagating systems. 526 

Finally, users should acknowledge the high quality of our derecho dataset but understand its 527 

limitations due to various uncertainties during its generation. 528 

 529 
Figure 8. The probability density function (PDF) of the angles between derecho propagation directions and 530 
bow echo orientations. For any derecho, we calculate all the bow echoes' orientations during its DF period and 531 
use the median orientation in the angle calculation. Propagation direction is also based on bow echoes during 532 
the DF period. We select any two distinct bow echoes during the period and use their centroid points to derive 533 
a direction. If there are n bow echoes, we can obtain 𝐶:" =

:×(:C!)
"

 directions. Similarly, we use the median 534 
direction as the derecho’s propagation direction to calculate the angle. The angle is initially in the range of -535 
180° to 180°, and we adjust them to be between 0° and 90° to reflect the minimum angle between the 536 
derecho’s orientation and propagation direction. 537 

6 Derecho climatological characteristics 538 

We use the final derecho dataset with 556 derechos to conduct the following climatological analyses. 539 
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6.1 Annual statistics 540 

Figure 9 displays the annual derecho numbers from 2004 to 2021. There is an apparent jump in the 541 

derecho number before (~20 derechos per year) and after 2007 (~30 derechos per year), which may be 542 

partially related to the general increase in the number of gust speed observational sites from 2004 to 2010 543 

(Figure S5). Figure 10 shows the spatial distribution of yearly averaged annual derecho numbers between 544 

2004 and 2021, and the derecho paths during their DF periods are displayed in Figure S6. The central 545 

Great Plains has the most frequent derecho occurrences, extending to Oklahoma in the south, Iowa in the 546 

north, Kansas in the west, and Illinois in the east. The areas with frequent derecho occurrences are 547 

generally consistent with previous studies (Coniglio and Stensrud, 2004; Guastini and Bosart, 2016; Johns 548 

and Hirt, 1987; Ashley and Mote, 2005), although some differences are identified. For example, several 549 

studies identified a northwest-southeast axis with frequent derecho occurrences extending from southern 550 

Minnesota to Ohio, which is not apparent in our spatial distribution (Johns and Hirt, 1987; Coniglio and 551 

Stensrud, 2004; Guastini and Bosart, 2016). The differences can be caused by many factors, such as 552 

distinct derecho definitions and observational datasets used in these studies. We make a sensitivity test by 553 

calculating the gust swath using ³ 10 sites with damaging gusts as mentioned in Section 5, which 554 

identifies 19 derechos. The corresponding spatial distribution in Figure S7 well captures the 555 

aforementioned west-east axis, although the occurrence frequency is much smaller than in previous 556 

studies with more than one derecho occurrence per year (Johns and Hirt, 1987; Coniglio and Stensrud, 557 

2004; Guastini and Bosart, 2016). The sensitivity test seems to indicate that the most intense derechos 558 

prefer to occur in the northern Great Plains and Midwest, while weaker derechos occur preferably in 559 

central Great Plains around the junction of Oklahoma, Kansas, Missouri, and Arkansas. 560 
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 561 
Figure 9. Bar chart of the annual derecho numbers from 2004 to 2021. 562 

 563 
Figure 10. Spatial distribution of yearly averaged annual derecho numbers over the United States east of the 564 
Rocky Mountains between 2004 and 2021. Here, we use derecho DF areas as derecho spatial coverages. 565 
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6.2 Monthly statistics 566 

Figure 11 displays the yearly averaged seasonal variations in the derecho number, with remarkably 567 

more derechos in the warm than cold seasons, a feature widely captured by previous studies (Ashley and 568 

Mote, 2005; Squitieri et al., 2023; Bentley and Sparks, 2003). The derecho seasonal variation resembles 569 

that of the MCS events (Feng et al., 2019), similar to the derecho annual spatial distribution (Figure 10 570 

and Feng et al. (2019)). 571 

Figure 12 shows the spatial distributions of the yearly averaged monthly derecho numbers between 572 

2004 and 2021. On the one hand, many more derechos occur in the warm than cold months. On the other 573 

hand, we find remarkable shifts in the areas with the most frequent derecho occurrences from April to 574 

August. The region with the most derechos moves northward during the warm season but shrinks zonally. 575 

The northward shifts also resemble the MCS events (Li et al., 2021). We can identify two axes with 576 

frequent derecho occurrences. One is in the south-north direction along the Great Plains, and the other is 577 

in the west-east direction along the northern Great Plains and Midwest, which are consistent with the 578 

derecho paths in Figure S6. The axes may represent the two types (serial and progressive) of derechos 579 

mentioned in Squitieri et al. (2023). A follow-up study will be conducted to investigate the large-scale 580 

environmental conditions associated with different types of derechos based on the developed derecho 581 

dataset. Notably, derechos are concentrated in the Lower Mississippi Valley in the cold season, which is 582 

also consistent with previous studies (Squitieri et al., 2023). 583 
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 584 
Figure 11. Yearly averaged monthly variations of the derecho numbers between 2004 and 2021. The error bars 585 
denote standard deviations. 586 
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 587 
Figure 12. Same as Figure 10 but for yearly averaged monthly derecho numbers over 2014-2021. 588 

6.3 Wind damage characteristics 589 

We examine the contributions of derechos and DFs to all the damaging gust reports in the United 590 

States area of the dataset domain between 2004 and 2021 in Figures 13, S2, and S8. MCSs contribute 591 

about 36.8% of the damaging gust reports, but most occur east of the Rocky Mountains. On average, 592 

derechos and DFs contribute 19.2% and 16.5% of the damaging gust occurrences, respectively. In other 593 

words, about half of the damaging gusts associated with MCS events are related to derechos. 594 

Understanding the underlying mechanisms will be our focus in a follow-up study. In addition, most (> 595 

80%) derecho-generated damaging gusts occur during the DF periods, justifying using DF in our derecho 596 

definition, consistent with the larger probabilities of extreme gusts in the gust speed PDF of DFs than that 597 
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of derechos in Figure S9. The gust speed PDFs for MCSs and derechos indicate that derechos are more 598 

favorable for producing extreme gusts than MCSs (Figure S9). Moreover, as expected, the contributions 599 

of derechos to damaging gust reports are the highest in the Great Plains, Midwest, and Lower Mississippi 600 

Valley (Figure 13). 601 

 602 
Figure 13. (a) The total numbers of damaging gust occurrences between 2004 and 2021 at weather stations 603 
over the United States east of the Rocky Mountains. (b) Relative contributions of MCS events to the damaging 604 
gust occurrences in (a). (c) is the same as (b) but for relative contributions of derechos. (d) is the same as (c), 605 
but we only consider the DF periods when counting the derecho-associated damaging gust occurrences. 606 
Similar to Figure 5, we exclude non-derecho MCS events overlapping with TCs in (b). The dot sizes are 607 
proportional to the corresponding values. Light-yellow shading denotes an elevation greater than 1000 m; 608 
light-gray shading denotes an elevation between 400 m and 1000 m; and smoke-white shading denotes an 609 
elevation less than 400 m. Background white is for oceans and lakes. 610 
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7 Data availability 611 

The final derecho dataset and the corresponding user guide are available 612 

at https://doi.org/10.5281/zenodo.10884046 (Li et al., 2024). The original format of the data files is 613 

NetCDF-4, and we compress them for each year so that the dataset is easily accessible. The user guide 614 

contains a detailed description of the data files to help users understand the dataset. For each derecho, the 615 

dataset provides two figures displaying the temporal evolutions of ZHmax, precipitation, wind speed, and 616 

gust speed during its entire lifetime and DF period (e.g., Figures 14 and S10). The figures are helpful for 617 

users to understand the basic characteristics of the derechos immediately. Notably, the dataset contains all 618 

the derecho-associated gust speed measurements, so users can further separate the derechos into different 619 

intensities, as in Coniglio and Stensrud (2004). 620 

 621 
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 622 
Figure 14. Similar to Figure 1 but for the spatial evolutions of (a) ZHmax, (b) total accumulated precipitation, (c) 623 
precipitation duration, (d) mean precipitation intensity, (e) hourly maximum wind speed, and (f) hourly 624 
maximum gust speed during the entire lifetime of a derecho that occurred on 10-11 September 2015. In (e) and 625 
(f), the misty rose shading corresponds to areas with ZHmax ³ 40 dBZ, and the dark gray shading refers to 626 
derecho coverage with ZHmax < 40 dBZ. The figure title refers to the derecho timing range. 627 

8 Conclusions 628 

This study presents a high-resolution (4 km and hourly) observational derecho dataset covering the 629 

United States east of the Rocky Mountains from 2004 to 2021. We develop the dataset using an MCS 630 

dataset generated by the PyFLEXTRKR software, a machine-learning-based identification of bow echoes, 631 

ISD hourly gust speed measurements, and physically based identification criteria. The evaluation and 632 

potential uncertainties of the dataset are discussed. The dataset contains 556 derechos, most of which are 633 
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in the warm season (April-August). Analyses indicate that derechos preferably occur in the Great Plains 634 

and Midwest. Areas with the most frequent derechos show a northeastward shift from April to August. 635 

Derechos contribute 19.2% of land damaging gusts over the United States between 2004 and 2021. About 636 

half of MCS-associated damaging gusts are produced by derechos. As the first derecho dataset that uses 637 

machine-learning identification of bow echoes, physically based definition criteria, and surface station 638 

measured gust speeds, it provides an independent reference for derecho climatology compared to previous 639 

studies. In addition, the derecho dataset can be used to investigate the derecho initiation and development 640 

mechanisms, the environments that facilitate the formation and intensification of derechos, and the 641 

damage of derechos to human security and property. Moreover, due to its high spatiotemporal resolutions, 642 

the dataset can be used to select specific derecho events for case studies and evaluate the numerical model 643 

simulations. 644 
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