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Abstract 13 

Due to their persistent widespread severe winds, derechos pose significant threats to human safety 14 

and property, with impacts comparable to many tornadoes and hurricanes. Yet, automated detection of 15 

derechos remains challenging due to the absence of spatiotemporally continuous observations and the 16 

complex criteria employed to define the phenomenon. This study presents an objective derecho detection 17 

approach capable of automatically identify derechos in both observations and model results. The approach 18 

is grounded in a physically based definition of derechos and integrates three algorithms: (1) the Python 19 

Flexible Object Tracker (PyFLEXTRKR) algorithm to track mesoscale convective systems (MCSs), (2) a 20 

semantic segmentation convolutional neural network to identify bow echoes, and (3) a comprehensive 21 

classification algorithm to detect derechos within MCS lifecycles and distinguish derecho-producing from 22 

non-derecho-producing MCSs. Using this approach, we develop a novel high-resolution (4 km and 23 

hourly) observational dataset of derechos and accompanying derecho-producing MCSs over the United 24 

States east of the Rocky Mountains from 2004 to 2021. The dataset consists of two subsets based on 25 

different gust speed data sources and is analyzed to document the climatology of derechos in the United 26 

States. On average, 12-15 derechos are identified per year, aligning with previous estimations (~6-21 27 

events annually). The spatial distribution and seasonal variation patterns are consistent with prior studies, 28 

showing peak occurrences in the Great Plains and Midwest during the warm season. Additionally, during 29 

the study period, derechos account for approximately 3.1% of measured damaging gusts (³ 25.93 m s-1) 30 

over the eastern United States. The dataset is publicly available at 31 

https://doi.org/10.5281/zenodo.14835362 (Li et al., 2025). 32 
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1 Introduction 34 

A derecho is qualitatively defined as a widespread, long-lived straight-line windstorm associated 35 

with a fast-moving mesoscale convective system (MCS), and the latter is named a derecho-producing 36 

MCS (DMCS). Figure 1 shows two of the most destructive derechos and their accompanying DMCSs in 37 

the United States: the June 2012 North American derecho and the August 2020 Midwest Derecho. Both 38 

events lasted for over 10 hours, with apparent bow echoes and extensive damaging wind gusts (³ 25.93 m 39 

s-1). Due to the persistent widespread damaging gusts, derechos can severely damage property and 40 

threaten human lives, as exemplified by the extensive power outages and more than ten fatalities caused 41 

by the two derechos. Ashley and Mote (2005) demonstrated that derechos could be as hazardous as and 42 

were comparable in impact to most hurricanes and tornadoes in the United States between 1986 and 2003. 43 

 44 
Figure 1. Spatial evolutions of the (a, b) composite (column-maximum) radar reflectivity (ZHmax) signatures 45 
and (c, d) surface gust speeds (colored dots) of two DMCSs. The first column is for the DMCS associated with 46 
the June 2012 North American derecho, which occurred on 29-30 June 2012, and the right column is the 47 
August 2020 Midwest derecho accompanying DMCS, which occurred on 10-11 August 2020. Due to 48 
spatiotemporal overlapping, multiple ZHmax and gust speeds may exist for a given grid cell or weather station, 49 
in which case only the corresponding maximums are shown in the figure. In (c) and (d), the dark gray shading 50 
refers to DMCS cold cloud coverage. The dot sizes in (c) and (d) are proportional to the gust speed 51 
magnitudes. Notably, gust speed in (c) and (d) is based on the hourly maximum gust speed (gusthourly_max), 52 
which is the largest gust speed within one hour if multiple gust speed measurements are available. 53 
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A reliable derecho dataset is foundational for understanding the underlying physical mechanism of 54 

derecho initiation and development and their socioeconomic impacts. Johns and Hirt (1987) developed 55 

the first derecho climatology in the warm seasons of 1980-1983 in the United States by quantitatively 56 

defining a derecho as a family of downburst clusters produced by an extratropical MCS. Specifically, they 57 

required a derecho to satisfy the following six criteria. 58 

1) There must be a concentrated area of reports with wind damage or convective gusts > 25.7 m 59 

s-1, and the major axis length of the area must be at least 400 km. 60 

2) Those wind damage or convective gust reports must show a pattern of chronological 61 

progression, either as a singular swath or a series of swaths. 62 

3) The concentrated area must have at least three reports of either F1 damage (32.7-50.3 m s-1) 63 

(Fujita, 1971) or convective gust of at least 33.4 m s-1 separated by ³ 64 km. 64 

4) At most 3 hours can elapse between successive reports of wind damage or gust > 25.7 m s-1. 65 

5) The associated convective system must have temporal and spatial continuity in surface 66 

pressure and wind fields. 67 

6) If multiple swaths of wind damage or gust reports > 25.7 m s-1 exist, they must be from the 68 

same MCS event. 69 

Since then, several other studies have developed derecho climatologies during other periods using 70 

slightly different criteria (Bentley and Mote, 1998; Evans and Doswell, 2001; Bentley and Sparks, 2003; 71 

Coniglio and Stensrud, 2004; Guastini and Bosart, 2016). For example, Bentley and Mote (1998) 72 

removed the third requirement and reduced the elapsed time in the fourth condition from no more than 3 73 

hours to no more than 2 hours in their derecho climatology from 1986 to 1996. In Coniglio and Stensrud 74 

(2004), the elapsed time was further changed to no more than 2.5 hours, and the gust reports of at least 33 75 

m s-1 were used to separate derechos of different intensities. 76 
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Although the aforementioned derecho datasets were generated using different criteria and during 77 

different periods (Johns and Hirt, 1987; Bentley and Mote, 1998; Evans and Doswell, 2001; Bentley and 78 

Sparks, 2003; Coniglio and Stensrud, 2004; Guastini and Bosart, 2016), they showed many similar 79 

derecho climatological characteristics in the United States. For example, derechos occur more frequently 80 

in the warm than cold seasons; the Great Plains, Midwest, and Ohio Valley are regions most favorable for 81 

derecho development, and few derechos occur in the eastern and western coastal areas. Considering the 82 

inconsistent thresholds used in the above studies and the lack of physical mechanisms in their derecho 83 

definitions, Corfidi et al. (2016) proposed a stricter and more physically based derecho definition, which 84 

required the existence of sustained bow echoes with mesoscale vortices or rear-inflow jets and a nearly 85 

continuous wind damage swath of at least 100 km wide along most of its extent and 650 km long. In 86 

addition, the wind damage must occur after the convective system was organized into a cold-pool-driven 87 

forward-propagating MCS. Most derechos satisfying this definition would be classified as “progressive” 88 

but not “serial.” A serial derecho typically originates in strongly forced environments and develops from a 89 

mature squall line with multiple embedded bow echoes. In contrast, progressive derechos generally 90 

originate from small convective clusters that grow upscale into large organized forward-propagating 91 

MCSs in synoptic environments with weak forcing (Squitieri et al., 2023). 92 

It is difficult to develop a derecho climatology using the definition proposed by Corfidi et al. (2016) 93 

with current operational measurements, as it involves the identification of bow echoes, rear-inflow jets, 94 

and cold pools. However, rear-inflow jets and cold pools are generally associated with bow echoes 95 

(Weisman, 1993; Adams-Selin and Johnson, 2010). Once long-lived bow echoes are found in an MCS, 96 

we can expect the simultaneous existence of rear-inflow jets and cold pools. Nevertheless, identifying 97 

bow echoes, a feature typically identified visually from radar observations, is still challenging for large 98 

volumes of data, such as the 30+ year National Oceanic and Atmospheric Administration (NOAA) Next 99 

Generation Weather Radar (NEXRAD) archive consisting of 159 radars. The manual examination is time-100 

consuming and sensitive to subjective biases. This study applies a semantic segmentation convolutional 101 



 6 

neural network (CNN) to detect bow echoes automatically from two-dimensional composite (column-102 

maximum) reflectivity (ZHmax) data in the United States, which are then combined with an MCS tracking 103 

dataset and surface gust speeds to identify derechos using criteria adjusted from Corfidi et al. (2016). 104 

After manual examination and validation, we produce a high-resolution (4 km and hourly) observational 105 

derecho and DMCS dataset in the United States east of the Rocky Mountains from 2004 to 2021. The 106 

dataset comprises two subsets based on different gust speed data sources: one uses gust speed 107 

measurements from the global hourly Integrated Surface Database (ISD) (NOAA/NCEI, 2001), and the 108 

other exploits gust speed reports from the NOAA’s Storm Events Database (SED). As the first derecho 109 

climatology that utilizes a machine learning technique following physically based criteria and covers the 110 

recent decades, the dataset provides a reference for future derecho studies and can be used to investigate 111 

the underlying mechanisms for derecho initiation and development, the climatological impacts of 112 

derechos on hazardous weather, and the damage of derechos to infrastructure and human property. 113 

The remainder of the paper is organized as follows. Section 2 introduces the MCS and gust speed 114 

datasets used to generate the derecho dataset. Section 3 describes the machine learning (i.e., semantic 115 

segmentation CNN) methodology to detect bow echoes, including sampling, training, and evaluation. 116 

Section 4 explains our derecho identification criteria in detail. Section 5 evaluates our derecho dataset 117 

through cross-validation of the two subsets (ISD-based vs. SED-based) and compare them with previous 118 

derecho estimations and the observational data from the NOAA Storm Prediction Center (SPC) in 2004 119 

and 2005. Section 6 analyzes the derecho climatological characteristics. Section 7 shows how to access 120 

our derecho dataset, and the study is summarized in Section 8. 121 
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2 Source datasets 122 

2.1 MCS dataset 123 

Since previous MCS datasets only cover the period from 2004 to 2017 (Li et al., 2021; Feng et al., 124 

2019), we use an updated version of the Python FLEXible Object TRacKeR (PyFLEXTRKR) software 125 

(Feng et al., 2023), which exploits collocated radar signatures, satellite infrared brightness temperature, 126 

and precipitation to identify robust MCS events (Feng et al., 2019), to produce an updated 4-km and 127 

hourly MCS dataset in the United States east of the Rocky Mountains from 2004 to 2021 (Feng, 2024). 128 

Several hourly source datasets are used in the generation of the MCS dataset, including the National 129 

Centers for Environmental Prediction (NCEP)/the Climate Prediction Center (CPP) L3 4 km Global 130 

Merged IR V1 brightness temperature dataset (Janowiak et al., 2017), the three-dimensional Gridded 131 

NEXRAD Radar (GridRad) dataset (Bowman and Homeyer, 2017), the NCEP Stage IV precipitation 132 

dataset (CDIACS/EOL/NCAR/UCAR and CPC/NCEP/NWS/NOAA, 2000), and melting level heights 133 

derived from ERA5 (European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5) 134 

(Hersbach et al., 2023). The MCS definition criteria are almost the same as those in Feng et al. (2019), 135 

such as cold cloud shield (CCS) area > 60,000 km2, precipitation feature (PF, which is a continuous 136 

convective or stratiform area with surface rain rate > 2 mm h-1) major axis length > 100 km, the existence 137 

of 45-dBZ convective echoes, etc., except that the duration requirement is lowered to include those 138 

convective systems lasting for just 6 hours. This adjustment allows us to capture slightly shorter-lived 139 

MCSs that may produce intense wind gusts but are missed in the previous MCS datasets. Convective and 140 

stratiform radar echo classification in PyFLEXTRKR follows the Storm Labeling in 3D (SL3D) 141 

algorithm (Starzec et al., 2017), which uses horizontal texture and vertical structure of radar reflectivity 142 

from the GridRad product. Notably, the GridRad data are available each month from 2004 to 2017 but 143 

only between April and August from 2018 to 2021. Since most derechos occur in the warm season 144 

(Ashley and Mote, 2005; Coniglio and Stensrud, 2004), missing the cold months between 2018 and 2021 145 
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does not affect our derecho climatological analyses in Section 6. For brevity, we do not mention the 146 

missing cold months between 2018 and 2021 in the following sections unless stated otherwise. 147 

2.2 Surface gust speed datasets 148 

2.2.1 ISD gust speed measurements 149 

The ISD is developed by the NOAA National Centers for Environmental Information (NCEI) in 150 

collaboration with several other institutions. ISD compiles global hourly and synoptic surface 151 

observations from numerous sources (e.g., the Automated Surface Observing System and the Automated 152 

Weather Observing System) into a single common format and data model. Besides internal quality control 153 

procedures conducted by the source datasets, ISD applies additional quality control algorithms to process 154 

each observation through a series of validity checks, extreme value checks, and internal and external 155 

continuity checks (Smith et al., 2011). This study uses ISD gust speed measurements passing all quality 156 

control checks (NOAA/NCEI, 2018). Notably, there may be multiple measurements at different times 157 

within one hour for some stations. To keep the sampling consistency across different datasets used in the 158 

derecho identification, we calculate gusthourly_max, which is the largest gust speed of all available 159 

measurements within one hour, for each observational site, unless stated otherwise. A total of 4,260 160 

observational sites provide gust speed measurements between 2004 and 2021 in the study domain, of 161 

which 3,954 are over land, and the rest are over the ocean or lakes (Figure S1). We have excluded one 162 

observational site (ISD station ID: 726130-14755) in the northeastern United States, which has an 163 

unrealistic number of damaging gust measurements (more than 1,000 hours), inconsistent with the 164 

surrounding sites. We note that although we only use measurements passing all the available quality 165 

control checks, spatial quality control is missing in the ISD (Smith et al., 2011). Figure S2a shows that 166 

some sites in the eastern United States have apparently more damaging gust occurrences than their 167 

surrounding sites, but the occurrence frequencies are less than those stations around the Rocky 168 

Mountains. We do not have enough evidence to exclude them from the study. The quality of the ISD gust 169 
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speed measurements will undoubtedly be a source of uncertainty for our derecho dataset. In addition, only 170 

420 ISD sites have continuous gust measurements from 2004 to 2021, while the rest have gust 171 

measurements only during part of the study period. The availability of ISD observational sites is another 172 

source of uncertainty when identifying derechos. 173 

2.2.2 SED gust speed reports 174 

The SED is also maintained by the NOAA NCEI and serves as NOAA’s official publication 175 

documenting storms and other significant weather phenomena that are intense enough to cause 176 

socioeconomic damage (NOAA/NCEI, 2025). The National Weather Service (NWS) compiles storm data 177 

from a wide range of sources beyond meteorological weather stations and submits them to NCEI. These 178 

sources include, but are not limited to, local and federal law enforcement agencies, government officials, 179 

Skywarn spotters, NWS damage surveys, the insurance industry, newspaper clipping services, media 180 

reports, private companies, and individuals. While the NWS strives to use the best available information, 181 

some data in the SED remain unverified due to time and resource constraints. Consequently, the dataset 182 

suffers from inaccuracies, inconsistencies, and gaps (Santos, 2016). For example, Ardon-Dryer et al. 183 

(2023) found that half of the “dust storms” recorded in the SED had visibilities larger than 1 km, 184 

indicating misclassification, while many actual dust storms with visibilities of £ 1 km were missing from 185 

the dataset. These issues were attributed in part to the diverse sources contributing to the SED and the 186 

lack of systematic verification and consistency checks. Considering these limitations, particularly the fact 187 

that many strong (³ 17.43 m s-1) and damaging gust reports in the SED are estimated rather than 188 

measured, the derecho and DMCS dataset developed from SED in this study is published as a supplement 189 

to the dataset derived from the ISD. 190 

From the SED, we extract measured and estimated gusts, along with their corresponding locations 191 

and timestamps, for the period from 2004 to 2021. The raw SED files are available at 192 

https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/ (NOAA/NCEI, 2025). If a gust report is 193 

https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/
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recorded as a segment, containing both a start and end location with respective timestamps, we process it 194 

as two independent reports: one at the start location and time and another at the end location and time. 195 

Although the accuracy of the SED gust speeds is not guaranteed, the database provides significantly more 196 

strong and damaging gust reports than the ISD due to its inclusion of estimated gusts from various 197 

sources. Approximately 82% of SED gust reports from 2004 to 2021 are estimated, while only 18% are 198 

measured. However, it is important to note that not all measured strong or damaging gusts are captured in 199 

the SED. Given the distinct limitations of both the ISD and SED datasets, we apply different thresholds 200 

criteria for derecho detection depending on the dataset used. These criteria are described in detail in 201 

Section 4. 202 

3 Machine learning identification of bow echoes 203 

A bow echo is a bow-shaped pattern with high reflectivity values on a radar image, but its vague 204 

definition makes it hard to identify them extensively and efficiently using traditional methods. Instead, we 205 

train a semantic segmentation CNN to identify bow echoes automatically from two-dimensional ZHmax 206 

images by performing pixel-level labeling of the bow echo extent. Compared to the manual examination 207 

of radar images, machine learning can save a tremendous amount of time and eliminate subjective bias. 208 

3.1 Bow Echo Samples 209 

3.1.1 Initial manual sampling 210 

Our initial bow echo samples are generated based on the named derechos on Wikipedia 211 

(https://en.wikipedia.org/wiki/List_of_derecho_events; last access: 19 March 2023), corresponding to 54 212 

accompanying DMCSs in the MCS dataset. We manually label times with apparent bow echoes through 213 

visual inspection of hourly ZHmax associated with the tracked DMCSs. Each positive sample is a 384 ´ 214 

384-pixel (~1536 km ´ 1536 km) ZHmax image centered at the corresponding DMCS with a bow echo 215 

https://en.wikipedia.org/wiki/List_of_derecho_events
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embedded (Figure 2). The number of bow echo samples varies among different DMCSs, and 566 positive 216 

samples are obtained in total. 5400 negative samples are also randomly selected from the radar reflectivity 217 

dataset. 218 

 219 
Figure 2. Four examples of bow echoes from the named derecho accompanying DMCSs. The color shading is 220 
for ZHmax. The subplot titles indicate the bow echo timings. For example, 20130613T04:00:00Z represents 4:00 221 
UTC on 13 June 2013. 222 

3.1.2 CNN-based selection of additional bow echo samples 223 

Our initial attempt at developing an automated bow echo detection scheme is to train a classifier 224 

CNN ¾ “Dense Net” (Huang et al., 2019) that ingests 384´384-pixel single-channel ZHmax images and 225 

outputs a single classification indicating the presence of a bow echo. Dense Nets are notable for their 226 

large number of skip connections (which create multiple paths for data to flow through the network 227 

without passing through every layer), and they can achieve comparable performance to very large 228 

classifier CNNs with only a fraction of the trainable parameters. Unfortunately, our manual inspection 229 
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finds that a Dense Net trained on the aforementioned initial samples has a very high false positive rate 230 

when applied to the full radar dataset. Although this Dense Net is unsuitable for deployment, the 231 

collection of new positive samples it successfully identifies allows us to supplement the list of known 232 

bow echoes and develop a more diverse training set for the following segmentation model. 233 

3.1.3 Pseudo-labeling 234 

By combining the initial samples and the manually selected true positives from the low-quality 235 

Dense Net model, we build a semantic segmentation training dataset of 500 unique bow echo snapshots 236 

and corresponding hand-drawn bow echo masks. While 500 positive samples are relatively small for a 237 

deep learning application, these samples have higher diversity than the initial bow echoes generated from 238 

the named derechos on Wikipedia because they are drawn from more distinct events, and, in general, 239 

semantic segmentation CNNs can be successfully trained with far fewer samples than image classification 240 

CNNs (Bardis et al., 2020). 241 

A relatively low-skill version of the semantic segmentation CNN is trained using the 500 hand-242 

labeled radar images and then applied to the entire ZHmax dataset. We manually review the bow echo 243 

masks produced by this segmentation model and add some of the high-quality masks to a new training 244 

dataset. We also collect some of its false positive masks as new negative samples in the new training 245 

dataset. This is a semi-supervised learning approach known as “pseudo-labeling” or “bootstrapping” (Van 246 

Engelen and Hoos, 2020; Ouali et al., 2020) and is commonly applied to semantic segmentation problems 247 

because of the high expense of hand-drawn labels (Peláez-Vegas et al., 2023). The pseudo-labels and 248 

hand-labels are combined into a final training dataset with 3677 samples, including 1699 bow echoes and 249 

1978 negative samples, which is used to train the much more skillful semantic segmentation model in 250 

Section 3.2. 251 
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3.1.4 Data augmentation 252 

To combat the limited training data further, we use several data augmentation strategies when 253 

constructing training batches. During training, positive and negative samples are selected with equal 254 

probability, and a batch size of 8 is used. First, random salt and pepper noise is added to 10% of the pixels 255 

in each sample with a probability of 0.1. Second, weak random Gaussian noise with a standard deviation 256 

of 5 dBZ is added to all the pixels in each sample with a probability of 0.1. Third, samples are flipped in 257 

up-down and left-right directions, each with a likelihood of 0.5. Fourth, samples are rotated by 0, 90, 180, 258 

or 270 degrees, each with a probability of 0.25. Fifth, samples are randomly shifted vertically and 259 

horizontally by -5 to 5 pixels. Sixth, the brightness of the sample image is adjusted by a random factor of 260 

-0.6 to +0.2, and the image contrast is randomly adjusted by -0.2 to 0.2. Seventh, the binary target bow 261 

echo masks are multiplied by 0.9, and random noise drawn from a uniform distribution between 0 and 0.1 262 

is added. This is known as “soft labels.” Lastly, both positive and negative samples are blended with 263 

randomly selected negative samples by taking the pixel-wise maximum reflectivity values of the two 264 

samples with a 0.5 likelihood. This last data augmentation is unusual but works well in our application 265 

because a) reflectivity features typically occupy only a fraction of the sample area, with most pixels being 266 

echo-free and b) bow echoes are high-reflectivity features. When the last data augmentation is applied to 267 

a positive sample, the resulting image will typically still contain a bow echo that matches the target mask 268 

well. 269 

3.2 Training of U-Net 3+ CNN 270 

Our final semantic segmentation CNN model (Figure 3) uses the U-Net 3+ architecture (Huang et 271 

al., 2020). U-Net 3+ is a modern variant of the U-Net architecture (Ronneberger et al., 2015) and differs 272 

from the U-Net primarily in the addition of many more skip connections and its multi-resolution loss, 273 

which computes loss on rescaled classification masks generated from feature representations at various 274 

model levels. 275 
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U-Net models were originally developed for the segmentation of biomedical imagery but have been 276 

applied to image segmentation problems in other fields and are broadly useful for any image-to-image 277 

mapping tasks where the input and target data are the same (or similar) size and shape and merging multi-278 

resolution information from the input data is important. U-Net CNNs have been applied to a myriad of 279 

problems in the atmospheric sciences, such as segmentation (Galea et al., 2024; Kumler-Bonfanti et al., 280 

2020), super resolution (Geiss and Hardin, 2020; White et al., 2024), physics parameterization 281 

(Lagerquist et al., 2021), downscaling (Sha et al., 2020), and weather forecasting (Weyn et al., 2021). 282 

Perhaps most closely related to this study is Mounier et al. (2022), who used a U-Net to detect bow 283 

echoes in simulated radar reflectivity images from a forecast model. A U-Net is an appropriate choice for 284 

the segmentation of bow echoes because merging multi-resolution information is crucial for identifying 285 

the feature. For example, bow echoes have high reflectivity at the pixel scale, strong reflectivity gradients 286 

in the transverse direction at the mid-scale (tens of pixels), and the characteristic bow shape at the large 287 

scale (hundreds of pixels). 288 

 289 
Figure 3. A diagram of our semantic segmentation CNN architecture. The CNN inputs a 384´384-pixel radar 290 
image (ZHmax scaled to 0-255) and outputs a bow echo mask of the same size. The blue ovals represent 3´3 291 
convolutional layers, each followed by a batch normalization layer and a leaky rectified linear unit (ReLU) 292 
activation function. The first number in each blue oval indicates the spatial size (for both the width and height) 293 
of the output tensor, and the second represents the number of output channels. The solid arrows indicate 294 
connections in a standard U-Net architecture, with the downward arrows corresponding to 2´2 max-pooling 295 
and the upward arrows corresponding to 2´2 bilinear upsampling operations. The dashed lines represent the 296 
skip connections introduced in the U-Net 3+ architecture. These skip connections use max-pooling for spatial 297 
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downsampling and bilinear interpolation for upsampling, followed by a 16-channel 3´3 convolutional layer 298 
with a linear activation. Layers with multiple inputs use channel-wise concatenation to combine those inputs. 299 
During training, the output tensors from the layers in the upsampling branch (blue ovals with red boundaries) 300 
are scaled to the output spatial resolution and passed through a 1-channel 1´1 convolutional layer with sigmoid 301 
activation. Training loss is computed on all 6 of the resulting masks. At inference time, only the mask 302 
outputted from the upper-rightmost layer is used. 303 

Our U-Net 3+ CNN ingests 384´384-pixel ZHmax images where ZHmax have been clipped to a 0-50 304 

dBZ range and then linearly mapped to a range of 0-255. It is trained using binary cross entropy loss 305 

(Bishop, 2006) on masks generated from its 384, 192, 96, 48, 24, and 12-pixel resolution feature 306 

representations (Huang et al., 2020), though only the full-resolution (384´384-pixel) output mask is used 307 

at inference time. A detailed diagram of the model architecture is shown in Figure 3. Notably, although 308 

the model is trained using 384´384-pixel samples, it is a fully convolutional model and can process inputs 309 

of variable sizes. 310 

 We use the Adam optimizer (Kingma and Ba, 2014) with the Keras default settings (Ketkar, 2017) 311 

and an initial learning rate of 0.001 for training. The U-Net 3+ CNN is first trained for 60 epochs 312 

composed of 1000 randomly generated training batches of 8 samples each. Then, we decrease the learning 313 

rate to 0.0001 and train the CNN for an additional 20 epochs. The training duration is determined by 314 

performing an initial 5 rounds of training with 5-fold cross-validation and approximating the epoch 315 

numbers to reduce the learning rate and stop training when the mean intersection over union metric 316 

plateaus for the validation set. Instead of random shuffling, the validation sets are separated from the 317 

training dataset in temporally contiguous chunks to avoid any overlap because, sometimes, multiple 318 

samples may be drawn from different times of the same convective system. 319 

3.3 Evaluation of the Semantic Segmentation CNN 320 

We apply the trained U-Net 3+ CNN to the entire ZHmax dataset and obtain potential bow echo masks 321 

over the United States between 2004 and 2021 (Figure 4). As a final post-processing step, we ignore 322 
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“bow echo” masks with less than 20 pixels (~320 km2), which are too small to be classified as bow 323 

echoes. 324 

 325 
Figure 4. Examples of the U-Net 3+ CNN identified bow echoes (purple contours) based on ZHmax (color 326 
shading) at 5:00 UTC on 17 June 2014. 327 

Instead of validating our segmentation model at a pixel scale, as during the training stage, we prefer 328 

evaluating its performance in detecting bulk bow echo features. In other words, we care about whether the 329 

segmentation model can recognize the existence of bow echoes and capture their rough locations. Minor 330 

spatial biases in bow echo coverage do not affect our below derecho identification much, which contains 331 

various flexible criteria to minimize their impacts, such as the buffer zone within 100 km of bow echoes. 332 

We also choose to validate the segmentation CNN specifically on MCS events where high reflectivity 333 

features are present. Identifying low-reflectivity and echo-free images as non-bow echoes is desirable for 334 

our segmentation model but trivial and not of particular interest for creating a derecho climatology. 335 

To build a testing dataset, we randomly select 217 MCS-associated ZHmax images in 2010 based on 336 

the following requirements. Each image is from a different MCS event. The images have variable sizes 337 

and contain the full spatial extents of the MCSs at the selected times; however, they must be at least 338 
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192x192 pixels and cannot be drawn from a day that also has a sample in the training dataset. Three of the 339 

authors independently assessed the presence of bow echoes in each image, the results of which are then 340 

compared to the segmentation CNN (Table 1). Overall, the CNN model identifies 57 bow echoes, while 341 

human labelers 1, 2, and 3 identify 46, 76, and 66, respectively. The average human-human agreement 342 

and F1 scores are 82% and 0.69, while the average human-CNN agreement and F1 scores are 82% and 343 

0.67 (Table 1). The test indicates that, on the one hand, the detection of bow echoes in radar images is 344 

prone to subjective bias; on the other hand, the performance of the segmentation CNN is comparable to 345 

that of a human in identifying bow echoes. We emphasize that the CNN bow echo identification is only 346 

one component in our following derecho detection criteria, and the adverse impact of this uncertainty is 347 

mitigated by other constraints (e.g., almost continuous bow echo existence and strong gusts in proximity 348 

with bow echoes). 349 

Table 1 Evaluation of the performance of the segmentation CNN in the bow echo identification1 350 
 CNN (572) Person 1 (46) Person 2 (76) Person 3 (66) 

CNN  84% 79% 83% 
Person 1 0.66  77% 88% 
Person 2 0.66 0.59  81% 
Person 3 0.70 0.77 0.70  

1The upper triangular part of the table shows agreement between two independent identifications 351 
(𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡  =   !"#!$

!"#!$#%"#%$
), and the lower triangular part shows F1 scores (𝐹! =

"#$
"#$%&$%&'

), which is 352 
a better indication of the ability to agree on positives when positives are a minority (Taha and Hanbury, 2015). 353 
Here, TP denotes true positive, TN refers to true negative, FP is false positive, and FN is false negative. 354 
Notably, for the comparison between any two independent identifications, we consider one as “true” and 355 
evaluate the other against it (and which set of classifications is considered true does not impact these two 356 
metrics). 357 
2The number of identified bow echoes from the 217 images. 358 

We match the segmentation CNN detected bow echoes with MCS events from the MCS dataset and 359 

identify those MCS-associated bow echoes, which are used to identify derechos in the following section. 360 

Figure 5 shows the spatial distribution of MCS-associated bow echo occurrences from 2004 to 2021, 361 

which is similar to the MCS spatial distribution with more frequent occurrences in the Great Plains (Li et 362 

al., 2021). 363 
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 364 
Figure 5. Spatial distribution of the number of MCS-associated bow echoes from 2004 to 2021. Here, we use 365 
bow echo masks produced by the segmentation CNN and exclude bow echoes that do not overlap with MCS 366 
events. This figure excludes bow echoes from those non-derecho-producing MCSs that overlap with tropical 367 
cyclones (TCs) from the International Best Track Archive for Climate Stewardship (IBTrACS) Version 4 data 368 
over the North Atlantic basin (Knapp et al., 2010) following the approach of Feng et al. (2021). 369 

4 Derecho identification 370 

4.1 Derecho definition 371 

As mentioned above, we adopt the derecho definition proposed by Corfidi et al. (2016) but revise 372 

certain criteria based on previous studies (Johns and Hirt, 1987; Bentley and Mote, 1998) and dataset 373 

limitations to facilitate objective identification of derechos. Our final criteria are summarized below, with 374 

detailed explanations provided afterward (Figure 6). 375 

1) A derecho must be attached to an MCS from the MCS dataset. 376 

2) The derecho must persist for at least 5 hours, with a bow echo present for at least 80% of its 377 

lifetime. In addition, gaps between successive bow echo occurrences cannot exceed two hours. 378 
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All bow echoes must belong to the same bow echo series, as defined in the subsequent 379 

explanation. 380 

3) The derecho bow echo series must exhibit forward propagation, based on two modified criteria 381 

from Corfidi et al. (2016): 382 

• The acute angle between the averaged bow echo orientation and the bow echo series’ 383 

propagation direction must exceed 45° (Figure 6). 384 

• The propagation speed of the bow echo series must be at least 30% greater than the 385 

background mean wind speed at 500 hPa, derived from ERA5 data. The methodology 386 

for calculating the averaged bow echo orientation, bow echo series’ propagation 387 

direction and speed, and the background mean wind speed is detailed in Appendix A. 388 

4) Derecho-associated gust speed criteria vary based on the gust speed source dataset: 389 

• For ISD data: Within 100 km of the derecho-accompanied bow echoes (termed the 390 

“derecho area”), there must be at least 10 sites with strong gusts (³ 17.43 m s-1) and at 391 

least 1 site with damaging gusts (³ 25.93 m s-1). 392 

• For SED data: At least 10 locations must report damaging gusts. 393 

• The fraction of sites with strong/damaging gusts (ISD) or damaging gusts (SED) must be 394 

³ 20%. 395 

• Gaps between successive strong (ISD) or damaging (SED) gust reports cannot exceed 396 

two hours. 397 

• The gust swath must be at least 650 km in length and 100 km in width. Swath length and 398 

width calculations are explained below. 399 

 400 
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 401 
Figure 6. Schematic of the automated detection algorithm. Red and pink objects represent bow echoes. At time 402 
t2, there are two bow echoes belonging to different bow echo series due to their great distance from each other. 403 
In contrast, the two bow echoes at t3 are from the same bow echo series since they are close to each other. The 404 
pink bow echo at t2 is far from the bow echoes at t1 and t3. Therefore, they belong to different bow echo series. 405 
The sites (green dots) with strong (for ISD) or damaging (for SED) gusts outside the 100-km buffer zone of the 406 
bow echo series (i.e., the derecho area) are excluded from the strong (ISD) or damaging (SED) gust swath 407 
calculation. The black arrow indicates the propagation direction of the bow echo series, and the violet arrow 408 
indicates the averaged bow echo orientation. Their acute angle must be > 45° for a derecho. The upper-right 409 
corner illustrates how the major and minor axis lengths of the gust fitted ellipse are projected onto another 410 
coordinate paralleling to the bow echo series’ propagation direction to calculate gust swath length and width. 411 

4.2 Explanation of Key Criteria and Adjustments 412 

Criterion 1: MCS Association 413 

This is a straightforward requirement and a major advantage of our approach. Due to the lack of a 414 

reliable MCS dataset, previous studies often spent considerable effort identifying spatiotemporally 415 

continuously propagating convective systems (Squitieri et al., 2023). 416 

Criterion 2: Bow Echo Occurrence and Series Definition 417 
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The 80% bow echo occurrence threshold and the ≤  2-hour lapse time between consecutive bow 418 

echoes account for uncertainties in the segmentation CNN identification process and the diversity of MCS 419 

events. 420 

A bow echo series is defined in two steps: 421 

1. Spatial grouping: Within a given MCS, bow echoes occurring in the same hour are categorized 422 

into separate series if they are more than 100 km apart. 423 

2. Temporal linking: Successive bow echoes (no more than 2 hours can elapse between their 424 

occurrences) are considered part of the same series if they are less than 200 km apart, even if 425 

they were initially classified as separate series. 426 

Due to merging or splitting or the complex nature of some convective systems, a bow echo at one 427 

hour may be far from the bow echoes right after or before that hour or another bow echo during that hour 428 

(Figure 6). In such a rare situation, these bow echoes are unlikely caused by the same physical process 429 

and, therefore, do not belong to the same bow echo series (Figure 6). The above stepwise approach 430 

ensures that bow echoes from different physical processes are not incorrectly grouped. 431 

Criterion 3: Forward Propagation Adjustment 432 

We modify the Corfidi et al. (2016) criterion of “nearly orthogonal” to > 45° for the acute angle 433 

between the averaged bow echo orientation and the bow echo series’ propagation direction. This 434 

adjustment:  435 

• Accounts for segmentation CNN uncertainties, particularly in the propagation direction 436 

estimation. 437 

• Reduces false exclusions caused by minor variations in orientation. 438 

Criterion 4: Gust Speed and Swath Calculation 439 
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The 20% fraction threshold is introduced to exclude MCSs potentially associated with extratropical 440 

cyclones, which often produce isolated strong or damaging gusts but weaker gusts across most sites. 441 

To determine the gust swath length and width: 442 

1. We fit an ellipse around sites with strong (ISD) or damaging (SED) gusts in the derecho area 443 

(Figure 6). 444 

2. Since the ellipse may not align with the bow echo series’ propagation direction, we project its 445 

major and minor axes onto a new coordinate system based on the bow echo propagation 446 

direction, as shown on the upper right corner of Figure 6. The projected major or minor axis 447 

length that is parallel to the bow echo propagation direction is the gust swath length, and the 448 

projected minor or major axis length that is perpendicular to the propagation direction is the 449 

swath width. Notably, both major and minor axis lengths can be projected parallelly and 450 

perpendicularly. If major axis length is projected parallelly, the minor axis length must be 451 

projected perpendicularly, and vice versa. Thus, we obtain two pairs of swath length and width. 452 

3. We consider the uncertainties of the bow echo propagation direction when conducting the 453 

projection. In detail, we conduct projections iteratively by varying the propagation direction 454 

values with an interval of 0.2° within ±10° of the initial calculated bow echo series’ propagation 455 

direction. Therefore, we obtain *&'
'.&
+ 1- × 2 = 202 pairs of swath length and width in total. 456 

As long as one pair of swath length and width satisfies length ≥ 650 km and width ≥ 100 km, 457 

Criterion 4 is satisfied. 458 

If no derecho is identified for a given MCS using the above definition criteria, we can relax the 459 

distance requirement (100 km) in Criterion 4 to be within 200 km of the derecho-associated bow echoes 460 

that satisfy the condition that there is no bow echo from the same bow echo series an hour ago or later 461 

during the derecho’s lifetime. If the bow echo is in the first hour of the derecho’s lifetime and there are no 462 

bow echoes for the corresponding MCS an hour ago, we can also extend the distance threshold to 200 km. 463 
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This is similar to the bow echo in the last hour of the derecho’s lifecycle but without CNN-identified bow 464 

echoes an hour later. Notably, the distance extension is optional. For the bow echoes satisfying the above 465 

conditions, the distance threshold can be either 100 or 200 km. Using 100 km is superior to using 200 km 466 

until we find a derecho if it exists. The distance extension is also intended to minimize the impacts of the 467 

bow echo identification error. If a bow echo is missed in the semantic segmentation procedure, extending 468 

the distance threshold can include strong and damaging gusts associated with the missed bow echo, thus 469 

slightly reducing the derecho detection error. 470 

We emphasize that, in Criterion 4, our ISD gust speed criteria are weaker than the SED gust speed 471 

criteria as well as those of previous studies (Squitieri et al., 2023; Bentley and Mote, 1998; Johns and 472 

Hirt, 1987), which also estimated the gust swath based on SED damaging gusts. As mentioned in Section 473 

2.2.2, most SED gust reports are estimates, while ISD provides gust measurements from weather stations. 474 

SED estimates can capture potential damaging gust occurrences over a much larger area, although with 475 

large uncertainties. In contrast, due to the limited coverage of observational sites, real-time ISD 476 

measurements may miss substantial damaging gust occurrences in nearby regions. Therefore, we lower 477 

the gust speed criteria to capture potential derechos when using ISD measurements. It does not mean that 478 

the ISD-based derechos are weaker than the SED-based ones or even not derechos, as elaborated in 479 

Section 5. 480 

4.3 Derecho detection results and postprocessing 481 

Using ISD gust measurements, the objective detection algorithm identifies 245 derechos and 482 

associated DMCSs between 2004 and 2021. A notable example is the June 2012 North American derecho 483 

(Figure 7). Figure 7a displays the CNN-identified bow echoes of the DMCS, and Figure 7b shows the 484 

derecho area and associated gust speeds. As expected, the derecho produced widespread strong gusts. 485 
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To further refine the ISD dataset, we manually review all detected derechos and DMCSs, removing 486 

31 false detections due to erroneous bow echo identification (Figure S3). In addition, we examine 1099 487 

MCS events that produce extensive strong (³ 10 observational sites) and damaging (³ 1) gusts over land 488 

areas with a strong and damaging gust swath (fitted ellipse) of at least 650 ´ 100 km2 (the ellipse’s major 489 

and minor axis lengths). Our manual examination primarily focuses on bow echo identification errors but 490 

also slightly lower the forward propagating criteria thresholds for two potential derechos. For those MCSs 491 

that are potential DMCSs based on our visual inspection, we manually label their bow echo occurrences 492 

that fail the segmentation identification during potential derecho lifetimes (Figure S4) and rerun the 493 

automated derecho detection algorithm. Finally, 60 additional derechos are added, bringing the final total 494 

to 274 (245 − 31 + 60 = 274). 495 

Using the same procedures for SED gust reports, we identify 220 derechos. 496 

 497 
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Figure 7. (a) Spatial evolution of ZHmax (color shading) and CNN-identified bow echoes (purple contours) from 498 
the DMCS associated with the June 2012 North American derecho. (b) Similar to (a) but for the derecho 499 
period. The derecho lasted from 17:00 UTC on 29 June to 6:00 UTC on 30 June 2012. The misty rose shading 500 
in (b) corresponds to ZHmax ³ 40 dBZ, while the gray shading refers to the derecho area. Colored dots are the 501 
same as those in Figure 1c, except only the derecho-associated gust measurements are shown. 502 

5 Dataset evaluation and uncertainty 503 

5.1 Evaluation against existing datasets 504 

 Between 2004 and 2021, our automated detection algorithm identifies 274 derechos (~ 15 per year) 505 

using ISD gust measurements and 220 derechos (~12 per year) using SED gust reports.. These numbers 506 

fall within the range of previous estimations (6.1-20.9 per year) based on a 400 km swath length threshold 507 

and conventional derecho definitions, as introduced in Section 1 (Squitieri et al., 2023; Johns and Hirt, 508 

1987; Bentley and Mote, 1998; Evans and Doswell, 2001; Guastini and Bosart, 2016; Ashley and Mote, 509 

2005). However,  our derecho counts are substantially higher than those reported by Corfidi et al. (2016), 510 

who identified only 25 derechos in the warm seasons of 2010-2014 using a 650 km swath length 511 

threshold. These discrepancies likely stem from differences in the methods used to calculate gust swath 512 

length and width, the criteria for forward propagation, and the diverse observational source datasets used 513 

in the derecho detection. 514 

To further evaluate our dataset, we compare it against the NOAA Storm Prediction Center (SPC) 515 

derecho data from 2004 and 2005 (https://www.spc.noaa.gov/misc/AbtDerechos/annualevents.htm; last 516 

access: November 17, 2023) (Table 2). This dataset provides detailed timings and locations of derechos or 517 

convective windstorms of near-derecho size, and it is the only available dataset that we can use to 518 

evaluate our derecho dataset at the event scale. However, it is important to note that the NOAA SPC data 519 

does not explicitly distinguish between derechos and convective windstorms of near-derecho size, and it 520 

relies on the conventional derecho definition, which can significantly influence derecho counts. 521 

Additionally, the NOAA SPC data is based on SED gust reports and lacks an underlying MCS database. 522 

https://www.spc.noaa.gov/misc/AbtDerechos/annualevents.htm
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The NOAA SPC dataset contains 50 derechos and near-derecho size convective windstorms for 2004 523 

and 2005, 15 of which are detected by our algorithm using ISD gust measurements. The number increases 524 

to 19 when using SED gust reports. Five of the 50 events are entirely absent in our MCS dataset, possibly 525 

because their associated MCSs moved too rapidly to satisfy PyFLEXTRKR’s 50% areal overlap criterion 526 

using hourly satellite and NEXRAD dataset, or they failed to meet other MCS requirements in 527 

PyFLEXTRKR (Feng et al., 2019). The remaining discrepancies arise from factors such as an insufficient 528 

number of damaging gust reports or bow echoes, too small a gust swath, or lack of forward propagation. 529 

Conversely, our detection algorithm identifies several derechos (4 from ISD and 3 from SED) that are not 530 

present in the NOAA SPC dataset. Overall, while most derechos identified by our algorithm are captured 531 

in the NOAA SPC data, our derecho counts are notably lower due to our stricter physically-based derecho 532 

definition, which reduces the number of events classified as derechos compared to conventional 533 

definitions. 534 

Cross validation between the ISD-based and SED-based datasets further supports the robustness of 535 

our detection algorithm (Figure 8). A total of 172 derechos are detected by both datasets, while 48 events 536 

are identified only in SED and 102 events are unique to ISD. Figure 8 also highlights discrepancies 537 

between the two datasets, with more ISD-based than SED-based derechos in 2008, 2010, 2014, 2015, 538 

2019, and 2020, while their counts remain similar in other years. Despite these differences, the two 539 

datasets exhibit similar interannual variability, with a temporal correlation coefficient of 0.72. The general 540 

agreement between the two datasets support our decision to use different gust speed thresholds for ISD 541 

and SED in the detection algorithm. However, the observed discrepancies also underscores the critical 542 

role of the source datasets in influencing detection results, highlighting the need for more reliable gust 543 

speed observations. 544 
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 545 
Figure 8. Bar chart of the annual derecho numbers from the ISD-based and the SED-based datasets from 2004 546 
to 2021. Gray shading denotes derechos captured by both datasets, red shading refers to derechos only 547 
identified when using ISD gust observations, and blue shading represents SED-only derechos. 548 
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Table 2. Evaluation of our derecho dataset against the NOAA SPC data in 2004 and 2005 549 

 Year 2004 Year 2005 Sum 

NOAA SPC 24 26 50 

Captured by the ISD dataset 7 8 15 

Captured by the SED dataset 10 9 19 

Derechos in ISD but not in NOAA SPC 1 3 4 

Derechos in SED but not in NOAA SPC 1 2 3 

NOAA SPC events missed in the MCS dataset 2 3 5 

550 
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5.2 Discussion on dataset uncertainty 551 

Besides the uncertainties in gust speed observations, we acknowledge additional sources of 552 

uncertainty affecting our dataset. 553 

5.2.1 Uncertainty from the MCS dataset 554 

As noted in our evaluation against the NOAA SPC data, uncertainties arise from the MCS dataset 555 

used in derecho detection. The 50% areal overlap threshold in PyFLEXTRKR, which links consecutive 556 

cold cloud shields (CCSs), may fail to capture very fast-moving convective systems using hourly satellite 557 

and NEXRAD data. Lowering this threshold would undoubtedly increase the number of identified MCSs 558 

and derechos, but it could also introduce false tracks that do not belong to the same storm system. The 559 

50% threshold is widely used in various versions of the FLEXTRKR algorithms (Li et al., 2021; Feng et 560 

al., 2023; Feng et al., 2019) and other tracking algorithms based on overlap (e.g., (Whitehall et al., 2015)). 561 

While we maintain this threshold in our study, users should be aware of uncertainties related to adjustable 562 

parameters (e.g., areal overlap threshold, MCS duration, and major axis length) and limitations in the 563 

observational datasets used by PyFLEXTRKR (Feng et al., 2019; Li et al., 2021). 564 

5.2.2 Uncertainty from the bow echo identification 565 

Another key uncertainty arises from the segmentation CNN used to identify bow echoes. While our 566 

evaluation in Section 3.3 confirms high accuracy, we acknowledge that some derechos may be missed, 567 

while some non-derechos may be falsely classified as derechos due to the bow echo identification errors. 568 

To mitigate this issue, we conducted extensive manual verification of derecho and DMCS events, as well 569 

as other MCS events producing widespread strong gusts. However, the manual examination introduces 570 

subjective biases, and completely eliminating bow echo identification uncertainties remains challenging. 571 
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5.2.3 Uncertainty from derecho definition criteria 572 

Our detection algorithm relies on several adjustable parameters and methodological choices, all of 573 

which influence the number of identified derechos. For example, if we require at least three very 574 

damaging gust reports (³ 33.53 m s-1) when using SED, the derecho count decreases from 220 to 149. As 575 

the first climatological derecho dataset to incorporate bow echoes and provide detailed event tracking, a 576 

full uncertainty assessment of all tunable parameters is beyond the scope of this study. However, our 577 

sensitivity tests indicate that changes to key parameters (e.g., reducing the strong gust fraction threshold 578 

to 10% or the number of sites with strong gust reports to 5) do not substantially alter the derecho spatial 579 

distribution or seasonal variation patterns (see Section 6). Furthermore, our dataset is designed to be 580 

flexible: we store all key parameters, allowing users to apply stricter thresholds if needed to focus on 581 

stronger derechos. 582 

In summary, although our automated detection algorithm employs a physical-based derecho 583 

definition rather than conventional definitions, our derecho counts are comparable to or slightly lower 584 

than previous estimations, which is expected given our stricter criteria. Cross-validation between ISD-585 

based and SED-based datasets supports the high quality of our derecho dataset and the reliability of our 586 

detection algorithm. However, users should be aware of the various sources of uncertainty in the dataset 587 

generation, particularly those related to gust speed observations, MCS tracking criteria, bow echo 588 

identification, and the choice of derecho definition parameters. 589 

6 Derecho climatological characteristics 590 

We primarily use the ISD-based derecho dataset to conduct the following climatological analyses, 591 

unless stated otherwise. 592 
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6.1 Annual statistics 593 

Figure 8 displays the annual derecho numbers from 2004 to 2021. There is an apparent jump in the 594 

derecho number before (~10 derechos per year) and after 2007 (~15 derechos per year), which may be 595 

partially related to the general increase in the number of gust speed observational sites from 2004 to 2010 596 

(Figure S5). Figure 9 shows the spatial distribution of yearly averaged annual ISD-based derecho 597 

numbers between 2004 and 2021. The central Great Plains has the most frequent derecho occurrences, 598 

extending to Oklahoma in the south, Iowa in the north, Kansas in the west, and Illinois in the east. The 599 

areas with frequent derecho occurrences are generally consistent with previous studies (Coniglio and 600 

Stensrud, 2004; Guastini and Bosart, 2016; Johns and Hirt, 1987; Ashley and Mote, 2005), although some 601 

differences are identified. For example, several studies identified a remarkable northwest-southeast axis 602 

with frequent derecho occurrences extending from southern Minnesota to Ohio, which is observable but 603 

not apparent in our spatial distribution (Johns and Hirt, 1987; Coniglio and Stensrud, 2004; Guastini and 604 

Bosart, 2016). The differences can be caused by many factors, such as distinct derecho definitions and 605 

observational datasets used in these studies. When we use SED gust reports in derecho detection, the 606 

spatial distribution of derecho counts shows a more noticeable northwest-southeast axis but with lower 607 

derecho numbers than the ISD-based dataset (Figure S6). 608 
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 609 
Figure 9. Spatial distribution of yearly averaged annual derecho numbers (ISD-based) over the United States 610 
east of the Rocky Mountains between 2004 and 2021. Here, we use derecho areas as derecho spatial coverages. 611 

6.2 Monthly statistics 612 

Figure 10 displays the yearly averaged seasonal variations in the derecho count, with remarkably 613 

more derechos in the warm than cold seasons, a feature consistent between ISD- and SED-based datasets 614 

and widely captured by previous studies (Ashley and Mote, 2005; Squitieri et al., 2023; Bentley and 615 

Sparks, 2003). However, our dataset has almost no derechos in the code season, which is generally not the 616 

case in previous studies. We attribute the difference to our usage of a physically-based derecho definition, 617 

which excludes many externally forced convective systems (e.g., extratropical cyclones), which are 618 

considered serial derechos in previous studies. 619 

Figure 11 shows the spatial distributions of the monthly-mean derecho counts based on ISD between 620 

2004 and 2021. On the one hand, many more derechos occur in the warm than cold months. On the other 621 

hand, we find remarkable shifts in the areas with the most frequent derecho occurrences from April to 622 

August. The region with the most derechos moves northward during the warm season. The northward 623 
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shifts resemble the MCS events (Li et al., 2021). We can identify two axes with frequent derecho 624 

occurrences. One is in the south-north direction along the Great Plains (e.g., June), and the other is in the 625 

west-east direction along the northern Great Plains and Midwest (e.g., July). The axes may represent the 626 

two types (serial and progressive) of derechos mentioned in Squitieri et al. (2023). A follow-up study will 627 

be conducted to investigate the large-scale environmental conditions associated with different types of 628 

derechos based on the developed derecho dataset. The SED-based dataset shows similar features but with 629 

much fewer derechos in June (Figure S7). 630 

 631 
Figure 10. Yearly averaged monthly variations of the derecho numbers between 2004 and 2021. The error bars 632 
denote standard deviations. Gray is for ISD-based derechos, and red colors indicate SED-based derechos. 633 
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 634 
Figure 11. Same as Figure 9 but for yearly averaged monthly derecho numbers (ISD-based) over 2004-2021. 635 

6.3 Wind damage characteristics 636 

We examine the contributions of DMCSs and derechos to ISD damaging gust reports in the United 637 

States within our dataset from 2004 to 2021 (Figures 12, S2, and S8). Overall, MCSs contribute about 638 

15.6% of all damaging gust reports, with the vast majority occurring east of the Rocky Mountains. On 639 

average, DMCSs contribute 4.0%, and derechos contribute 3.1% of all damaging gust occurrences. This 640 

indicates that about one quarter of the damaging gusts associated with MCS events are linked to DMCSs, 641 

much higher than the fraction (~3.5%) of DMCSs in MCSs. This finding aligns with the higher 642 

probabilities of extreme gusts in the gust speed PDF of DMCSs compared to general MCSs, indicating 643 

that DMCSs are more likely to produce extreme gusts than general MCSs (Figure S9). Understanding the 644 
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mechanisms behind their contrast will be a key focus of a follow-up study. Additionally, approximately 645 

75% of DMCS-associated damaging gusts occur during the derecho period, reinforcing the validity of our 646 

derecho definition. As expected, the highest contributions of derechos to damaging gust reports are found 647 

in the Great Plains and Midwest (Figure 12). 648 

 649 
Figure 12. (a) The total numbers of damaging gust occurrences between 2004 and 2021 at ISD weather stations 650 
over the United States east of the Rocky Mountains. (b) Relative contributions of MCS events to the damaging 651 
gust occurrences in (a). (c) is the same as (b) but for relative contributions of DMCSs. (d) is the same as (c), 652 
but for derechos. Similar to Figure 5, we exclude non-derecho-producing MCS events overlapping with TCs in 653 
(b). The dot sizes are proportional to the corresponding values. Light-yellow shading denotes an elevation 654 
greater than 1000 m; light-gray shading denotes an elevation between 400 m and 1000 m; and smoke-white 655 
shading denotes an elevation less than 400 m. Background white is for oceans and lakes. 656 

7 Data availability 657 

The final ISD-based and SED-based derecho and DMCS dataset, along with the corresponding user 658 

guide, is publicly available at https://doi.org/10.5281/zenodo.14835362 (Li et al., 2025). The dataset is 659 

https://doi.org/10.5281/zenodo.14835362
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stored in NetCDF-4 format and compressed by year for easier access. The user guide provides a detailed 660 

description of the data files, ensuring that users can effectively navigate and utilize the dataset.  661 

For each pair of derecho and DMCS, the dataset includes two visualization figures (one for derecho 662 

and the one for the accompanying DMCS) illustrating the temporal evolutions of ZHmax, precipitation, 663 

wind speed, and gust speed throughout their respective lifetimes (e.g., Figures 13 and S10). These figures 664 

offer users an immediate understanding of the basic characteristics of each derecho and DMCS. The 665 

dataset also contains all the derecho-associated gust speeds and various parameter values used in the 666 

derecho definition. This allows users to further categorize derechos by intensity or type, following 667 

approaches similar to Coniglio and Stensrud (2004).  668 

For researchers interested in applying the segmentation CNN for bow echo detection in different 669 

regions or time periods, or in leveraging the CNN-identified bow echoes for other studies, we provide 670 

access to the bow echo segmentation code and datasets at https://doi.org/10.5281/zenodo.10822721 671 

(Geiss et al., 2024). This repository includes the trained CNN weights and detailed usage instructions. 672 

Additionally, a video supplement demonstrating the bow echo segmentation scheme is available at 673 

https://youtu.be/iHWY_OhaVUo and is permanently archived in the above Zenodo repository. 674 

https://doi.org/10.5281/zenodo.10822721
https://youtu.be/iHWY_OhaVUo
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 675 
Figure 13. Similar to Figure 1 but for the spatial evolutions of (a) ZHmax, (b) total accumulated precipitation, (c) 676 
precipitation duration, (d) mean precipitation intensity, (e) hourly maximum wind speed, and (f) hourly 677 
maximum gust speed for a ISD-based DMCS that occurred on 2-4 June 2015. In (e) and (f), the misty rose 678 
shading corresponds to areas with ZHmax ³ 40 dBZ, and the dark gray shading refers to DMCS coverage with 679 
ZHmax < 40 dBZ. The figure title refers to the DMCS timing range. 680 

8 Conclusions 681 

This study presents a high-resolution (4 km and hourly) observational derecho dataset covering the 682 

United States east of the Rocky Mountains from 2004 to 2021. We develop the dataset using a 683 

combination of: 684 

• An MCS dataset generated by the PyFLEXTRKR,  685 
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• Bow echoes identified by a semantic segmentation CNN,  686 

• Hourly gust speed datasets from ISD or SED, and  687 

• Physically based derecho identification criteria. 688 

We evaluate the dataset and its potential uncertainties. The final dataset identifies 274 derechos using 689 

ISD gust measurements and 220 derechos using SED gust reports, with most events occurring in the 690 

warm season (April-August). Analyses indicate that derechos preferentially occur in the Great Plains and 691 

Midwest, with regions of highest frequency shifting northward from April to August. Derechos contribute 692 

3.1% of ISD land-based damaging gusts over the United States between 2004 and 2021. Additionally, 693 

approximately 20% of MCS-associated damaging gusts are produced by derechos.  694 

As the first derecho dataset that integrates machine-learning-based bow echo identification, 695 

physically based definition criteria, and two types of surface gust speed data, the dataset serves as an 696 

independent reference for derecho climatology, complementing previous studies. Beyond climatological 697 

analyses, the dataset can be used to:  698 

• Investigate the derecho initiation and development mechanisms,  699 

• Examine the environmental conditions that promote derecho formation and intensification,  700 

• Assess the impacts of derechos on human safety and property, and 701 

• Select specific events for case studies or to evaluate the numerical model simulations, thanks 702 

to its high spatiotemporal resolution. 703 

Lastly, we emphasize that the automated derecho detection algorithm developed in this study is 704 

versatile and applicable to both observations and model results. The algorithm can be used to assess 705 

model performance and explore the impact of various factors on derechos (Kaminski et al., 2025). 706 
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Appendix A 707 

For each bow echo in the derecho bow echo series, we use the formulas from the MATrix 708 

LABoratory (MATLAB) “regionprops” function (https://github.com/SBU-709 

BMI/nscale/blob/master/original-matlab/features/regionprops.m; last access: January 28, 2025) to 710 

calculate its orientation. Then we apply the three-sigma rule to the orientations to remove outliers until all 711 

the rest orientations lie within three standard deviations of their mean. The mean is the average bow echo 712 

orientation. Implementing the three-sigma rule aims to minimize the adverse impact of the segmentation 713 

CNN identification uncertainties on calculating the averaged bow echo orientation. 714 

The bow echo series’ propagation direction and speed are calculated as follows. Firstly, we compute 715 

the moving direction and speed between any two consecutive bow echoes from the series. As exemplified 716 

in Figure A1, we assume that the bow echo at time t1 would move to the location of bow echo t1’ at time t2 717 

if the bow echo shape remained unchanged. The location of bow echo t1’ is determined by its spatial 718 

correlation coefficient with bow echo t2, and the location with the largest spatial correlation coefficient is 719 

what we want. Since bow echoes t1 and t1’ have the same shape, it is straightforward to calculate the 720 

moving direction and speed between them, which are considered the moving direction and speed between 721 

bow echoes t1 and t2. Compared to using the centroid points of bow echoes t1 and t2, our approach can 722 

reduce the calculation bias when bow echoes t1 and t2 have distinct shapes and sizes. After we obtain all 723 

the moving directions and speeds between any two consecutive bow echoes, we apply the 1.5 × 724 

Interquartile Range (IQR) rule to remove outliers, considering potential CNN bow echo identification 725 

errors. Lastly, the median of the remaining moving speed values is considered the bow echo series’ 726 

propagation speed, while the average of the remaining move direction values is considered the bow echo 727 

series’ propagation direction. 728 

https://github.com/SBU-BMI/nscale/blob/master/original-matlab/features/regionprops.m
https://github.com/SBU-BMI/nscale/blob/master/original-matlab/features/regionprops.m
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 729 
Figure A1. Schematic of the bow echo moving direction and speed calculation between two consecutive 730 
(t1 and t2) bow echoes. Bow echo t1’ is the same as bow echo t1 but at a different location so that the 731 
spatial correlation coefficient between bow echoes t1’ and t2 reaches the maximum. The moving direction 732 
and speed between bow echoes t1 and t1’ are considered the moving direction and speed between bow 733 
echoes t1 and t2. 734 

We use wind speeds at 500 hPa from ERA5 to compute the background mean wind speed. 735 

Considering the potential spatiotemporal variability of 500-hPa winds, we only count wind speeds 736 

covered by bow echoes from the bow echo series during the corresponding period. In detail, at time ti 737 

during the bow echo series period (t1-tn), we only consider winds at time ti but covered by bow echoes 738 

from time ti+1 to 𝑚𝑖𝑛(𝑡!"#, 𝑡$). Here, we exclude the bow echo at time ti to minimize the potential impact 739 

of the bow echo on the background environment, while using up to three hours (ti+1-ti+3) of bow echoes 740 

aims to reduce the potential spatial noise since a bow echo is often too small. We average all wind speeds 741 

obtained from the above procedure to derive the background mean wind speed. 742 
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