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Abstract

Due to their persistent widespread severe winds, derechos pose significant threats to human safety

and property, and-they-are-as-hazardeus-and-fatal-as-with impacts comparable to many tornadoes and

hurricanes. Yet, automated detection of derechos remains challenging due to the absence of
spatiotemporally continuous observations and the complex criteria employed to define the phenomenon.

Fhis-studypropesesThis study presents an objective derecho detection approach capable of automatically

identify derechos in both observations and model results. The approach is grounded in a physically based

definition of derechos tha

deteetionis-composed-efand integrates three algorithms: (1) the Python Flexible Object Tracker

(PyFLEXTRKR) algorithm to track mesoscale convective systems (MCSs), (2) a semantic segmentation

convolutional neural network to identify bow echoes, and (3) a comprehensive classification algorithm to

elassifir-MCSs-asdetect derechos exwithin MCS lifecycles and distinguish derecho-producing from non-

derecho-events--producing MCSs. Using the-newthis approach, we develop a novel high-resolution (4 km

and hourly) observational dataset of derechos and accompanying derecho-producing MCSs over the

United States east of the Rocky Mountains from 2004 to 2021. The dataset consists of two subsets based

on different gust speed data sources and is analyzed to document the dereehe-climatology of derechos in

the United States. Many-mereOn average, 12-15 derechos finereased-by~50-400%)-are identified in-the

dataset{—31+-eventsper year)}-thanin, aligning with previous estimations (~6-21 events per-year); but
theannually). The spatial distribution and seasonal variation patterns resemble-earlierare consistent with

prior studies-with-a, showing peak eeeurreneeoccurrences in the Great Plains and Midwest during the

warm season. In-addition-around20%-ef Additionally, during the study period, derechos account for

approximately 3.1% of measured damaging gastgusts (> 25.93 m s™') reports-are-produced-by-derechos
duringthe-dataset period-over the eastern United States-east-efthe RoelerMeountains.. The dataset is




37 publicly available at https://detors0-528 1 zenodo10884046https://doi.org/10.5281/zenodo.14835362

38 (Lietal.,20242025).
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1 Introduction

A derecho is qualitatively defined as a widespread, long-lived straight-line windstorm associated

with a fast-moving mesoscale convective system (MCS).), and the latter is named a derecho-producing

MCS (DMCS). Figure 1 shows two of the most destructive derechos_ and their accompanying DMCSs in

the United States: the June 2012 North American derecho and the August 2020 Midwest Derecho. Both

events lasted for over 10 hours, with apparent bow echoes and extensive damaging wind gusts (= 25.93 m

s™). Due to the persistent widespread damaging gusts, derechos can severely damage property and

threaten human lives, as exemplified by the extensive power outages and more than ten fatalities caused

by the two derechos. Ashley and Mote (2005) demonstrated that derechos could be as hazardous as and

were comparable in magnttadeimpact to most hurricanes and tornadoes in the United States between 1986

and 2003.
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Figure 1. Spatial evolutions of the (a, b) composite (column-maximum) radar reflectivity (Zumq) signatures
and (c, d) surface gust speeds (colored dots) of two dereechosDMCSs. The first column is for the DMCS
associated with the June 2012 North American derecho, which occurred on 29-30 June 2012, and the right
column is fer-the August 2020 Midwest derecho_accompanying DMCS, which occurred on 10-11 August 2020.
Due to spatiotemporal overlapping, multiple Zxmqx and gust speeds may exist for a given grid cell or weather
station, in which case only the corresponding maximums are shown in the figure. The-timings-of some-bow

O—-O
o C (o)~ 5

s T T T e
shading refers-to-derecho-coverage with-Zymer<40-dBZ:In (c) and (d), the dark gray shading refers to DMCS
cold cloud coverage. The dot sizes in (c¢) and (d) are proportional to the gust speed magnitudes. Notably, gust
speed in (c) and (d) is based on the hourly maximum gust speed (gusthowy max), Which is the largest gust speed

within one hour if multiple gust speed measurements are available.

A reliable derecho dataset is foundational for understanding the underlying physical mechanism of
derecho initiation and development and their socioeconomic impacts. Johns and Hirt (1987) developed
the first derecho climatology in the warm seasons of 1980-1983 in the United States by quantitatively
defining a derecho as a family of downburst clusters produced by an extratropical MCS. Specifically, they

required a derecho to satisfy the following six criteria.-H

1) There must be a concentrated area of reports with wind damage or convective gusts > 25.7 m

s, with-aand the major axis length of the area must be at least 400 km.2)These
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2) Those wind damage or convective gust reports must show a pattern of chronological

progression, either as a singular swath or a series of swaths.-3)

3) The concentrated area must have at least three reports of either F1 damage (32.7-50.3 ms™)
(Fujita, 1971) or convective gust of at least 33.4 m s separated by > 64 km.4)

4) At most 3 hours can elapse between successive reports of wind damage or gust >25.7 ms™.
5

5) The associated convective system must have temporal and spatial continuity in surface
pressure and wind fields.-6}

6) If multiple swaths of wind damage or gust reports > 25.7 m s exist, they must be from the

same MCS event.

Since then, several other studies have developed derecho climatologies during other periods using
slightly different criteria (Bentley and Mote, 1998; Evans and Doswell, 2001; Bentley and Sparks, 2003;
Coniglio and Stensrud, 2004; Guastini and Bosart, 2016). For example, Bentley and Mote (1998)
removed the third requirement and reduced the elapsed time in the fourth condition from no more than 3
hours to no more than 2 hours in their derecho climatology from 1986 to 1996. In Coniglio and Stensrud
(2004), the elapsed time was further changed to no more than 2.5 hours, and the gust reports of at least 33

m s were used to separate derechos of different intensities.

Although the aforementioned derecho datasets were generated using different criteria and during
different periods (Johns and Hirt, 1987; Bentley and Mote, 1998; Evans and Doswell, 2001; Bentley and
Sparks, 2003; Coniglio and Stensrud, 2004; Guastini and Bosart, 2016), they showed many similar
derecho climatological characteristics in the United States. For example, derechos occur more frequently
in the warm than cold seasons; the Great Plains, Midwest, and Ohio Valley are regions most favorable for
derecho development, and few derechos occur in the eastern and western coastal areas. Considering the

inconsistent thresholds used in the above studies and the lack of physical mechanisms in their derecho
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definitions, Corfidi et al. (2016) proposed a stricter and more physically based derecho definition, which
required the existence of sustained bow echoes with mesoscale vortices or rear-inflow jets and a nearly
continuous wind damage swath of at least 100 km wide along most of its extent and 650 km long. In
addition, the wind damage must occur after the convective system was organized into a cold-pool-driven
forward-propagating MCS. Most derechos satisfying this definition would be classified as “progressive”
but not “serial.” A serial derecho typically originates in strongly forced environments and develops from a
mature squall line with multiple embedded bow echoes. In contrast, progressive derechos generally
originate from small convective clusters that grow upscale into large organized forward-propagating

MCSs in synoptic environments with weak forcing (Squitieri et al., 2023).

It is difficult to develop a derecho climatology using the definition proposed by Corfidi et al. (2016)
with current operational measurements, as it involves the identification of bow echoes, rear-inflow jets,
and cold pools. However, rear-inflow jets and cold pools are generally associated with bow echoes
(Weisman, 1993; Adams-Selin and Johnson, 2010). Once long-lived bow echoes are found in an MCS
event, we can expect the simultaneous existence of rear-inflow jets and cold pools. Nevertheless,
identifying bow echoes, a feature typically identified visually from radar observations, is still challenging
for large volumes of data, such as the 30+ year National Oceanic and Atmospheric Administration

(NOAA) Next Generation Weather Radar (NEXRAD) archive- consisting of 159 radars. The manual

examination is time-consuming and sensitive to subjective biases. This study applies a semantic
segmentation convolutional neural network (CNN) to detect bow echoes automatically from two-
dimensional composite (column-maximum) reflectivity (Zpmax) data in the United States, which are then

combined with an MCS tracking dataset and gustspeed-measurementsfrom-surface-meteorelogical

stattenssurface gust speeds to identify derechos using criteria adjusted from Corfidi et al. (2016). After

manual examination and validation, we produce a high-resolution (4 km and hourly) observational
derecho and DMCS dataset in the United States east of the Rocky Mountains from 2004 to 2021. The

dataset comprises two subsets based on different gust speed data sources: one uses gust speed
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measurements from the global hourly Integrated Surface Database (ISD) (NOAA/NCEIL, 2001), and the

other exploits gust speed reports from the NOAA’s Storm Events Database (SED). As the first derecho

climatology that utilizes a machine learning technique following physically based criteria and covers the
recent decades, the dataset provides a reference for future derecho studies and can be used to investigate
the underlying mechanisms for derecho initiation and development, the climatological impacts of

derechos on hazardous weather, and the damage of derechos to infrastructure and human property.

The remainder of the paper is organized as follows. Section 2 introduces the MCS dataset-and gust
speed measurementsdatasets used to generate the derecho dataset. Section 3 describes the machine
learning (i.e., semantic segmentation CNN) methodology to detect bow echoes, including sampling,
training, and evaluation. Section 4 explains our derecho identification criteria in detail. Section 5

evaluates our derecho dataset againstthrough cross-validation of the two subsets (ISD-based vs. SED-

based) and compare them with previous derecho estimations and the observational data from the NOAA

Storm Prediction Center (SPC) in 2004 and 2005. Section 6 analyzes the derecho climatological
characteristics. Section 7 shows how to access our derecho dataset, and the study is summarized in

Section 8.

2 Source datasets

2.1 MCS dataset

Since previous MCS datasets only cover the period from 2004 to 2017 (Li et al., 2021; Feng et al.,
2019), we use an updated version of the Python FLEXible Object TRacKeR (PyFLEXTRKR) software

(Feng et al., 2023), which exploits collocated radar signatures, satellite infrared brightness temperature,

and precipitation to identify robust MCS events (Feng et al., 2019), to produce an updated 4-km and
hourly MCS dataset in the United States east of the Rocky Mountains from 2004 to 2021-_(Feng, 2024).

Several hourly source datasets are used in the generation of the MCS dataset, including the National



145  Centers for Environmental Prediction (NCEP)/the Climate Prediction Center (CPP) L3 4 km Global
146  Merged IR V1 brightness temperature dataset (Janowiak et al., 2017), the three-dimensional Gridded
147  NEXRAD Radar (GridRad) dataset (Bowman and Homeyer, 2017), the NCEP Stage IV precipitation
48  dataset (CDIACS/EOL/NCAR/UCAR and CPC/NCEP/NWS/NOAA, 2000), and heurb-melting level
149  heights derived from ERAS (European Centre for Medium-Range Weather Forecasts (ECMWF)
150  Reanalysis v5) (Hersbach et al., 2023). The MCS definition criteria are almost the same as those in Feng
151 et al. (2019), such as cold cloud shield (CCS) area > 60,000 km?, precipitation feature (PF, which is a
152  continuous convective or stratiform area with surface rain rate > 2 mm h™') major axis length > 100 km,
153 the existence of 45-dBZ convective echoes, etc., except that the duration requirement is lowered to
154  include those convective systems lasting for just 6 hours. This adjustment allows us to capture slightly
55  shorter-lived MCSs that may produce intense wind gusts but are missed in the previous MCS datasets.
156  Convective and stratiform radar echo classification in PyFLEXTRKR follows the Storm Labeling in 3D
157  (SL3D) algorithm (Starzec et al., 2017), which uses horizontal texture and vertical structure of radar
158  reflectivity from the GridRad product. Notably, the GridRad data are available each month from 2004 to
159 2017 but only between April and August from 2018 to 2021. Since most derechos occur in the warm
160  season (Ashley and Mote, 2005; Coniglio and Stensrud, 2004), missing the cold months between 2018
161 and 2021 does not affect our derecho climatological analyses in Section 6. For brevity, we do not mention

162  the missing cold months between 2018 and 2021 in the following sections unless stated otherwise.

163 2.2 Surface gust speed ebservationsdatasets

164  Surface2. 2.1 ISD gust speed measurements-between2004-and-2021-are-from-the Integrated-Surface
165  Database (ISD)}(NOAA/NCEL 2001,

166 The ISD is developed by the NOAA National Centers for Environmental Information (NCEI) in

167  collaboration with several other institutions. ISD compiles global hourly and synoptic surface

168  observations from numerous sources (e.g., the Automated Surface Observing System and the Automated
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Weather Observing System) into a single common format and data model. Besides internal quality control
procedures conducted by the source datasets, ISD applies additional quality control algorithms to process
each observation through a series of validity checks, extreme value checks, and internal and external
continuity checks (Smith et al., 2011). This study uses ISD gust speed measurements passing all quality
control checks (NOAA/NCEI, 2018). Notably, there may be multiple measurements at different times
within one hour for some stations. To keep the sampling consistency across different datasets used in the
derecho identification, we calculate gustioury max, Which is the largest gust speed of all available
measurements within one hour, for each observational site, unless stated otherwise. A total of 4,260
observational sites provide gust speed measurements between 2004 and 2021 in the study domain, of
which 3,954 are over land, and the rest are over the ocean or lakes (Figure S1). We have excluded one
observational site (ISD station ID: 726130-14755) in the northeastern United States, which has an
unrealistic number of damaging gust measurements (more than 1,000 hours), inconsistent with the
surrounding sites. We note that although we only use measurements passing all the available quality
control checks, spatial quality control is missing in the ISD (Smith et al., 2011). Figure S2a shows that
some sites in the eastern United States have apparently more damaging gust occurrences than their
surrounding sites, but the occurrence frequencies are less than those stations around the Rocky
Mountains. We do not have enough evidence to exclude them from the study. Hewever;theThe quality of
the ISD gust speed measurements will undoubtedly be a source of uncertainty for our derecho dataset. In
addition, only 420 ISD sites have continuous gust measurements from 2004 to 2021, while the rest have
gust measurements only during part of the study period. The availability of ISD observational sites is

another source of uncertainty when identifying derechos.

2.2.2 SED gust speed reports

The SED is also maintained by the NOAA NCEI and serves as NOAA'’s official publication

documenting storms and other significant weather phenomena that are intense enough to cause

10
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socioeconomic damage (NOAA/NCEI, 2025). The National Weather Service (NWS) compiles storm data

from a wide range of sources beyond meteorological weather stations and submits them to NCEI. These

sources include, but are not limited to, local and federal law enforcement agencies, government officials,

Skywarn spotters, NWS damage surveys, the insurance industry, newspaper clipping services, media

reports, private companies, and individuals. While the NWS strives to use the best available information,

some data in the SED remain unverified due to time and resource constraints. Consequently, the dataset

suffers from inaccuracies, inconsistencies, and gaps (Santos, 2016). For example, Ardon-Dryer et al.

(2023) found that half of the “dust storms” recorded in the SED had visibilities larger than 1 km,

indicating misclassification, while many actual dust storms with visibilities of < 1 km were missing from

the dataset. These issues were attributed in part to the diverse sources contributing to the SED and the

lack of systematic verification and consistency checks. Considering these limitations, particularly the fact

that many strong (> 17.43 m s™') and damaging gust reports in the SED are estimated rather than

measured, the derecho and DMCS dataset developed from SED in this study is published as a supplement

to the dataset derived from the ISD.

From the SED, we extract measured and estimated gusts, along with their corresponding locations

and timestamps, for the period from 2004 to 2021. The raw SED files are available at

https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/ (NOAA/NCEI, 2025). If a gust report is

recorded as a segment, containing both a start and end location with respective timestamps, we process it

as two independent reports: one at the start location and time and another at the end location and time.

Although the accuracy of the SED gust speeds is not guaranteed, the database provides significantly more

strong and damaging gust reports than the ISD due to its inclusion of estimated gusts from various

sources. Approximately 82% of SED gust reports from 2004 to 2021 are estimated, while only 18% are

measured. However, it i1s important to note that not all measured strong or damaging gusts are captured in

the SED. Given the distinct limitations of both the ISD and SED datasets, we apply different thresholds

11
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criteria for derecho detection depending on the dataset used. These criteria are described in detail in

Section 4.

3 Machine learning identification of bow echoes

A bow echo is a bow-shaped pattern_with high reflectivity values on a radar image, but its vague

definition makes it hard to identify them extensively and efficiently using traditional methods. Instead, we
train a semantic segmentation CNN to identify bow echoes automatically from two-dimensional Zx
images by performing pixel-level labeling of the bow echo extent. Compared to the manual examination

of radar images, machine learning can save a tremendous amount of time and eliminate subjective bias.

3.1 Bow Echo Samples

3.1.1 Initial manual sampling

Our initial bow echo samples are generated based on the named derechos on Wikipedia

(https://en.wikipedia.org/wiki/List of derecho events; last access: 19 March 2023} We-identify),

corresponding to 54 named-derechesaccompanying DMCSs in the MCS dataset-ard. We manually label

times with apparent bow echoes through visual inspection of hourly Zm.x associated with the tracked
MESsDMCSs. Each positive sample is a 384 x 384-pixel (~1536 km x 1536 km) Zmar image centered at
the corresponding dereehoDMCS with a bow echo embedded (Figure 2). The number of bow echo
samples varies among different dereehosDMCSs, and 566 positive samples are obtained in total. 5400

negative samples are also randomly selected from the radar reflectivity dataset.

12
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Figure 2. Four examples of bow echoes from the named dereehos-derecho accompanying DMCSs. The color
shading is for Zumax. The subplot titles indicate the bow echo timings. For example, 20130613T04:00:00Z
represents 4:00 UTC on 13 June 2013.
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3.1.2 CNN-based selection of additional bow echo samples

Our initial attempt at developing an automated bow echo detection scheme is to train a classifier
CNN — “Dense Net” (Huang et al., 2019) that ingests 384x384-pixel single-channel Zg.. images and
outputs a single classification indicating the presence of a bow echo. Dense Nets are notable for their

large number of skip connections; (which create multiple paths for data to flow through the network

without passing through every layer), and they can achieve comparable performance to very large

classifier CNNs with only a fraction of the trainable parameters. Unfortunately, our manual inspection

finds that a Dense Net trained on the aforementioned initial samples has a very high false positive rate

when applied to the full radar dataset-(determined-by-manual-inspeetion).. Although this Dense Net is

unsuitable for deployment, the collection of new positive samples it successfully identifies allows us to

13
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supplement the list of known bow echoes and develop a more diverse training set for the following

segmentation model.

3.1.3 Pseudo-labeling

By combining the initial samples and the manually selected true positives from the low-quality
Dense Net model, we build a semantic segmentation training dataset of 500 unique bow echo snapshots
and corresponding hand-drawn bow echo masks. While 500 positive samples are relatively small for a
deep learning application, these samples have higher diversity than the initial bow echoes generated from
the named derechos on Wikipedia because they are drawn from more distinct events, and, in general,
semantic segmentation CNNs can be successfully trained with far fewer samples than image classification

CNNs (Bardis et al., 2020).

A relatively low-skill version of the semantic segmentation CNN is trained using the 500 hand-
labeled radar images and then applied to the entire Zuu.. dataset. We manually review the bow echo
masks produced by this segmentation model and add some of the high-quality masks to a new training
dataset. We also collect some of its false positive masks as new negative samples in the new training
dataset. This is a semi-supervised learning approach known as “pseudo-labeling” or “bootstrapping” (Van
Engelen and Hoos, 2020; Ouali et al., 2020) and is commonly applied to semantic segmentation problems
because of the high expense of hand-drawn labels (Pelaez-Vegas et al., 2023). The pseudo-labels and
hand-labels are combined into a final training dataset with 3677 samples, including 1699 bow echoes and
1978 negative samples, which is used to train the much more skillful semantic segmentation model in

Section 3.2.

3.1.4 Data augmentation

To combat the limited training data further, we use several data augmentation strategies when

constructing training batches. During training, positive and negative samples are selected with equal

14
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probability, and a batch size of 8 is used. First, random salt and pepper noise is added to 10% of the pixels
in each sample with a probability of 0.1. Second, weak random Gaussian noise with a standard deviation
of 5 dBZ is added to all the pixels in each sample with a probability of 0.1. Third, samples are flipped in
up-down and left-right directions, each with a likelihood of 0.5. Fourth, samples are rotated by 0, 90, 180,
or 270 degrees, each with a probability of 0.25. Fifth, samples are randomly shifted vertically and
horizontally by -5 to 5 pixels. Sixth, the brightness of the sample image is adjusted by a random factor of
-0.6 to +0.2, and the image contrast is randomly adjusted by -0.2 to 0.2. Seventh, the binary target bow
echo masks are multiplied by 0.9, and random noise drawn from a uniform distribution between 0 and 0.1
is added. This is known as “soft labels.” Lastly, both positive and negative samples are blended with
randomly selected negative samples by taking the pixel-wise maximum reflectivity values of the two
samples with a 0.5 likelihood. This last data augmentation is unusual but works well in our application
because a) reflectivity features typically occupy only a fraction of the sample area, with most pixels being
elear-slerecho-free and b) bow echoes are high-reflectivity features. When the last data augmentation is
applied to a positive sample, the resulting image will typically still contain a bow echo that matches the

target mask well.

3.2 Training of U-Net 3+ CNN

Our final semantic segmentation CNN model (Figure 3) uses the U-Net 3+ architecture (Huang et
al., 2020). U-Net 3+ is a modern variant of the U-Net architecture (Ronneberger et al., 2015) and differs
from the U-Net primarily in the addition of many more skip connections and its multi-resolution loss,
which computes loss on rescaled classification masks generated from feature representations at various

model levels.

U-Net models were originally developed for the segmentation of biomedical imagery but have been
applied to image segmentation problems in other fields and are broadly useful for any image-to-image

mapping tasks where the input and target data are the same (or similar) size and shape and merging multi-
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resolution information from the input data is important. U-Net CNNs have been applied to a myriad of
problems in the atmospheric sciences, such as segmentation (Galea et al., 2024; Kumler-Bonfanti et al.,
2020), super resolution (Geiss and Hardin, 2020; White et al., 2024), physics parameterization
(Lagerquist et al., 2021), downscaling (Sha et al., 2020), and weather forecasting (Weyn et al., 2021).
Perhaps most closely related to this study is Mounier et al. (2022), who used a U-Net to detect bow
echoes in simulated radar reflectivity images from a forecast model. A U-Net is an appropriate choice for
the segmentation of bow echoes because merging multi-resolution information is crucial for identifying
the feature. For example, bow echoes have high reflectivity at the pixel scale, strong reflectivity gradients
in the transverse direction at the mid-scale (tens of pixels), and the characteristic bow shape at the large

scale (hundreds of pixels).

(384, 4)

(384, 4)

Output bow echo mask

Input radar image ) (192,8) (192,8) (384x384x1)
x384x

(384x384x1) #

(96,16) )

(96, 16)

(48,32)

W (24,64)

(12,128) (12,128)

(6,256)

Figure 3. A diagram of our semantic segmentation CNN architecture. The CNN inputs a 384x384-pixel radar
image (Zumax scaled to 0-255) and outputs a bow echo mask of the same size. The blue ovals represent 3x3
convolutional layers, each followed by a batch normalization layer and a leaky rectified linear unit (ReLU)
activation function. The first number in each blue oval indicates the spatial size (for both the width and height)
of the output tensor, and the second represents the number of output channels. The solid arrows indicate
connections in a standard U-Net architecture, with the downward arrows corresponding to 2x2 max-pooling
and the upward arrows corresponding to 2x2 bilinear upsampling operations. The dashed lines represent the
skip connections introduced in the U-Net 3+ architecture. These skip connections use max-pooling for spatial
downsampling and bilinear interpolation for upsampling, followed by a 16-channel 3x3 convolutional layer
with a linear activation. Layers with multiple inputs use channel-wise concatenation to combine those inputs.
During training, the output tensors from the layers in the upsampling branch (blue ovals with red boundaries)
are scaled to the output spatial resolution and passed through a 1-channel 1x1 convolutional layer with sigmoid
activation. Training loss is computed on all 6 of the resulting masks. At inference time, only the mask
outputted from the upper-rightmost layer is used.
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Our U-Net 3+ CNN ingests 384x384-pixel Zymqx images where Zgmax have been clipped to a 0-
50dBZ£50 dBZ range and then linearly mapped to a range of 0-255. It is trained using binary cross entropy
loss_(Bishop, 2006) on masks generated from its 384, 192, 96, 48, 24, and 12-pixel resolution feature
representations (Huang et al., 2020), though only the full-resolution (384x384-pixel) output mask is used
at inference time. A detailed diagram of the model architecture is shown in Figure 3. Notably, although
the model is trained using 384x384-pixel samples, it is a fully convolutional model and can process inputs

of variable sizes.

We use the Adam optimizer (Kingma and Ba, 2014) with the Keras default settings (Ketkar, 2017)
and an initial learning rate of 0.001 for training. The U-Net 3+ CNN is first trained for 60 epochs
composed of 1000 randomly generated training batches of 8 samples each. Then, we decrease the learning
rate to 0.0001 and train the CNN for an additional 20 epochs. The training duration is determined by
performing an initial 5 rounds of training with 5-fold cross-validation and approximating the epoch
numbers to reduce the learning rate and stop training when the mean intersection over union metric
plateaus for the validation set. Instead of random shuffling, the validation sets are separated from the
training dataset in temporally contiguous chunks to avoid any overlap because, sometimes, multiple

samples may be drawn from different times of the same convective system.

3.3 Evaluation of the Semantic Segmentation CNN

We apply the trained U-Net 3+ CNN to the entire Zymqx dataset and obtain potential bow echo masks
over the United States between 2004 and 2021 (Figure 4). As a final post-processing step, we ignore
“bow echo” masks with less than 20 pixels (~320 km?), which are too small to be classified as bow

echoes.
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Figure 4. Examples of the U-Net 3+ CNN identified bow echoes (purple contours) based on Zgma: (color
shading) at 5:00 UTC on 17 June 2014.

Instead of validating our segmentation model at a pixel scale, as during the training stage, we prefer
evaluating its performance in detecting bulk bow echo features. In other words, we care about whether the
segmentation model can recognize the existence of bow echoes and capture their rough locations. Minor
spatial biases in bow echo coverage do not affect our below derecho identification much, which contains
various flexible criteria to minimize their impacts, such as the buffer zone within 100 km of bow echoes.
We also choose to validate the segmentation CNN specifically on MCS events where high reflectivity
features are present. Identifying low-reflectivity and elear-skyecho-free images as non-bow echoes is
desirable for our segmentation model but trivial and not of particular interest for creating a derecho

climatology.

To build a testing dataset, we randomly select 217 MCS-associated Zmq images in 2010 based on
the following requirements. Each image is from a different MCS event. The images have variable sizes
and contain the full spatial extents of the MCSs at the selected times; however, they must be at least

192x192 pixels and cannot be drawn from a day that also has a sample in the training dataset. Three of the
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authors independently assessed the presence of bow echoes in each image, the results of which are then
compared to the segmentation CNN (Table 1). Overall, the CNN model identifies 57 bow echoes, while
human labelers 1, 2, and 3 identify 46, 76, and 66, respectively. The average human-human agreement
and F; scores are 82% and 0.69, while the average human-CNN agreement and F; scores are 82% and
0.67 (Table 1). The test indicates that, on the one hand, the detection of bow echoes in radar images is
prone to subjective bias; on the other hand, the performance of the segmentation CNN is comparable to
that of a human in identifying bow echoes. We emphasize that the CNN bow echo identification is only
one component in our following derecho detection criteria, and the adverse impact of this uncertainty is
mitigated by other constraints (e.g., almost continuous bow echo existence and strong gusts in proximity

with bow echoes).

Table 1 Evaluation of the performance of the segmentation CNN in the bow echo identification'

CNN (57%) Person 1 (46) Person 2 (76) Person 3 (66)
CNN 84% 79% 83%
Person 1 0.66 77% 88%
Person 2 0.66 0.59 81%
Person 3 0.70 0.77 0.70
'The upper triangular part of the table shows agreement between two independent identifications
(Agreement = %), and the lower triangular part shows F; scores (F; = ﬁ), which is

a better indication of the ability to agree on positives when positives are a minority (Taha and Hanbury, 2015).
Here, TP denotes true positive, TN refers to true negative, FP is false positive, and FN is false negative.
Notably, for the comparison between any two independent identifications, we consider one as “true” and
evaluate the other against it (and which set of classifications areis considered true does not impact these two
metrics).
The number of identified bow echoes from the 217 images.

We match the segmentation CNN detected bow echoes with MCS events from the MCS dataset and
identify those MCS-associated bow echoes, which are used to identify derechos in the following section.
Figure 5 shows the spatial distribution of MCS-associated bow echo occurrences from 2004 to 2021,

which is similar to the MCS spatial distribution with more frequent occurrences in the Great Plains (Li et

al., 2021).
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Figure 5. Spatial distribution of the number of MCS-associated bow echoes from 2004 to 2021. Here, we use
bow echo masks produced by the segmentatlon CNN and exclude bow echoes that do not overlap with MCS
events. Netably : —This figure
excludes bow echoes from those non- derecho—M@&events producm,gy MCSs that overlap with tropical

cyclones (TCs) from the International Best Track Archive for Climate Stewardship (IBTrACS) Version 4 data
over the North Atlantic basin (Knapp et al., 2010) following the approach of (Feng et al-. (2021).

4 Derecho identification

4.1 Derecho definition

As mentioned above, we adopt the derecho definition proposed by Corfidi et al. (2016) but revise
semecertain criteria based on previous studies (Johns and Hirt, 1987; Bentley and Mote, 1998) and the

hedataset limitations

to facilitate objective identification of derechos. Our detailed-definitionfinal criteria are summarized

below-, with detailed explanations provided afterward (Figure 6).

1) A derecho must be attached to an MCS from the MCS dataset.

2) The derecho must persist for at least 5 hours, with a bow echo present for at least 80% of its

lifetime. In addition, gaps between successive bow echo occurrences cannot exceed two hours.
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All bow echoes must belong to the same bow echo series, as defined in the subsequent

explanation.

3) The derecho bow echo series must exhibit forward propagation, based on two modified criteria

from Corfidi et al. (2016):

e The acute angle between the averaged bow echo orientation and the bow echo series’

propagation direction must exceed 45° (Figure 6).

e The propagation speed of the bow echo series must be at least 30% greater than the

background mean wind speed at 500 hPa, derived from ERAS5 data. The methodology

for calculating the averaged bow echo orientation, bow echo series’ propagation

direction and speed, and the background mean wind speed is detailed in Appendix A.

4) Derecho-associated gust speed criteria vary based on the gust speed source dataset:

e For ISD data: Within 100 km of the derecho-accompanied bow echoes (termed the

“derecho area”), there must be at least 10 sites with strong gusts (> 17.43 ms™!) and at

least 1 site with damaging gusts (>25.93 m s™).

e For SED data: At least 10 locations must report damaging gusts.

e The fraction of sites with strong/damaging gusts (ISD) or damaging gusts (SED) must be

220%.

e  Gaps between successive strong (ISD) or damaging (SED) gust reports cannot exceed

two hours.

e The gust swath must be at least 650 km in length and 100 km in width. Swath length and

width calculations are explained below.
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Figure 6. Schematic of the automated detection algorithm. Red and pink objects represent bow echoes. At time
1>, there are two bow echoes belonging to different bow echo series due to their great distance from each other.
In contrast, the two bow echoes at 3 are from the same bow echo series since they are close to each other. The
pink bow echo at 7, is far from the bow echoes at ¢; and ¢;. Therefore, they belong to different bow echo series.
The sites (green dots) with strong (for ISD) or damaging (for SED) gusts outside the 100-km buffer zone of the
bow echo series (i.e., the derecho area) are excluded from the strong (ISD) or damaging (SED) gust swath
calculation. The black arrow indicates the propagation direction of the bow echo series, and the violet arrow
indicates the averaged bow echo orientation. Their acute angle must be > 45° for a derecho. The upper-right
corner illustrates how the major and minor axis lengths of the gust fitted ellipse are projected onto another
coordinate paralleling to the bow echo series’ propagation direction to calculate gust swath length and width.

4.2 Explanation of Key Criteria and Adjustments

Criterion 1: MCS Association

B This is the-meosta straightforward requirement and ernea major advantage of our

advantagesapproach. Due to the lack of a reliable MCS dataset, mest-previous studies often spent
muehconsiderable effort identifying spatiotemporally continuously propagating convective systems

(Squitieri et al., 2023).
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e-0Cccurrence

threshold and the < 2-hour #-any-twe-lapse time between consecutive hours—The-abeve-two-thresholds

considerthe-bow echoes account for uncertainties in the segmentation CNN identification

wneertaintyprocess and the diversity of MCS events.-Mereever,-aDE requires-these-bow-echoesto-be
R

A bow echo series= is defined in two steps:

1. Spatial erouping: Within a given MCS, bow echoes occurring in the same hour are categorized

into separate series if they are more than 100 km apart.

2. Temporal linking: Successive bow echoes (no more than 2 hours can elapse between their

occurrences) are considered part of the same series if they are less than 200 km apart, even if

they were initially classified as separate series.

Due to merging or splitting or the complex nature of some convective systems, a bow echo at one
hour may be far from the bow echoes right after or before that hour or another bow echo during that hour

(Figure 6). In such a rare situation, these bow echoes are unlikely caused by the same physical process

and, therefore, do not belong to the same bow echo series—Weseparate-differentbow-echo-seriesintwo
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165 series (Figure 6). The above stepwise approach ensures that bow echoes from different physical processes

166 are not incorrectly grouped.

Swath width 2 100 km
Swath length = 650 km

167
168

169
170

171

172

173 Adjustment

174 We modify the +60-km-butferzoneCorfidi et al. (2016) criterion of “nearly orthogonal” to > 45° for

175  the acute angle between the averaged bow echo series-(i-e-the DE area)are-excluded-from-the strong gust
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swath-ealeulation—The black-arrow-indieatesorientation and the bow echo series’ propagation direction. This

adjustment:

e Accounts for segmentation CNN uncertainties, particularly in the propagation direction of

the- bow-echo-seriesestimation.

damaging gusts(gust-speed>25.93-m s ) In-addition;the Reduces false exclusions caused

by minor variations in orientation.

Criterion 4: Gust Speed and Swath Calculation

The 20% fraction efsites-with-stronggustsshowld-be=20%-Thisfraction-ertterionis

intendedthreshold is introduced to exclude petentia-MCSs potentially associated with extratropical

cyclones, which eeuldoften produce isolated strong or damaging gusts evertimited-observational-sites-but

weaker gusts atacross most ethersites-—Besides;-a DFrequires-that no-mere-than2-heurs-ean-elapse

fittedsites.

To determine the gust swath length and width:

1. We fit an ellipse swath-using-the loeations-efthesearound sites with strong gustreperts(ISD) or

damaging (SED) gusts in the derecho area (Figure 6).-AsaDE;

2. Since the ellipse may not align with the bow echo series’ propagation direction, we project its

major and minor axes onto a new coordinate system based on the bow echo propagation

direction, as shown on the upper right corner of Figure 6. The projected major or minor axis

length that is parallel to the bow echo propagation direction is the gust swath length, and the
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projected minor or major axis lengthsmustbe-atleastlength that is perpendicular to the

propagation direction is the swath width. Notably, both major and minor axis lengths can be

projected parallelly and perpendicularly. If major axis length is projected parallelly, the minor

axis length must be projected perpendicularly, and vice versa. Thus, we obtain two pairs of

swath length and width.

3.  We consider the uncertainties of the bow echo propagation direction when conducting the

projection. In detail, we conduct projections iteratively by varying the propagation direction

values with an interval of 0.2° within +£10° of the initial calculated bow echo series’ propagation

direction. Therefore, we obtain (% + 1) X 2 = 202 pairs of swath length and width in total.

As long as one pair of swath length and width satisfies length > 650 km and 100width > 100 km,

Criterion 4 is satisfied.

If no derecho is identified for a given MCS using the above definition criteria, we can relax the

distance requirement (100 km) in Criterion 4 to be within 200 km of the derecho-associated bow echoes

that satisfy the condition that there is no bow echo from the same bow echo series an hour ago or later

during the derecho’s lifetime. If the bow echo is in the first hour of the derecho’s lifetime and there are no

bow echoes for the corresponding MCS an hour ago, we can also extend the distance threshold to 200 km.

This is similar to the bow echo in the last hour of the derecho’s lifecycle but without CNN-identified bow

echoes an hour later. Notably, the distance extension is optional. For the bow echoes satisfying the above

conditions, the distance threshold can be either 100 or 200 km. Using 100 km is superior to using 200 km

until we find a derecho if it exists. The distance extension is also intended to minimize the impacts of the
bow echo identification error. If a bow echo is missed in the semantic segmentation procedure, extending

the distance threshold can include strong srespeetively—and damaging gusts associated with the missed

bow echo, thus slightly reducing the derecho detection error.
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We emphasize that, in Criterion 4, our ISD gust speed criteria are weaker than the SED gust speed

criteria as well as those of previous studies (Squitieri et al., 2023; Bentley and Mote, 1998; Johns and

Hirt, 1987), which also estimated the gust swath based on SED damaging gusts. Mereever,previeus
studies-oftenrequired-a-few-As mentioned in Section 2.2.2, most SED gust reports ef gustspeed=33-m—s
erare estimates, while thisstudy—uses

ISD surfacestation-provides gust measurements—Pest-disaster from weather stations. SED estimates can

capture potential damaging gust occurrences over a much larger area-, although with large uncertainties.

In contrast, due to the limited coverage of observational sites, real-time ISD measurements may miss
substantial damaging gust occurrences in nearby regions. Therefore, we lower the gust speed criteria to

capture potential derechos when using ISD measurements. It does not mean that the ISD-based derechos

are weaker than the SED-based ones or even not derechos, as elaborated in Section 5.

27



b46

b47

548

b49

550

551

552

553

b54

555

b56

557

558

b59

560

b61

b62

b63

b64

b65

b66

We-identify 537 derechos-4.3 Derecho detection results and postprocessing

Using ISD gust measurements, the objective detection algorithm identifies 245 derechos and

associated DMCSs between 2004 and 202 1-usingthe-abeve-objective-detectioneriteriawith-an. A

notable example efis the June 2012 North American derecho shewn-in-(Figure 7-). Figure 7a displays the
CNN-identified bow echoes_of the DMCS, and Figure 7b shows the BEderecho area and associated gust

speeds. As expected, the derecho produced extensivewidespread strong gusts-duringits DEperiod.

Adthoueh-wehaveecenstderedTo further refinc the segmentation CNN-bow-echo-identifieation

constderedThereforewe-ecarefully-examine-all- the-identified[SD dataset, we manually review all

detected derechos and remeve32-events-thatare-possiblyDMCSs, removing 31 false detections prirrarity
due to thefalseerroneous bow echo identification efbew-echoes-(Figure S3). In addition, we manually

examine alt1099 MCS events—{&

derechos) that produce extensive strong (> 10 observational sites) and damaging (> 1) gusts over land

areas with a strong and damaging gust swath (fitted ellipse) of at least 650 x 100 km?: (the ellipse’s major

and minor axis lengths). Our manual examination primarily focuses on bow echo identification errors but

deesnetchanse-any-of the-above derecho-definitionalso slightly lower the forward propagating criteria

thresholds erparameters-for two potential derechos. For those MCSs (55-events-intotab-that are potential

dereechosDMCSs based on our visual inspection, we manually label their bow echo occurrences that fail

the segmentation identification during potential BE-periedsderecho lifetimes (Figure S4) and rerun the

automated derecho detection algorithm. Finally, 5+-events-meet60 additional derechos are added, bringing

the derecho-detection-eriteria-deseribed-abeve-final total to 274 (245 — 31 + 60 = 274).
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68 Using the same procedures for SED gust reports, we identify 220 derechos.
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Figure 7. (a) Spatial evolution of Zgimax (color shading) and CNN-identified bow echoes (purple contours) from
the DMCS associated with the June 2012 North American derecho. (b) Spatial-evelation-ofSimilar to (a) but
for the eerresponding DEderecho period. The BEderecho lasted from 17:00 UTC on 29 June to 6:00 UTC on
30 June 2012. The misty rose shading in (b) corresponds to Zxmax = 40 dBZ, while the gray shading refers to
the BEderecho area. Colored dots are the same as those in Figure 1c, except only the BEderecho-associated
gust measurements are shown.

5 Dataset evaluation and uncertainty

Finally; we-obtain-556-derechos-between-3.1 Evaluation against existing datasets

Between 2004 and 2021,

ranvaly—The namber-efour automated detection algorithm identifies 274 derechos (~ 15 per year) using

ISD gust measurements and 220 derechos 36-9(~12 per year) is-muchtarger-thanusing SED gust reports..

These numbers fall within the range of previous estimations (6.1-20.9 per year) usingbased on a majer

axis400 km swath length threshold ef408-4sm-and conventional derecho definitions, as introduced in
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Section 1 (Squitieri et al., 2023; Johns and Hirt, 1987; Bentley and Mote, 1998; Evans and Doswell,

2001; Guastini and Bosart, 2016; Ashley and Mote, 2005). The-rumber-is-also-muehlarger-thanthe result

efHowever, our derecho counts are substantially higher than those reported by Corfidi et al. (2016),

whiehwho identified only 25 derechos in the warm seasons duringof 2010-2014 using a majer-axis650 km

swath length threshold-ef650-km—TFhelarge. These discrepancies are-likely related-to-ourusage-ofstrong
susts-butnet-damaging gusts-stem from differences in the methods used to calculate wind-damagegust

swath length and ether-definitionwidth, the criteria—Hewever- for forward propagation, and the diverse

observational data

source datasets used in the derecho nun

the-derechosfrom-detection.

To further evaluate our dataset, we compare it against the NOAA Storm Prediction Center (SPC-with

our) derecho datasetindata from 2004 and 2005(Fable 2 Fhe NOAA-SPC data

(https://www.spc.noaa.gov/misc/AbtDerechos/annualevents.htm; last access: November 17, 20233

previde-meotre-) (Table 2). This dataset provides detailed timings and locations of derechos i#r2004-ané

2005-than-previousstudies{Squitieri-et-al52023) ~whichor convective windstorms of near-derecho size,

and it is the only available dataset that we can use to evaluate our derecho dataset at the event scale.

NetabblsHowever, it is important to note that the NOAA SPC data eentainsdoes not enbyexplicitly

distinguish between derechos butalseand convective windstorms of near-derecho size, and we-de-not

know-which-eventis-ait relies on the conventional derecho er-a-conveective-windstorm-ofnear-definition

which can significantly influence derecho size—In-addittencounts. Additionally, the NOAA SPC data is
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based on SED gust speed-measurements-and-post-disasterestimations—There-isnotreports and lacks an
underlying MCS dataset-for-the NOAA-SPC-datadatabase.

The NOAA SPC datadataset contains 50 derechos and near-derecho size convective windstorms ef

near-derecho-size; 22for 2004 and 2005, 15 of which are direethreaptured-detected by the-automated

bow-echoidentification-errors-our algorithm using ISD gust measurements. The number increases to 19

when using SED gust reports. Five of the 50 events are entirely missedabsent in theour MCS dataset,

possibly because they-move-too-fast-and-donotmeetthe PyEEEXTRKR >their associated MCSs moved

too rapidly to satisfy PYFLEXTRKR’s 50% areal overlap traeking-criterion using the-hourly eembined

satellite and NEXRAD dataset, or they breakfailed to meet other MCS requirements in PyFLEXTRKR

(Feng et al., 2019). We

actual-gust speed-measurements-sinee-we-do-not-find-anyJtand-The remaining discrepancies arise from
factors such as an insufficient number of damaging gust reports assectated-with-the MCS-events—Seven-of

small a gust swath, or lack of forward propagation. Conversely, our detection algorithm identifies several

derechos (4 from ISD and 3 from SED) that are not present in the NOAA SPC dataset. Overall, while

most derechos identified by our algorithm are captured in the NOAA SPC data. our derecho counts are

notably lower due to our stricter physically-based derecho definition, two-ef-which-are-due-to-toofew
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identification-aceuracy-of ourautomatedwhich reduces the number of events classified as derechos

compared to conventional definitions.

Cross validation between the ISD-based and SED-based datasets further supports the robustness of

the-aceuraeyis——="75% Finally-our derecho-datasetidentifies 14algorithm (Figure 8). A total of

172 derechos are detected by both datasets, while 48 events are identified only in SED and 102 events are

unique to ISD. Figure 8 also highlights discrepancies between the two datasets, with more ISD-based than

SED-based derechos h

2010, 2014, 2015, 2019, and 2020, while their counts remain similar in other years. Despite these

differences, the two datasets exhibit similar interannual variability, with a temporal correlation coefficient

of 0.72. The general agreement between the two datasets support our decision to use different gust speed

thresholds for ISD and SED in the detection algorithm. However, the observed discrepancies also

underscores the critical role of the source datasets in influencing detection results, highlighting the need

for more reliable gust speed observations.
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Figure 8. Bar chart of the annual derecho numbers in-previeusstudies-due-to-the lack of areliable MCS
dataset{Squitieri-et-al52023)-from the ISD-based and the SED-based datasets from 2004 to 2021. Gray

shading denotes derechos captured by both datasets, red shading refers to derechos only identified when using

ISD gust observations, and blue shading represents SED-only derechos.
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in the MCS events®dataset

Table 2. Evaluation of our derecho dataset against the NOAA SPC data in 2004 and 2005

Year 2004 Year 2005 Sum
NOAA SPC'SPC 24 26 50
Captured by eurthe [SD dataset 107 128 2215
Events-missed-inCaptured by the MES-dataset’SED dataset 210 39 519
6 '-“"'i-i:' P SHORES o0 e 10 8 18
Bow ceho-identtficaton crror’ + + 2
OthereriteriaDerechos in ISD but not satisfied’in NOAA SPC 1 23 34
g;}giéemfﬁed—dereehesDerechos in SED but not histed-byin NOAA 51 9 143
Identificationaceuracy-if-excluding theseNOAA SPC events missed 83%2 80%3 81%5
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5.2 Discussion on dataset uncertainty

Besides the uncertainties in gust speed observations, we acknowledge additional sources of

uncertainty affecting our dataset.

5.2.1 Uncertainty from the MCS dataset;-as-mentioned

As noted in theour evaluation against the NOAA SPC data-, uncertainties arise from the MCS dataset

used in derecho detection. The 50% areal overlap threshold in PYFLEXTRKR, which issette-50%ané

used-to-eonneetlinks consecutive cold cloud shields (CCSs-in-the-eurrent PyEEEXTRKR contfiguration;

eannet), may fail to capture these-very fast-moving convective systems with-theusing hourly satellite and

NEXRAD datasets—Redueing-thedata. Lowering this threshold wiHwould undoubtedly increase the

“MES” and-thenthe “dereehe”number of identified MCSs and derechos, but it saycould also inerease

the-number-efintroduce false tracks that do not belong to the same type-ef-storm_system. The 50%

threshold e£50%-is widely used in the-differentvarious versions of the FLEXTRKR algorithms (Li et al.,
2021; Feng et al., 2023; Feng et al., 2019) and other tracking algorithms based on overlap (e.g.,
(Whitehall et al., 2015)). Fherefore; While we wouldlike-tokeep-the-everlapmaintain this threshold as-is;
butin our study, users should realize-thebe aware of uncertainties efthe MCS-datasetcaused-by-many
related to adjustable parameters (e.g., areaarcal overlap threshold, MCS duration, and major axis length)
and the-limitations efin the observational datasets used #nby PyFLEXTRKR (Feng et al., 2019; Li et al.,

2021).
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the-evaluationin-Section3-3-shows-the high-aceuracy-ofour-). 2.2 Uncertainty from the bow echo

identification-and-we-consider

Another key uncertainty arises from the segmentation CNN used to identify bow echoidentification

uneertaintiesechoes. While our evaluation in the-automated-derecho-detectionprocedure,westillmiss-a

smal-fraetion-ef-Section 3.3 confirms high accuracy, we acknowledge that some derechos and-falsely

elassifymay be missed, while some non-derechos may be falsely classified as derechos due to the bow

echo identification errer—Fe-aleviate-the CNN-dentifieation-errors. To mitigate this issue, we spend

much-effertmanually-examining-theconducted extensive manual verification of derecho_ and DMCS
events-identified-by-the-automated-algorithmand-, as well as other MCS events thatpredueeproducing

widespread strong gusts. However, the manual examination is-suseeptible-te-introduces subjective biases,

and #is-diffienltto-completely eliminate-thecliminating bow echo identification uncertainties remains

challenging.,

Thelast-uncertainty source-isrelated-to-the). 2.3 Uncertainty from derecho definition criteria—Many

Our detection algorithm relies on several adjustable parameters and precedures-are-usedin-our

algorithmte-deteet-methodological choices, all of which influence the number of identified derechos.

er—For example, if
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we change-the-major-axislength-threshold-of the-strongrequire at least three very damaging gust swath-te
400-kmreports (> 33.53 m s') when using SED, the derecho numberwill-inereaseto-654-(a29-5%

inerease).count decreases from 220 to 149. As the first climatological derecho dataset thatwutHizesto

incorporate bow echoes i+-the-derecho-identificationand-previdesand provide detailed event tracking-for

each-event-evaluating the-uneertainties-ef the-, a full uncertainty assessment of all tunable parameters is

unfeasible-and not-eurprierity-either-beyond the scope of this study. However, based-en-our sensitivity

same-with-different indicate that changes to key parameters (e.g., reducing the strong gust fraction

threshold to 10% or the thresheld-efthe-number of sites with strong gust reports to 5}—Fhe-exeeptionis

alter the derecho spatial distribution or seasonal variation patterns (see Section 6). Furthermore, our

dataset is designed to be flexible: we store all key parameters, allowing users to apply stricter thresholds if

needed to focus on stronger derechos.

In summary, although our automated detection algorithm employs a physical-based derecho

definition

We-try-several methods-te-caleulate-the-anglesrather than conventional definitions, our derecho counts are

comparable to or slightly lower than previous estimations, which is expected given our stricter criteria.

Cross-validation between th
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V35  forwardpropagatingsystemsI[SD-based and SED-based datasets supports the high quality of our derecho

736 dataset and the reliability of our detection algorithm. However, users should be aware of the various

V37 sources of uncertainty in the dataset generation, particularly those related to gust speed observations,

V38 MCS tracking criteria, bow echo identification, and the choice of derecho definition parameters.
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6 Derecho climatological characteristics

We primarily use the finalISD-based derecho dataset with-556-derechos-to conduct the following

climatological analyses, unless stated otherwise.

6.1 Annual statistics

Figure 98 displays the annual derecho numbers from 2004 to 2021. There is an apparent jump in the
derecho number before (~2010 derechos per year) and after 2007 (~3015 derechos per year), which may
be partially related to the general increase in the number of gust speed observational sites from 2004 to
2010 (Figure S5). Figure 489 shows the spatial distribution of yearly averaged annual ISD-based derecho

numbers between 2004 and 202153

$6. The central Great Plains has the most frequent derecho occurrences, extending to Oklahoma in the
south, Iowa in the north, Kansas in the west, and Illinois in the east. The areas with frequent derecho
occurrences are generally consistent with previous studies (Coniglio and Stensrud, 2004; Guastini and
Bosart, 2016; Johns and Hirt, 1987; Ashley and Mote, 2005), although some differences are identified.
For example, several studies identified a remarkable northwest-southeast axis with frequent derecho
occurrences extending from southern Minnesota to Ohio, which is observable but not apparent in our
spatial distribution (Johns and Hirt, 1987; Coniglio and Stensrud, 2004; Guastini and Bosart, 2016). The

differences can be caused by many factors, such as distinct derecho definitions and observational datasets

used in these studies. We-make-a-sensttivity-testby-ealenlating the gust swath-usthg=10-sites-with
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Misseuri-and-Arkansas:-When we use SED gust reports in derecho detection, the spatial distribution of

derecho counts shows a more noticeable northwest-southeast axis but with lower derecho numbers than

the ISD-based dataset (Figure S6).
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6.2 Monthly statistics

Figure H10 displays the yearly averaged seasonal variations in the derecho sumbercount, with

remarkably more derechos in the warm than cold seasons, a feature_consistent between ISD- and SED-

based datasets and widely captured by previous studies (Ashley and Mote, 2005; Squitieri et al., 2023;

Bentley and Sparks, 2003).

dataset has almost no derechos in the code season, which is generally not the case in previous studies. We

attribute the difference to our usage of a physically-based derecho definition, which excludes many

externally forced convective systems (e.g., extratropical cyclones), which are considered serial derechos

in previous studies.

Figure 4211 shows the spatial distributions of the yearly-averaged-monthly-mean derecho

aumberscounts based on ISD between 2004 and 2021. On the one hand, many more derechos occur in the

warm than cold months. On the other hand, we find remarkable shifts in the areas with the most frequent
derecho occurrences from April to August. The region with the most derechos moves northward during
the warm season-butshrinkszenaly. The northward shifts-alse resemble the MCS events (Li et al.,
2021). We can identify two axes with frequent derecho occurrences. One is in the south-north direction
along the Great Plains; (e.g., June), and the other is in the west-east direction along the northern Great
Plains and Midwest—which-are-consistent-with-the-derecho-pathsinFigure-S6- (e.g., July). The axes may
represent the two types (serial and progressive) of derechos mentioned in Squitieri et al. (2023). A follow-

up study will be conducted to investigate the large-scale environmental conditions associated with

different types of derechos based on the developed derecho dataset. Netably-dereches-are-concentratedin

etal52023The SED-based dataset shows similar features but with much fewer derechos in June (Figure

S7).
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Figure 4211. Same as Figure 409 but for yearly averaged monthly derecho numbers (ISD-based) over
20142004-2021.

6.3 Wind damage characteristics

We examine the contributions of DMCSs and derechos and-D¥Es-to al-thelSD damaging gust reports
in the United States area-ofthewithin our dataset demainbetweenfrom 2004 andto 2021 #-(Figures 4312,
S2, and S8:). Overall, MCSs contribute about 36-815.6% of theall damaging gust reports, butmest

eeeurwith the vast majority occurring east of the Rocky Mountains. On average, dereches-and

DBEsDMCSs contribute +9-2%4.0%, and +6-5derechos contribute 3.1% of theall damaging gust

occurrences;-respeetivelytn-otherwerds;-. This indicates that about halfone quarter of the damaging gusts

associated with MCS events are related-to-derechos:linked to DMCSs, much higher than the fraction

(~3.5%) of DMCSs in MCSs. This finding aligns with the higher probabilities of extreme gusts in the gust
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speed PDF of DMCSs compared to general MCSs, indicating that DMCSs are more likely to produce

extreme gusts than general MCSs (Figure S9). Understanding the snderlyirg-mechanisms behind their

contrast will be eura key focus #rof a follow-up study. In-additienmest{=80%)-derecho-

generatedAdditionally, approximately 75% of DMCS-associated damaging gusts occur during the BE

periodsjustifyyingusing PE4n-derecho period, reinforcing the validity of our derecho definition;

as. As expected, the highest

contributions of derechos to damaging gust reports are the-highestfound in the Great Plains; and Midwest;

(Figure 12).
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Figure1312. (a) The total numbers of damaging gust occurrences between 2004 and 2021 at ISD weather
stations over the United States east of the Rocky Mountains. (b) Relative contributions of MCS events to the
damaging gust occurrences in (a). (c) is the same as (b) but for relative contributions of derechesDMCSs. (d) is

the same as (c), but we

oceurrenees—for derechos. Similar to Figure 5, we exc

lude non-dercho—producing MCS events overlapping

with TCs in (b). The dot sizes are proportional to the corresponding values. Light-yellow shading denotes an
elevation greater than 1000 m; light-gray shading denotes an elevation between 400 m and 1000 m; and
smoke-white shading denotes an elevation less than 400 m. Background white is for oceans and lakes.

7 Data availability

The final ISD-based and SED-based derecho and DMCS dataset-ané, along with the corresponding

user guide-are, is publicly available at-https:-deiere/ 10528 /zenode 10884046

https://doi.org/10.5281/zenodo.14835362 (Li et al., 26242025). The eriginal-format-of the-datafilesis
NetCDhE-4and-we-compress-themfor each-yearso-that the-dataset is easily-aeeessible:stored in NetCDF-

4 format and compressed by year for easier access. The user guide eentainsprovides a detailed description
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of the data files-te-helpusers-understand, ensuring that users can effectively navigate and utilize the

dataset.

For each pair of derecho_ and DMCS, the dataset previdesincludes two visualization figures

displaying(one for derecho and the one for the accompanying DMCS) illustrating the temporal evolutions

of Zgmax, precipitation, wind speed, and gust speed duringits-entire lifetime-and-DEperiodthroughout

their respective lifetimes (e.g., Figures 413 and S10). FheThese figures are-helpfual-for-offer users to

wnderstandan immediate understanding of the basic characteristics of the-derechosimmediatelyzNotably

the-each derecho and DMCS. The dataset also contains all the derecho-associated gust speed

measurements;-sospeeds and various parameter values used in the derecho definition. This allows users

eanto further separate-thecategorize derechos inte-differentintensities;-as-nby intensity or type, following

approaches similar to Coniglio and Stensrud (2004).
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For researchers interested in applying the segmentation CNN for bow echo detection in different

regions or time periods, or in leveraging the CNN-identified bow echoes for other studies, we provide

access to the bow echo segmentation code and datasets at https://doi.org/10.5281/zenodo.10822721

(Geiss et al., 2024). This repository includes the trained CNN weights and detailed usage instructions.

Additionally, a video supplement demonstrating the bow echo segmentation scheme is available at

https://youtu.be/iHWY_ OhaVUo and is permanently archived in the above Zenodo repository.
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Figure +413. Similar to Figure 1 but for the spatial evolutions of (a) Zumax, (b) total accumulated precipitation,
(c) pre01p1tat10n duration, (d) mean precipitation intensity, (¢) hourly maximum wind speed, and (f) hourly
maximum gust speed duringthe-entire lifetime-offor a derecholSD-based DMCS that occurred on +6—H
September2-4 June 2015. In (e) and (f), the misty rose shading corresponds to areas with Zgmqr > 40 dBZ, and
the dark gray shading refers to dereeheDMCS coverage with Zpmax <40 dBZ. The figure title refers to the
derechoDMCS timing range.

8 Conclusions

This study presents a high-resolution (4 km and hourly) observational derecho dataset covering the
United States east of the Rocky Mountains from 2004 to 2021. We develop the dataset using ana

combination of:
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e An MCS dataset generated by the PYFLEXTRKRseftware;-a-machine-learning-based
dentificati b,

e Bow echoes; tSP-heurly identified by a semantic segmentation CNN,

e Hourly gust speed measurementsdatasets from [SD or SED, and physieally

e Physically based derecho identification criteria.- The-evaluation

We evaluate the dataset and its potential uncertainties-efthe-dataset-are-diseussed:. The final dataset

contains-5561dentifies 274 derechos;-most-ofwhich-are- using ISD gust measurements and 220 derechos

using SED gust reports, with most events occurring in the warm season (April-August). Analyses indicate

that derechos preferablypreferentially occur in the Great Plains and Midwest-—Areas—with-the-most

frequent-derechosshow-anortheastward-shift, with regions of highest frequency shifting northward from

April to August. Derechos contribute +9:23.1% of ISD land-based damaging gusts over the United States

between 2004 and 2021. Abeut-halfAdditionally, approximately 20% of MCS-associated damaging gusts

are produced by derechos.

As the first derecho dataset that w#sesintegrates machine-learning-based bow echo identification-ef

bew-echoes, physically based definition criteria, and two types of surface station-measured-gust-speedsit

previdesgust speed data, the dataset serves as an independent reference for derecho climatology-eempared

te, complementing previous studies. fradditienBeyond climatological analyses, the dereche-dataset can

be used to-investigate:

e Investigate the derecho initiation and development mechanisms, the-environments

e Examine the environmental conditions that factlitate-the promote derecho formation and

intensification,

e Assess the impacts of derechos;and-the-damage-efderechosto on human seeuritysafety and
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o Select specific derecho-events for case studies andor to evaluate the numerical model

simulations, thanks to its high spatiotemporal resolution.

Lastly, we emphasize that the automated derecho detection algorithm developed in this study is

versatile and applicable to both observations and model results. The algorithm can be used to assess

model performance and explore the impact of various factors on derechos (Kaminski et al., 2025).

Appendix A

For each bow echo in the derecho bow echo series, we use the formulas from the MATrix

LABoratory (MATLAB) “regionprops’ function (https://github.com/SBU-

BMI/nscale/blob/master/original-matlab/features/regionprops.m: last access: January 28, 2025) to

calculate its orientation. Then we apply the three-sigma rule to the orientations to remove outliers until all

the rest orientations lie within three standard deviations of their mean. The mean is the average bow echo

orientation. Implementing the three-sigma rule aims to minimize the adverse impact of the segmentation

CNN identification uncertainties on calculating the averaged bow echo orientation.

The bow echo series’ propagation direction and speed are calculated as follows. Firstly, we compute

the moving direction and speed between any two consecutive bow echoes from the series. As exemplified

in Figure A1, we assume that the bow echo at time ¢, would move to the location of bow echo ¢, at time ¢,

if the bow echo shape remained unchanged. The location of bow echo #;’ is determined by its spatial

correlation coefficient with bow echo #,, and the location with the largest spatial correlation coefficient is

what we want. Since bow echoes ¢; and ¢, have the same shape, it is straightforward to calculate the

moving direction and speed between them, which are considered the moving direction and speed between

bow echoes ¢; and #,. Compared to using the centroid points of bow echoes #; and >, our approach can

reduce the calculation bias when bow echoes ¢; and 7, have distinct shapes and sizes. After we obtain all

the moving directions and speeds between any two consecutive bow echoes, we apply the 1.5 X
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Interquartile Range (IQR) rule to remove outliers, considering potential CNN bow echo identification

errors. Lastly, the median of the remaining moving speed values is considered the bow echo series’

propagation speed. while the average of the remaining move direction values is considered the bow echo

series’ propagation direction.

~

Figure A1l. Schematic of the bow echo moving direction and speed calculation between two consecutive
(¢, and 1,) bow echoes. Bow echo ¢, is the same as bow echo #; but at a different location so that the
spatial correlation coefficient between bow echoes ¢;” and #, reaches the maximum. The moving direction
and speed between bow echoes #; and ¢, are considered the moving direction and speed between bow
echoes ¢; and ¢,.

We use wind speeds at 500 hPa from ERAS5 to compute the background mean wind speed.

Considering the potential spatiotemporal variability of 500-hPa winds, we only count wind speeds

covered by bow echoes from the bow echo series during the corresponding period. In detail, at time ¢

during the bow echo series period (¢,—t,), we only consider winds at time ¢ but covered by bow echoes

from time #+; to min(t;, 3, t,). Here, we exclude the bow echo at time # to minimize the potential impact

of the bow echo on the background environment, while using up to three hours (#+;—+3) of bow echoes

aims to reduce the potential spatial noise since a bow echo is often too small. We average all wind speeds

obtained from the above procedure to derive the background mean wind speed.
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Figure S1. Locations of ISD gust speed observational sites used in the study. There are 4,260 sites, 3,954 of
which are over land (red points), while the rest are over the ocean or lakes (blue points). We use the Advanced
Research Weather Research and Forecasting (WRF) Preprocess System (WPS) to generate a 4-km land cover
map to determine the land type associated with each observational site. Light-yellow shading denotes an
elevation greater than 1000 m; light-gray shading denotes an elevation between 400 m and 1000 m; and
smoke-white shading denotes an elevation less than 400 m. Background white is for the ocean and lakes.
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Figure S2. Same as Figure 4312, but the frequencies of damaging gust occurrences from mesoscale convective
system (MCS), derecho;-producing MCS (DMCS), and derecho feature-(DE)-are shown in (b), (¢), and (d)
instead of fractions. Non-derecho-producing MCS events overlapping with tropical cyclones (TCs) are

excluded in (b).
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160  automated detection algorithm falsely classifies the MCS as a dereehoDMCS due to the false identification of
161  bow echoes by the segmentation CNN. The figure title refers to the dereehoMCS timing range.
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failure in bow echo identification. In (a), purple contours denote CNN-identified bow echoes, while cyan
contours refer to bow echoes labeled manually.
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2004 and 2021.
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183 Figure S6. Same as Figure 9 but for the SED-based dataset.
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Figure S8. (a) Relative contributions of dereehoDMCS-associated to MCS-associated ISD damaging gust
occurrences between 2004 and 2021 at weather stations over the United States east of the Rocky Mountains.
(b) is the same as (a) but for relative contributions of BE-asseeiated-te-derecho-associated to DMCS-associated
damaging gust occurrences. We exclude non-derecho-producing MCS events overlapping with TCs in (a).
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1198  Figure S9. PDFs of land ISD gust speeds associated with MCSs, DMCSs, and derechos;-and-BFs in the United
1199  States east of the Rocky Mountains. We exclude non-derecho-producing MCS events overlapping with TCs.
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1203  Figure S10. Same as Figure +413 but for the spatial evolutions duringof the accompanying derecho-DEperied.

1204  The figure title refers to the BEderecho timing range.
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