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Abstract. Ultraviolet (UV) radiation is closely related to health, but limited measurements hindered further investigation of 

its health effects in China. Machine learning algorithm has been widely used in predicting environmental factors with high 

accuracy, but limited studies have done for UV radiation. This study aimed to develop UV radiation prediction model based 

on random forest method, and predict UV radiation at daily level and 10 km resolution in mainland China in 2005–2020. A 15 

random forest model was employed to predict UV radiation by integrating ground UV radiation measurements from monitoring 

stations and multiple predictors, such as UV radiation data from satellite. Missing data of satellite-based UV radiation was 

filled by three-day moving average method. The model's performance was evaluated through multiple cross-validation (CV) 

methods. The overall R2 (root mean square error, RMSE) between measured and predicted UV radiation from model 

development and model 10-fold CV was 0.97 (15.64 W m-2) and 0.83 (37.44 W m-2) at daily level, respectively. The model 20 

with OMI EDD performed higher predicting accuracy than the one without it. Based on predictions of UV radiation at daily 

level and 10 km spatial resolution and nearly 100% spatiotemporal coverage, we found UV radiation increased by 4.20% while 

PM2.5 levels decreased by 48.51% and O3 levels rose by 22.70% in 2013–2020, suggesting a potential correlation among these 

environmental factors. Uneven spatial distribution of UV radiation was found to be associated with factors such as latitude, 

elevation, meteorological factors and seasons. The eastern areas of China posed higher risk with both high population density 25 

and UV radiation intensity. Based on machine learning algorithm, this study generated a gridded dataset characterized by 

relatively high precision and extensive spatiotemporal coverage of UV radiation, which demonstrates the spatiotemporal 

variability of UV radiation levels in China and can facilitate health-related research in the future. This dataset is currently 

freely available at https://doi.org/10.5281/zenodo.10884591 (Jiang et al., 2024). 

1 Introduction 30 

UV radiation stands as one of the most crucial environmental factors closely related to human health (Brenner and Hearing, 
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2008; Narayanan et al., 2010). Previous studies have confirmed hazardous effects of UV radiation on skin cancer (Griffin et 

al., 2023; Vienneau et al., 2017) and reported inconsistent results regarding the adverse effects of UV radiation on eye diseases 

(Lagreze et al., 2017; Tian et al., 2018; Wolffsohn et al., 2022) or health benefits under moderate UV radiation (Boscoe and 

Schymura, 2006; Vopham et al., 2017; Swaminathan et al., 2019). More studies are on call to ascertain the effects of UV 35 

radiation on human health. However, lacking exposure data of UV radiation with high accuracy is one of the reasons that 

hinders such health investigations. 

The exposure assessment methods used in previous health studies of UV radiation mainly include the following ones. Firstly, 

UV index is a frequently used proxy of UV radiation in epidemiological studies (Thayer, 2014; Marson et al., 2021; Walls et 

al., 2013). It predicts UV radiation levels on a scale ranging from 1 to 11+. Although the UV index is easy to interpret, 40 

converting continuous measurements of UV radiation to the UV index results in the loss of numerical information. Secondly, 

satellite remote sensing data are also used to estimate UV radiation exposure. For example, erythemal UV irradiance from the 

Total Ozone Mapping Spectrometer (TOMS), despite stands as one of the initial instruments for evaluating the UV radiation 

backscattered by the Earth's atmospheric layers, it exhibits lower spatial resolution of 50 km×50 km, and it has limited accuracy 

(Boscoe and Schymura, 2006; Mohr et al., 2008; Lin et al., 2012; Zhou et al., 2019). Additionally, erythemally daily dose (J/m²) 45 

retrieved from the Ozone Monitoring Instrument (OMI EDD) could also be utilized to evaluate UV radiation exposure level 

with higher spatiotemporal resolution and was employed in the United States to represent ground UV radiation levels and 

identify hotspots for skin cancer (Zhou et al., 2019; Deng et al., 2021). However, missing values of OMI EDD data are non-

random and have been increased since 2008 that poses a challenge to the accuracy of exposure assessment in epidemiological 

studies (Mcpeters et al., 2015). Thirdly, in some studies, participants were required to wear personal dosimeters for individual 50 

measurements (Stump et al., 2023; Grandahl et al., 2018). Although the data quality is high, the cost is substantial, making it 

difficult to be applied in large-population studies. Therefore, UV radiation data with higher accuracy and spatiotemporal 

resolution are needed to support further exposure assessment. 

With the enrichment of data resource and improvement of computing powers, machine learning algorithm can integrate data 

from multiple sources to predict environmental factors with high quality (Chen et al., 2021; Zhu et al., 2022; Liu et al., 2022), 55 

but limited applications in predicting UV radiation have been done. Models used in UV radiation prediction in earlier years 

were empirical model or statistical model (González-Rodríguez et al., 2022; Vopham et al., 2016; Pei and He, 2019; Liu et al., 

2017). In recent years, limited studies started to employ machine learning algorithm to predict UV radiation in China (Wu et 

al., 2022; Qin et al., 2020). The spatiotemporal resolution of predictions of one study was relatively low (0.50°×0.625°), and 

the other one produced UV radiation predictions with significant missingness due to missing data of one predictor (aerosol 60 

optical depth from satellite) that may lead to seasonal bias of UV radiation assessment. In addition, these studies did not include 

direct measurements of UV radiation from satellite, such as OMI EDD, which has been proven to be an effective predictor for 
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UV radiation evaluation (Zhou et al., 2019; Deng et al., 2021). Satellite-based measurements can be used as one of the “real” 

measurements of UV radiation, which can help constrain overfitting of model in spatiotemporal extrapolation. Overall, further 

studies are highly needed to add more evidence in model development of UV radiation with advanced algorithms and 65 

comprehensive predictors.  

Hence, this study aimed to develop a random forest model, one of the machine learning algorithms, to predict UV radiation in 

mainland China at a daily level and a spatial resolution of 10 km in 2005–2020. Multiple predictors, including satellite-based 

UV radiation, UV radiation simulations and parameters form re-analysis meteorological dataset, and other variables, were 

included in model development. What’s more, missingness of satellite-based UV radiation were filled to improve spatial 70 

coverage of final UV radiation predictions. Finally, based on the predictions with relatively high spatiotemporal resolution and 

a long time period, temporal and spatial trends as well as hotspots of UV radiation were identified in mainland China. 

2 Data and methods 

2.1 Data 

2.1.1 Ground UV radiation measurements 75 

The Chinese Ecosystem Research Network (CERN) has been observing UV radiation since 2004 (Liu et al., 2017). The 

monitoring data is accessible online via http://www.cern.ac.cn/. Hourly monitoring data on UV radiation from 40 ground-

based stations between 2005 and 2015 and 36 ground-based stations between 2016 and 2020 were collected from CERN (Fig. 

1). Those stations cover eight ecological land cover types across China, including urban, agricultural, grassland, forest, lakes, 

bays, wetlands, and deserts. Daily UV radiation values were calculated by adding up 24 hourly UV radiation values per day. 80 

Days with continuous 2 hourly missing or unavailable UV radiation values were excluded.  
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Figure 1. Spatial distributions of CERN stations monitoring UV radiation in China in 2005–2020. 

2.1.2 Predictors directly related to UV radiation 

In this study, the Level-2 OMI EDD (v.003) data were utilized as the main predictor for UV radiation, which has a temporal 85 

resolution of daily level and a spatial resolution of 0.25°×0.25° (Zhou et al., 2019). OMI EDD represents the overall amount 

of UV radiation that can cause sunburn during a day. The other predictor was downward UV radiation at the surface from the 

fifth generation European Center for Medium-Range Weather Forecasts Reanalysis on single levels (ERA-5 UV), with a 

temporal resolution of hourly level and a spatial resolution of 0.25°×0.25° (https://cds.climate.copernicus.eu/). The daily ERA-

5 UV was obtained by adding the data over 24 hours for each day. OMI EDD and ERA-5 UV with spatial resolution of 90 

0.25°×0.25° were interpolated to the 10 km grid cells employing the inverse distance weighted (IDW) method. 

2.1.3 Meteorological parameters 

Meteorological parameters may affect UV radiation were extracted from multiple ERA-5 products 

(https://cds.climate.copernicus.eu/) according to previous studies (Dieste-Velasco et al., 2023; Hu et al., 2010). Among them, 

total cloud cover, total column water vapour, and forecast albedo were extracted from single-level ERA-5 product with a 95 

temporal resolution of hourly level and a spatial resolution of 0.25° × 0.25°; and relative humidity were extracted from 

pressure-level ERA-5 product at 1000 hPa with a temporal resolution of hourly level and a spatial resolution of 0.25° × 0.25°. 

Total precipitation and temperature at 2m were extracted from ERA5-Land product with a temporal resolution of hourly level 

and a spatial resolution of 0.1° × 0.1°. Regarding temporal resolution, the hourly data were converted to daily mean data by 

averaging the 24-hour data for each day. Concerning spatial resolution, IDW method was used to interpolate the meteorological 100 

parameters to 10 km grid cells. 
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2.1.4 Other predictor variables 

Other predictor variables that were incorporated including elevation, solar zenith angle (SZA), ground ozone (O3) 

concentrations, and aerosol optical depth (AOD) that could affect UV radiation levels according to previous studies (Santos et 

al., 2011; Habte et al., 2019). Elevation data were derived from the Advanced Spaceborne Thermal Emission and Radiometer 105 

(ASTER) Global Digital Elevation Map (GDEM), which has a spatial resolution of 30 m 

(https://asterweb.jpl.nasa.gov/GDEM.asp). SZA data were obtained from Aqua (MYD06_L2) with a temporal resolution of 

daily level and a spatial resolution of 5 km (https://search.earthdata.nasa.gov). O3 data is the maximum daily 8 h average 

(MDA8) O3 concentrations predicted based on a random forest model at a daily level and spatial resolution of 1 km × 1 km in 

China (Meng et al., 2022). This study also included AOD data from the Multi-Angle Implementation of Atmospheric 110 

Correction (MAIAC AOD) algorithm based on the Moderate Resolution Imaging Spectroradiometer (MODIS) with a temporal 

resolution of daily level and a spatial resolution of 1 km (Shi et al., 2022; Meng et al., 2021). MAIAC AOD values for cloud 

contamination or land covered by snow were cleaned based on quality assurance (QA) flags. For comparing long-term trend 

of UV radiation and air pollution, fine particulate matter (PM2.5) data was also included in this study, which was predicted 

using a random forest model with a daily level and spatial resolution of 1 km × 1 km in China (Meng et al., 2021; Shi et al., 115 

2023a; Shi et al., 2023b). Elevation and SZA was spatially joined and averaged into 10 km grid cells. O3 and MAIAC AOD 

were obtained by matching 1 km grid cells with 10 km grid cells, and then calculating the mean value of the data within 10 

km grid cells. 

2.2 Methods 

2.2.1 Model development 120 

In recent years, machine learning algorithms have been widely used to predict environmental factors due to their flexibility 

and excellent data processing capabilities (Corrêa, 2023; Wu et al., 2022). This study utilized the random forest, one of machine 

learning algorithms, to develop a model for predicting UV radiation in China during 2005–2020. The dependent variable was 

the daily ground measured UV radiation, while the independent variables included OMI EDD, ERA-5 UV, elevation, SZA, O3, 

MAIAC AOD as well as meteorological parameters including total cloud cover, relative humidity, total column water vapour, 125 

forecast albedo, total precipitation, and temperature at 2 m. Random forest improves the overall prediction performance by 

building multiple decision trees and combining their results (Breiman, 2001). It uses bootstrap sampling, which is to draw 

different subsamples from the original dataset with replacement, as the training data for each decision tree. During the training 

process, each decision tree makes predictions for the input data, and the final result of the random forest is obtained by 

averaging the predictions from all trees. Importance ranking of all predictors is a method to evaluate the contribution of 130 

different predictors in a model, and it is also one of the advantages of random forest. The importance of a predictor is measured 
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by randomly permuting its values and comparing the accuracy drop between the predictions before and after the permutation. 

Model development was implemented using the “Rborist” package in R version 3.6.3. 

OMI EDD serves as a measurement of UV radiation from satellite, but it has non-random missing values due to cloud cover 

and technological issue of OMI since 2008, with an averaged missing rate of 23.04% (3.03%–35.29%) during all years in the 135 

study period (Table A1). To address this issue, a three-day moving average method was used to fill the gap when the OMI 

EDD was missing, which reduced the missing rate of OMI EDD to 0.62%.  

2.2.2 Model validation 

The model performance was tested through overall 10-fold cross-validation (CV), temporal 10-fold CV, spatial 10-fold CV 

and by year 10-fold CV, which was a stricter temporal CV. Overall 10-fold CV was achieved by randomly dividing the dataset 140 

into ten parts, with nine parts were used to train a random forest model and one part was used as a test dataset for predictions. 

This process was replicated ten times, and the measurements were compared with the corresponding predictions. Temporal 

10-fold CV could be used to evaluate the performance of the model in temporal extrapolation. Each time, 90% of days was 

randomly selected and data on these days were used to develop a training model to predict UV radiation for the remaining 10% 

of dates, and this process was repeated ten times. In a similar manner, spatial 10-fold CV could be used to evaluate the 145 

performance of the model in spatial extrapolation. Each time, 90% of sites data was randomly selected to develop a training 

model to predict UV radiation for the remaining 10% of sites, and the procedure was repeated ten times. In contrast to previous 

studies that generally only employed a temporal 10-fold CV, this study performed by year 10-fold CV simultaneously, which 

took out an entire year of data as testing data each time (Meng et al., 2021). This process was repeated 16 times, given the 

availability of 16 years of UV radiation data for model development. To indicate the precision of the prediction, the study 150 

calculated the regression R2, CV R2 and root mean square error (RMSE, defined as the square root of the average of the squared 

differences between the predictions and measurements) between UV radiation measurements and predictions.  

3 Results 

3.1 Description of UV radiation measurements 

Table 1 summarizes the statistical descriptions of averaged daily mean for UV radiation measurements from CERN spanning 155 

the years 2005 to 2020. The mean annual value from 2005 to 2020 of UV radiation at monitoring stations was 168.40 W m-2, 

with a standard deviation of 91.39 W m-2. During the 16-year period, the minimum level of 155.46 W m-2 was recorded in 

2010, while the maximum UV radiation level of 190.10 W m-2 was recorded in 2020 with an increase of 22.28% compared 

to 2010. The UV radiation level fluctuated between 2005 and 2012, but the overall trend was relatively stable. From 2013 to 
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2020, there was a clearly increasing trend in UV radiation, which increased by 18.66% during this period. 160 

Table 1. Statistical descriptions of UV radiation measurements from ground monitoring stations in CERN in China during 

2005–2020 

Year 

Mean 

( W m-2 ) 

Standard deviation 

( W m-2 ) 

P25 

( W m-2 ) 

Median 

( W m-2 ) 

P75 

( W m-2 ) 

2005 160.62 81.07 94.35 153.57 160.62 

2006 158.34 80.56 94.20 149.90 214.90 

2007 159.54 82.99 91.81 150.41 220.21 

2008 162.39 83.09 93.49 153.60 223.16 

2009 159.64 82.65 91.46 152.20 222.60 

2010 155.46 81.73 88.56 144.91 215.80 

2011 160.95 84.37 90.11 152.60 223.50 

2012 159.65 85.38 88.75  153.60 221.80  

2013 160.21 82.87 92.00 149.93 221.50 

2014 160.87 82.41 94.06 152.90 221.50  

2015 170.96 91.32 96.66 162.70  238.20  

2016 175.66 96.84 97.72 162.75 248.00 

2017 180.90  109.28 100.90 168.40 254.60 

2018 187.00 103.48 102.00 176.30  262.00 
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2019 189.80  104.63 103.90 178.60  265.70  

2020 190.10 105.01 104.10 177.20  266.90 

2005–2020 168.40 91.39 94.80 158.10  232.80 

3.2 Model performance 

This study first compared levels between indicators of UV radiation and measurements of UV radiation. The results indicated 

an R2 of 0.65 between ERA-5 UV and UV radiation measurements and an R2 of 0.55 between OMI EDD and UV radiation 165 

measurements in 2005–2020, respectively, indicating that both simulated and satellite remote-sensed UV radiation data could 

moderately represent ground UV radiation levels. 

The overall R2 (RMSE) of model development between measured and predicted UV radiation were 0.97 (15.64 W m-2) at daily 

level. Figure 2 displays the scatter density plots between measurements and CV predictions of UV radiation at daily level, 

including overall CV (a), spatial CV (b), temporal CV (c) and by year CV (d). From the density scatter plots, it could be seen 170 

that most of the measured-predicted pairs from CV fell on the 1:1 line, indicating a relatively high consistency between 

measurements and the CV predictions. The CV R2 (RMSE) values between measured and predicted UV radiation were 0.83 

(37.44 W m-2) for overall CV, 0.75 (45.56 W m-2) for spatial CV, 0.83 (37.48 W m-2) for temporal CV, and 0.82 (38.86 W m-2) 

for by year CV at daily level, and 0.91 (21.01 W m-2), 0.81 (31.14 W m-2), 0.91 (21.05 W m-2), 0.89 (22.90 W m-2) at monthly 

level for overall, spatial, temporal and by year CV, respectively. Figure 3 shows the temporal trend of monthly average values 175 

for predicted and measured UV radiation at monitoring stations from 2005 to 2020, which also indicated a high consistency 

between them, although the predictions tended to overestimate UV radiation when it was low and underestimate UV radiation 

when it was high. 

Figure A1 shows the importance ranking of all predictors produced by the random forest model. ERA-5 UV, OMI EDD and 

MAIAC AOD were the top important predictors in predicting UV radiation among all predictive variables. Figure A2 180 

illustrates that, with other predictors held constant, the inclusion of OMI EDD as a predictor in the model yielded an overall 

CV R2 (RMSE) of 0.83 (37.44 W m-2), compared to 0.81 (39.18 W m-2) when OMI EDD is not included.  
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Figure 2. Density scatter plots and linear regressions between measurements and predictions of UV radiation at daily level 

based on random forest model during 2005–2020. Overall CV(a); spatial CV(b); temporal CV(c); by-year CV(d).  185 

 

Figure 3. Time series plot of monthly mean UV radiation for measurements (green line) and predictions (purple dash) at 

monitoring stations during 2005–2020. 

3.3 Spatiotemporal distributions of UV radiation based on predictions 

The spatial distribution of annual average UV radiation based on predictions from 2005 to 2020 is illustrated in Fig. A3 for 190 
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each year and in Fig. 4 for the averaged values during 2005–2020, indicating uneven spatial distribution of UV radiation in 

China associated with factors such as latitude, elevation (Fig. A4), and meteorological factors. On one hand, UV radiation was 

stronger in southern region with lower latitude than in northern region with higher latitude. For example, in subregions labeled 

G of Fig. 4, located at the southernmost latitude in mainland China (~18° N), the UV radiation value was 205.86 W m-2 that 

was 1.46 times than the UV radiation in subregions labeled A, situated at the northernmost latitude in China (~50° N). On the 195 

other hand, UV radiation was higher in western region with higher elevation than in region with lower elevation, for example, 

the subregions labeled C of Fig. 4 with averaged elevation of 4730 m had the highest UV radiation level of 228.36 W m-2 that 

was 1.50 times than subregions labeled E with averaged elevation of 5 m. But due to the influence of climatic factors, the 

relationship between UV radiation and latitude as well as elevation may vary in some regions. For example, subregions labeled 

D and F of Fig. 4 shared similar elevations and latitudes, but UV radiation at F was 152.14 W m-2 that was 14.29% higher than 200 

that at D. Figure A5 shows the population density, indicating that although subregions labeled C had highest UV radiation in 

China, but its population was sparse; while southeastern coastal areas of China had both dense population and relatively strong 

UV radiation and therefore had a relatively higher population exposure risk. 

 

Figure 4. Spatial distribution of averaged annual-mean UV radiation during 2005–2020. The boxes represent: Heilongjiang 205 

Province (A); North China Plain (B); Tibet Autonomous Region (C); Chongqing City (D); Shanghai City (E); Zhejiang 

Province (F); and Hainan Province (G). 

The inter-annual and intra-annual trends of UV radiation are shown in Fig. 5. For long-term temporal trend, UV radiation 

experienced slight fluctuations from 2005 to 2014 but remained relatively stable, and then increased since 2015. Figure 5a 
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depicts the trends in the changes of UV radiation, O3, and PM2.5 across the China mainland from 2013 to 2020, showing that 210 

PM2.5 demonstrated a prominent downward trend while both UV radiation and O3 exhibited noticeable upward trends during 

the period. In comparison to values in 2013, UV radiation increased by 4.20% in 2020, rising from 176.68 W m-2 to 184.10 

W m-2 nationwide, O3 experienced a 22.70% increase, while PM2.5 decreased by 48.51%. In addition, it can be seen from Fig. 

A3 that North China Plain (labeled as B in Fig. 4) increased the most significantly since 2015, with UV radiation rising by 

7.13% from 2013 to 2020, which is 1.70 times the nationwide UV radiation growth rate. For the intra-annual variation, UV 215 

radiation exhibited a clear seasonal trend, with significantly higher levels during the summer than in winter. It was highest in 

July with an average value of 253.02 W m-2 in 2005–2020, and then gradually decreases, reaching the lowest in December 

with an average of 89.81 W m-2. Additionally, Fig. 3(c)–(f) illustrate the varying spatial trends of UV radiation across 

different seasons. In spring, the intensity of UV radiation in northern regions surpassed that in most southern areas. During 

summer, the UV radiation across mainland China consistently exceeded 162 W m-2. The spatial distribution of UV radiation 220 

intensity was primarily affected by elevation and latitude in autumn. In winter, with the exception of specific areas in 

western China, the UV radiation levels in other regions remained below 140 W m-2. 
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Figure 5. Inter-annual and intra-annual variation of UV radiation based on predictions in mainland China. Annual change rates 225 

of UV radiation, O3, PM2.5 in mainland China from 2013 to 2020 (a); the averaged monthly mean UV radiation in mainland 

China in 2005–2020 (b); average seasonal mean UV radiation in mainland China in 2005–2020 in spring (c), summer (d), 

autumn (e), and winter (f).  

4 Discussion 

This study developed a random forest model using a variety of predictors to predict daily UV radiation with relatively high 230 

accuracy, resolution and spatiotemporal coverage in mainland China. Based on predictions generated from the model, the 

temporal and spatial characteristics were identified. A gradual rise in UV radiation in recent years were found and uneven 

spatial distribution was explored.  

This study predicted UV radiation based on machine learning algorithm at daily level and 10 km spatial resolution with nearly 

full coverage in China with multiple predictors including satellite and simulated UV radiation data. The R2 (RMSE) between 235 

measured and predicted UV radiation was 0.97 (15.64 W m-2) for model development and 0.83 (37.44 W m-2) for overall 10-
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fold CV at daily level. Compared with other environmental factors affecting population health, such as air pollution, limited 

studies developed model for UV radiation, and most of them conducted in the United States and Europe with statistical model 

such as regression analysis and Area-to-point residual kriging (Feister et al., 2008; Junk et al., 2007; Pei and He, 2019; Vopham 

et al., 2016). In recent years, several studies started to employ machine learning methods for predicting UV radiation (Wu et 240 

al., 2022; Zhao and He, 2022). In previous studies R2 between measured and predicted UV radiation for model development 

ranged from 0.92 to 0.98 (Liu et al., 2017; Zhao and He, 2022; Qin et al., 2020), which were comparable with ours. Several 

studies developed models to predict UV radiation in China, but they did not investigate the roles of satellite UV radiation 

measurements in model performance. UV radiation data from satellite has been proven as one effective variable for evaluating 

exposure levels and identifying hotspots of skin cancer risks in other countries (Zhou et al., 2019; Kennedy et al., 2021). 245 

Satellite-sourced UV radiation data, such as OMI EDD, could be recognized as one kind of direct measurements of UV 

radiation from satellite, providing “real values” to constrain UV radiation predictions during spatial extrapolation (Gholamnia 

et al., 2021). Including OMI EDD in UV radiation model improved the predicting accuracy by approximate 2% compared with 

the model without it in this study. Additionally, this study filled the missing values of OMI EDD data to make the 

spatiotemporal coverage of UV radiation predictions close to 100%, which was higher than previous studies that predicted UV 250 

radiation at 724 conventional meteorological stations in China or that did not deal with the missing values in UV radiation 

predictions caused by incomplete predictor variables such as AOD data from remote sensing (Wu et al., 2022; Liu et al., 2017). 

The gridded UV predictions with nearly full spatiotemporal coverage could provide more comprehensive and flexible support 

for exposure assessment in health studies regarding with exposure windows and geographic locations.  

The results indicated that UV radiation is unevenly distributed throughout China, with high exposure areas primarily located 255 

in the southwest and health risk hotspots primarily located in the eastern region. The spatial distribution of UV radiation 

correlated closely with elevation, latitude, and climatic factors. Higher elevation resulted in stronger UV radiation primarily 

due to the thinner atmosphere, which means less UV radiation is absorbed or scattered by the atmosphere (Blumthaler et al., 

1997). UV radiation intensity also increased with decreasing latitude, primarily because regions at low latitudes have a smaller 

SZA (Holzle and Honigsmann, 2005). The spatial distribution of UV radiation in autumn can effectively reflected its 260 

correlation with elevation and latitude. Simultaneously, meteorological factors like cloud cover impact UV radiation intensity 

as they can absorb and scatter UV radiation (Dieste-Velasco et al., 2023). For example, the higher cloud cover and humidity 

in subregions labeled D resulted in higher UV radiation at F compared to D, despite their similar elevations and latitudes (Fig. 

4). In spring, owing to factors such as air currents, the southern regions were subjected to increased precipitation, resulting in 

elevated cloud cover and humidity (Yao et al., 2017). Consequently, this phenomenon may resulted in lower UV radiation 265 

intensity in southern regions as compared to the relatively arid northern regions. Besides natural factors, population distribution 

should be considered for identifying health risk hotspots. Although UV radiation levels were medium high in southeast coastal 
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regions, the population health effects due to UV radiation should not be ignored for the high population density there. The 

threshold for health effects of UV radiation for population is still unclear and there is not standard of atmospheric UV radiation 

so far, which need the support from further epidemiological studies. The UV radiation predictions in this study covers entire 270 

geographical areas of mainland China, providing exposure data to support health studies in different regions and further 

identify the health risk hotspots of UV radiation exposure in China.   

UV radiation levels exhibited both seasonal and long-term temporal trends. The seasonal pattern showed the strongest UV 

radiation in summer and the lowest in winter. This observed pattern might be linked to variations in daylight hours and 

alterations in SZA over the year (Liu et al., 2017). Specifically, our findings demonstrated an increase trend in UV radiation 275 

since 2015, accompanied by a decrease in PM2.5 and an increase in O3, suggesting a potential correlation between UV radiation 

levels and air pollution. The decrease in PM2.5 might contribute to the increase in UV radiation, as PM2.5 has the ability to 

absorb and reflect UV radiation (Madronich et al., 2023; Gao et al., 2013). Meanwhile, UV radiation plays a crucial role in the 

production of surface O3, as ground-level O3 primarily originates from photochemical reactions (Meng et al., 2022). Chinese 

government launched and implemented a series of nationwide policies to decrease air pollution levels, including the Action 280 

Plan of Air Pollution Prevention and Control (APPC-AP) in 2013 and Three-year (2018–2020) Action Plan for Cleaner Air in 

2017. By virtue of these policies, concentrations of several criteria air pollutants especially PM2.5 have dropped significantly 

in China since 2013. Therefore, alongside the decrease of PM2.5, there is a simultaneous need to enhance public awareness of 

UV radiation protection.  

The relatively small number of UV radiation monitoring stations, amounting to 40 stations employed for model development 285 

across the national landscape, may influence the extrapolation performance of the model. The UV monitoring stations were 

distributed in different geographic locations with multiple land cover types, which could help validate the model performance 

in spatial extrapolation. On the other hand, the spatial CV was conducted, which only slightly decreases compared to the 

overall CV, showing the relatively higher accuracy of spatial extrapolation.  

5 Data availability 290 

The UV radiation gridded dataset across mainland China in 2005–2020 is currently freely available at 

https://doi.org/10.5281/zenodo.10884591 (Jiang et al., 2024). 

6 Conclusion 

This study established a machine learning model for predicting daily UV radiation levels at a 10 km × 10 km spatial resolution 

across mainland China for 16 years, and model with satellite-sourced UV radiation measurements performed higher predicting 295 
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accuracy than the one without such predictor. Based on the high-resolution and coverage predictions, a gradual rise in UV 

radiation in recent years and uneven spatial distribution were found in China. This study provides modeling method and 

exposure data of UV radiation to support exposure assessment for future epidemiological studies and identification of exposure 

risk and health risk hotspots of UV radiation for Chinese population.  

Appendix A: Additional figures and tables 300 

Table A1. The by-year missing rates of erythemally daily dose retrieved from the Ozone Monitoring Instrument in mainland 

China during 2005–2020. 

year Missing rate before gap-filling 

2005 3.03% 

2006 3.53% 

2007 3.38% 

2008 5.69% 

2009 20.33% 

2010 30.28% 

2011 33.59% 

2012 21.80% 

2013 24.24% 

2014 28.20% 

2015 31.95% 

2016 35.29% 

2017 32.78% 
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2018 32.19% 

2019 32.12% 

2020 30.34% 

2005-2020 23.04% 

 

 

 305 
Figure A1. Ranking of importance for predictor variables in UV radiation prediction model. Note: downward UV radiation at 

the surface from the fifth generation European Center for Medium-Range Weather Forecasts Reanalysis (ERA-5 UV), aerosol 

optical depth data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC AOD), erythemally daily dose 

retrieved from the Ozone Monitoring Instrument (OMI EDD), solar zenith angle (SZA). 
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 310 

Figure A2. Density scatter plots and linear regressions between measurements and predictions of UV radiation at daily level 

based on random forest model during 2005–2020. With erythemally daily dose retrieved from the Ozone Monitoring 

Instrument (a); without erythemally daily dose retrieved from the Ozone Monitoring Instrument (b).  

 

 315 
Figure A3. Spatial distributions of UV radiation based on predictions at annual level from 2005 to 2020. 
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Figure A4. Spatial distribution of elevation in mainland China. 

 

Figure A5. Spatial distribution of population in mainland China in 2020 320 
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