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Abstract. Ultraviolet (UV) radiation is closely related to health; however, limited measurements have hindered further 

investigation of its health effects in China. Machine learning algorithms have been widely used to predict environmental factors 

with high accuracy, but limited studies have implemented it for UV radiation. The main aim of this study is to develop UV 

radiation prediction model using the random forest approach and predict the UV radiation at daily and 10 km resolution in 15 

mainland China from 2005 to 2020. The model was developed with multiple predictors such as UV radiation data from 

satellites as independent variables and ground UV radiation measurements from monitoring stations as the dependent variable. 

Missing satellite-based UV radiation data were obtained using the three-day moving average method. The model performance 

was evaluated using multiple cross-validation (CV) methods. The overall R2 and root mean square error between measured 

and predicted UV radiation from model development and model 10-fold CV were 0.97 and 15.64 W m-2 and 0.83 and 37.44 20 

W m-2 at daily level, respectively. The model that incorporated erythemal daily dose (EDD) retrieved from the Ozone 

Monitoring Instrument (OMI) had a higher prediction accuracy than that without it. Based on predictions of UV radiation at a 

daily level, 10 km spatial resolution, and nearly 100% spatiotemporal coverage, we found that UV radiation increased by 

4.20%, PM2.5 levels decreased by 48.51%, and O3 levels increased by 22.70%, respectively, from 2013–2020, suggesting a 

potential correlation among these environmental factors. The uneven spatial distribution of UV radiation was associated with 25 

factors such as latitude, elevation, meteorological factors, and season. The eastern areas of China pose a higher risk due to both 

high population density and high UV radiation intensity. Using machine learning algorithm, this study generated gridded UV 

radiation dataset with extensive spatiotemporal coverage, which can be utilized for future health-related research. This dataset 

is freely available at https://doi.org/10.5281/zenodo.10884591 (Jiang et al., 2024).  

1 Introduction 30 

Ultraviolet (UV) radiation is a crucial environmental factor closely associated with human health (Brenner and Hearing, 2008; 
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Narayanan et al., 2010). Previous studies have confirmed the hazardous effects of UV radiation on skin cancer (Griffin et al., 

2023; Vienneau et al., 2017) but inconsistent results have been reported regarding the adverse effects of UV radiation on eye 

diseases (Lagreze et al., 2017; Tian et al., 2018; Wolffsohn et al., 2022) and the health benefits of moderate UV radiation 

(Boscoe and Schymura, 2006; Vopham et al., 2017; Swaminathan et al., 2019). Further studies are required to ascertain the 35 

effects of UV radiation on human health; however, the lack of high-accurate exposure data of UV radiation hinders such health-

related investigations. 

Exposure assessment methods used in previous health studies on UV radiation mainly include the following: first, the UV 

index, a frequently used proxy for UV radiation in epidemiological studies (Thayer, 2014; Marson et al., 2021; Walls et al., 

2013). It predicts UV radiation levels on a scale of 1 to 11+. Although the UV index is easy to interpret, converting continuous 40 

measurements of UV radiation to the UV index results in the loss of numerical information. Second, satellite remote sensing 

data, often used to estimate UV radiation exposure. For example, erythemal UV irradiance from the Total Ozone Mapping 

Spectrometer (TOMS), despite being one of the initial instruments for evaluating the UV radiation backscattered by the Earth's 

atmospheric layers, it exhibits lower spatial resolution of 50 km×50 km, and it has limited accuracy. (Boscoe and Schymura, 

2006; Mohr et al., 2008; Lin et al., 2012; Zhou et al., 2019). Erythemal daily dose (EDD) retrieved from the Ozone Monitoring 45 

Instrument (OMI) can be utilized to evaluate the UV radiation exposure level with higher spatiotemporal resolution and was 

employed in the United States to represent ground UV radiation levels and identify hotspots for skin cancer (Zhou et al., 2019; 

Deng et al., 2021). However, missing values of the OMI EDD data were non-random. Especially since 2008, the field of view 

of the instrument has been partially obstructed by the peeling of the spacecraft's protective film, leading to data loss in the 

center-right section of each observational swath. This has greatly increased the missing rate of OMI EDD data, posing a 50 

challenge to the accuracy of exposure assessments in epidemiological studies (Mcpeters et al., 2015). Third, personal 

dosimeters, often worn to measure individual exposure (Stump et al., 2023; Grandahl et al., 2018). Although the data quality 

from this method is high, the costs are substantial, making it difficult to apply in large-population studies. Therefore, UV 

radiation data with higher accuracy and spatiotemporal resolution are required to support further exposure assessments. 

The enrichment of data resources and improvements in computing power have led to the development of machine learning 55 

algorithms. Machine learning algorithms can integrate data from multiple sources to predict environmental factors with high 

quality (Chen et al., 2021; Zhu et al., 2022; Liu et al., 2022). However, empirical or statistical models are generally used for 

UV radiation prediction (González-Rodríguez et al., 2022; Vopham et al., 2016; Pei and He, 2019; Liu et al., 2017). In recent 

years, some pioneering studies have employed machine learning algorithms to predict UV radiation in China (Wu et al., 2022; 

Qin et al., 2020). The spatiotemporal resolution of the predictions of one study was relatively low (0.50° × 0.625°) (Qin et al., 60 

2020), while another produced UV radiation predictions with significant missingness due to missing data of one predictor 

(aerosol optical depth from satellite), which may lead to seasonal bias in the UV radiation assessment (Wu et al., 2022). In 
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addition, these studies did not include direct measurements of UV radiation from satellites, such as the OMI EDD, which has 

been proven to be an effective predictor of UV radiation evaluation (Zhou et al., 2019; Deng et al., 2021). Satellite-based 

measurements can be used as one of the “real” measurements of UV radiation, which can help constrain the overfitting of the 65 

model in spatiotemporal extrapolation. Overall, further studies are required to add more evidence to the model development 

of UV radiation using advanced algorithms and comprehensive predictors.  

Therefore, this study aimed to develop a random forest model, one of the machine learning algorithms to predict UV radiation 

in mainland China at a daily level and a spatial resolution of 10 km in 2005–2020. Multiple predictors, including satellite-

based UV radiation, UV radiation simulations, parameters from reanalysis meteorological datasets, and other variables, were 70 

included in the model development. The missing satellite-based UV radiation were filled to improve the spatial coverage of 

the final UV radiation predictions. Finally, based on predictions with relatively high spatiotemporal resolution and a long 

period, temporal and spatial trends as well as hotspots of UV radiation were identified in mainland China. 

2 Data and methods 

2.1 Data 75 

2.1.1 Ground UV radiation measurements 

The Chinese Ecosystem Research Network (CERN) has been observing UV radiation since 2004 (Liu et al., 2017). The 

monitoring data are available online at http://www.cern.ac.cn/. Hourly monitoring data on UV radiation from 40 ground-based 

stations between 2005 and 2015, and 36 ground-based stations between 2016 and 2020, were collected from CERN (Fig. 1). 

These stations cover eight ecological land cover types across China: urban, agricultural, grassland, forest, lakes, bays, wetlands, 80 

and deserts. Daily UV radiation values were calculated by adding the 24 hourly UV radiation values per day. Days with 

continuous 2 hourly missing or unavailable UV radiation values were excluded.  
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Figure 1. Spatial distributions of CERN stations monitoring UV radiation in China in 2005–2020. 

2.1.2 Predictors directly related to UV radiation 85 

In this study, Level-2 OMI EDD (v.003) data were utilized as the main predictor of UV radiation, which has a temporal 

resolution of the daily level and a spatial resolution of 0.25° × 0.25° (Zhou et al., 2019). The OMI EDD represents the overall 

amount of UV radiation that can cause sunburn during the day. The other predictor was the downward UV radiation at the 

surface from the fifth-generation European Center for Medium-Range Weather Forecasts Reanalysis at single levels (ERA-5 

UV), with a temporal resolution of hourly and a spatial resolution of 0.25° × 0.25° (https://cds.climate.copernicus.eu/). Daily 90 

ERA-5 UV data were obtained by adding data over 24 hours for each day. OMI EDD and ERA-5 UV with a spatial resolution 

of 0.25° × 0.25° were interpolated to 10 km grid cells using the inverse distance weighted (IDW) method. 

2.1.3 Meteorological parameters 

Meteorological parameters that may affect UV radiation were extracted from multiple ERA-5 products 

(https://cds.climate.copernicus.eu/), according to previous studies (Dieste-Velasco et al., 2023; Hu et al., 2010). The total cloud 95 

cover, total column water vapour, and forecast albedo were extracted from a single-level ERA-5 product with a temporal 

resolution of hourly level and a spatial resolution of 0.25° × 0.25°, and the relative humidity was extracted from the pressure-

level ERA-5 product at 1000 hPa with a temporal resolution of hourly level and a spatial resolution of 0.25° × 0.25°. The total 

precipitation and temperature at 2m were extracted from the ERA5-Land product with a temporal resolution of hourly and a 

spatial resolution of 0.1° × 0.1°. Regarding temporal resolution, hourly data were converted to daily mean data by averaging 100 

the 24-hour data for each day. Concerning spatial resolution, the IDW method was used to interpolate the meteorological 

parameters to 10 km grid cells. 
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2.1.4 Other predictor variables 

Other predictor variables that were incorporated included elevation, solar zenith angle (SZA), ground ozone (O3) concentration, 

and aerosol optical depth (AOD), which can affect UV radiation levels, according to previous studies (Santos et al., 2011; 105 

Habte et al., 2019). Elevation data were derived from the Advanced Spaceborne Thermal Emission and Radiometer (ASTER) 

Global Digital Elevation Map (GDEM) with a spatial resolution of 30 m (https://asterweb. jpl. nasa. gov/GDEM. asp/). The 

SZA data were obtained from Aqua (MYD06_L2) with a temporal resolution of daily levels and a spatial resolution of 5 km 

(https://search.earthdata.nasa.gov). The O3 data were maximum daily 8 h average (MDA8) O3 concentrations predicted based 

on a random forest model at a daily level and a spatial resolution of 1 × 1 km in China (Meng et al., 2022). This study used 110 

gridded O3 data instead of O3 monitoring data from station sites, primarily due to considerations of data coverage in both 

temporal and spatial dimensions. Regarding the temporal coverage, the air quality monitoring network in China has not 

established until 2013, which could not fully cover the study period of 2005-2020 in this study. For the spatial coverage, the 

density of air quality monitoring stations is relatively low, with the majority of them are located in urban areas and eastern 

China, which could not capture the spatial variability within city and reflect the O3 pollution level in rural areas and western 115 

regions (Geyh et al., 2000). While the gridded O3 predictions used in this study are available from 2005-2020, have full spatial 

coverage in mainland China and achieved relatively high accuracy comparing with ground measurements with cross-validation 

(CV) R2 and root mean square error of 0.80 and 20.93 ug/m3, respectively (Meng et al., 2022). This study also included AOD 

data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC AOD) algorithm, based on the Moderate 

Resolution Imaging Spectroradiometer (MODIS), with a temporal resolution of daily levels and a spatial resolution of 1 km 120 

(Shi et al., 2022; Meng et al., 2021). The MAIAC AOD values for cloud contamination or land covered by snow were cleaned 

based on quality assurance (QA) flags. Elevation and SZA were spatially joined and averaged into 10 km grid cells. O3 and 

MAIAC AOD were obtained by matching 1 km grid cells with 10 km grid cells and then calculating the mean value of the 

data within the 10 km grid cells. 

2.1.5 Air pollution data 125 

For comparing the long-term trends of UV radiation and air pollution, fine particulate matter (PM2.5) and O3 data were included. 

PM2.5 data were predicted using a random forest model at a daily level and a spatial resolution of 1 × 1 km in China (Meng 

et al., 2021; Shi et al., 2023a; Shi et al., 2023b). The source and spatiotemporal resolution of the O3 data were the same as 

those in Section 2.1.4 Other predictor variables. 

2.2 Methods 130 

2.2.1 Model development 
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In recent years, machine learning algorithms have been widely used to predict environmental factors because of their flexibility 

and excellent data processing capabilities (Corrêa, 2023; Wu et al., 2022). This study utilized a random forest, one of machine 

learning algorithms, to develop a model for predicting UV radiation in China from 2005–2020. The dependent variable was 

the daily ground-measured UV radiation, while the independent variables included OMI EDD, ERA-5 UV, elevation, SZA, 135 

O3, MAIAC AOD, and meteorological parameters including total cloud cover, relative humidity, total column water vapour, 

forecast albedo, total precipitation, and temperature at 2 m. Random forest improves the overall prediction performance by 

building multiple decision trees and combining their results (Breiman, 2001). It uses bootstrap sampling, which draws different 

subsamples from the original dataset with replacements as training data for each decision tree. During the training process, 

each decision tree makes predictions for the input data and the final result of the random forest is obtained by averaging the 140 

predictions from all trees. Model development was implemented using the “Rborist” package in R version 3.6.3. 

OMI EDD is a measurement of UV radiation from a satellite but has non-random missing values due to cloud cover and a 

technological issue of OMI since 2008, with an averaged missing rate of 23.04% (3.03–35.29%) during all years over the study 

period (Table A2). We employed the three-day moving average method to fill the OMI EDD values on grid-days with missing 

data by calculating the mean of the OMI EDD values from the two preceding days if they were available for those grid cells. 145 

In the case of grid cells with missing data on consecutive days (more than 1 day), the missing OMI EDD data were not filled 

in this study. With this method, the missing rate of OMI EDD significantly decreased from 23.04% to 0.62% on average in 

2005-2020 (Table A2). 10-fold CV was employed to assess the accuracy of the three-day moving average method for filling 

the gap of OMI EDD data. In each iteration, 10% of the original OMI EDD data in the dataset were randomly dropped, and 

the three-day moving average method was applied to fill the missing values. This process was repeated ten times, and the gap-150 

filled OMI EDD values were compared to the corresponding original OMI EDD values. The results of the 10-fold CV are 

presented in Table A2 in Appendix, with R2 ranging from 0.85 to 0.90 in 2005-2020, indicating the relatively high accuracy of 

the gap-filling method. 

2.2.2 Model validation 

CV is commonly utilized to assess model performance in regard of overfitting and predicting accuracy, especially in studies 155 

of model development for UV radiation (Wu et al., 2022), particulate matter (Chen et al., 2018; Park et al., 2022; Wongnakae 

et al., 2023), O3 (Hsu et al., 2019; Wu et al., 2021), and nitrogen dioxide (Lu et al., 2021a). In this study, model performance 

was tested through overall 10-fold CV, temporal 10-fold CV, spatial 10-fold CV, and by-year temporal CV, which is a stricter 

temporal CV. Overall 10-fold CV is the most commonly used form of CV, offering a dependable evaluation of overall model 

performance and assessing model overfitting (Wu et al., 2022; Wongnakae et al., 2023; Hsu et al., 2019). Temporal 10-fold 160 

CV can evaluate the models’ capacity of temporal extrapolation for predicting UV radiation levels on days without 

measurements (He et al., 2023b; Lu et al., 2021b; Bi et al., 2020; Zhu et al., 2022). Spatial 10-fold CV is able to evaluate the 
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models’ capacity of spatial extrapolation in locations without monitoring stations (Wang et al., 2018; Zhu et al., 2022; Bi et al., 

2020). By-year temporal CV can be used to evaluate the predicting accuracy of our models in years out of the study period of 

model development (Meng et al., 2021; He et al., 2023a; He et al., 2021). 165 

The overall 10-fold CV was conducted by randomly dividing the dataset into ten parts, with nine parts used as a training dataset 

to train a random forest model and one part used as a test dataset for predictions. This process was repeated ten times and all 

measurements were compared with the corresponding predictions. Temporal 10-fold CV was done by randomly dividing the 

dataset into ten parts based on days, in which data on 90% of the days were used to develop a training model to predict UV 

radiation on the remaining 10% days each time, and this process was repeated ten times. Similarly, spatial 10-fold CV involved 170 

randomly dividing the dataset into ten parts based on the locations of monitoring stations, with data from 90% of the sites were 

used to develop a training model to predict the UV radiation for the remaining 10% of the sites each time and this process was 

repeated ten times. In order to further validate the predicting accuracy of our models beyond 2005-2020, this study performed 

another stricter temporal CV, by-year temporal CV, which left an entire year of data as the testing dataset each time, while data 

from the remaining years are used as the training dataset. Regression R2 and root mean square error (RMSE; the square root 175 

of the average of the squared differences between the predictions and measurements) between the UV radiation measurements 

and predictions from model development and CVs were calculated to indicate the model performance. 

2.2.3 Impacts of predictors on UV predictions 

Two methods were applied to evaluate the impacts of all predictors on UV radiation levels. First, random forest model itself 

could produce importance rankings of all predictors to evaluate the contribution of each predictor to UV radiation predictions, 180 

and this is also one of the advantages of the random forest model. The importance of a predictor was measured by randomly 

permuting its values and comparing the decrease in predicting accuracy between the predictions before and after the 

permutation. Second, SHapley Additive exPlanations (SHAP) method can be used to evaluate both contributions and directions 

of predictors on final predictions (Lundberg and Lee, 2017). SHAP method employs the classic game theory concept of Shapley 

values to compute the feature importance for a specific machine learning model (Strumbelj and Kononenko, 2010). 185 

Aggregating the SHAP values across multiple data points provides a global explanation of the model. In this study, we utilized 

the SHAP library in Python to interpret impacts of predictors on UV radiation predictions based on a random forest model 

(Lundberg et al., 2020). 

3 Results 

3.1 Description of UV radiation measurements 190 

Table A1 summarizes the statistical descriptions of the average daily mean for UV radiation measurements from CERN from 
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2005 to 2020. The mean annual value of UV radiation at the monitoring stations was 168.40 W m -2, with a standard 

deviation of 91.39 W m-2. During the 16-year period, the minimum level of 155.46 W m-2 was recorded in 2010, while the 

maximum UV radiation level of 190.10 W m-2 was recorded in 2020, an increase of 22.28% compared with 2010. UV 

radiation levels fluctuated between 2005 and 2012; however, the overall trend was relatively stable. From 2013 to 2020, 195 

there was a clear increasing trend in UV radiation, which increased by 18.66% during this period. 

3.2 Model performance 

This study compared the levels of UV radiation indicators and measurements of UV radiation. The results indicated an R2 of 

0.65 between the ERA-5 UV and UV radiation measurements, and an R2 of 0.55 between the OMI EDD and UV radiation 

measurements in 2005–2020, indicating that both simulated and satellite remotely sensed UV radiation data could moderately 200 

represent ground UV radiation levels. 

The overall R2 and RMSE of model development between measured and predicted UV radiation were 0.97 and 15.64 W m-2 

at the daily level, respectively. Fig. 2 shows the scatter density plots between the measurements and CV predictions of UV 

radiation at the daily level, including the overall CV (a), spatial CV (b), temporal CV (c), and by-year temporal CV (d). From 

the density scatter plots, it can be seen that most of the measured-predicted pairs from CV fell on the 1:1 line, indicating 205 

relatively high consistency between the measurements and CV predictions. The CV R2 (RMSE) values between measured and 

predicted UV radiation were 0.83 (37.44 W m-2) for overall CV, 0.75 (45.56 W m-2) for spatial CV, 0.83 (37.48 W m-2) for 

temporal CV, and 0.82 (38.86 W m-2) for by-year CV at daily level, and 0.91 (21.01 W m-2), 0.81 (31.14 W m-2), 0.91 (21.05 

W m-2), 0.89 (22.90 W m-2) at monthly level for overall, spatial, temporal and by-year temporal CV, respectively. Fig. 3 shows 

the temporal trend of monthly average values for predicted and measured UV radiation at monitoring stations from 2005 to 210 

2020, which also indicates high consistency, although the predictions tended to overestimate UV radiation when it was low 

and underestimate UV radiation when it was high. 

Fig. A1 illustrates that, with other predictors held constant, the inclusion of OMI EDD as a predictor in the model yielded an 

overall CV R2 (RMSE) of 0.83 (37.44 W m-2), compared to 0.81 (39.18 W m-2) when OMI EDD was not included.  
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 215 

Figure 2. Density scatter plots and linear regressions between measurements and predictions of UV radiation at a daily level 

based on a random forest model during 2005–2020: Overall CV(a), spatial CV(b), temporal CV(c), and by year temporal 

CV(d).  

 

Figure 3. Time series plot of monthly mean UV radiation for measurements (green line) and predictions (purple dash) at 220 

monitoring stations during 2005–2020. 

3.3. Impacts of predictors on UV radiation predictions 

Fig. A2 shows the importance ranking of all predictors produced by the random forest model itself that ERA-5 UV, OMI EDD, 

and MAIAC AOD were the most important predictors of UV radiation. Fig. 4 shows the SHAP summary plot and feature 

importance, which were the same with that from the random forest method. SHAP method also provided evaluation on the 225 
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impact directions of predictors on UV radiation predictions. In Fig. 4a, each point represents a sample from the dataset. The 

color of each point indicates the magnitude of the predictor, with redder values indicating higher values and bluer indicating 

lower values. For example, ERA-5 UV and OMI EDD exerted the most substantial impact and similar impact directions on 

UV radiation predictions. High values of ERA-5 UV and OMI EDD increased the predicted UV radiation predictions, whereas 

low values decreased UV radiation predictions. Ambient aerosols (MAIAC AOD) and O3 levels showed opposite effects on 230 

UV radiation predictions based on SHAP method. Higher MAIAC AOD values displayed higher negative SHAP values, 

meaning that higher MAIAC AOD values tended to associate with decreased UV radiation levels. Conversely, High O3 levels 

corresponded to positive SHAP values, indicating that high O3 levels were associated with high UV radiation predictions. 

 

Figure 4. Impacts of predictors on UV radiation predictions based on SHAP method (a); importance ranking of predictors for 235 

predicting UV radiation levels, calculated by taking the average of the absolute SHAP values (b). 

3.4 Spatiotemporal distributions of UV radiation based on predictions 

The spatial distribution of annual average UV radiation based on predictions from 2005 to 2020 is shown in Fig. A3 for each 

year and in Fig. 5 for the average values from 2005 to 2020, indicating an uneven spatial distribution of UV radiation in China 

associated with factors such as latitude and elevation (Fig. A4) and meteorological factors. On one hand, UV radiation was 240 

stronger in the southern region at lower latitudes than in the northern region at higher latitudes. For example, in subregion G 

in Fig. 5, located at the southernmost latitude in mainland China (~18° N), the UV radiation value was 205.86 W m-2; 1.46 

times that in subregion A, situated at the northernmost latitude in China (~50° N). On the other hand, UV radiation was higher 

in western regions, with higher elevation, than in regions with lower elevation, for example, subregion C, with an average 

elevation of 4730 m, had the highest UV radiation level of 228.36 W m-2; 1.50 times that of subregion E, with an average 245 

elevation of 5 m. However, because of the influence of climatic factors, the relationship between UV radiation and latitude as 
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well as elevation may vary in some regions. For example, subregions D and F have similar elevations and latitudes but UV 

radiation at subregion F was 152.14 W m-2; 14.29% higher than that at D. Fig. A5 shows the population density, indicating that 

although subregion C had the highest UV radiation in China, its population is sparse, while the southeastern coastal areas of 

China, with dense populations, had relatively strong UV radiation and thus a relatively higher population exposure risk. 250 

 

Figure 5. Spatial distribution of averaged annual-mean UV radiation during 2005–2020. Heilongjiang Province (A), North 

China Plain (B), Tibet Autonomous Region (C), Chongqing City (D), Shanghai City (E), Zhejiang Province (F), and Hainan 

Province (G). 

The inter-annual and intra-annual trends in UV radiation are shown in Fig. 6. For long-term temporal trends, UV radiation 255 

experienced slight fluctuations from 2005 to 2014 but remained relatively stable and then increased from 2015. Fig. 6a 

depicts the trends in the changes in UV radiation, O3, and PM2.5 across mainland China from 2013 to 2020, showing that 

PM2.5 demonstrated a prominent downward trend, whereas both UV radiation and O3 exhibited noticeable upward trends 

during this period. In comparison to 2013, UV radiation increased by 4.20% nationwide in 2020, rising from 176.68 W m-2 

to 184.10 W m-2, O3 increased by 22.70%, while PM2.5 decreased by 48.51%. Additionally, Fig. A3 shows that the North 260 

China Plain (subregion B in Fig. 5) increased the most significant, with UV radiation increasing by 7.13% from 2013 to 

2020, which was 1.70 times the national growth rate. Regarding intra-annual variation, UV radiation exhibited a clear 

seasonal trend, with significantly higher levels during summer than during winter. It was highest in July, with an average 

value of 253.02 W m-2 in 2005–2020, and then gradually decreased, reaching its lowest value in December, with an average 

of 89.81 W m-2. Additionally, Fig. 6(c)–(f) illustrate the varying spatial trends of UV radiation across different seasons. In 265 

spring, the intensity of UV radiation in the northern regions surpassed that in most of the southern areas. During summer, the 
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UV radiation across mainland China consistently exceeds 162 W m-2. The spatial distribution of the UV radiation intensity 

was primarily affected by elevation and latitude in autumn. In winter, except for in some areas in western China, the UV 

radiation levels remained below 140 W m-2. 

 270 

Figure 6. Inter-annual and intra-annual variation of UV radiation based on predictions in mainland China. Annual change rates 

of UV radiation, O3, PM2.5 in mainland China from 2013 to 2020 (a); averaged monthly mean UV radiation in mainland China 

in 2005–2020 (b); average seasonal mean UV radiation in mainland China in 2005–2020 in spring (c), summer (d), autumn 

(e), and winter (f).  

4 Discussion 275 

This study developed a random forest model using a variety of predictors to predict daily UV radiation in mainland China with 



13 

 

relatively high accuracy, resolution, and spatiotemporal coverage. Temporal and spatial characteristics were identified based 

on the predictions generated from the model. A gradual increase in UV radiation in recent years was observed, with an uneven 

spatial distribution.  

This study predicted UV radiation based on a machine learning algorithm at a daily level and 10 km spatial resolution with 280 

nearly full coverage in China using multiple predictors, including satellite and simulated UV radiation data. The R2 (RMSE) 

between measured and predicted UV radiation was 0.97 (15.64 W m-2) for model development and 0.83 (37.44 W m-2) for 

overall 10-fold CV at a daily level. Compared to other environmental factors affecting population health, such as air pollution, 

few studies have developed models for UV radiation and most have been conducted in the United States and Europe using 

statistical models such as regression analysis and area-to-point residual kriging (Feister et al., 2008; Junk et al., 2007; Pei and 285 

He, 2019; Vopham et al., 2016). In recent years, several studies have employed machine learning algorithms such as deep 

neural networks, support vector machine, and tree methods to predict UV radiation (Wu et al., 2022; Zhao and He, 2022). In 

previous studies, R2 between measured and predicted UV radiation for model development ranged from 0.92 to 0.98 (Liu et 

al., 2017; Zhao and He, 2022; Qin et al., 2020), which were comparable with our results. In this study we employed random 

forest method to develop the models as it is a widely used machine learning algorithm with several advantages for predicting 290 

multiple environmental factors (Araki et al., 2018; Guo et al., 2021; Huang et al., 2018; Liu et al., 2020). First, random forest 

exhibits high flexibility in processing various types of data and strong tolerance to multicollinearity among predictors (Breiman, 

2001; Fox et al., 2017; Strobl et al., 2008; Bamrah et al., 2020). Second, comparing to some other black-box machine learning 

models, random forest method is able to provide feature importance rankings and facilitate a deeper understanding in 

contribution of all predictors in predictions, which makes the models easier to be understood and explained (Hu et al., 2017; 295 

Wei et al., 2019). Third, the predicting errors in random forest models are generally lower, due to the reduction in variance 

achieved by aggregating multiple trees (Ameer et al., 2019; Ding and Qie, 2022). Forth, random forest is user-friendly with 

relatively small number of parameter settings and a relatively fast processing speed (Ameer et al., 2019; Hu et al., 2017). Due 

to the above advantages, many previous studies found that random forest method could achieve higher or at least comparable 

predicting accuracy over other machine learning models in predicting environmental factors (Liang et al., 2020; Julián et al., 300 

2015; Contreras and Ferri, 2016; Ameer et al., 2019). In this study, we also compared results from random forest model and 

eXtreme Gradient Boosting (XGBoost) model, which is another machine learning model based on decision trees with relatively 

high predicting accuracy (Zamani Joharestani et al., 2019; Nasabpour Molaei et al., 2023; Dai et al., 2023; Wu et al., 2022). 

The results indicated that the predicting accuracy from XGBoost method was comparable but slightly lower than those from 

random forest method with lower R2 (XGBoost: 0.81 v.s. random forest: 0.83) and higher RMSE (XGBoost: 39.25 W m-2 v.s. 305 

random forest: 37.44 W m-2). Several studies have developed models to predict UV radiation in China; however, the role of 

satellite UV radiation measurements in model performance has not been investigated. UV radiation data from satellites have 
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proven to be an effective variable for evaluating exposure levels and identifying hotspots of skin cancer risk in other countries 

(Zhou et al., 2019; Kennedy et al., 2021). Satellite-sourced UV radiation data, such as OMI EDD, offer a form of direct 

measurements of UV radiation from satellites, providing “real values” to constrain UV radiation predictions during spatial 310 

extrapolation (Gholamnia et al., 2021). Including the OMI EDD in the UV radiation model improved the prediction accuracy 

by approximately 2% compared to the model without it in this study. Additionally, this study filled in the missing values of 

OMI EDD data to make the spatiotemporal coverage of UV radiation predictions close to 100%, which was higher than 

previous studies that predicted UV radiation at 724 conventional meteorological stations in China or those that did not address 

the missing values in UV radiation predictions caused by incomplete predictor variables, such as AOD data from remote 315 

sensing (Wu et al., 2022; Liu et al., 2017). Gridded UV radiation predictions with nearly full spatiotemporal coverage can 

provide more comprehensive and flexible support for exposure assessment in health studies on exposure windows and 

geographic locations.  

The results indicated that UV radiation is unevenly distributed throughout China, with high-exposure areas primarily located 

in the southwest and health-risk hotspots primarily located in the eastern region. The spatial distribution of UV radiation is 320 

closely correlated with elevation, latitude, and climatic factors. Higher elevations result in stronger UV radiation, primarily 

because of the thinner atmosphere, meaning that less UV radiation is absorbed or scattered by the atmosphere (Blumthaler et 

al., 1997). The UV radiation intensity also increases with decreasing latitude, primarily because regions at low latitudes have 

a smaller SZA (Holzle and Honigsmann, 2005). The spatial distribution of UV radiation in autumn effectively reflects its 

correlation with elevation and latitude. Meteorological factors affect UV radiation intensity. For example, cloud cover can 325 

absorb and scatter UV radiation (Dieste-Velasco et al., 2023). The higher cloud cover and humidity in subregion D resulted in 

higher UV radiation at F than at D, despite their similar elevations and latitudes (Fig. 5). In spring, due to factors such as air 

currents, the southern regions are subjected to increased precipitation, which results in elevated cloud cover and humidity (Yao 

et al., 2017). Consequently, this phenomenon may have resulted in lower UV radiation intensity in the southern regions than 

in the relatively arid northern regions. In addition to natural factors, population distribution should be considered when 330 

identifying health-risk hotspots. Although UV radiation levels were medium-high in the southeastern coastal regions, the 

population health effects due to UV radiation should not be ignored because of the high population density there. The threshold 

for the health effects of UV radiation on the population is still unclear, and there are no atmospheric UV radiation standards so 

far, which requires support from further epidemiological studies. The UV radiation predictions in this study covered the entire 

geographical area of mainland China, providing exposure data to support health studies in different regions and further identify 335 

the health risk hotspots of UV radiation exposure in China.  

The UV radiation levels exhibited both seasonal and long-term temporal trends. The seasonal pattern showed the strongest UV 

radiation in summer and the lowest in winter. This observed pattern may be linked to variations in daylight hours and alterations 
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in the SZA throughout the year (Liu et al., 2017). Specifically, our findings demonstrated an increasing trend in UV radiation 

since 2015, accompanied by a decrease in PM2.5 and increase in O3, suggesting a potential correlation between UV radiation 340 

levels and air pollution. The decrease in PM2.5 may contribute to the increase in UV radiation, as PM2.5 can absorb and reflect 

UV radiation (Madronich et al., 2023; Gao et al., 2013). UV radiation plays a crucial role in the production of surface O3 

because ground-level O3 primarily originates from photochemical reactions (Guicherit and Roemer, 2000). Additionally, the 

results of the SHAP analysis were consistent with the long-term trend analysis, which indicated that ambient aerosols levels 

were negatively associated with UV radiation predictions while O3 concentrations positively related with UV radiation levels. 345 

The Chinese government launched and implemented a series of nationwide policies to decrease air pollution levels, including 

the Action Plan of Air Pollution Prevention and Control in 2013 and Three-Year (2018–2020) Action Plan for Cleaner Air in 

2017. Owing to these policies, the concentrations of several air pollutants, especially PM2.5 have decreased significantly in 

China since 2013. Therefore, along with a decrease in PM2.5, there is a need to enhance public awareness of UV radiation 

protection.  350 

The relatively small number of UV radiation monitoring stations employed for model development across the national 

landscape may have influenced the extrapolation performance of the model. The UV monitoring stations were distributed in 

different geographic locations with multiple land-cover types, which helped validate the model performance in spatial 

extrapolation. However, a spatial CV was conducted, which only slightly decreased compared to the overall CV, showing a 

relatively higher accuracy of spatial extrapolation. 355 

5 Data availability 

The UV radiation gridded dataset across mainland China in 2005–2020 is currently freely available at 

https://doi.org/10.5281/zenodo.10884591 (Jiang et al., 2024).  

6 Conclusion 

This study established a machine learning model for predicting daily UV radiation levels at a 10 × 10 km spatial resolution 360 

across mainland China for 16 years. The model with satellite-sourced UV radiation measurements had a higher prediction 

accuracy than the one without such a predictor. Based on high-resolution and coverage predictions, a gradual increase in UV 

radiation in recent years and an uneven spatial distribution were observed. This study provides a modeling method and 

exposure data for UV radiation to support exposure assessment for future epidemiological studies and the identification of 

exposure risk and health risk hotspots of UV radiation in the Chinese population.  365 

Appendix A: Additional figures and tables 
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Table A1 Statistical descriptions of UV radiation measurements from ground monitoring stations in CERN in China from 

2005–2020 

Year 

Mean 

( W m-2 ) 

Standard deviation 

( W m-2 ) 

P25 

( W m-2 ) 

Median 

( W m-2 ) 

P75 

( W m-2 ) 

2005 160.62 81.07 94.35 153.57 160.62 

2006 158.34 80.56 94.20 149.90 214.90 

2007 159.54 82.99 91.81 150.41 220.21 

2008 162.39 83.09 93.49 153.60 223.16 

2009 159.64 82.65 91.46 152.20 222.60 

2010 155.46 81.73 88.56 144.91 215.80 

2011 160.95 84.37 90.11 152.60 223.50 

2012 159.65 85.38 88.75  153.60 221.80  

2013 160.21 82.87 92.00 149.93 221.50 

2014 160.87 82.41 94.06 152.90 221.50  

2015 170.96 91.32 96.66 162.70  238.20  

2016 175.66 96.84 97.72 162.75 248.00 

2017 180.90  109.28 100.90 168.40 254.60 

2018 187.00 103.48 102.00 176.30  262.00 

2019 189.80  104.63 103.90 178.60  265.70  
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2020 190.10 105.01 104.10 177.20  266.90 

2005–2020 168.40 91.39 94.80 158.10  232.80 

 

Table A2. Missing rate of erythemal daily dose (EDD) retrieved from the Ozone Monitoring Instrument (OMI) before and after 370 

gap-filling and the results of 10-fold cross-validation of the three-day moving average method from 2005 to 2020 in China. 

year 
Missing rate 

before gap-filling 

Missing rate 

after gap-filling 

R2 of 10-fold 

cross-validation 

2005 3.03% 0.00% 0.90 

2006 3.53% 0.27% 0.90 

2007 3.38% 0.00% 0.90 

2008 5.69% 0.57% 0.89 

2009 20.33% 0.21% 0.88 

2010 30.28% 0.40% 0.88 

2011 33.59% 0.53% 0.88 

2012 21.80% 0.17% 0.90 

2013 24.24% 0.28% 0.88 

2014 28.20% 0.37% 0.90 

2015 31.95% 0.50% 0.88 

2016 35.29% 4.19% 0.87 

2017 32.78% 1.52% 0.86 

2018 32.19% 0.55% 0.85 
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2019 32.12% 0.42% 0.85 

2020 30.34% 0.00% 0.86 

2005-2020 23.04% 0.62% 0.88 

 

 

Figure A1. Density scatter plots and linear regressions between measurements and predictions of UV radiation at a daily level 

based on a random forest model during 2005–2020. With erythemally daily dose retrieved from the Ozone Monitoring 375 

Instrument (a) and without erythemally daily dose retrieved from the Ozone Monitoring Instrument (b).  



19 

 

 

Figure A2. Ranking of importance for predictor variables in UV radiation prediction model. Note: downward UV radiation at 

the surface from the fifth generation European Center for Medium-Range Weather Forecasts Reanalysis (ERA-5 UV), aerosol 

optical depth data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC AOD), erythemally daily dose 380 

retrieved from the Ozone Monitoring Instrument (OMI EDD), solar zenith angle (SZA). 
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Figure A3. Spatial distributions of UV radiation based on predictions at an annual level from 2005 to 2020. 385 

 

Figure A4. Spatial distribution of elevation in mainland China. 
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Figure A5. Spatial distribution of population in mainland China in 2020 

Author contributions 390 

Yichen Jiang: Conceptualization, Data curation, Methodology, Software, Writing- Original draft preparation, Writing – review 

& editing.  Su Shi: Data curation, Software, Validation.  Xinyue Li: Data curation, Software.  Chang Xu: Data curation, 

Software.  Haidong Kan: Funding acquisition, Writing – review & editing.  Bo Hu: Resources, Funding acquisition, Writing 

– review & editing.  Xia Meng: Conceptualization, Resources, Funding acquisition, Supervision, Writing – review & editing. 

Competing interests 395 

We declare that we have no conflict of interest. 

Acknowledgements 

This work was supported by the National Key Research and Development Program of China (No. 2023YFC3708304, 

2022YFC3700705); National Natural Science Foundation of China (82030103). 

References  400 

Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S. U., and Asghar, M. N.: Comparative Analysis of Machine 

Learning Techniques for Predicting Air Quality in Smart Cities, IEEE Access, 7, 128325-128338, 

https://doi.org/10.1109/access.2019.2925082, 2019. 

Araki, S., Shima, M., and Yamamoto, K.: Spatiotemporal land use random forest model for estimating metropolitan NO2 

exposure in Japan, Science of The Total Environment, 634, 1269-1277, https://doi.org/10.1016/j.scitotenv.2018.03.324, 405 

2018. 

Bamrah, S. K., Saiharshith, K., and Gayathri, K.: Application of random forests for air quality estimation in india by adopting 



22 

 

terrain features, 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), 

Chennai, India, 28–29 September 2020, https://doi.org/10.1109/ICCCSP49186.2020.9315252, 2020. 

Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM(2.5) 410 

Modeling at a Large Spatial Scale, Environ Sci Technol, 54, 2152-2162, https://doi.org/10.1021/acs.est.9b06046, 2020. 

Blumthaler, M., Ambach, W., and Ellinger, R.: Increase in solar UV radiation with altitude, Journal of Photochemistry and 

Photobiology B: Biology, 39, 130-134, https://doi.org/10.1016/s1011-1344(96)00018-8, 1997. 

Boscoe, F. P. and Schymura, M. J.: Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993-

2002, BMC Cancer, 6, 264, https://doi.org/10.1186/1471-2407-6-264, 2006. 415 

Breiman, L.: Random Forests, Machine Learning, 45, 5-32, https://doi.org/10.1023/A:1010933404324, 2001. 

Brenner, M. and Hearing, V. J.: The protective role of melanin against UV damage in human skin, Photochem Photobiol, 84, 

539-549, https://doi.org/10.1111/j.1751-1097.2007.00226.x, 2008. 

Chen, G., Knibbs, L. D., Zhang, W., Li, S., Cao, W., Guo, J., Ren, H., Wang, B., Wang, H., Williams, G., Hamm, N. A. S., and 

Guo, Y.: Estimating spatiotemporal distribution of PM(1) concentrations in China with satellite remote sensing, 420 

meteorology, and land use information, Environ Pollut, 233, 1086-1094, https://doi.org/10.1016/j.envpol.2017.10.011, 

2018. 

Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An all-sky 1 km daily land surface air temperature product over 

mainland China for 2003–2019 from MODIS and ancillary data, Earth System Science Data, 13, 4241-4261, 

https://doi.org/10.5194/essd-13-4241-2021, 2021. 425 

Contreras, L. and Ferri, C.: Wind-sensitive interpolation of urban air pollution forecasts, Procedia Computer Science, 80, 313-

323, https://doi.org/10.1016/j.procs.2016.05.343, 2016. 

Corrêa, M. d. P.: UVBoost: An erythemal weighted ultraviolet radiation estimator based on a machine learning gradient 

boosting algorithm, Journal of Quantitative Spectroscopy and Radiative Transfer, 298, https://doi.org/10.1016/j.jqsrt.2023 

.108490, 2023. 430 

Dai, H., Huang, G., Wang, J., and Zeng, H.: VAR-tree model based spatio-temporal characterization and prediction of O(3) 

concentration in China, Ecotoxicol Environ Saf, 257, 114960, https://doi.org/10.1016/j.ecoenv.2023.114960, 2023. 

Deng, Y., Yang, D., Yu, J. M., Xu, J. X., Hua, H., Chen, R. T., Wang, N., Ou, F. R., Liu, R. X., Wu, B., and Liu, Y.: The 

Association of Socioeconomic Status with the Burden of Cataract-related Blindness and the Effect of Ultraviolet 

Radiation Exposure: An Ecological Study, Biomed Environ Sci, 34, 101-109, https://doi.org/10.3967/bes2021.015, 2021. 435 

Dieste-Velasco, M. I., García-Rodríguez, S., García-Rodríguez, A., Díez-Mediavilla, M., and Alonso-Tristán, C.: Modeling 

Horizontal Ultraviolet Irradiance for All Sky Conditions by Using Artificial Neural Networks and Regression Models, 

Applied Sciences, 13, https://doi.org/10.3390/app13031473, 2023. 

Ding, W. and Qie, X.: Prediction of Air Pollutant Concentrations via RANDOM Forest Regressor Coupled with Uncertainty 

Analysis—A Case Study in Ningxia, Atmosphere, 13, https://doi.org/10.3390/atmos13060960, 2022. 440 

Feister, U., Junk, J., Woldt, M., Bais, A., Helbig, A., Janouch, M., Josefsson, W., Kazantzidis, A., Lindfors, A., Outer, P. N. d., 

and Slaper, H.: Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics 

of input data, Atmospheric Chemistry and Physics, 8, 3107–3118, https://doi.org/10.5194/acp-8-3107-2008, 2008. 

Fox, E. W., Hill, R. A., Leibowitz, S. G., Olsen, A. R., Thornbrugh, D. J., and Weber, M. H.: Assessing the accuracy and 

stability of variable selection methods for random forest modeling in ecology, Environ Monit Assess, 189, 316, 445 

https://doi.org/10.1007/s10661-017-6025-0, 2017. 

Gao, Z., Gao, W., and Chang, N.-B.: Spatial Statistical Analyses of Global Trends of Ultraviolet B Fluxes in the Continental 

United States, GIScience & Remote Sensing, 49, 735-754, https://doi.org/10.2747/1548-1603.49.5.735, 2013. 

Geyh, A. S., Xue, J., Ozkaynak, H., and Spengler, J. D.: The Harvard Southern California Chronic Ozone Exposure Study: 

Assessing Ozone Exposure of Grade-School-Age Children in Two Southern California Communities, Environmental 450 

Health Perspectives, 108, 265–270, https://doi.org/10.1289/ehp.00108265, 2000. 

Gholamnia, R., Abtahi, M., Dobaradaran, S., Koolivand, A., Jorfi, S., Khaloo, S. S., Bagheri, A., Vaziri, M. H., Atabaki, Y., 

Alhouei, F., and Saeedi, R.: Spatiotemporal analysis of solar ultraviolet radiation based on Ozone Monitoring Instrument 

dataset in Iran, 2005-2019, Environ Pollut, 287, 117643, https://doi.org/10.1016/j.envpol.2021.117643, 2021. 

https://doi.org/10.1109/ICCCSP49186.2020.9315252


23 

 

González-Rodríguez, L., Rodríguez-López, L., Jiménez, J., Rosas, J., García, W., Duran-Llacer, I., de Oliveira, A. P., and Barja, 455 

B.: Spatio-temporal estimations of ultraviolet erythemal radiation in Central Chile, Air Quality, Atmosphere & Health, 

15, 837-852, https://doi.org/10.1007/s11869-022-01195-y, 2022. 

Grandahl, K., Eriksen, P., Ibler, K. S., Bonde, J. P., and Mortensen, O. S.: Measurements of Solar Ultraviolet Radiation 

Exposure at Work and at Leisure in Danish Workers, Photochem Photobiol, 94, 807-814, 

https://doi.org/10.1111/php.12920, 2018. 460 

Griffin, G. K., Booth, C. A. G., Togami, K., Chung, S. S., Ssozi, D., Verga, J. A., Bouyssou, J. M., Lee, Y. S., Shanmugam, V., 

Hornick, J. L., LeBoeuf, N. R., Morgan, E. A., Bernstein, B. E., Hovestadt, V., van Galen, P., and Lane, A. A.: Ultraviolet 

radiation shapes dendritic cell leukaemia transformation in the skin, Nature, 618, 834-841, https://doi.org/10.1038/s4158 

6-023-06156-8, 2023. 

Guicherit, R. and Roemer, M.: Tropospheric ozone trends, Chemosphere-Global Change Science, 2, 167-183, 465 

https://doi.org/10.1016/S1465-9972(00)00008-8, 2000. 

Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., Zhang, D., Yao, W., Zhou, Z., and Guo, L.: Estimating PM(2.5) 

concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal 

scales across China in 2017, Sci Total Environ, 778, 146288, https://doi.org/10.1016/j.scitotenv.2021.146288, 2021. 

Habte, A., Sengupta, M., Gueymard, C. A., Narasappa, R., Rosseler, O., and Burns, D. M.: Estimating Ultraviolet Radiation 470 

From Global Horizontal Irradiance, IEEE Journal of Photovoltaics, 9, 139-146, https://doi.org/10.1109/jphotov.2018.28 

71780, 2019. 

He, Q., Ye, T., Zhang, M., and Yuan, Y.: Enhancing the reliability of hindcast modeling for air pollution using history-informed 

machine learning and satellite remote sensing in China, Atmospheric Environment, 312, https://doi.org/10.1016/j.atmos 

env.2023.119994, 2023a. 475 

He, Q., Gao, K., Zhang, L., Song, Y., and Zhang, M.: Satellite-derived 1-km estimates and long-term trends of PM2.5 

concentrations in China from 2000 to 2018, Environment International, 156, https://doi.org/10.1016/j.envint.2021.106726, 

2021. 

He, Q., Ye, T., Chen, X., Dong, H., Wang, W., Liang, Y., and Li, Y.: Full-coverage mapping high-resolution atmospheric CO2 

concentrations in China from 2015 to 2020: Spatiotemporal variations and coupled trends with particulate pollution, 480 

Journal of Cleaner Production, 428, https://doi.org/10.1016/j.jclepro.2023.139290, 2023b. 

Holzle, E. and Honigsmann, H.: UV-radiation-Sources, Wavelength, Environment, J Dtsch Dermatol Ges, 3 Suppl 2, S3-10, 

https://doi.org/10.1111/j.1610-0387.2005.04392.x, 2005. 

Hsu, C. Y., Wu, J. Y., Chen, Y. C., Chen, N. T., Chen, M. J., Pan, W. C., Lung, S. C., Guo, Y. L., and Wu, C. D.: Asian Culturally 

Specific Predictors in a Large-Scale Land Use Regression Model to Predict Spatial-Temporal Variability of Ozone 485 

Concentration, Int J Environ Res Public Health, 16, https://doi.org/10.3390/ijerph16071300, 2019. 

Hu, B., Wang, Y., and Liu, G.: Variation characteristics of ultraviolet radiation derived from measurement and reconstruction 

in Beijing, China, Tellus B: Chemical and Physical Meteorology, 62, 100-108, https://doi.org/10.1111/j.1600-

0889.2010.00452.x, 2010. 

Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating PM2.5 Concentrations in 490 

the Conterminous United States Using the Random Forest Approach, Environmental Science & Technology, 51, 6936-

6944, https://doi.org/10.1021/acs.est.7b01210, 2017. 

Huang, K., Xiao, Q., Meng, X., Geng, G., Wang, Y., Lyapustin, A., Gu, D., and Liu, Y.: Predicting monthly high-resolution 

PM2.5 concentrations with random forest model in the North China Plain, Environmental Pollution, 242, 675-683, 

https://doi.org/10.1016/j.envpol.2018.07.016, 2018. 495 

Jiang, Y., Shi, S., Li, X., Xu, C., Kan, H., Hu, B., & Meng, X.: A database of 10 km Ultraviolet Radiation Product over mainland 

China: 2005-2020, Zenodo [data set], https://doi.org/10.5281/zenodo.10884591,2024. 

Julián, C. I. F., ES, U., and Ferri, C.: Airvlc: An application for real-time forecasting urban air pollution, Proceedings of the 

2nd International Workshop on Mining Urban, Lille, France, 2015. 

Junk, J., Feister, U., and Helbig, A.: Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany, 500 

International Journal of Biometeorology, 51, 505-512, https://doi.org/10.1007/s00484-007-0089-4, 2007. 



24 

 

Kennedy, C., Liu, Y., Meng, X., Strosnider, H., Waller, L. A., and Zhou, Y.: Developing indices to identify hotspots of skin 

cancer vulnerability among the Non-Hispanic White population in the United States, Ann Epidemiol, 59, 64-71, 

https://doi.org/10.1016/j.annepidem.2021.04.004, 2021. 

Lagreze, W. A., Joachimsen, L., and Schaeffel, F.: [Current recommendations for deceleration of myopia progression], 505 

Ophthalmologe, 114, 24-29, https://doi.org/10.1007/s00347-016-0346-1, 2017. 

Liang, Y.-C., Maimury, Y., Chen, A. H.-L., and Juarez, J. R. C.: Machine Learning-Based Prediction of Air Quality, Applied 

Sciences, 10, https://doi.org/10.3390/app10249151, 2020. 

Lin, S. W., Wheeler, D. C., Park, Y., Cahoon, E. K., Hollenbeck, A. R., Freedman, D. M., and Abnet, C. C.: Prospective study 

of ultraviolet radiation exposure and risk of cancer in the United States, Int J Cancer, 131, E1015-1023, 510 

https://doi.org/10.1002/ijc.27619, 2012. 

Liu, H., Hu, B., Zhang, L., Zhao, X. J., Shang, K. Z., Wang, Y. S., and Wang, J.: Ultraviolet radiation over China: Spatial 

distribution and trends, Renewable and Sustainable Energy Reviews, 76, 1371-1383, https://doi.org/10.1016/j.rser.2017.0 

3.102, 2017. 

Liu, H., Liu, J., Liu, Y., Ouyang, B., Xiang, S., Yi, K., and Tao, S.: Analysis of wintertime O(3) variability using a random 515 

forest model and high-frequency observations in Zhangjiakou-an area with background pollution level of the North China 

Plain, Environ Pollut, 262, 114191, https://doi.org/10.1016/j.envpol.2020.114191, 2020. 

Liu, S., Geng, G., Xiao, Q., Zheng, Y., Liu, X., Cheng, J., and Zhang, Q.: Tracking Daily Concentrations of PM(2.5) Chemical 

Composition in China since 2000, Environ Sci Technol, 56, 16517-16527, https://doi.org/10.1021/acs.est.2c06510, 2022. 

Lu, T., Marshall, J. D., Zhang, W., Hystad, P., Kim, S. Y., Bechle, M. J., Demuzere, M., and Hankey, S.: National Empirical 520 

Models of Air Pollution Using Microscale Measures of the Urban Environment, Environ Sci Technol, 55, 15519-15530, 

https://doi.org/10.1021/acs.est.1c04047, 2021a. 

Lu, Y., Giuliano, G., and Habre, R.: Estimating hourly PM(2.5) concentrations at the neighborhood scale using a low-cost air 

sensor network: A Los Angeles case study, Environ Res, 195, 110653, https://doi.org/10.1016/j.envres.2020.110653, 

2021b. 525 

Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, Advances in neural information 

processing systems, 30, 2017. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S. 

I.: From Local Explanations to Global Understanding with Explainable AI for Trees, Nat Mach Intell, 2, 56-67, 

https://doi.org/10.1038/s42256-019-0138-9, 2020. 530 

Madronich, S., Sulzberger, B., Longstreth, J. D., Schikowski, T., Andersen, M. P. S., Solomon, K. R., and Wilson, S. R.: 

Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate, Photochem 

Photobiol Sci, 22, 1129-1176, https://doi.org/10.1007/s43630-023-00369-6, 2023. 

Marson, J. W., Litchman, G. H., and Rigel, D. S.: The magnitude of increased United States melanoma incidence attributable 

to ground-level ultraviolet radiation intensity trends, J Am Acad Dermatol, 84, 1734-1735, https://doi.org/10.1016/j.jaad 535 

.2020.08.100, 2021. 

McPeters, R. D., Frith, S., and Labow, G. J.: OMI total column ozone: extending the long-term data record, Atmospheric 

Measurement Techniques, 8, 4845-4850, https://doi.org/10.5194/amt-8-4845-2015, 2015. 

Meng, X., Liu, C., Zhang, L., Wang, W., Stowell, J., Kan, H., and Liu, Y.: Estimating PM(2.5) concentrations in Northeastern 

China with full spatiotemporal coverage, 2005-2016, Remote Sens Environ, 253, https://doi.org/10.1016/j.rse.2020.11220 540 

3, 2021. 

Meng, X., Wang, W., Shi, S., Zhu, S., Wang, P., Chen, R., Xiao, Q., Xue, T., Geng, G., Zhang, Q., Kan, H., and Zhang, H.: 

Evaluating the spatiotemporal ozone characteristics with high-resolution predictions in mainland China, 2013-2019, 

Environ Pollut, 299, 118865, https://doi.org/10.1016/j.envpol.2022.118865, 2022. 

Mohr, S. B., Garland, C. F., Gorham, E. D., Grant, W. B., and Garland, F. C.: Relationship between low ultraviolet B irradiance 545 

and higher breast cancer risk in 107 countries, Breast J, 14, 255-260, https://doi.org/10.1111/j.1524-4741.2008.00571.x, 

2008. 

Narayanan, D. L., Saladi, R. N., and Fox, J. L.: Ultraviolet radiation and skin cancer, Int J Dermatol, 49, 978-986, 



25 

 

https://doi.org/10.1111/j.1365-4632.2010.04474.x, 2010. 

Nasabpour Molaei, S., Salajegheh, A., Khosravi, H., Nasiri, A., and Ranjbar Saadat Abadi, A.: Prediction of hourly PM10 550 

concentration through a hybrid deep learning-based method, Earth Science Informatics, 17, 37-49, 

https://doi.org/10.1007/s12145-023-01146-w, 2023. 

Park, S., Im, J., Kim, J., and Kim, S. M.: Geostationary satellite-derived ground-level particulate matter concentrations using 

real-time machine learning in Northeast Asia, Environ Pollut, 306, 119425, https://doi.org/10.1016/j.envpol.2022.119425, 

2022. 555 

Pei, C. and He, T.: UV RADIATION ESTIMATION IN THE UNITED STATES USING MODIS DATA, IEEE International 

Symposium on Geoscience and Remote Sensing, 1880-1883, https://doi.org/10.1109/IGARSS.2019.8900659, 2019. 

Qin, W., Wang, L., Wei, J., Hu, B., and Liang, X.: A novel efficient broadband model to derive daily surface solar Ultraviolet 

radiation (0.280-0.400 mum), Sci Total Environ, 735, 139513, https://doi.org/10.1016/j.scitotenv.2020.139513, 2020. 

Santos, J. B., Villán, D. M., and Castrillo, A. d. M.: Analysis and cloudiness influence on UV total irradiation, International 560 

Journal of Climatology, 31, 451-460, https://doi.org/10.1002/joc.2072, 2011. 

Shi, S., Wang, W., Li, X., Hang, Y., Lei, J., Kan, H., and Meng, X.: Optimizing modeling windows to better capture the long-

term variation of PM(2.5) concentrations in China during 2005-2019, Sci Total Environ, 854, 158624, 

https://doi.org/10.1016/j.scitotenv.2022.158624, 2022. 

Shi, S., Wang, W., Li, X., Hang, Y., Lei, J., Kan, H., and Meng, X.: Optimizing modeling windows to better capture the long-565 

term variation of PM(2.5) concentrations in China during 2005-2019, Sci Total Environ, 854, 158624, 

https://doi.org/10.1016/j.scitotenv.2022.158624, 2023a. 

Shi, S., Wang, W., Li, X., Xu, C., Lei, J., Jiang, Y., Zhang, L., He, C., Xue, T., Chen, R., Kan, H., and Meng, X.: Evolution in 

disparity of PM2.5 pollution in China, Eco-Environment & Health, 2, 257-263, https://doi.org/10.1016/j.eehl.2023.08.007, 

2023b. 570 

Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., and Zeileis, A.: Conditional variable importance for random forests, BMC 

Bioinformatics, 9, 307, https://doi.org/10.1186/1471-2105-9-307, 2008. 

Strumbelj, E. and Kononenko, I.: An Efficient Explanation of Individual Classifications using Game Theory, Journal of 

Machine Learning Research, 11, 1-18, https://doi.org/10.1515/9781400829156-012, 2010. 

Stump, T. K., Fastner, S., Jo, Y., Chipman, J., Haaland, B., Nagelhout, E. S., Wankier, A. P., Lensink, R., Zhu, A., Parsons, B., 575 

Grossman, D., and Wu, Y. P.: Objectively-Assessed Ultraviolet Radiation Exposure and Sunburn Occurrence, Int J 

Environ Res Public Health, 20, https://doi.org/10.3390/ijerph20075234, 2023. 

Swaminathan, A., Harrison, S. L., Ketheesan, N., van den Boogaard, C. H. A., Dear, K., Allen, M., Hart, P. H., Cook, M., and 

Lucas, R. M.: Exposure to Solar UVR Suppresses Cell-Mediated Immunization Responses in Humans: The Australian 

Ultraviolet Radiation and Immunity Study, J Invest Dermatol, 139, 1545-1553 e1546, https://doi.org/10.1016/j.jid.2018.1 580 

2.025, 2019. 

Thayer, Z. M.: The vitamin D hypothesis revisited: race-based disparities in birth outcomes in the United States and ultraviolet 

light availability, Am J Epidemiol, 179, 947-955, https://doi.org/10.1093/aje/kwu023, 2014. 

Tian, X., Zhang, B., Jia, Y., Wang, C., and Li, Q.: Retinal changes following rapid ascent to a high-altitude environment, Eye 

(Lond), 32, 370-374, https://doi.org/10.1038/eye.2017.195, 2018. 585 

Vienneau, D., de Hoogh, K., Hauri, D., Vicedo-Cabrera, A. M., Schindler, C., Huss, A., Roosli, M., and Group, S. N. C. S.: 

Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland, Environ Health Perspect, 125, 067009, 

https://doi.org/10.1289/EHP825, 2017. 

VoPham, T., Bertrand, K. A., Yuan, J. M., Tamimi, R. M., Hart, J. E., and Laden, F.: Ambient ultraviolet radiation exposure 

and hepatocellular carcinoma incidence in the United States, Environ Health, 16, 89, https://doi.org/10.1186/s12940-017-590 

0299-0, 2017. 

VoPham, T., Hart, J. E., Bertrand, K. A., Sun, Z., Tamimi, R. M., and Laden, F.: Spatiotemporal exposure modeling of ambient 

erythemal ultraviolet radiation, Environ Health, 15, 111, https://doi.org/10.1186/s12940-016-0197-x, 2016. 

Walls, A. C., Han, J., Li, T., and Qureshi, A. A.: Host risk factors, ultraviolet index of residence, and incident malignant 

melanoma in situ among US women and men, Am J Epidemiol, 177, 997-1005, https://doi.org/10.1093/aje/kws335, 2013. 595 



26 

 

Wang, Y., Hu, X., Chang, H. H., Waller, L. A., Belle, J. H., and Liu, Y.: A Bayesian Downscaler Model to Estimate Daily 

PM2.5 Levels in the Conterminous US, International Journal of Environmental Research and Public Health, 15, 

https://doi.org/10.3390/ijerph15091999, 2018. 

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., and Cribb, M.: Estimating 1-km-resolution PM2.5 concentrations across 

China using the space-time random forest approach, Remote Sensing of Environment, 231, https://doi.org/10.1016/j.rse 600 

.2019.111221, 2019. 

Wolffsohn, J. S., Dhallu, S., Aujla, M., Laughton, D., Tempany, K., Powell, D., Gifford, K., Gifford, P., Wan, K., Cho, P., Stahl, 

U., and Woods, J.: International multi-centre study of potential benefits of ultraviolet radiation protection using contact 

lenses, Cont Lens Anterior Eye, 45, 101593, https://doi.org/10.1016/j.clae.2022.101593, 2022. 

Wongnakae, P., Chitchum, P., Sripramong, R., and Phosri, A.: Application of satellite remote sensing data and random forest 605 

approach to estimate ground-level PM(2.5) concentration in Northern region of Thailand, Environ Sci Pollut Res Int, 30, 

88905-88917, https://doi.org/10.1007/s11356-023-28698-0, 2023. 

Wu, J., Wang, Y., Liang, J., and Yao, F.: Exploring common factors influencing PM(2.5) and O(3) concentrations in the Pearl 

River Delta: Tradeoffs and synergies, Environ Pollut, 285, 117138, https://doi.org/10.1016/j.envpol.2021.117138, 2021. 

Wu, J., Qin, W., Wang, L., Hu, B., Song, Y., and Zhang, M.: Mapping clear-sky surface solar ultraviolet radiation in China at 610 

1 km spatial resolution using Machine Learning technique and Google Earth Engine, Atmospheric Environment, 286, 

https://doi.org/10.1016/j.atmosenv.2022.119219, 2022. 

Yao, S., Jiang, D., and Fan, G.: Seasonality of Precipitation over China, J Sciences(in Chinese), 46, 1191-1203, 

https://doi.org/10.3878/j.issn.1006-9895.1703.16233, 2017. 

Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., and Talebiesfandarani, S.: PM2.5 Prediction Based on Random Forest, 615 

XGBoost, and Deep Learning Using Multisource Remote Sensing Data, Atmosphere, 10, 

https://doi.org/10.3390/atmos10070373, 2019. 

Zhao, R. and He, T.: Estimation of 1-km Resolution All-Sky Instantaneous Erythemal UV-B with MODIS Data Based on a 

Deep Learning Method, Remote Sensing, 14, https://doi.org/10.3390/rs14020384, 2022. 

Zhou, Y., Meng, X., Belle, J. H., Zhang, H., Kennedy, C., Al-Hamdan, M. Z., Wang, J., and Liu, Y.: Compilation and spatio-620 

temporal analysis of publicly available total solar and UV irradiance data in the contiguous United States, Environ Pollut, 

253, 130-140, https://doi.org/10.1016/j.envpol.2019.06.074, 2019. 

Zhu, Q., Bi, J., Liu, X., Li, S., Wang, W., Zhao, Y., and Liu, Y.: Satellite-Based Long-Term Spatiotemporal Patterns of Surface 

Ozone Concentrations in China: 2005-2019, Environ Health Perspect, 130, 27004, https://doi.org/10.1289/EHP9406, 

2022. 625 

 

 


