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Response to Reviewer #1: 

This is a good paper which provides valuable UV dataset for epidemiological studies. In this 

study, they performed very strict validations using spatial, temporal, as well as by-year cross 

validation methods, indicating the high accuracy of their reconstructed UV dataset. I believe 

this dataset is valuable for environmental health studies of UV in China. I have some comments 

for the authors to improve the manuscript. 

Response: Thank you for the positive comments and constructive suggestions to help improve 

our manuscript. We have fully responded to the comments below point-to-point and revised the 

manuscript accordingly. The line numbers referred to in this response document corresponded 

to those in the revised manuscript with tracked changes. 

1. It is not clear why missing values of OMI EDD data have been greatly increased since 2008. 

Please explain it. 

Response: Thank you for the suggestion. We added the explanation in lines 48-51 in the revision 

as “However, missing values of the OMI EDD data were non-random. Especially since 2008, 

the field of view of the instrument has been partially obstructed by the peeling of the spacecraft's 

protective film, leading to data loss in the center-right section of each observational swath. This 

has greatly increased the missing rate of OMI EDD data, posing a challenge to the accuracy of 

exposure assessments in epidemiological studies (Mcpeters et al., 2015)”. 

References: 

McPeters, R. D., Frith, S., and Labow, G. J.: OMI total column ozone: extending the long-term data record, 

Atmospheric Measurement Techniques, 8, 4845-4850, https://doi.org/10.5194/amt-8-4845-2015, 2015. 

 

2. The method using to fill the missing OMI EDD values is not clear. Specifically, what is the 

three-day moving average method? Does this method have enough accuracy to fill the missing 

values? If there are many consecutive days with missing values, how to address this? 

Response: Thanks for the suggestions.  

First, we added explanation of the three-day moving average method as suggested in lines 144-

148 in the revision as “We employed the three-day moving average method to fill the OMI EDD 

values on grid-days with missing data by calculating the mean of the OMI EDD values from 
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the two preceding days if they were available for those grid cells. In the case of grid cells with 

missing data on consecutive days (more than 1 day), the missing OMI EDD data were not filled 

in this study. With this method, the missing rate of OMI EDD significantly decreased from 

23.04% to 0.62% on average in 2005-2020 (Table A2)”. 

Second, we utilized 10-fold cross-validation (CV) to assess the accuracy of the three-day 

moving average method and added relevant descriptions and results in the revision in lines 148-

153 as “10-fold CV was employed to assess the accuracy of the three-day moving average 

method for filling the gap of OMI EDD data. In each iteration, 10% of the original OMI EDD 

data in the dataset were randomly dropped, and the three-day moving average method was 

applied to fill the missing values. This process was repeated ten times, and the gap-filled OMI 

EDD values were compared to the corresponding original OMI EDD values. The results of the 

10-fold CV are presented in Table A2 in Appendix, with R2 ranging from 0.85 to 0.90 in 2005-

2020, indicating the relatively high accuracy of the gap-filling method”.  

Table A2 in Appendix was modified accordingly and was displayed here for your convenient 

reference.  

Table A2. Missing rate of erythemal daily dose (EDD) retrieved from the Ozone Monitoring 

Instrument (OMI) before and after gap-filling and the results of 10-fold cross-validation of the 

three-day moving average method from 2005 to 2020 in China. 

Year 
Missing rate 

before gap-filling 

Missing rate 

after gap-filling 

R2 of 10-fold 

cross-validation 

2005 3.03% 0.00% 0.90 

2006 3.53% 0.27% 0.90 

2007 3.38% 0.00% 0.90 

2008 5.69% 0.57% 0.89 
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2009 20.33% 0.21% 0.88 

2010 30.28% 0.40% 0.88 

2011 33.59% 0.53% 0.88 

2012 21.80% 0.17% 0.90 

2013 24.24% 0.28% 0.88 

2014 28.20% 0.37% 0.90 

2015 31.95% 0.50% 0.88 

2016 35.29% 4.19% 0.87 

2017 32.78% 1.52% 0.86 

2018 32.19% 0.55% 0.85 

2019 32.12% 0.42% 0.85 

2020 30.34% 0.00% 0.86 

2005-2020 23.04% 0.62% 0.88 

 

3. For the method of comparing the long-term trend of UV radiation and air pollution, they 

should use an independent section. They should not include it in the section of 2.1.4 Other 

predictor variables.  

Response: Thanks for the suggestion. An independent section was added in the " 2.1 Data " 

Section: 

[lines 125-129] “2.1.5 Air pollution data    

For comparing the long-term trends of UV radiation and air pollution, fine particulate matter 
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(PM2.5) and O3 data were included. PM2.5 data were predicted using a random forest model at a 

daily level and a spatial resolution of 1 × 1 km in China (Meng et al., 2021; Shi et al., 2023a; 

Shi et al., 2023b). The source and spatiotemporal resolution of the O3 data were the same as 

those in Section 2.1.4 Other predictor variables”. 

4. More analyses about the relationship between PM2.5/O3 and UV should be conducted. 

Although they show the importance for predictor variables, which shows AOD and O3 are 

important variables. They should perform SHAP analysis to show the impact directions of 

AOD/O3 on the UV. This could further demonstrate the impacts of PM2.5/O3 on UV increase. 

Response: Thanks for the constructive comment. We have conducted SHAP analysis to further 

elucidate the impact direction of predictors on UV radiation predictions as suggested, and added 

relevant descriptions in Method and Results sections, which were also summarized below for 

your convenient reference.  

Descriptions of the methods were added in the " 2.2 Methods " Section in lines 178-188 as: 

“2.2.3 Impacts of predictors on UV predictions 

Two methods were applied to evaluate the impacts of all predictors on UV radiation levels. First, 

random forest model itself could produce importance rankings of all predictors to evaluate the 

contribution of each predictor to UV radiation predictions, and this is also one of the advantages 

of the random forest model. The importance of a predictor was measured by randomly 

permuting its values and comparing the decrease in predicting accuracy between the predictions 

before and after the permutation. Second, SHapley Additive exPlanations (SHAP) method can 

be used to evaluate both contributions and directions of predictors on final predictions 

(Lundberg and Lee, 2017). SHAP method employs the classic game theory concept of Shapley 

values to compute the feature importance for a specific machine learning model (Strumbelj and 

Kononenko, 2010). Aggregating the SHAP values across multiple data points provides a global 

explanation of the model. In this study, we utilized the SHAP library in Python to interpret 

impacts of predictors on UV radiation predictions based on a random forest model (Lundberg 
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et al., 2020).” 

Relevant results of SHAP method were added in lines 222-233 as: 

“3.3. Impacts of predictors on UV radiation predictions 

Fig. A2 shows the importance ranking of all predictors produced by the random forest model 

itself that ERA-5 UV, OMI EDD, and MAIAC AOD were the most important predictors of UV 

radiation. Fig. 4 shows the SHAP summary plot and feature importance, which were the same 

with that from the random forest method. SHAP method also provided evaluation on the impact 

directions of predictors on UV radiation predictions. In Fig. 4a, each point represents a sample 

from the dataset. The color of each point indicates the magnitude of the predictor, with redder 

values indicating higher values and bluer indicating lower values. For example, ERA-5 UV and 

OMI EDD exerted the most substantial impact and similar impact directions on UV radiation 

predictions. High values of ERA-5 UV and OMI EDD increased the predicted UV radiation 

predictions, whereas low values decreased UV radiation predictions. Ambient aerosols 

(MAIAC AOD) and O3 levels showed opposite effects on UV radiation predictions based on 

SHAP method. Higher MAIAC AOD values displayed higher negative SHAP values, meaning 

that higher MAIAC AOD values tended to associate with decreased UV radiation levels. 

Conversely, High O3 levels corresponded to positive SHAP values, indicating that high O3 

levels were associated with high UV radiation predictions.” 
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Figure 4. Impacts of predictors on UV radiation predictions based on SHAP method (a); 

importance ranking of predictors for predicting UV radiation levels, calculated by taking the 

average of the absolute SHAP values (b). 

Relevant discussions were added in " 4 Discussion " Section in lines 343-345 as: 

“Additionally, the results of the SHAP analysis were consistent with the long-term trend 

analysis, which indicated that ambient aerosols levels were negatively associated with UV 

radiation predictions while O3 concentrations positively related with UV radiation levels.”  

5. Table 1 is not necessary in main text. I recommend combine Table 1 into Table A1. 

Response: Thanks for the suggestion. We have combined Table 1 into Table A1 in the Appendix. 

We also displayed Table A1 here for your convenient reference. 

Table A1 Statistical descriptions of UV radiation measurements from ground monitoring 

stations in CERN in China from 2005–2020 

Year 

Mean 

( W m-2 ) 

Standard deviation 

( W m-2 ) 

P25 

( W m-2 ) 

Median 

( W m-2 ) 

P75 

( W m-2 ) 

2005 160.62 81.07 94.35 153.57 160.62 

2006 158.34 80.56 94.20 149.90 214.90 

2007 159.54 82.99 91.81 150.41 220.21 

2008 162.39 83.09 93.49 153.60 223.16 

2009 159.64 82.65 91.46 152.20 222.60 

2010 155.46 81.73 88.56 144.91 215.80 

2011 160.95 84.37 90.11 152.60 223.50 
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2012 159.65 85.38 88.75  153.60 221.80  

2013 160.21 82.87 92.00 149.93 221.50 

2014 160.87 82.41 94.06 152.90 221.50  

2015 170.96 91.32 96.66 162.70  238.20  

2016 175.66 96.84 97.72 162.75 248.00 

2017 180.90  109.28 100.90 168.40 254.60 

2018 187.00 103.48 102.00 176.30  262.00 

2019 189.80  104.63 103.90 178.60  265.70  

2020 190.10 105.01 104.10 177.20  266.90 

2005–2020 168.40 91.39 94.80 158.10  232.80 
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Response to Reviewer #2: 

The study developed a machine learning model to predict UV radiation and highlighted the 

model performance. This research topic is very important given the rise in the UV radiation in 

recent years.  

Response: Thank you for the positive comments and constructive suggestions to help improve 

our manuscript. We have fully responded to the comments below point-to-point and revised the 

manuscript accordingly. The line numbers referred to in this response document corresponded 

to those in the revised manuscript with tracked changes. 

 

Overall comments: Technically the manuscript seems strong however the writing can be 

improved. 

Highly suggest the authors to go through the language and make changes wherever necessary 

throughout the manuscript.  

Response: Thanks for your suggestion. We carefully reviewed and revised the language 

throughout the entire manuscript. Also, we have had the manuscript language-edited by Elsevier. 

The certificate is provided below. 
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Comments: 

Line 14: Seems grammatically incorrect. Reword it to "but limited studies have implemented it 

for UV radiation"  

Response: Thank you for the suggestion. The sentence has been revised as “Machine learning 

algorithms have been widely used to predict environmental factors with high accuracy, but 

limited studies have implemented it for UV radiation.” in lines 13-14 in the revision as 

suggested. 

 

Line 14-15: The language can be improved. Reword these lines to "The main aim of this study 

is to develop UV radiation prediction model using the random forest approach and predict the 

UV radiation at daily and 10km resolution in mainland China from 2005 to 2020".  

Response: Thank you for the suggestion. The sentence has been revised as “The main aim of 

this study is to develop UV radiation prediction model using the random forest approach and 

predict the UV radiation at daily and 10 km resolution in mainland China from 2005 to 2020.” 

in lines 14-16 in the revision as suggested. 

 

Line 16: It is already mentioned above that random forest model was employed to predict UV 

radiation. Reword this line.  

Response: Thank you for the suggestion. The sentence has been revised as “The model was 

developed with multiple predictors such as UV radiation data from satellites as independent 

variables and ground UV radiation measurements from monitoring stations as the dependent 

variable.” in lines 16-17 in the revision as suggested. 

 

Line 21: OMI EDD is used for the first time, write the full form of EDD before introducing the 

acronym  

Response: Thank you for the suggestion. The sentence has been revised as “The model that 

incorporated erythemal daily dose (EDD) retrieved from the Ozone Monitoring Instrument 

(OMI) had a higher prediction accuracy than that without it.” in lines 21-22 in the revision as 

suggested. 
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Line 26: Consider rewording this line as it is not flowing well. May be change it to something 

like this: "Using machine learning this study generated gridded UV radiation dataset with 

extensive spatiotemporal coverage which can be utilized for future health-related research". 

Response: Thank you for the suggestion. The sentence has been revised as “Using machine 

learning algorithm, this study generated gridded UV radiation dataset with extensive 

spatiotemporal coverage, which can be utilized for future health-related research.” in lines 27-

28 in the revision as suggested. 

 

Line 35 - 36: Please consider rewording these lines.  

Response: Thank you for the suggestion. The sentence has been revised as “Further studies are 

required to ascertain the effects of UV radiation on human health; however, the lack of high-

accurate exposure data of UV radiation hinders such health-related investigations.” in lines 35-

37 in the revision as suggested. 

 

Line 43: remove stands, change it to "despite being" 

Response: Thank you for the suggestion. The sentence has been revised as “For example, 

erythemal UV irradiance from the Total Ozone Mapping Spectrometer (TOMS), despite being 

one of the initial instruments for evaluating the UV radiation backscattered by the Earth's 

atmospheric layers, it exhibits lower spatial resolution of 50 km×50 km, and it has limited 

accuracy.” in lines 42-44 in the revision as suggested. 

 

Line 70: Remove "What's more, missingness of satellite-based", change it to" The missing 

satellite-based" 

Response: Thank you for the suggestion. The sentence has been revised as “The missing 

satellite-based UV radiation were filled to improve the spatial coverage of the final UV 

radiation predictions.” in lines 71-72 in the revision as suggested. 

 

Line 108: Why did the author use O3 concentrations predicted from random forest and not use 
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directly the monitoring data? Clarify this and explain it in the text clearly. 

Response: Thank you for the comments and suggestions. As suggested, we further clarified this 

issue in the revision in lines 110-118 as “This study used gridded O3 data instead of O3 

monitoring data from station sites, primarily due to considerations of data coverage in both 

temporal and spatial dimensions. Regarding the temporal coverage, the air quality monitoring 

network in China has not established until 2013, which could not fully cover the study period 

of 2005-2020 in this study. For the spatial coverage, the density of air quality monitoring 

stations is relatively low, with the majority of them are located in urban areas and eastern China, 

which could not capture the spatial variability within city and reflect the O3 pollution level in 

rural areas and western regions (Geyh et al., 2000). While the gridded O3 predictions used in 

this study are available from 2005-2020, have full spatial coverage in mainland China and 

achieved relatively high accuracy comparing with ground measurements with cross-validation 

(CV) R2 and root mean square error of 0.80 and 20.93 ug/m3, respectively (Meng et al., 2022).” 

References: 

Geyh, A. S., Xue, J., Ozkaynak, H., and Spengler, J. D.: The Harvard Southern California Chronic Ozone 

Exposure Study: Assessing Ozone Exposure of Grade-School-Age Children in Two Southern California 

Communities, Environmental Health Perspectives, 108, 265–270, https://doi.org/10.1289/ehp.0010826 

5, 2000. 

Meng, X., Wang, W., Shi, S., Zhu, S., Wang, P., Chen, R., Xiao, Q., Xue, T., Geng, G., Zhang, Q., Kan, H., 

and Zhang, H.: Evaluating the spatiotemporal ozone characteristics with high-resolution predictions in 

mainland China, 2013-2019, Environ Pollut, 299, 118865, https://doi.org/10.1016/j.envpol.2022.11886 

5, 2022. 

Line 139: provide reference for 10-fold cross validation if it was used in previous studies and 

explain the cross-validation process details and the differences between the various (temporal, 

spatial and year) 10-fold CV? 

Response: Thanks for the suggestion. We have added references, refined the details of the CV 

process, and explained the differences among various CVs in lines 155-177 in the revision as 

“CV is commonly utilized to assess model performance in regard of overfitting and predicting 

accuracy, especially in studies of model development for UV radiation (Wu et al., 2022), 

particulate matter (Chen et al., 2018; Park et al., 2022; Wongnakae et al., 2023), O3 (Hsu et al., 

2019; Wu et al., 2021), and nitrogen dioxide (Lu et al., 2021a). In this study, model performance 

was tested through overall 10-fold CV, temporal 10-fold CV, spatial 10-fold CV, and by-year 
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temporal CV, which is a stricter temporal CV. Overall 10-fold CV is the most commonly used 

form of CV, offering a dependable evaluation of overall model performance and assessing 

model overfitting (Wu et al., 2022; Wongnakae et al., 2023; Hsu et al., 2019). Temporal 10-fold 

CV can evaluate the models’ capacity of temporal extrapolation for predicting UV radiation 

levels on days without measurements (He et al., 2023b; Lu et al., 2021b; Bi et al., 2020; Zhu et 

al., 2022). Spatial 10-fold CV is able to evaluate the models’ capacity of spatial extrapolation 

in locations without monitoring stations (Wang et al., 2018; Zhu et al., 2022; Bi et al., 2020). 

By-year temporal CV can be used to evaluate the predicting accuracy of our models in years 

out of the study period of model development (Meng et al., 2021; He et al., 2023a; He et al., 

2021). 

The overall 10-fold CV was conducted by randomly dividing the dataset into ten parts, with 

nine parts used as a training dataset to train a random forest model and one part used as a test 

dataset for predictions. This process was repeated ten times and all measurements were 

compared with the corresponding predictions. Temporal 10-fold CV was done by randomly 

dividing the dataset into ten parts based on days, in which data on 90% of the days were used 

to develop a training model to predict UV radiation on the remaining 10% days each time, and 

this process was repeated ten times. Similarly, spatial 10-fold CV involved randomly dividing 

the dataset into ten parts based on the locations of monitoring stations, with data from 90% of 

the sites were used to develop a training model to predict the UV radiation for the remaining 

10% of the sites each time and this process was repeated ten times. In order to further validate 

the predicting accuracy of our models beyond 2005-2020, this study performed another stricter 

temporal CV, by-year temporal CV, which left an entire year of data as the testing dataset each 

time, while data from the remaining years are used as the training dataset. Regression R2 and 

root mean square error (RMSE; the square root of the average of the squared differences 

between the predictions and measurements) between the UV radiation measurements and 

predictions from model development and CVs were calculated to indicate the model 

performance.” 

References: 
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Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-

Resolution PM(2.5) Modeling at a Large Spatial Scale, Environ Sci Technol, 54, 2152-2162, 

https://doi.org/10.1021/acs.est.9b06046, 2020. 

Chen, G., Knibbs, L. D., Zhang, W., Li, S., Cao, W., Guo, J., Ren, H., Wang, B., Wang, H., Williams, G., 

Hamm, N. A. S., and Guo, Y.: Estimating spatiotemporal distribution of PM(1) concentrations in China 

with satellite remote sensing, meteorology, and land use information, Environ Pollut, 233, 1086-1094, 

https://doi.org/10.1016/j.envpol.2017.10.011, 2018. 

He, Q., Ye, T., Zhang, M., and Yuan, Y.: Enhancing the reliability of hindcast modeling for air pollution using 

history-informed machine learning and satellite remote sensing in China, Atmospheric Environment, 

312, https://doi.org/10.1016/j.atmosenv.2023.119994, 2023a. 

He, Q., Gao, K., Zhang, L., Song, Y., and Zhang, M.: Satellite-derived 1-km estimates and long-term trends 

of PM2.5 concentrations in China from 2000 to 2018, Environment International, 156, https://doi.org/10 

.1016/j.envint.2021.106726, 2021. 

He, Q., Ye, T., Chen, X., Dong, H., Wang, W., Liang, Y., and Li, Y.: Full-coverage mapping high-resolution 

atmospheric CO2 concentrations in China from 2015 to 2020: Spatiotemporal variations and coupled 

trends with particulate pollution, Journal of Cleaner Production, 428, https://doi.org/10.1016/j.jclepro.2 

023.139290, 2023b. 

Hsu, C. Y., Wu, J. Y., Chen, Y. C., Chen, N. T., Chen, M. J., Pan, W. C., Lung, S. C., Guo, Y. L., and Wu, C. 

D.: Asian Culturally Specific Predictors in a Large-Scale Land Use Regression Model to Predict Spatial-

Temporal Variability of Ozone Concentration, Int J Environ Res Public Health, 16, 

https://doi.org/10.3390/ijerph16071300, 2019. 

Lu, T., Marshall, J. D., Zhang, W., Hystad, P., Kim, S. Y., Bechle, M. J., Demuzere, M., and Hankey, S.: 

National Empirical Models of Air Pollution Using Microscale Measures of the Urban Environment, 

Environ Sci Technol, 55, 15519-15530, https://doi.org/10.1021/acs.est.1c04047, 2021a. 

Lu, Y., Giuliano, G., and Habre, R.: Estimating hourly PM(2.5) concentrations at the neighborhood scale 

using a low-cost air sensor network: A Los Angeles case study, Environ Res, 195, 110653, 

https://doi.org/10.1016/j.envres.2020.110653, 2021b. 

Meng, X., Liu, C., Zhang, L., Wang, W., Stowell, J., Kan, H., and Liu, Y.: Estimating PM(2.5) concentrations 

in Northeastern China with full spatiotemporal coverage, 2005-2016, Remote Sens Environ, 253, 

https://doi.org/10.1016/j.rse.2020.112203, 2021. 

Park, S., Im, J., Kim, J., and Kim, S. M.: Geostationary satellite-derived ground-level particulate matter 

concentrations using real-time machine learning in Northeast Asia, Environ Pollut, 306, 119425, 

https://doi.org/10.1016/j.envpol.2022.119425, 2022. 

Wang, Y., Hu, X., Chang, H. H., Waller, L. A., Belle, J. H., and Liu, Y.: A Bayesian Downscaler Model to 

Estimate Daily PM2.5 Levels in the Conterminous US, International Journal of Environmental Research 

and Public Health, 15, https://doi.org/10.3390/ijerph15091999, 2018. 

Wongnakae, P., Chitchum, P., Sripramong, R., and Phosri, A.: Application of satellite remote sensing data 

and random forest approach to estimate ground-level PM(2.5) concentration in Northern region of 

Thailand, Environ Sci Pollut Res Int, 30, 88905-88917, https://doi.org/10.1007/s11356-023-28698-0, 

2023. 

Wu, J., Qin, W., Wang, L., Hu, B., Song, Y., and Zhang, M.: Mapping clear-sky surface solar ultraviolet 

radiation in China at 1 km spatial resolution using Machine Learning technique and Google Earth Engine, 

Atmospheric Environment, 286, https://doi.org/10.1016/j.atmosenv.2022.119219, 2022. 

Wu, J., Wang, Y., Liang, J., and Yao, F.: Exploring common factors influencing PM(2.5) and O(3) 
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concentrations in the Pearl River Delta: Tradeoffs and synergies, Environ Pollut, 285, 117138, 

https://doi.org/10.1016/j.envpol.2021.117138, 2021. 

Zhu, Q., Bi, J., Liu, X., Li, S., Wang, W., Zhao, Y., and Liu, Y.: Satellite-Based Long-Term Spatiotemporal 

Patterns of Surface Ozone Concentrations in China: 2005-2019, Environ Health Perspect, 130, 27004, 

https://doi.org/10.1289/EHP9406, 2022. 

Line 123: Why did the authors use random forest compared to the other machine learning 

algorithm? Include the necessary information that supports the argument. 

Response: Thanks for the constructive comment.  

Overall, random forest method is a widely used machine learning algorithm for predicting 

multiple environmental factors (Araki et al., 2018; Guo et al., 2021; Huang et al., 2018; Liu et 

al., 2020), with several advantages comparing with other machine learning methods. First, 

random forest exhibits high flexibility in processing various types of data and strong tolerance 

to multicollinearity among predictors (Breiman, 2001; Fox et al., 2017; Strobl et al., 2008; 

Bamrah et al., 2020). Second, comparing to some other black-box machine learning models, 

random forest method is able to provide feature importance rankings and facilitate a deeper 

understanding in contribution of all predictors in predictions, which makes the models easier to 

be understood and explained (Hu et al., 2017; Wei et al., 2019). Third, the predicting errors in 

random forest models are generally lower, due to the reduction in variance achieved by 

aggregating multiple trees (Ameer et al., 2019; Ding and Qie, 2022). Forth, random forest is 

user-friendly with relatively small number of parameter settings and a relatively fast processing 

speed (Ameer et al., 2019; Hu et al., 2017). Due to the above advantages, many previous studies 

found that random forest method could achieve the higher or at least comparable predicting 

accuracy over other machine learning models. A study in Taiwan, China, predicting the air 

quality index showed that compared to methods of adaptive boosting, artificial neural networks, 

stacking ensemble, and support vector machines, the random forest model performed better 

(Liang et al., 2020). In a study predicting CO, NO, PM2.5, and NO2 in Spain, random forest 

outperformed other machine learning models (decision tree for regression, support vector 

machines, and neural networks) in predicting almost all pollutants (Ochando et al., 2015). A 

study compared multiple models of decision tree, random forest, gradient boosting, and 

artificial neural network multi-layer perceptron in predicting PM2.5 in multiple cities in China 
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and found that random forest model performed the best (Ameer et al., 2019). In another study 

conducted in Valencia, Spain, comparing a decision tree for regression and random forest in 

predicting NO, NO2, SO2, and O3, the random forest model produced better results (Contreras 

and Ferri, 2016). A study in India predicting the Air Quality Index compared decision tree, 

support vector regression, and random forest, with random forest having the highest accuracy 

(Bamrah et al., 2020).  

In the revision, we also added an extra analysis by developing an eXtreme Gradient Boosting 

(XGBoost) model, another machine learning model based on decision trees with relatively high 

predicting accuracy (Zamani Joharestani et al., 2019; Nasabpour Molaei et al., 2023; Dai et al., 

2023; Wu et al., 2022). Based on data in this study, the XGBoost model yielded an R2 (RMSE) 

of 0.81 (39.25 W m-2) in predicting UV radiation levels with the same predictors in the random 

forest model, while the random forest model achieved better performance with slightly higher 

R2 (0.83) and lower RMSE (37.44 W m-2). Therefore, this study employs random forest to 

construct the models. 

The explanations were also summarized in the lines 289-306 in the Discussion section of the 

revision as “In this study we employed random forest method to develop the models as it is a 

widely used machine learning algorithm with several advantages for predicting multiple 

environmental factors (Araki et al., 2018; Guo et al., 2021; Huang et al., 2018; Liu et al., 2020). 

First, random forest exhibits high flexibility in processing various types of data and strong 

tolerance to multicollinearity among predictors (Breiman, 2001; Fox et al., 2017; Strobl et al., 

2008; Bamrah et al., 2020). Second, comparing to some other black-box machine learning 

models, random forest method is able to provide feature importance rankings and facilitate a 

deeper understanding in contribution of all predictors in predictions, which makes the models 

easier to be understood and explained (Hu et al., 2017; Wei et al., 2019). Third, the predicting 

errors in random forest models are generally lower, due to the reduction in variance achieved 

by aggregating multiple trees (Ameer et al., 2019; Ding and Qie, 2022). Forth, random forest is 

user-friendly with relatively small number of parameter settings and a relatively fast processing 

speed (Ameer et al., 2019; Hu et al., 2017). Due to the above advantages, many previous studies 
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found that random forest method could achieve higher or at least comparable predicting 

accuracy over other machine learning models in predicting environmental factors (Liang et al., 

2020; Julián et al., 2015; Contreras and Ferri, 2016; Ameer et al., 2019). In this study, we also 

compared results from random forest model and eXtreme Gradient Boosting (XGBoost) model, 

which is another machine learning model based on decision trees with relatively high predicting 

accuracy (Zamani Joharestani et al., 2019; Nasabpour Molaei et al., 2023; Dai et al., 2023; Wu 

et al., 2022). The results indicated that the predicting accuracy from XGBoost method was 

comparable but slightly lower than those from random forest method with lower R2 (XGBoost: 

0.81 v.s. random forest: 0.83) and higher RMSE (XGBoost: 39.25 W m-2 v.s. random forest: 

37.44 W m-2)”. 

References: 
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Line 218: Fix the typo. It is Figure 5 not 3. 

Response: Thanks for pointing out the issue. It has been corrected. 

Line 269: reword the line to "there is no atmospheric UV standards" 

Response: Thank you for the suggestion. The sentence has been revised as “The threshold for 

the health effects of UV radiation on the population is still unclear, and there are no atmospheric 

UV radiation standards so far, which requires support from further epidemiological studies.” in 

lines 332-334 in the revision as suggested. 


