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Response to Reviewer #1: 

This is a good paper which provides valuable UV dataset for epidemiological studies. In this 

study, they performed very strict validations using spatial, temporal, as well as by-year cross 

validation methods, indicating the high accuracy of their reconstructed UV dataset. I believe 

this dataset is valuable for environmental health studies of UV in China. I have some comments 

for the authors to improve the manuscript. 

Response: Thank you for the positive comments and constructive suggestions to help improve 

our manuscript. We have fully responded to the comments below point-to-point and revised the 

manuscript accordingly. The line numbers referred to in this response document corresponded 

to those in the revised manuscript with tracked changes. 

1. It is not clear why missing values of OMI EDD data have been greatly increased since 2008. 

Please explain it. 

Response: Thank you for the suggestion. We added the explanation in lines 48-51 in the revision 

as “However, missing values of the OMI EDD data were non-random. Especially since 2008, 

the field of view of the instrument has been partially obstructed by the peeling of the spacecraft's 

protective film, leading to data loss in the center-right section of each observational swath. This 

has greatly increased the missing rate of OMI EDD data, posing a challenge to the accuracy of 

exposure assessments in epidemiological studies (Mcpeters et al., 2015)”. 

References: 

McPeters, R. D., Frith, S., and Labow, G. J.: OMI total column ozone: extending the long-term data record, 

Atmospheric Measurement Techniques, 8, 4845-4850, https://doi.org/10.5194/amt-8-4845-2015, 2015. 

 

2. The method using to fill the missing OMI EDD values is not clear. Specifically, what is the 

three-day moving average method? Does this method have enough accuracy to fill the missing 

values? If there are many consecutive days with missing values, how to address this? 

Response: Thanks for the suggestions.  

First, we added explanation of the three-day moving average method as suggested in lines 144-

148 in the revision as “We employed the three-day moving average method to fill the OMI EDD 

values on grid-days with missing data by calculating the mean of the OMI EDD values from 
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the two preceding days if they were available for those grid cells. In the case of grid cells with 

missing data on consecutive days (more than 1 day), the missing OMI EDD data were not filled 

in this study. With this method, the missing rate of OMI EDD significantly decreased from 

23.04% to 0.62% on average in 2005-2020 (Table A2)”. 

Second, we utilized 10-fold cross-validation (CV) to assess the accuracy of the three-day 

moving average method and added relevant descriptions and results in the revision in lines 148-

153 as “10-fold CV was employed to assess the accuracy of the three-day moving average 

method for filling the gap of OMI EDD data. In each iteration, 10% of the original OMI EDD 

data in the dataset were randomly dropped, and the three-day moving average method was 

applied to fill the missing values. This process was repeated ten times, and the gap-filled OMI 

EDD values were compared to the corresponding original OMI EDD values. The results of the 

10-fold CV are presented in Table A2 in Appendix, with R2 ranging from 0.85 to 0.90 in 2005-

2020, indicating the relatively high accuracy of the gap-filling method”.  

Table A2 in Appendix was modified accordingly and was displayed here for your convenient 

reference.  

Table A2. Missing rate of erythemal daily dose (EDD) retrieved from the Ozone Monitoring 

Instrument (OMI) before and after gap-filling and the results of 10-fold cross-validation of the 

three-day moving average method from 2005 to 2020 in China. 

Year 
Missing rate 

before gap-filling 

Missing rate 

after gap-filling 

R2 of 10-fold 

cross-validation 

2005 3.03% 0.00% 0.90 

2006 3.53% 0.27% 0.90 

2007 3.38% 0.00% 0.90 

2008 5.69% 0.57% 0.89 
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2009 20.33% 0.21% 0.88 

2010 30.28% 0.40% 0.88 

2011 33.59% 0.53% 0.88 

2012 21.80% 0.17% 0.90 

2013 24.24% 0.28% 0.88 

2014 28.20% 0.37% 0.90 

2015 31.95% 0.50% 0.88 

2016 35.29% 4.19% 0.87 

2017 32.78% 1.52% 0.86 

2018 32.19% 0.55% 0.85 

2019 32.12% 0.42% 0.85 

2020 30.34% 0.00% 0.86 

2005-2020 23.04% 0.62% 0.88 

 

3. For the method of comparing the long-term trend of UV radiation and air pollution, they 

should use an independent section. They should not include it in the section of 2.1.4 Other 

predictor variables.  

Response: Thanks for the suggestion. An independent section was added in the " 2.1 Data " 

Section: 

[lines 125-129] “2.1.5 Air pollution data    

For comparing the long-term trends of UV radiation and air pollution, fine particulate matter 
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(PM2.5) and O3 data were included. PM2.5 data were predicted using a random forest model at a 

daily level and a spatial resolution of 1 × 1 km in China (Meng et al., 2021; Shi et al., 2023a; 

Shi et al., 2023b). The source and spatiotemporal resolution of the O3 data were the same as 

those in Section 2.1.4 Other predictor variables”. 

4. More analyses about the relationship between PM2.5/O3 and UV should be conducted. 

Although they show the importance for predictor variables, which shows AOD and O3 are 

important variables. They should perform SHAP analysis to show the impact directions of 

AOD/O3 on the UV. This could further demonstrate the impacts of PM2.5/O3 on UV increase. 

Response: Thanks for the constructive comment. We have conducted SHAP analysis to further 

elucidate the impact direction of predictors on UV radiation predictions as suggested, and added 

relevant descriptions in Method and Results sections, which were also summarized below for 

your convenient reference.  

Descriptions of the methods were added in the " 2.2 Methods " Section in lines 178-188 as: 

“2.2.3 Impacts of predictors on UV predictions 

Two methods were applied to evaluate the impacts of all predictors on UV radiation levels. First, 

random forest model itself could produce importance rankings of all predictors to evaluate the 

contribution of each predictor to UV radiation predictions, and this is also one of the advantages 

of the random forest model. The importance of a predictor was measured by randomly 

permuting its values and comparing the decrease in predicting accuracy between the predictions 

before and after the permutation. Second, SHapley Additive exPlanations (SHAP) method can 

be used to evaluate both contributions and directions of predictors on final predictions 

(Lundberg and Lee, 2017). SHAP method employs the classic game theory concept of Shapley 

values to compute the feature importance for a specific machine learning model (Strumbelj and 

Kononenko, 2010). Aggregating the SHAP values across multiple data points provides a global 

explanation of the model. In this study, we utilized the SHAP library in Python to interpret 

impacts of predictors on UV radiation predictions based on a random forest model (Lundberg 
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et al., 2020).” 

Relevant results of SHAP method were added in lines 222-233 as: 

“3.3. Impacts of predictors on UV radiation predictions 

Fig. A2 shows the importance ranking of all predictors produced by the random forest model 

itself that ERA-5 UV, OMI EDD, and MAIAC AOD were the most important predictors of UV 

radiation. Fig. 4 shows the SHAP summary plot and feature importance, which were the same 

with that from the random forest method. SHAP method also provided evaluation on the impact 

directions of predictors on UV radiation predictions. In Fig. 4a, each point represents a sample 

from the dataset. The color of each point indicates the magnitude of the predictor, with redder 

values indicating higher values and bluer indicating lower values. For example, ERA-5 UV and 

OMI EDD exerted the most substantial impact and similar impact directions on UV radiation 

predictions. High values of ERA-5 UV and OMI EDD increased the predicted UV radiation 

predictions, whereas low values decreased UV radiation predictions. Ambient aerosols 

(MAIAC AOD) and O3 levels showed opposite effects on UV radiation predictions based on 

SHAP method. Higher MAIAC AOD values displayed higher negative SHAP values, meaning 

that higher MAIAC AOD values tended to associate with decreased UV radiation levels. 

Conversely, High O3 levels corresponded to positive SHAP values, indicating that high O3 

levels were associated with high UV radiation predictions.” 
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Figure 4. Impacts of predictors on UV radiation predictions based on SHAP method (a); 

importance ranking of predictors for predicting UV radiation levels, calculated by taking the 

average of the absolute SHAP values (b). 

Relevant discussions were added in " 4 Discussion " Section in lines 343-345 as: 

“Additionally, the results of the SHAP analysis were consistent with the long-term trend 

analysis, which indicated that ambient aerosols levels were negatively associated with UV 

radiation predictions while O3 concentrations positively related with UV radiation levels.”  

5. Table 1 is not necessary in main text. I recommend combine Table 1 into Table A1. 

Response: Thanks for the suggestion. We have combined Table 1 into Table A1 in the Appendix. 

We also displayed Table A1 here for your convenient reference. 

Table A1 Statistical descriptions of UV radiation measurements from ground monitoring 

stations in CERN in China from 2005–2020 

Year 

Mean 

( W m-2 ) 

Standard deviation 

( W m-2 ) 

P25 

( W m-2 ) 

Median 

( W m-2 ) 

P75 

( W m-2 ) 

2005 160.62 81.07 94.35 153.57 160.62 

2006 158.34 80.56 94.20 149.90 214.90 

2007 159.54 82.99 91.81 150.41 220.21 

2008 162.39 83.09 93.49 153.60 223.16 

2009 159.64 82.65 91.46 152.20 222.60 

2010 155.46 81.73 88.56 144.91 215.80 

2011 160.95 84.37 90.11 152.60 223.50 
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2012 159.65 85.38 88.75  153.60 221.80  

2013 160.21 82.87 92.00 149.93 221.50 

2014 160.87 82.41 94.06 152.90 221.50  

2015 170.96 91.32 96.66 162.70  238.20  

2016 175.66 96.84 97.72 162.75 248.00 

2017 180.90  109.28 100.90 168.40 254.60 

2018 187.00 103.48 102.00 176.30  262.00 

2019 189.80  104.63 103.90 178.60  265.70  

2020 190.10 105.01 104.10 177.20  266.90 

2005–2020 168.40 91.39 94.80 158.10  232.80 

 


