
Authors response to reviews for manuscript number #essd-2024-109

The authors would like to thank the editor and reviewers for their constructive comments and suggestions that have helped

improve the quality of this manuscript. The manuscript has undergone a thorough revision according to the reviewers’

comments. Please see below our responses. For the reviewers’ convenience, we have highlighted changes in the revised

manuscript.

Reviewer 1

RC 1.0: The manuscript describes the derivation of a global long-term terrestrial water storage anomalies data-set,

derived from a blending of GRACE satellite observations and global land surface models based on Bayesian networks and

machine learning methods.

Such long term information about terrestrial water storage variations is valuable and can help to assess long term trends

and to localize extremes. Therefore, I think the manuscript is relevant for publication, however in its current form it lacks

to address uncertainties of the product and it is rather structured like a classic scientific study than a data description

paper. The structure of the dataset itself is not suitable for efficient usage in the current form and needs revision. Thus

for a publication in ESSD, my concerns are as follows.

Response: We thank the reviewer for considering this manuscript as relevant for publication. The concerns regarding

the structure of the dataset and other observations are addressed in the following specific responses to the comments.

RC 1.1: From the title it does not become clear what dataset you would like to advertise. Should it be the TWSAs or

the optimal features? I guess its the TWSAs that you would finally like to advertise so you should find a new title in the

sense of “ML-based ... long-term terrestrial water storage anomalies from satellite and land-surface model data ...”. The

term “Optimal feature selection” does not generate an association with a data product, at least for me.

Response: We appreciate the suggestion of the reviewer for the title of the manuscript. We have incorporated a new

title for our manuscript in the revised version as shown below:

“ML based reconstruction of long-term global terrestrial water storage anomalies from observed, satellite and land-surface

model data”

RC 1.2: In the abstract, you write that you reconstruct TWSA but you don’t specify the a grid type and the spatial

resolution of the produced dataset. Do you only provide the gridded dataset or also basin aggregates? You should provide

this information already in the abstract, although very briefly, so that the reader knows what to expect. Further, I suggest

to add a section for data description that explains the structure and content of the final data product in the repository

Response: The abstract is updated with details of the spatial resolution and coverage of the developed dataset as below:

“The presented gridded dataset is published at https://doi.org/10.6084/m9.figshare.25376695 (Mandal et al., 2024),

featuring a spatial resolution of 0.50°×0.50°and offering global coverage.”

During this manuscript review and discussion period, the global performance of the developed dataset is discussed in

details in the manuscript; whereas, the actual dataset for all grid cells over the Mississippi river basin is made available in

the repository for persual. After acceptance of the manuscript, the dataset for the entire globe will be made available in

the same repository. Instead of adding a new section on ‘data description’, we have updated the ‘Data availability’ section

with required details as below:

“The presented dataset is published at https://doi.org/10.6084/m9.figshare.25376695 (Mandal et al., 2024) and

updates will be published as and when needed. The BNML TWSA dataset is available for all grid cells globally, with a

spatial resolution of 0.50°×0.50°, similar to the JPL GRACE Mascon, and is provided in NetCDF format.”

RC 1.3: The term “optimal predictors” is mentioned in the title and introduction but the explanation in the methods

section (3, 3.1) is not fully clear. What are the optimal predictors? Are they a subsection of your full predictors list?

1



Do you drop training data sets? Are the optimal predictors the ones that have the maximum impact (weight) in the ML

algorithms? This should be made more clear and the benefit of knowing the optimal predictors should be outlined.

Response: The optimal predictors are a subset of all potential predictors of 15 variables. At each grid cell, out of the 15

variables, a subset is selected through BN, which serves as the “optimum set of predictors” for that grid cell. The training

datasets are not dropped; rather, the “optimum set of predictors” are selected from the training period and are used

subsequently for the next step of the analysis, which is the prediction of TWSA via ML algorithms. The “optimum set

of predictors” are selected based on probabilistic independence/dependence structure; they do not indicate any impact/

weight on ML algorithms. This information is presented in section 3.1 of the revised manuscript.

In the introduction section benefit of knowing the optimal predictors is outlined as follows: “Selection of optimal

predictors is not just a methodological novelty, but a critical step to ensure that the model prioritizes the most relevant

and physically meaningful predictors. This approach reduces noise, minimizes overfitting, and enhances interpretability,

making the final product more scientifically robust and practically useful (Das and Chanda, 2024).”

RC 1.4: You are not always consistent with your vocabulary, in 3.1 you introduce the term features for what you named

previously predictors. I think you should keep a single notion here (and mention the term feature only once, maybe in

brackets if this is needed because it’s well known by the community).

Response: We thank the reviewer for highlighting the inconsistencies in the vocabulary used in our manuscript. In

this revised version of the manuscript, we have addressed and rectified these inconsistencies, consistently using the term

“predictors” throughout the manuscript.

RC 1.5: Reproducibility: for making the creation of your data set reproducible, you should at least mention which

software tools you used for the machine learning and eventually publish the configurations alongside with your datatset

or in another DOI based repository.

Response: We have used the standard python packages such as tensorflow, keras, sklearn, xgboost and mlxtend for

building the machine learning models as well as matplotlib for generating the plots. No specific software tools for machine

learning were used. In the final stage of publication, the python codes for building machine learning models will be made

available in the same DOI based repository for reproducibility. This information is now provided in the revised manuscript

in a newly added ‘Code availability’ section.

RC 1.6: The selection of evaluation metrics may not be ideal for the global evaluations. CC will always be high for

regions with a clear annual amplitude whereas for the deserts with less variations and seasonality it is hard to get a good

score in CC. NSE is especially designed for assessing peak flows. Maybe KGE would suit better here. And wouldn’t a

directed error metric like ME provide additional insight on over- or underestimation tendencies?

Response: Based on the reviewer’s suggestion, we have included the Kling-Gupta Efficiency (KGE) metric alongside the

previously used evaluation metrics.

RC 1.7: I think the introduction and the 4.6. Section could be shortened a bit in favor of a data(set) description section.

Response: As mentioned in an earlier comment, details about the presented dataset such as resolution and coverage

are incorporated in the “Data availability” section in the revised manuscript. Moreover, for better usability, the dataset

along with its metadata are now provided in the NetCDF format, which is the conventional format for all climate datasets

including the JPL Mascon dataset. Regarding the introduction section,it has been shortened a bit as suggested. However,

some more information about the motivation of the study is incorporated in that section to address the comment # RC

2.8 of reviewer #2.

RC 1.8: For many of the references DOIs are missing. For several DOI links are incorrect with duplicates in their URLs.

Response: The problem of missing DOIs and incorrect duplicate URLs in the references has been addressed, and all

references have been thoroughly reviewed and updated with the correct DOIs where applicable.

RC 1.9: Your results should be evaluated in the light of uncertainties of GRACE based water storage anomalies, e.g.,
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https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JB022081; there are several different GRACE solutions avail-

able which have different levels of uncertainty (https://doi.org/10.1029/2023JB026908) so why did you select exactly one

of them and how would the uncertainties of the GRACE product propagate into your BN TWSA product? The charac-

terization of uncertainties of your gridded and aggregated data sets would be important with respect to deriving any long

term trends.

Response: In the revised version of the manuscript, we have incorporated a new section to discuss and assess the

uncertainty involved in the BNML TWSA, which is also presented below:

Uncertainty, Limitations and future scope

There are various sources that contribute to the uncertainties in reconstructed TWSA. The primary source of uncertainties

arises from the inherent processing errors associated with the original GRACE data, as documented by Boergens et al.

(2022) and Gao et al. (2023). Nevertheless, this issue is effectively mitigated by utilizing the mascon solution, which

demonstrates clear superiority over the spherical harmonics data (Kalu et al., 2024). Another source of uncertainty

stems from the machine learning models, which may be categorized into contributions from inadequacies and/or lack of

knowledge regarding the model (epistemic) and data noise (aleatoric). In the present study, epistemic uncertainty has been

reduced to some extent by training four different ML models at each grid cell and selecting the best-performing model to

reconstruct the BNML TWSA globally. On the other hand, Aleatoric uncertainty may arise from the input dataset i.e.,

the selected predictors. Analyzing the spatial distribution of selected predictors using BNs (Fig. 1), it becomes apparent

that commonly employed forcing variables such as precipitation (P) and temperature (T) do not rank among the top

predictors in most grid cells. This observation suggests that these forcing variables are already accounted for in the Land

Surface Models (LSMs) as indicated by Sun et al. (2019). However, these variables are still selected as optimal predictors in

some of the grid cells, which implies that physics-based LSMs may not entirely capture the total information encapsulated

in the raw data. Consequently, incorporating a diverse set of variables—including those already utilized in physics-based

LSMs—as potential predictors could mitigate model structural errors and parameter uncertainties inherent in the LSMs

(Sun et al., 2020, 2019). Furthermore, uncertainties may also depend on the actual source of the input variables. For

example, precipitation from satellite sources will entail different uncertainties compared to LSM based precipitation. In

the present study, aleatoric uncertainty may arise due to the absence of variables that capture the impact of anthropogenic

activities. Since we utilized variables from Land Surface Models (LSMs) and Climate Indices as inputs to the ML models

for reconstructing BNML TWSA, the influence of anthropogenic activities is not represented by these variables adequately.
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Figure 1: Spatial distribution and bar plot of selected predictors using Bayesian network. P, P 1, and P 2 represent

precipitation for the current month, one month prior, and two months prior, respectively. Similarly, T, NTWSA, and

CTWSA, along with their observations one month prior and two months prior, are used as potential predictors. T denotes

temperature, while TWSA from NOAH and the Catchment Land Surface Model (CLSM) are denoted by NTWSA and

CTWSA, respectively.

In this study, a model uncertainty assessment is performed for the reconstructed dataset during the model training

phase, using the GRACE observations. The uncertainty of the model predictions is quantified by calculating confidence

intervals (CIs) of the TWSA estimates. The CI is defined as the point estimate ± the margin of error, where the margin

of error is determined by the product of a confidence coefficient (Cconfidence), derived from the standard normal curve,

and the standard error of the point estimate. The standard error of the point estimate is computed using the residuals
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from the training set employed in the ML model. The residuals (ε) are calculated as the difference between GRACE JPL

Mascon and the reconstructed BNML TWSA during the training period, as outlined below:

GRACEt = BNML TWSAt + ε (1)

These residuals capture errors arising from data noise and structural model inaccuracies, as discussed earlier. A classical

approach to determining the standard error (σε) of the residuals is given by:

σε =
√

variance(ε) (2)

For most grid cells, the residuals follow a normal distribution (Fig. 2a). The normality of the residuals was verified

using the Shapiro-Wilk test, with normality assumed when the p-value exceeds 0.05. Consequently, it is appropriate to

use the standard error to estimate the confidence interval (Humphrey and Gudmundsson, 2019). The confidence interval

is calculated as:

95% CI = Point estimate± Cconfidence × σε (3)

The spatial distribution of the standard error (σε) is shown in Fig. 2b. The σε values for grid cells in arid regions are

significantly smaller compared to those in other regions, indicating improved accuracy in arid areas. This observation

aligns with the findings of Humphrey and Gudmundsson (2019).
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Figure 2: Characteristics of residuals of reconstructed BNML TWSA computed against GRACE JPL Mascon during

training period. a) Shapiro-Wilk normality test result on residuals and b) Standard error of residuals.

Climate change and anthropogenic activities are critical factors that can introduce additional uncertainties into the

assessment of terrestrial water storage. These uncertainties arise from factors such as land-use changes, irrigation practices,

and urbanization, which significantly influence regional water storage dynamics. In this study, variables derived from LSMs

were utilized as potential predictors. However, future research could benefit from incorporating input variables from GHMs

to better account for anthropogenic influences. GHMs are particularly well-suited for modeling human interventions in

water resources, offering a more realistic representation of these activities (Bibi et al., 2024). It is important to acknowledge

that both LSMs and GHMs have inherent limitations when utilized as physically-based sources of TWSA (Bibi et al., 2024).

The integration of machine learning (ML) models with physical models can help address these limitations, reducing errors

in hydrological analyses (Xu et al., 2014). Numerous studies have demonstrated that ML models frequently outperform
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traditional hydrological models in various applications (Kim and Kim, 2021; Liang et al., 2023). This suggests that

leveraging ML models, alongside advancements in physical modeling, holds great promise for improving the accuracy and

reliability of hydrological assessments.

RC 1.10: The structure of the published dataset does not follow any data standards. Further the naming of the down-

loadable zip file, Mississipi Data.zip does not comply with the contained global grids. You should use descriptive filenames

and use modern standard data formats, e.g., CDF conform (netCDF) self-describing data, geotiff, ... and a self describing

tree structure. You can get inspiration for instance from other publications in ESSD

Response: The reconstructed BNML TWSA dataset has now been published in a standard netCDF (.nc) format, specif-

ically covering all grid cells within the Mississippi River Basin. This format was chosen for its wide acceptance and

compatibility with various data analysis and visualization tools, ensuring ease of use for researchers and practitioners.

Following the acceptance of this manuscript, we plan to expand the dataset’s availability by uploading a comprehensive

file containing reconstructed BNML TWSA data for all grid cells across the globe.

Minor things

RC 1.11: L86/87: no commas in large numbers.

Response: Commas are added to improve the readability of large numbers, and similar occurrences are checked and

corrected in other places.

RC 1.12: Table 1: Provide not only publications for the data-sets but also the DOI references where they can be obtained;

add the acronyms / abbreviations that you later use in the analysis and figures (e.g. Fig. 2, NTWSA, CTWSA)

Response: We have added the DOI references of data sources. Additionally acronyms / abbreviations are added for

better understanding.

RC 1.13: L199: you name three types of ML algorithms but then are 4 listed and described

Response: We have corrected the sentence in the revised manuscript (P:10, L:220-222) as follows: “In this study, four

types of machine learning algorithms have been used: neural network-based (CNN), kernel-based (SVR), tree-based (ETR),

and an ensemble of these three (CNN, SVR, and ETR) as stacking ensemble regression (SER).”

RC 1.14: L274: That’s the third different usage of P in the manuscript (Probability, Precipitation, and Prediction in the

evaluation metrics)

Response: We thank the reviewer for highlighting this abbreviation mistake in the manuscript. In the revised manuscript,

‘P’ is used exclusively for Precipitation. We have used ‘Pr’ to represent probability and ‘S’ to represent the simu-

lated/reconstructed TWSA, as shown below:

BIC =

N∑
i=1

log (Pr(Xi |MB(Xi)))−
d

2
log(N) (4)

CC =

∑n
i=1(Oi − Ō)(Si − S̄)√∑n

i=1(Oi − Ō)2
√∑n

i=1(Si − S̄)2
, CC ∈ [−1, 1] (5)

where, Oi and Si represent the TWSA from GRACE/GRACE-FO and the simulated/reconstructed TWSA, respectively,

with Ō and S̄ denoting their respective means.

RC 1.15: L279: A grid is usually defined as a collection of adjacent pixels. You are using the term grid instead of pixel.

I suggest to change it to either pixel or grid cell / cells.

Response: We have addressed this issue by ensuring consistent terminology throughout the revised manuscript. Specifi-

cally, we used the term “grid cell” across all sections to maintain clarity and uniformity.
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RC 1.16: Fig.2 Expand acronyms in the figure caption, make the caption more explanatory. From the colors it appears

that several optimal predictors overlap for the same regions / pixels

Response: We have expanded the figure caption in the revised manuscript, as shown below (P:14): “Spatial distribution

and bar plot of selected predictors using Bayesian network. P, P 1, and P 2 represent precipitation for the current month,

one month prior, and two months prior, respectively. Similarly, T, NTWSA, and CTWSA, along with their observations

one month prior and two months prior, are used as potential predictors. T denotes temperature, while TWSA from NOAH

and the Catchment Land Surface Model (CLSM) are denoted by NTWSA and CTWSA, respectively.”

RC 1.17: Fig.3 Avoid red and green in the same figure (colorblind check, you can use https://www.color-blindness.com/coblis-

color-blindness-simulator/ for checking)

Response: In the revised manuscript, we have replotted the figures with color-blind-safe color palettes, wherever appli-

cable.

RC 1.18: L333: grid-based − > pixel based

Response: We have revised our manuscript based on the reviewer’s comment # RC 1.15. Accordingly, the revised line is

modified as shown below (P:20, L:380-381): “The leader model, constructed for each global grid cell, is utilized to generate

a GRACE-like TWSA series from April 2002 to December 2022 using the input parameter set selected by the BNs for

each grid cell.”

RC 1.19: Fig. 6: describe gray bars in figure caption (gaps in GRACE solutions)

Response: the figure caption is modified in the revised manuscript as follows (P:23)

‘Figure 9. Comparison of TWSA time series from April 2002 to December 2022 (GRACE period). Vertical gray bars

indicate missing GRACE observations’

RC 1.20: Fig. 7: Change 1:1 line to non-dashed gray with thicker linewidth to make it distinguishable from the data.

Use colors with better contrast for BNML and CTSWA

Response: We have replotted this figure with a non-dashed gray 1:1 line, along with distinguishable colors for BNML TWSA

and CTWSA, as shown in Fig. 10 of the revised manuscript (P:24).

RC 1.21: Abstract L18: remove “and updates will be published when needed”

Response: We have removed this line from the abstract of the revised manuscript.

8



Reviewer 2

General comments

Mandal et al. describes a data-driven reconstructed global product of TWS, namely BNML TWSA. A Bayesian Network

technique is used to find an optimal set of predictors. Then, several ML algorithms are trained at each grid cell. The

authors choose the best ML algorithm for each grid cell to fore- and hind-cast TWS across the globe. Compared with several

existing reconstructed TWS products and estimates by land surface models, the new product shows better agreements

with GRACE observations at grid cell and basin scales, with being capable to capture some historical hydroclimatic

extreme events. Based on the evaluation results, the authors conclude that the newly developed TWS product is reliable

and can be used for hydroclimatological studies.

Overall, I find the manuscript easy to follow. The topic is relevant to the journal, as TWS is an influential variable in

many aspects of the Earth system functioning. The evaluation across space and time done by the authors is informative to

see how good the ML-derived product performs. However, I still have some concerns regarding the robustness of the new

product, majorly coming from the lack of (source of) uncertainty and the way it is evaluated. Please find the comments

below. I hope they are helpful to improve the manuscript.

Response: We sincerely thank the reviewer for recognizing the relevance of our manuscript to the scope of the journal.

We greatly appreciate the time and effort invested in reviewing our work and providing valuable feedback. In the following

responses, we have endeavored to address all the concerns and suggestions raised by the reviewer comprehensively. Where

applicable, we have revised the manuscript to incorporate the recommended changes, ensuring that the final version aligns

with the journal’s standards and expectations.

Major comments

RC 2.1: The the (potential) source(s) of uncertainty needs to be discussed, which the current version of manuscript

lacks. There could be some potential sources of uncertainty. First, I wonder if there is any overfit issue in the product as

it is fully based on ML and the learning has been done for each grid cell in the study domain. In addition, I wonder if

there is any way for BNML TWSA to capture human impact on TWS and its trend. If no, then it can either be regarded

as a source of uncertainty and be specified or be precluded from the model training. If yes, then the authors may add

explanations. Lastly, as BNML TWSA highly depends on TWSA estimates by selected LSMs, the common errors by

LSMs, such as the phase shift in mean seasonal cycle (e.g., Bibi et al., 2024) or worse performance in (semi-) arid regions,

could propagate to the results. The performance of BNML TWSA can also potentially be influenced by the precipitation

product used.

Bibi, S., Zhu, T., Rateb, A., Scanlon, B. R., Kamran, M. A., Elnashar, A., Bennour, A., and Li, C.: Benchmarking multi-

model terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations

over major global river basins, Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024, 2024.

Response: We have incorporated a new subsection into the manuscript dedicated to the evaluation of uncertainties,

limitations and the discussion of the future scope of this study (P:38-40, L:520-572).This subsection is also presented in

response to Reviewer Comment # RC 1.9 within this document.

Regarding the issue of overfitting, the reconstructed TWSA is evaluated during the testing period against GRACE TWSA

to check and prevent any overfitting issues. Additionally, the optimal predictor selection approach adopted in this study

helps in minimizing the chances of overfitting. This information has been incorporated into the introduction section as

follows (P:3 ,L:89-92)

“Selection of optimal predictors is not just a methodological novelty, but a critical step to ensure that the model prioritizes

the most relevant and physically meaningful predictors. This approach reduces noise, minimizes overfitting, and enhances

interpretability, making the final product more scientifically robust and practically useful (Das and Chanda, 2024).”

.
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RC 2.2: I think that readers or potential data users can benefit from additional evaluations. It can be seen that the

better performance of BNML TWSA is expected, as 1) it uses TWSA from LSM(s) as a predictor for many grid cells, 2)

the authors choose the best ML algorithms among trained and tested for each grid, and 3) the model is evaluated using

TWSA time series. For example, the GRACE-REC by Humphrey and Gudmundsson (2019) that the authors used in

the comparison is calibrated against the detrended and deseasonalized TWSA time series, which therefore may not be

as good as BNML TWSA by the design. The results from the evaluation can be seen as the strength of BNML TWSA,

but BNML TWSA can also benefit from being fairly evaluated against variables that it is not trained with. Evaluating

BNML TWSA using independent variables is important to prove it’s ability to extrapolate, because the product has

already learned partly the GRACE TWSA information via CTWSA which assimilates GRACE TWSA observations (this

fact should have been noted in the main text, I think). As a possible, but not nessesarily the only, way for the additional

evaluation, one can suggest that the authors can repeat the evaluation done by Humphrey and Gudmundsson (2019). In the

paper, GRACE-REC is evaluated with several independent datasets including sea level budget, streamflow measurements,

and basin-scale water balance. This repetition can also work well to compare BNML TWSA with GRACE-REC. Another

way can be evaluating BNML TWSA at seasonal and interannual (i.e., detrended and deseasonalized) temporal scales.

What makes the evaluation at these temporal scales good is because the temporal scales are of a strong interest in multiple

communities (e.g., carbon cycle, hydrology, and climate), so the results can be informative for both the product itself and

potential users; also it can be regarded as a more fair way to examine BNML TWSA as it is not trained at this temporal

scales.

Response: We appreciate the reviewer’s valuable suggestion regarding additional evaluations of BNML TWSA. In the

revised manscript, we have included a new data evaluation section, which is also presented below.

Comparison with streamflow measurements based on basin-scale water balance

TWS change can be used to estimate streamflow measurement based on the water balance equation for moderately large

(> 100,000 km2) river basins (Humphrey and Gudmundsson, 2019). The streamflow (Q) based on the water balance

model over a watershed may be expressed as:

Q = P − ET −∆S (6)

where the water balance components P and ET are precipitation and evapotranspiration respectively, and ∆S denotes

the TWS change over a time step. Comparison of evaluated streamflow using BNML TWSA, GRACE TWSA, TWSA

from Humphrey and Gudmundsson (2019) (JPL MSWEP and JPL ERA5), and Sun et al. (2020) (DNN JPL-M and

DNN CSR-M) is discussed in this section. Out of the eleven river basins considered in this study, six basins—one from

each continent—were selected based on the availability of streamflow data. More details of the six selected basins and

their streamflow observation stations are depicted in Table 1. Streamflow observations are predominantly acquired from

the Global Runoff Data Centre (GRDC), except for the Godavari River in India, where the streamflow data is sourced

from the Central Water Commission (CWC).
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Table 1: Details of Basins and Streamflow Observation Locations for Six Global River Basins. Sources: Global Runoff Data

Centre (GRDC; https://portal.grdc.bafg.de) and Central Water Commission (CWC; https://indiawris.gov.in),

India

River Basin Source

Station for

streamflow

Observation

Period of streamflow

Observation

Drainage

Area (km2)

Amazon GRDC Obidos April 2002 - December 2019 4,671,462

Danube GRDC Ceatal Izmail April 2002 - December 2010 779,812

Godavari CWC Polavaram January 2003 - December 2020 312,812

Mississippi GRDC Vicksburg April 2002 - October 2022 2,918,820

Murray-Darling GRDC Lock 1 Downstream April 2002 - June 2023 770,171

Zambezi GRDC Katima Mulilo April 2002 - July 2021 334,883

Observations of terrestrial water balance components for large river basins worldwide are limited, with sparsely dis-

tributed gauges for precipitation and even fewer observations for evapotranspiration. However, due to the availability of

data from satellite sensors and outputs from global land surface models, it is possible to analyze the water balance of river

basins with sparse observations. Details of the collected dataset and sources are presented in Table 2. Precipitation (P)

data from five different sources were collected for each grid cell within these river basins. The basin-scale average of all five

precipitation products (GLDAS, GPCC, GPCP, IMERG, and PERSIANN) is considered as the ‘observed’ precipitation

for that particular basin. Similarly, for evapotranspiration (ET), the average of three products (GLDAS, FLDAS, and

GLEAM) is considered the ‘observed’ ET for that basin. In this study, ∆S for tth month is calculated as the central

difference of terrestrial water storage anomalies, as shown below.

∆S =
(TWSAt+1 − TWSAt−1)

2
(7)
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Table 2: Overview of Global Precipitation, Evapotranspiration and Storage change Data Products Utilized for Streamflow

Calculations

Dataset
Spatial

Resolution

Temporal

Resolution
Reference and data source

Precipitation (P)

GLDAS 0.25° 1 month Rodell et al. (2004) https://doi.org/10.5067/SXAVCZFAQLNO

GPCC 0.25° 1 month
Schneider et al. (2008)

https://dx.doi.org/10.5676/DWD_GPCC/CLIM_M_V2022_025

GPCP 0.5° 1 month https://doi.org/10.5067/MEASURES/GPCP/DATA304

IMERG 0.1° 1 month https://doi.org/10.5067/GPM/IMERG/3B-MONTH/07

PERSIANN 0.25° 1 month
Ashouri et al. (2015) https:

//www.ncei.noaa.gov/data/precipitation-persiann/access/

Evapotranspiration (ET)

GLDAS 0.25° 1 month Rodell et al. (2004) https://doi.org/10.5067/SXAVCZFAQLNO

FLDAS 0.1° 1 month https://doi.org/10.5067/5NHC22T9375G

GLEAM 0.25° 1 month Martens et al. (2017); Miralles et al. (2011) https://www.gleam.eu

Storage change (∆S)

GRACE (JPL

mascon)
0.5° 1 month Watkins et al. (2015) https://doi.org/10.5067/TEMSC-3JC63

BNML TWSA 0.5° 1 month
Mandal et al. (2024)

https://doi.org/10.6084/m9.figshare.25376695

JPL MSWEP 0.5° 1 month Humphrey and Gudmundsson (2019)

JPL ERA5 0.5° 1 month Humphrey and Gudmundsson (2019)

DNN JPL-M 1° 1 month Sun et al. (2020)

DNN CSR-M 1° 1 month Sun et al. (2020)

Using the water balance components described in the previous section, the streamflow for each basin is calculated using

various TWSA products, including GRACE, BNML TWSA, JPL MSWEP, JPL ERA5, DNN JPL-M, and DNN CSR-M.

This computation is performed based on the terrestrial water balance equation (Eqn. 6). The computed Q values are

compared with the observed Q values from the station, and the corresponding correlation coefficients (CC) are determined.

Figure 3 presents the correlation coefficient (CC) values as a heatmap for all six river basins, highlighting the performance

of BNML TWSA. At the Amazon basin, BNML TWSA demonstrates strong performance with a CC of 0.89, comparable

to GRACE and JPL MSWEP (CC: 0.9) and JPL ERA5 (CC: 0.89). In the Danube and Godavari basins, BNML TWSA

outperforms all other TWSA products, achieving the highest CC values, although other products also perform well.

For the Mississippi basin, BNML TWSA, along with DNN JPL-M and DNN CSR-M, achieves the highest CC value of

0.7. At the Murray-Darling basin, all TWSA products show minimal CC values due to the negligible magnitude of

observed streamflow at the basin outlet. At the Zambezi basin, JPL MSWEP performs best with a CC of 0.46, whereas

BNML TWSA achieves a CC value of 0.35. This evaluation highlights the superior and/or comparable performance of

BNML TWSA across most basins. The timeseries of the streamflow computed using BNML TWSA (QBNML TWSA) is

presented alongside the observed streamflow (QObserved)and the streamflow computed using GRACE TWSA (QGRACE) in

Fig. 4. The time series plot (Fig. 4) clearly demonstrates that QBNML TWSA aligns more closely with QObserved compared

to QGRACE. For the Murray-Darling River Basin, the magnitude of QObserved is negligible due to the large amount of

water withdrawal for irrigation and consumption, in addition to heavy regulation (Candogan Yossef et al., 2012). All

TWSA products struggle to capture the pattern of low streamflow in the Murray-Darling River Basin.
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Figure 3: Basin wise CC values obtained against observed Q and computed Q from water balance using TWSA data from

GRACE, BNML TWSA and other studies.
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Figure 4: Comparison of observed streamflow (QObserved), Q obtained from water balance using GRACE TWS data

(QGRACE) and Q obtained from water balance using BNML TWSA TWS data (QBNML TWSA).

RC 2.3: I think that the title is misleading. What is the role of the feature selection (i.e., BN) on BNML TWSA? The

title can be seen that using the optimal set of feature given by BN is the key to improve the ML based product in the

study, but the relevant section or explanation cannot be seen from the current version of manuscript. So, the contribution

of deploying the BN technique to the quality of BNML TWSA could be more elaborated, or the title could be updated.

Response: We appreciate the reviewer’s concern and have accordingly updated the title of our manuscript in the revised

version.
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RC 2.4: What is the value of examing multiple algorithms for each grid cell? It’s clearly reported in the manuscript

(e.g., Figure 3) that the spatial pattern leader model is very heterogeneous. However, it has not been reported how

different the performance of tested models are, and what the differences are in the actual estimates. I wonder the actual

influence on the resulted time series would be minor (e.g., a comparison between the current BNML TWSA and another

BNML TWSA using the algorithm with the poorest performance for each grid cell), as many ML models usually show

similarly good performance.

Response: A noticeable improvement is observed across most grid cells globally when the best machine learning (ML)

model is selected for each grid cell from the four different models trained for that specific grid cell. This model selection

process also aids in reducing uncertainties arising from model inadequacies and/or gaps in knowledge. The details of this

selection process have been included in the revised manuscript under the “Grid-Specific Leader Models” section, as

outlined below.

Grid specific leader models

The predictors selected by the BNs in each grid are used as input to predict the TWSA using the four ML algorithms

mentioned earlier: CNN, SVR, ETR, and SER. The grid wise leader ML algorithm is identified based on the Pearson

correlation coefficient (CC) between predicted TWSA and GRACE TWSA for the test period. The performance difference

between the leading ML algorithm and the worst performing ML model is depicted in Fig. 5. Although the improvement

in terms of CC value difference is not large for all grid cells globally, more than 15.5% of grid cells show improvements

greater than 0.2, while an additional 16.5% of grid cells exhibit improvements between 0.1 and 0.2. For the six grid

locations demonstrating maximum improvement, the time series and scatter plot is illustrated in Fig. 6. The estimated

TWSA by the best-performing model is in good agreement with the observed TWSA during the testing period. This

justifies the use of the best-performing (leading model) to predict the TWSA. Fig. 7 depicts the spatial distribution of

the leader algorithms over the globe along with frequency as bar plot. ETR performs the best for the maximum number

of grids, with a total of 25703, followed by SVR, SER, and CNN, which perform best for 11609, 11069, and 9646 grids

respectively. Thus, for most of the river basins including Krishna and Godavari in India, Danube in Europe, Nile, Zambezi

and Limpopo in the African continent, Mississippi in the USA and the transboundary GBM and Indus, ETR emerges as

the leader model in maximum grids. The contribution of the leader algorithm as a percentage of the total grid points for

each river basin is shown in Fig. 7c. It is observed that in the Limpopo river basin, ETR performs best in 89.0% of the

grid points, whereas CNN does not perform best in any of the grids in this basin. In the Murray-Darling river basin in

Australia, the four ML algorithms show the best performance at approximately equal number of grid points (CNN: 25.9%,

SVR: 21.4%, ETR: 26.1% and SER: 26.6%).

Figure 5: Difference between the correlation coefficient (CC) values obtained from the leader ML model and the worst

performing ML algorithm in each grid cell for the test period.
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Figure 6: Time series (left columns) for six grid cells showing the maximum improvement globally, including observed

TWSA and TWSA predicted by the best and worst models. Scatter plots (right columns) compare the TWSA predicted

by the best and worst models against the observed TWSA.
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Figure 7: a) Frequency, b) spatial distribution of leader machine learning algorithms and c) leader machine learning

algorithms in terms of percentage for different river basins

RC 2.5: The results and discussion section is mostly about presenting how good the performance metrics for BNML TWSA

is, which could have been deeper to provide more insight about the product’s applicability. Having evaluation from more

diverse aspect as in the second bullet point would help with improving this aspect.

Response: As suggested by the reviewer in comment # RC 2.2, we have included an evaluation of our reconstructed

BNML TWSA in the revised manuscript.

RC 2.6: The dataset provided includes estimates for the Mississippi river basin only, while one would expect estimates

for the whole global land grid cells, according to the title and abstract.

Response: We appreciate the reviewer’s concern and would like to clarify that we plan to provide the dataset for the

entire globe upon the manuscript’s acceptance for publication. To demonstrate the data structure, we have uploaded
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datasets for the Mississippi River Basin in standard netCDF (.nc) format during this review stage.

Minor and technical comments

RC 2.7: The current manuscript has many in-text narrative citations that are wrongly used, e.g., L311, L334-335, and

so on.

Response: We agree with the reviewer’s observation regarding the issues with multiple in-text narrative citations. These

errors have been addressed and corrected in the revised manuscript.

RC 2.8: The introduction can be improved by better addressing the motivation to have a new product. Currently, it

introduces TWS variable and examples of (ML-based) TWS reconstruction studies. The authors introduce that using a

feature selection process can be a novelty of BNML TWSAm, while testing multiple ML algorithms is important, which

can be, but are not necessarily the reason to have a new product. The authors could better present the motivation by

showing why having (or lacking) feature selection and multiple ML algorithms are critical for users and their science. Or,

showing from which aspect existing reconstructed TWS products are less reliable/robust can better show the motivation.

This will also help with having a focused presentation in the results section.

Response: We sincerely appreciate the reviewer’s insightful comments and suggestions regarding the update to the

introduction section. In the revised manuscript, we have included text that addresses the motivation for developing a

new product, as well as the benefits of selecting optimal predictors. Please refer to the introduction section of the revised

manuscript for further details.

Specific comments

Abstract

Introduction

RC 2.9: L23: There can be more references, especially ones done at the global scale.

Response: In the revised version, we have incorporated additional references to studies conducted globally, utilizing

comprehensive land surface and hydrological models, as illustrated below (P:1-2, L:22-24):

‘The fluctuations of TWS in both space and time have been comprehensively simulated by employing physically-based

land surface models (LSMs) and global hydrological models (GHMs) (Humphrey et al., 2017; Felfelani et al., 2017; Sun

et al., 2021).’

RC 2.10: L24: This sentence needs more clarification. Which physical processes are missing? What are the influence on

the estimates from which aspect?

Response: In the revised manuscript, this concern has been addressed as outlined below: ‘The fluctuations of TWS in

both space and time have been comprehensively simulated by employing physically-based land surface models (LSMs) and

global hydrological models (GHMs) (Humphrey et al., 2017; Felfelani et al., 2017; Sun et al., 2021). These models have

significant biases due to inherent uncertainty and the lack of some physical processes, such as the lack of modeling human

interventions in water resources within LSMs (Bibi et al., 2024). Furthermore, in snow-dominated basins, LSMs often

underestimate peak terrestrial water storage anomalies (TWSA), whereas GHMs tend to overestimate them. Similarly, in

temperate, arid, and tropical basins, both model types generally underestimate TWSA peaks (Bibi et al., 2024).’

RC 2.11: L29: I think that Mo et al. (2022) is not a proper reference for the sentence. The study is to report a new

product, not to examine the human and climatic impact on water cycle.

Response: We agree with the reviewer that this reference was added in error. In the revised manuscript, we have removed

the reference from the specified line.
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RC 2.12: L41: The reconstruction by Humphrey et al. (2017) is at the global scale. Only the example application is for

the Amazon Basin.

Response: We thank the reviewer for highlighting this significant error in our manuscript. In the revised version, we

have corrected it as follows (P:2, L:44-46): ‘Humphrey et al. (2017) established a statistical data-driven model, between

GRACE TWSA using deviations in both temperature and precipitation to recreate TWSA from 1985 to 2015 for the

entire globe.’

RC 2.13: L32-59: This paragraph is basically list up previous studies wtih a few sentences for each. I wonder if this is

the best way of storytelling for readers.

Response: Thank you for your valuable feedback. In the revised manuscript, we have condensed this section and

incorporated the motivation for developing a new product, as well as the benefits of feature selection, as mentioned in

comment RC 2.8. This section now provides an overview of TWSA reconstruction studies and outlines the evolution of

algorithms, transitioning from empirical models to statistical models, and subsequently to machine learning models. This

framework is intended to offer readers a clear understanding of the progression in this field.

RC 2.14: L60: The authors could first list up what the categories are.

Response: This concern is addressed in the revised manuscript as follows (P:3, L:66-67): ‘The ML models used in

hydrological studies so far can be broadly divided into two main categories: single algorithm usage and multiple algorithm

usage.’

RC 2.15: L77-78: As mentioned above, there need to be more elaboration on the importance of the feature selection on

the TWSA reconstruction and the applications.

Response: We sincerely appreciate the reviewer’s insightful comments and suggestions regarding the motivation for

developing the new TWSA product and the importance of feature selection and multiple ML algorithms. In response, we

have revised the introduction to better articulate the scientific and practical rationale behind our approach.

Specifically, we have emphasized the role of feature selection in improving the robustness and reliability of the TWSA

reconstruction. Feature selection is not just a methodological novelty, but a critical step to ensure that the model

prioritizes the most relevant and physically meaningful predictors. This approach reduces noise, minimizes overfitting,

and enhances interpretability, making the final product more scientifically robust and practically useful (Das and Chanda,

2024). Additionally, we have elaborated on how existing TWSA products often lack systematic feature selection, leading

to potential degradation in their reliability and applicability.

We have also highlighted the importance of testing multiple ML algorithms to ensure methodological robustness and

identify the optimal approach for TWSA reconstruction. Different algorithms have varying strengths in handling the

non-linearities and complexities inherent in hydrological systems. By comparing multiple approaches, our study offers a

comprehensive evaluation that benefits both users and researchers by providing a robust framework for estimating TWSA.

Furthermore, we have addressed the limitations of existing reconstructed TWSA products, such as their sensitivity to

predictor selection, lack of uncertainty quantification, and limited applicability across regions. These gaps demonstrate

the need for a new approach that integrates feature selection and multiple ML algorithms to produce a more reliable and

generalizable product.

These revisions aim to clarify the motivation for the study and ensure a more focused presentation in the results

section, as suggested by the reviewer. Thank you for this valuable feedback.

Data and Processing

RC 2.16: L108: This counters the sentence L78-80

Response: The short data gaps (1-2 months) are filled using trained ML models. We have not performed interpolation

of intermittent gaps, detrending, deseasoning, or decomposing signals.
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RC 2.17: L112-113: Are there any reasons to choose Noah and CLSM specifically?

Response: Many global and regional studies have utilized the Noah and Catchment Land Surface Model (CLSM) to

reconstruct TWSA. For instance, Sun et al. (2019, 2020); Jing et al. (2020); Humphrey et al. (2017) have successfully

employed these models in their research.

RC 2.18: L125-126: Why doesn’t LSMs fully use the information? This can be more elaborated.

Response: We have added a reference where the study justifies the inclusion of precipitation and temperature data as

input variables, although these were part of LSM forcing:

“Sun, A. Y., Scanlon, B. R., Save, H., & Rateb, A. (2021). Reconstruction of GRACE total water storage through

automated machine learning. Water Resources Research, 57, e2020WR028666. https://doi.org/10.1029/2020WR028666”

RC 2.19: L129: I think that the time period of analysis hasn’t specified before.

Response: In the ‘Data and processing’ section, we have included the period of analysis as follows (P:4, L:112):

“The entire period of analysis spans from 1960 to 2022.”

RC 2.20: L143: Although CLSM provides TWS directly, the authors should be able to refer to other materials to know

which processes CLSM accounts for to calculate TWS. Please add this description, also plase update Table 1 accordingly.

Response: We have incorporated a reference to other studies that utilized terrestrial water storage (TWS) data from

CLSM. The added reference is as follows:

“Sun, A. Y., Scanlon, B. R., Save, H., & Rateb, A. (2021). Reconstruction of GRACE total water storage through

automated machine learning. Water Resources Research, 57, e2020WR028666. https://doi.org/10.1029/2020WR028666”

RC 2.21: Eq.1: Sun et al (2019) mentioned that Noah does not account for surface water storage. Please clarify this.

Response: The equation used by Sun et al. (2019) is as follows:

TWS = SnWS + CWS + SWS + SMS +GWS (8)

where SnWS represents snow water storage, CWS is canopy water storage, SWS is surface water storage, SMS is soil

moisture storage, and GWS is groundwater storage.

In our study, we combined the CWS and SWS and referred to it as canopy and surface water storage (CSWS).

TWS = SnWE + SMC + CSWS (9)

where SnWE represents snow depth water equivalent, SMC is soil moisture content, and CSWS is canopy and surface

water storage.

RC 2.22: L149: “may be” or “can be”? It’s a bit weird to use “may be” in this sentence.

Response: We have corrected this mistake in the revised manuscript.

RC 2.23: L152-154: It was not clear for me if the prior months are for P and T or for TWSA, too. I suggest to rephrase

the sentence.

Response: This line has been revised in the updated manuscript as follows (P: 7, L:170-171):

“X includes CTWSA, NTWSA, P and T for the current month, as well as for one and two months prior. Additionally, it

includes three climate indices (DMI, NAO, ONI) for the current month.”

RC 2.24: L153: Why aren’t the prior months used for the climate indices?

Response: The Oceanic Niño Index (ONI) is a three-month running mean of SST anomalies from the NOAA Extended

Reconstruction Sea Surface Temperature Version 5 (ERSSTv5) dataset in the Niño 3.4 region (5°N-5°S, 120°-170°W).

Therefore, it incorporates the sea surface temperatures of both previous and upcoming months to calculate the ONI for

the current month. This is why the prior months have not been incorporated for this index. To standardize the number
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of climate indices and control the total number of input variables for BN, prior climate indices have not been utilized.

RC 2.25: L155: SVR and ETR need to be introduced as their full name.

Response: This line is updated in the revised manuscript as follows:

“Four ML algorithms, namely Convolutional Neural Network (CNN), Support Vector Regression (SVR), Extra Trees

Regressor (ETR), and Stacking Ensemble Regression (SER), are trained to solve the regression problem described in Eqn.

2”

RC 2.26: Figure 1: For the correlation coefficient, CC has been used through out the manuscript, instead of R.

Response: In the revised version of the manuscript, we have corrected this mistake in Fig. 1 (P:8).

RC 2.27: L231: ‘built’, not ‘build’, I think

Response: We rectified this mistake in the revised manuscript.

RC 2.28: L233: Is the feature selection procudure in ETR independent to BN?

Response: Yes, this process is independent to BN and specific to ETR.

RC 2.29: L266-267: For each grid cell, does BN give the optimal set of predictors to each ML algorithm or is the set

common for all ML algorithms? If it’s the former, how can one be sure that different ML algorithms share the same

optimal set of predictors?

Response: For each grid cell, BN provide a optimal set of predictors, which is common for all ML algorithms.

RC 2.30: Eq.5: On the right hand side, does the denominator use Pi-Pbar or Oi-Obar? The typical NSE equation uses

observations for the denominator. Please check this.

Response: We thank the reviewer for highlighting this mistake in the NSE equation. In the revised version, we have

corrected this as shown below. We used ‘S’ instead of ‘P’ to represent the simulated/reconstructed TWSA in the revised

manuscript.

NSE = 1−
∑n

i=1(Oi − Si)
2∑n

i=1(Oi − Ō)2
, NSE ∈ (−∞, 1] (10)

Results and Discussions

RC 2.31: Figure 2: Would it be reasonable to interpret the results as the emerging importance of the variables to the

global TWSA? For example, can the results be seen as that North Atlantic Oscillation has the least influence on the

collective gridwise TWSA among the three modes of climate variability?

Response: The North Atlantic Oscillation (NAO) was selected by the BN for only a minimal number of grid cells globally.

This suggests that the NAO has the least influence on gridwise TWSA.

RC 2.32: L291: Please see the comment for Figure 1

Response: This error has been corrected in the revised manuscript.

RC 2.33: Figure 3: Is it expected that ETR would pop up as the leader? Is there any possible explanation for this, based

on the nature of each algorithm?

Response: It is not anticipated that any single machine learning (ML) algorithm will perform optimally across the

majority of grid cells globally, due to the heterogeneous characteristics of each grid cell. These variations include factors

such as land use types, climatic conditions, and differences in meteorological and other forcing variables.

RC 2.34: L306-307: It is not clear that BNML TWSA performs better than LSMs, especially for the case of CTWSA.

Could be clearer with histogram of metrics or the map of differences in metrics between BNML TWSA and LSMs.

Response: To enhance interpretation, we have included a plot of the cumulative distribution functions (CDFs) for the

CC, NSE, and KGE metrics, as shown below:
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The cumulative distribution functions (CDFs) of the CC, NSE, and KGE metrics are presented in Figure 8. These CDFs

demonstrate that BNML TWSA exhibits significantly superior performance, characterized by substantially higher CC,

NSE, and KGE values (P:18, L:351-353).

Figure 8: Cumulative Distribution Functions (CDFs) of the Correlation Coefficients (CC), Nash-Sutcliffe Efficiency Coef-

ficient (NSE), and Kling-Gupta Efficiency (KGE) values.

RC 2.35: Figure 4: It should be mentioned that BNML TWSA also shows significant biases in cold or arid regions, and

even in a wet region (e.g., a part of the Congo Basin).

Response: These limitations of BNML TWSA have been incorporated into the revised version of the manuscript (P:40,

L:559-570).

RC 2.36: Figure 6: What does the shaded area stand for? What is the rationale that BNML TWSA captures the

GRACE TWSA trend, for example, in Indus and GBM Basins, where the TWSA trend would largely be affected by

human activity?

Response: The vertical gray bars in this figure represent missing GRACE observations. In the revised manuscript, this

information has been incorporated in the figure caption as follows (P:23): “Figure 9. Comparison of TWSA time series

from April 2002 to December 2022 (GRACE period). Vertical gray bars indicate missing GRACE observations.”

We appreciate the reviewer’s observation. The time series plot demonstrates that BNML TWSA captures the GRACE

TWSA trend more effectively than NTWSA and CTWSA for most of the river basins, including the Indus and GBM

Basins, throughout the time period.

RC 2.37: Section 4.5: It is great to prove the ability of BNML TWSA to capture the hydrological extreme events that

the MLs were not informed with. However, this section is only mentioning a specific type of event, flood. One could

compare the historical TWSA time series of several basins in different climate zones with the corresponding time series of

climate indices, drought indices, or precipitation.

Response: We sincerely appreciate the reviewer’s insightful comments and suggestions regarding comparisons with his-

torical TWSA time series and corresponding time series of climate indices and drought indices. It is worth noting that over

100 drought indices have been proposed to date, addressing various types of drought, including meteorological, agricul-

tural, hydrological, and socioeconomic droughts. A detailed investigation is necessary to explore potential teleconnections

between drought occurrences and large-scale climate indices. Furthermore, aspects such as whether precipitation or ge-

ographic characteristics predominantly control the groundwater response time to drought, among other critical factors,

warrant an independent and comprehensive study. These significant dimensions of drought analysis deserve a dedicated

spatial investigation to ensure a thorough and focused exploration.

RC 2.38: Figure 9: I feel that the way to show the ability of BNML TWSA to capture the historical flood events can be

seen as inappropriate. For example, in the map of the USA, I can see many other grid cells as bluish as ones in the green

box. Does it mean that all the grid cells similarly bluish as ones in the green box are flooded?

Response: This map illustrates the difference between the monthly and long-term mean monthly BNML TWSA datasets.
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Extreme events, such as floods, are depicted in the figures for a specific month by grid cells shaded in blue, which can also

indicate groundwater recharge due to rainfall. Additionally, as observed in subplot c of this figure (showing the USA),

numerous blue cells near Lake Michigan can be explained by the accumulation of water from several rivers flowing into

the lake.

RC 2.39: Section 4.6: It is recommended to compare BNML TWSA and previous studies using independent data sets

(please see the first major comment). Also, it needs to be noted that GRACE-REC is calibrated against detrended and

deseasonalized GRACE TWSA.

(may not be good at captureing the local TWSA correctly, if GLDAS is calibrated using TWS? BNML TWSA largely

depends on GLDAS LSMs which cannot be reliable at finer spatial scales than the original GRACE spatial resolution)

< −− need to check how GLDAS LSMs simulates TWS

Response: We sincerely appreciate the reviewer’s insightful suggestions regarding the comparison of BNML TWSA with

previous studies using independent data sets. We have evaluated our reconstructed dataset along with datasets from

previous studies against observed streamflow. Please refer to the response to # RC 2.2 in this response document.

We have incorporated the ‘rec ensemble mean’ and ‘rec seasonal cycle’ components of the GRACE-REC product by

Humphrey and Gudmundsson (2019), which represent the ensemble mean of the TWS reconstruction (deseasonalized) and

the seasonal cycle, respectively, to make it equivalent to BNML TWSA. Additionally, in relation to the TWS simulation

process by GLDAS LSMs, we have provided references of other studies that evaluated TWS for both GLDAS LSMs

considered in this study. Please refer to the responses to # RC 2.20 and # RC 2.21 in this response document.

Conclusions

RC 2.40: L432-434: I think that this point can be mentioned in the main text, possibly with a deeper discussion (i.e.,

implications of the distribution of selected gridwise predictors for the glbola TWSA and a possible explanation).

Response: We sincerely appreciate the reviewer’s suggestions and in the revised manuscript, we have included this

portion in the main text under the subsection titled ‘Selected predictors using BN,’ as follows (P:13, L:313-318):

“It is noteworthy that, in addition to TWSA from LSMs, the ONI and DMI have been selected as optimal predictors for

a substantial number of grid cells. Meteorological variable such as P and T, along with their observations from previous

months, have been selected for fewer grid cells globally by the BN compared to ONI and DMI. This can be attributed to

the fact that LSMs already incorporate these meteorological variables as forcing inputs. The inclusion of climate indices

as potential predictors for a large number of grid cells can be seen as an effort to represent the climate change scenarios

of that specific time period.”

Data

RC 2.41: Please provide the unit and the file naming convention.

Response: In this version of dataset we have used files in .nc format following naming convention.

RC 2.42: This should be also noted in the main text with the number or portion of the grid cells: “# For very few grids

BN is not identifying any predictors or only one predictor. Grids with zero or one optimal predictor identified by BN

are trained using all 15 potential predictors (‘P’, ‘T’, ‘NOAH TWSA’, ‘CLSM TWSA’, ‘DMI’, ‘NAO’, ‘ONI’, ‘P1’, ‘T1’,

‘NOAH TWSA 1’, ‘CLSM TWSA 1’, ‘P2’, ‘T2’, ‘NOAH TWSA 2’, ‘CLSM TWSA 2’).” Also, I would exclude these grid

cells with zero or one predictor identified from Figure 2, if it makes a significant difference.

Response: We appreciate the reviewer’s suggestions and in the revised manuscript, we have included this portion in the

main text under the subsection titled ‘Selected predictors using BN,’ as follows:

“In a limited number of grid cells (66), the Bayesian Network (BN) did not select any predictors. For an additional 492

grid cells, the BN selected only one predictor, thereby limiting the application of certain machine learning algorithms to
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these grid cells. Consequently, for a total of 558 grid cells, which constitute less than 1% of the grid cells considered in

this study, the complete set of 15 predictors has been used as potential predictors.”
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