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Abstract. This research uses a large dataset from the Italian Seismic Microzonation Database, containing nearly 15,000 

measured shear wave velocity (Vs) profiles across Italy, to investigate the uncertainties in seismic risk assessment. This 

extensive collection allows a detailed study of the seismic properties of soil with unparalleled precision. Our focus is on 

evaluating Vs variations with depth within uniformly clustered areas, known as seismic microzones. These zones are carefully 15 

identified based on their spatial correlation and homogeneity in geological, geophysical, and geotechnical characteristics, 

which are critical for accurate prediction of seismic response. We contrast these results with clusters formed purely based on 

geographic survey density (here defined geographic clusters), thereby assessing the depth of our understanding of the 

subsurface geological and geophysical context. These results were further compared with those reported in the seismic code 

and literature. This study of depth-dependent Vs variations helps to refine our models of subsurface seismic behaviour. Our 20 

main discoveries show that: 1) uncertainties associated with seismic microzones (geological and geophysical clusters) are 

consistently lower than those identified in geographic clusters, particularly in the first 30 m of depth; 2) Vs profile variations 

show negligible increases in uncertainty within a certain range of correlation distances (up to about 4,500 m); 3) uncertainties 

for seismic microzones are lower than those previously reported in seismic codes and in the literature, indicating the 

effectiveness and precision of our methodological approach. The results of this study significantly improve local seismic 25 

response analysis and highlight the critical role of depth and spatial correlation in understanding seismic hazard. The dataset 

is available at https://doi.org/10.5281/zenodo.10885590 (Mori et al., 2024). 

1 Introduction 

A seismic microzonation project has been active in Italy since 2009 for the most vulnerable Italian municipalities, about 4,000 

out of approximately 8,000 (Moscatelli et al., 2020). This project is based on the ability to map homogeneous zones with 30 

respect to the expected amplification of seismic ground motions (so-called Seismic Microzones, hereafter SM). These zones 
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must be sufficiently detailed to account for local features that influence ground motion and to identify earthquake-induced 

ground instabilities (e.g., liquefaction, landslides, surface faulting, soil compaction). 

All the data collected in the Italian seismic microzonation project, both geographical (e.g., shapes of the SM and location of 

the surveys) and alphanumeric (geological, geotechnical, and geophysical parameters) were standardised according to the 35 

Seismic Microzonation Working Group (2008) and stored in a database. The results of the seismic microzonation studies are 

freely available at the link: https://www.webms.it/servizi/stats.php (last access: March 2024). The database has proved its great 

potential over the years: it has been crucial for the development of the methodology used to produce the Vs30 (Mori et al., 

2020), and the seismic amplification factor maps of Italy (Falcone et al., 2021). Gaudiosi et al. (2023) recently published a 

collection of shear modulus reduction and damping ratio curves primarily derived mainly from the database, while Varone et 40 

al. (2023) benefited from this dataset in assessing earthquake-induced liquefaction in Northern Italy. Shear wave velocity (Vs) 

profiles obtained from geophysical prospecting are a highly valuable component, along with other data. The collection contains 

over 23,500 Vs profiles, last updated in December 2022, evenly distributed throughout Italy.  

Researchers have extensively investigated the variation of Vs with depth over time. Stewart et al. (2014) used the Savannah 

River dataset to examine the variations of Vs at various depths, building on previous work by Toro (1997). The suggested 45 

standard deviation for the natural logarithm of Vs (σlnVs) is 0.15 for depths up to 50 m and 0.22 for depths beyond 50 m. In 

parallel, the US nuclear industry developed the SPID (Screening, Prioritization, and Implementation Details in EPRI-SPID, 

1993) framework, which recommends σlnVs ranging of 0.25 for the first 15 m and 0.15 for greater depths, again depending 

on the amount of available data. Shi and Asimaki (2018) and Toro (1995, 2022) studied the detailed uncertainty in Vs profile 

datasets with the aim of proposing several randomisation models. Romagnoli et al. (2022) performed a statistical analysis on 50 

about 3,500 Vs profiles within the Italian territory to evaluate the variability of Vs values in the engineering geological units 

of the subsurface, as outlined in the seismic microzonation studies by Seismic Microzonation Working Group (2008).  

The results of previous studies show an apparent complexity in the spatial structure of the Vs parameter and divergent trends 

in its uncertainty with depth, highlighting the need for further investigation in this area. Following these studies, the present 

work uses the considerable amount of information available from the Italian seismic microzonation database to determine the 55 

uncertainty associated with the variability of Vs with depth. In particular, the vertical profiles of σlnVs are calculated and 

presented. 

As a by-product, this work also provides for the first time the largest database of Vs profiles (about 15,000 refined profiles out 

of approximately 23,500 available) ever distributed worldwide, derived exclusively from geophysical surveys (see Mori et al., 

2024, https://doi.org/10.5281/zenodo.10885590). The flow chart in Fig. 1 highlights the steps followed in this study to calculate 60 

the σlnVs values of the Vs profiles from the Italian seismic microzonation database. The steps can be summarised as follows: 

1. build a robust and reliable dataset of Vs profiles by removing any errors or duplicates (section 2.1); 

2. define the range values in the spatial correlation analysis between the Vs profiles surveys (sections 2.2 and 3.1); 

3. check the distribution pattern of the data (i.e., clustering) using Moran’s Index (sections 2.3 and 3.1);  

https://doi.org/10.5194/essd-2024-104
Preprint. Discussion started: 27 June 2024
c© Author(s) 2024. CC BY 4.0 License.



3 
 

4. define geographic density-based clusters (GC, HDBSCAN method, sections 2.3 and 3.1) and geological-65 

geophysical based clusters (SM, seismic microzonation studies, sections 2.3 and 3.1); 

5. calculate the σlnVs of clusters formed by means of range value and GC (section 3.2); 

6. calculate the σlnVs of clusters defined by means of range value and SM (section 3.2); 

7. compare the results obtained from the two clustering methods and determine the approach that provides lower lnVs 

values (section 3.2); 70 

8. compare the obtained lower lnVs values with those implemented in seismic codes or reported in existing literature 

(section 3.3). 

The results demonstrate the effectiveness of the analysis performed on SM clusters: the standard deviation values of these 

clusters are significantly lower for all depths examined. These results are crucial for improving the randomisation of Vs 

profiles in numerical simulation codes used for surface seismic response calculations and hazard analysis. 75 

 

Figure 1: Flow chart describing the steps described in the paper to define the σlnVs (standard deviation of Vs natural logarithm) 
depth-dependent values of the Vs profiles. 
 

2 Data and Methods 80 

2.1 Vs profiles dataset 

The original Vs database includes 23,512 Vs investigations classified as either punctual or linear. These investigations include 

Down-Hole (DH), Cross-Hole (CH), Extended Spatial Autocorrelation - Spatial Autocorrelation Phase Analysis (ESAC-

SPAC), Multichannel Analysis of Surface Waves (MASW), Spectral Analysis of Surface Waves (SASW), Refraction 
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Microtremor (REMI), Seismic Refraction (SR), and Frequency-Time Analysis (FTAN). Table 1 shows a detailed analysis of 85 

the number of investigations by type and their corresponding geometries. All linear investigations are referenced to their center 

points to maintain consistency in data format. 

 
Geometry Type of investigation Count % 

Point DH 1,091 7.3 

Point CH 12 0.1 

Point ESAC-SPAC 753 5.1 

Line MASW 9,457 63.5 

Line REMI 3,160 21.2 

Line SASW 23 0.2 

Line SR 190 1.3 

Line FTAN 211 1.4 

Table 1: Breakdown of the number of Vs investigations for type and geometry. 
 90 

The dataset was refined by selecting investigations that reached a minimum depth of 30 meters and by removing outliers based 

on the interquartile range criterion applied to the natural logarithm of the Vs30 value. This filtering approach provided a refined 

dataset of 14,897 investigations (see supplementary material). The Vs profiles were discretized with a depth step size of 1 m. 

The obtained profiles include Vs values ranging from 75 to 2,034 m/s, with depths varying from 1 to 120 m (Fig. 2). The 

hexbin plot, along with the marginal histograms, effectively displays the dataset by showing the frequency of Vs-depth pairs 95 

on a logarithmic scale, after removing outliers based on the interquartile range criterion applied to the natural logarithm of the 

Vs30 value (Fig. 2). The histograms provide a detailed overview of the distribution of Vs values and depths, independently. 

 

Figure 2: Hexbin heatmap of Vs, and depth and frequency distribution of Vs values (top) and of depths (right).  
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The spatial distribution of Vs30 values across Italy for the refined 14,897 Vs profiles is reported in Figure 3 left. The highest 100 

values of Vs30 are distributed in the mountain ranges while the lowest values are concentrated in the central-eastern region of 

the Po Valley.  

 
Figure 3: Left - geographic distribution of the refined 14,897 Vs profiles across Italy in terms of Vs30; Right - frequency 
distribution of Vs30. 105 
 

The latter information will be useful in discussing some of the results obtained. Furthermore, focusing on the frequency of 

these values, Figure 3 right shows that they are lognormally distributed.  

 

2.2 Spatial correlation analysis  110 

Experimental variograms were used to examine the spatial structure, such as autocorrelation, of the Vs data in terms of distance 

and variability.  

The experimental variogram is a fundamental tool used in spatial statistics to quantify the spatial autocorrelation of regionalized 

variables, such as temperature, precipitation, or soil properties, across geographic space (Journel and Huijbregts, 1978; Deutsch 

and Journel, 1998; Chiles and Delfiner, 2009). It provides insight into the relationship between the values of a variable based 115 

on distance or direction. The variogram quantifies the dissimilarity between pairs of observations at different locations based 

on their geographical separation. It describes the spatial relationship structure of the variable under study. The variogram 

function [1] is commonly referred to as (h), where h represents the lag distance or separation between two locations. 

The formula for the experimental (semi)variogram (h) can be expressed as Eq 1: 

 120 
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γ(h) =
ଵ

ଶ୒(୦)
∑ [Z(x୧ + h) − Z(x୧)]ଶ୒(୦)

୧ୀଵ                   (1) 

 

where, N(h) represents the number of pairs of observations separated by the lag distance ℎ, Z(xi) denotes the value of the 

variable at location xi, and Z (xi+h) is the value of the variable at a location ℎ units away from xi. The sum is taken over all 

pairs of observations separated by the lag distance h. 125 

The experimental semivariogram is typically computed by first dividing the study area into a set of lag intervals. For each lag 

interval, the average squared difference in values between pairs of observations separated by the corresponding lag distance is 

calculated. This process is repeated for multiple lag intervals, resulting in a curve representing the variogram function. For 

sample points at close distances, the difference in values between points tends to be small. In other words, the semi-variance 

is small. But when the sample points are further apart, they are less likely to be similar. This means that the semi-variance 130 

becomes large. As the distance from the sample points increases, there is no longer a relationship between the sample points. 

Their variance begins to flatten out, and the sample values are not related each other. 

According to this spatial behaviour, the variogram curve typically exhibits three common descriptors and distinct parameters: 

i) the nugget (C0), ii) the sill (C-C0), and iii) the range (a) (Fig. 4).  

The nugget (C0): Theoretically, at zero separation distance (lag =0), the variogram value is 0. However, at an infinitesimally 135 

small separation distance, the variogram often exhibits a nugget effect, which is a value greater than 0. The nugget effect is a 

phenomenon present in many regionalized variables and represents short-scale randomness or noise in the regionalized variable 

typically caused by measurement error or micro-scale variability. It can be seen graphically in the variogram plot as a 

discontinuity at the origin of the function.  

The sill (C-C0): This is generally considered to be the variogram value at which the variogram curve flattens with increasing 140 

distance. The sill is also considered to be the variance of the data entering the variogram calculation. The sill (C) represents 

the plateau of spatial dependence and indicates the maximum achievable spatial correlation.  

 

Figure 4: Theoretical experimental semivariogram and model with corresponding parameters. For details, see text. 
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The range (a) This parameter indicates the distance beyond which spatial correlation is negligible. Sample locations separated 145 

by distances closer than the range are spatially autocorrelated, whereas locations further apart than the range are not. 

It can be evaluated valuable insight into the spatial structure and variability of regionalized variables by analysing the shape 

and parameters of the experimental variogram. The experimental variogram is usually fitted by a simple function (variogram 

model) using a mathematical formula whose main parameters (i.e. sill, range and nugget) are used to calculate values for 

unsampled locations using the kriging technique (Goovaerts, 1997; Isaaks and Mohan Srivastava, 1989; Journel, 1987; Krige, 150 

1966; Matheron, 1971;). 

 

2.3 Dataset Vs profiles clustering 

After the quantification of the spatial correlation between the Vs surveys, we checked whether the same surveys were clustered.  

For this verification, we used the Moran's Index. Moran's Index quantifies spatial autocorrelation by considering both the 155 

locations and attributes of features simultaneously, and evaluates the distribution pattern (i.e., points or polygons) based on a 

set of features and their associated attribute by comparing the study pattern with standard clustered, dispersed, or random 

patterns. We used the Spatial Autocorrelation tool in ArcGIS Pro (ESRI.com). The programme calculates the Moran's I index 

value and provides a z-score and p-value to assess the importance of the index. P-values are numerical estimates of the area 

under a given distribution curve, determined by the test statistic.  160 

After checking whether the surveys in the dataset were clustered, we used two clustering methods. The first method involves 

a geographical analysis (i.e., location of the survey points) to define geographical clusters (GCs), while the second method is 

to consider SM polygons as clusters (SMs), extracted directly from the seismic microzonation projects. 

 

Geographic clustering: HDBSCAN method 165 

Geographical clustering considers the geographical location of the Vs surveys, and therefore the density of survey points in a 

given area, without reference to the Vs parameters. The clustering was performed using the algorithm HDBSCAN 

(Hierarchical Density-Based Spatial Clustering of Applications with Noise in McInnes et al., 2017) algorithm available in 

ArcGIS Pro 3.2.2 suite (Copyright© 2023, Esri. Inc.). HDBSCAN is a density-based clustering method that, thanks to the 

concept of mutual reachability distance, is particularly able to manage issues related to the recognition of clusters with different 170 

densities. The process begins with the construction of a minimum spanning tree that incorporates this mutual reachability 

distance, followed by the development of a hierarchical tree of clusters. This methodological foundation allows the adaptive 

identification of clusters without the need for a predefined number of clusters, thus providing deeper insights into the intrinsic 

structures of data by combining density-based clustering with hierarchical analysis and stability metrics. 

 175 

Geological-geophysical clustering: seismic microzonation studies 

Another method of clustering Vs profiles involves the use of the boundaries of SM polygons (Figure 5). As mentioned in the 

introduction, the seismic microzonation project that is underway in Italy involves the identification of SMs, that are several 
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square kilometres in size, homogeneous in terms of expected seismic amplification, and defined by means of geological, 

geotechnical, and geophysical information.  180 

The 14,897 Vs profiles provided are associated with 7,583 SMs distributed throughout the Italian territory (updated to 

December 2022). These SMs are characterized by a variable number of Vs profiles, ranging from 1 to several tens. In order to 

assess the statistical significance of our classification, a spatial statistical analysis of the Vs profile within the SMs was 

performed. For statistical purpose only, 1,271 SMs containing at least 3 investigations were considered, giving a total of 7,350 

Vs profiles. Most of the selected SMs (about 900) are characterised by 3 to 5 Vs profiles, while a few SMs contain more than 185 

25 Vs profiles with a maximum of 68 investigations. 

A SM is typically characterized by an extent of up to 20 km2 with and interquartile range of 6 km2 and a median value of 4 

km2, while the Euclidean distance between the Vs profiles within individual SMs mainly ranges between few metres and 5.5 

km, with a median value of 1.8 km and interquartile range of 1.5 km. 

 190 

 

Figure 5: Example of a geological profile showing the partition into three Seismic Microzones (SM), identified by means the 
geological information and the results of geotechnical and geophysical investigations. The drawing is not to scale. 

 

3 Results 195 

3.1 Definition of range value and clustering 

The experimental variograms of the three Vs synthetic measurements Vs10, Vs20, and Vs30 show a spatial structure fitted by 

nested (spherical + exponential) semivariogram models (Fig. 6). The first spatial structure shows a range of about 4,500 m, 

while the second structure shows a range of 25,000 m. Table 2 shows the semivariogram parameters of the three models for 

the three analyzed Vs synthetic measurements. 200 
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Figure 6: Experimental semivariograms and nested models for a) Vs30, b) Vs20, and c) Vs10 
 

Parameter Nugget Model 1 Range 1 Sill 1 Model 2 Range 2 Sill 2 Total Variance Nugget/ 
Variance 

Vs30 5000 Sph 4500 1500 Exp 25000 4000 18000 0.28 
Vs20 4200 Sph 5000 1000 Exp 25000 3300 16000 0.26 
Vs10 3000 Sph 4500 800 Exp 25000 2400 10000 0.32 

Table 2: Semivariogram parameters of the nested models (spherical + exponential) for the three Vs synthetic measures analyzed: 
Vs30, Vs20, Vs10. 205 
 
It is useful to emphasize that our results are comparable with those results of Zhou et al. (2023), who carried out a quantitative 

study analyzing the lateral variation of the Vs profile and Vs30 in plain and piedmont terrains at short distances ranging from 

hundreds of metres to several kilometres. Even in their study, the variation in site conditions does not significantly increase 

with distance within a specific range, usually between 1 km to 3-5 km. 210 

The Morans’ Index was calculated for the three synthetic parameters Vs30, Vs20, and Vs10, corresponding to the average of 

Vs in the first 30, 20, and 10 metres, respectively.  
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The results (Fig. 7) show a strong trend towards clustering of the data, so we applied the two clustering methods described in 

Method section. 

 215 

Figure 7: Report of the Moran's Index (spatial autocorrelation) statistic showing that the pattern was clustered. p-Value: probability; 
z-score: standard deviation. for: a) Vs30, b) Vs20, c) Vs10 
 

The range value of 4,500 m of the first spatial structure was then used to filter clusters for both GC and SM, to obtain a high-

quality dataset for assessing the variability of Vs. 220 

Table 3 shows the effect on the number of Vs profiles and clusters after applying two filters: minimum number of surveys in 

the cluster (i.e. 3) and spatial correlation distance (i.e., range value 4,500 m). The number of clusters obtained for the two 

methods (Tab. 3) is comparable (1759 vs. 1120 for GC and SM, respectively) and they are used to perform the final statistics 

on our target σlnVs. 

 225 

 Geographic clustering Seismic microzonation  

 
before filters after filters before filters after filters 

Vs profiles (n.) 12480 9601 14897 5561 
Clusters (n.) 1977 1759 7583 1120 

 
Tab. 3: Number of Vs profiles and number of clusters obtained after applying the two filters: minimum number of surveys (i.e. 3) 
and spatial correlation distance (i.e., range value 4,500 m). 
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Figure 8 shows the results of the distance distribution between Vs profiles after filtering with 3 minimum surveys and a range 230 

value of 4,500 m: statistics are comparable (median values 500 m and 700 m for SM and GC clustering, respectively). 

 

Fig. 8: Distances distribution between Vs profiles after filtering with 3 minimum surveys and 4,500 m range value. 
 

3.2 σlnVs statistics in SM and GC clusters 235 

After filtering the SM and GC clusters with the number of surveys and the range value of the first variogram structure, we 

calculated the uncertainties as a function of depth. Uncertainty models assume that Vs values at each depth follow a lognormal 

distribution (Toro, 2022 and references therein), therefore the uncertainties are determined by calculating the σlnVs.  

Considering both SM and GC clustering, for the Vs profiles associated with the clusters: 

 the σlnVs value was obtained for each meter of depth (Fig. 9 left) 240 

 the percentiles 25th ,50th ,75th of σlnVs were obtained for each meter of depth (Fig. 9 right). 

The general trend of the curve in Figure 9 right, especially that of the 50th percentile, reflects a trend already known and often 

reported in the literature (Toro, 2022 and references therein): shallower layers show greater variability and larger σlnVs values, 

while Vs values remain almost constant below a depth of 50 m. The most interesting results are in the absolute σlnVs values: 

the 50th percentile curve never exceeds the value of 0.21 and at depth below 50 m is about 0.11. Figure 9 right also shows 245 

comparison between σlnVs values of SM clusters (red lines) and GC clusters (blue lines); it clearly shows the better 
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performance of SM for clustering the σlnVs values, which are always higher in the GCs, although the trend of the curve is 

very similar.  

 
Figure 9: Left - The numerosity of data per meter: very large for both methods, with a slight prevalence for GC method. The same 250 
figure shows that at about 30 m depth there is a variation in the number of data because many of the surveys do not investigate 
depths beyond 30 m; Right - σlnVs statistics: comparison among σlnVs values of SM and GC clustering (25th,50th,75th percentile). 
 

The difference between the uncertainty values in percent for the two methods is calculated by the following Eq. (2): 

 255 

Percentage Variation = [( σlnVs_SM −  σlnVs_GC) / σlnVs_SM]  ∗ 100     (2) 

 

Where: 

 σln(Vs_SM) is the standard deviation of the natural logarithm of the measurement obtained with the SM clustering. 

 σln(Vs_GC) is the standard deviation of the natural logarithm of the measurement obtained with the GC clustering. 260 

In general, there is a 14% decrease in favour of the SM method within the first 30 m, followed by a 9% reduction from 30 to 

50 m, and a 4% decrease from 50 to 80 m. The decrease in the first 30 m, represents the quantification of the importance of 

geological and geophysical information in reducing uncertainties. Below 30 m, the difference in uncertainty between the two 

methods decreases to about 9% and then to 4%, due to the greater homogeneity of geological and geophysical properties at 

greater depths. 265 

 

3.3 Comparison with seismic code and literature uncertainties  

We also compared our results with the uncertainties implemented in seismic codes and with known literature data (Figgs. 10 

and 11). Appendix B of the EPRI-SPID (1993) provides guidance on the development of site response, including the 

quantification of uncertainty. In cases where limited site response data are available, EPRI-SPID (1993) recommendations 270 

define aleatory uncertainty as lateral variations within a footprint of approximately 100 to 200 m. The EPRI-SPID (1993, 

Section B-4.1) recommends σlnVs values of 0.25 at the surface, decreasing to 0.15 at 15 m and deeper. Figure 10 shows the 

comparison of these values with the results obtained in the SM clusters also including the site-specific values from Toro (1995, 
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1997, 2022). The plot (Fig. 10) shows a clear improvement for the first 10-15 m, but in general all values of the depth 

uncertainties from EPRI-SPID (1993) and Toro (1995,1997, 2022) are within the 25th and 75th percentiles of our results.  275 

In earthquake-resistant standards (i.e., European EC8, NEHRP for the USA, and Italian NTC18), the dynamic characterisation 

of sites is represented by the synthetic value of Vs30. The Toro (1995) model is also developed for 4 NEHRP Vs-based soil 

classes (B: Vs30>760 to 1500, C: 360 to 760, D: 180 to 360, E: <180). Figure 11 shows σlnVs of Vs profiles from our high-

quality dataset, reclassified according to the 4 NEHRP soil categories and considering a minimum number of 150 values for 

each metre depth. Values of σlnVs constant with depth according to Toro (1995) are also shown in Figure 11 for reference. 280 

The following observations can be made. 

 For soil category B (soil category A in the Italian building code), there is a strong variation with depth. This tendency 

is due to the strong heterogeneity of the rocks at the surface due to fracturing and weathering and, conversely, to the 

homogeneity of the rocks at greater depths. 

 For soil categories C and D, the σlnVs values are fairly constant but generally larger to those obtained by SM 285 

clustering. 

 For soil category E, the σlnVs values are low and comparable with those obtained by SM clustering (see Fig. 11). 

Considering that almost all the sites with these Vs30 values are located in the central eastern part of the Po Valley 

(Fig. 3), this is not surprising. The plot of uncertainties for soil category E somewhat describes a regional cluster, that 

is much larger than an SM cluster but contains sites with similar Vs profiles. 290 

 

Figure 10: Results σlnVs by means of SM clustering (red lines; 25,50,75th percentile) and comparison with EPRI-SPID 
(1993) (green line) and Savannah river nuclear project (Toro, 1995; 1997) (purple line). 
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 295 

Figure 11: The σlnVs values of Vs from our high-quality dataset, classified according to the 4 NEHRP soil categories; Toro (1995) 
constant σlnVs values are also reported. 
 
 

 300 

4 Data availability 

 

The dataset is available at https://doi.org/10.5281/zenodo.10885590 (Mori et al., 2024). The records are: 

 survey id; 

 survey latitude and longitude in UTM33N coordinates; 305 

 survey type; 

 depth in meters; 

 shear wave velocity value (Vs) in m/s; 

 seismic microzonation (SM) cluster id. 

 310 

5 Conclusions  

We analysed the largest dataset of shear wave velocity profiles (Vs) currently available, comprising approximately 15,000 

profiles, with the aim of providing insight into the uncertainty of the shear wave velocity Vs (σlnVs) for each metre depth and 
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up to a maximum of 80 m. A first spatial analysis showed that the synthetic Vs data (Vs10, Vs20, Vs30) show nested 

semivariograms with a first spherical model and a second exponential model: the first spatial structure shows a range of about 315 

4,500 m, while the second structure shows a range of 25,000 m. A second spatial correlation analysis using Moran's index 

revealed that the nature of the synthetic Vs data (Vs10, Vs20, Vs30) is inherently clustered, due to both the concentration of 

data in urban areas and the discrete nature of the geological bodies. This result led us to investigate the logarithmic standard 

deviation of the shear wave velocity (σlnVs) profiles in two different types of clusters: seismically homogeneous clusters based 

on seismic microzones (SM), and non-seismically homogeneous clusters based only on geographic density (GC). 320 

The variographic analysis allowed us to study σlnVs by filtering high quality clusters, specifically by imposing a maximum 

distance between surveys within clusters of 4,500 m, corresponding to the range value of the first spatial structure. The detailed 

study of σlnVs reveals the following significant statistical results: 

 σlnVs in clusters that are homogeneous in terms of expected seismic behaviour (i.e., based on Seismic Microzones, 

SM) are consistently lower values than those obtained from geographic density clusters (GC); the difference is 14% 325 

for the first 30 m, increasing to 2% at greater depths; 

 σlnVs values in guidelines for site-specific analyses (EPRI - SPID, 1993) are internal to the percentiles of the SM 

statistics; 

 σlnVs values in clusters are lower than those previously reported in the literature for soil Vs30 classification, 

indicating the effectiveness of our methodological approach, while confirming the effectiveness of seismic 330 

microzonation as a tool for mapping in terms of expected site effects. 

For practical applications, such as in numerical simulations to calculate seismic amplification, σlnVs values are essential to 

generate randomised velocity profiles. In this respect, our study supports the effective use of numerical simulation codes such 

as STRATA (Kottke et al., 2013) and the recently developed NC92soil (Acunzo et al., 2024). 

In addition, our results have broader implications for: 335 

 optimising borehole sampling designs in seismic microzonation projects;  

 improving seismic hazard analysis, in terms of better management of uncertainties arising from the use of the 

parameter Vs. 

Echoing Toro (2022), this study was inspired by the recommendation that "... new site-specific stochastic Vs models should be 

developed using these (recent) larger datasets, together with insights gained in research in the practical use of these models".  340 

This highlights the value of using large datasets and recent research results to develop stochastic Vs models that can be used 

for site-specific applications and seismic hazard assessment. 

Our contribution improves the discussion on seismic hazard calculation by addressing the complexities and uncertainties 

associated with Vs in ground motion models. It is crucial to thoroughly control Vs-related uncertainties in site response 

analysis, as they significantly affect the understanding of earthquake ground motions. Our conclusions highlight the importance 345 

of paying close attention to uncertainties in seismic hazard assessment and contribute to the advancement the discipline in this 

area. 
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