Global Greenhouse Gas Reconciliation 2022

Zhu Deng^{1,2,3}, Philippe Ciais^{4,*}, Liting Hu⁵, Adrien Martinez⁴, Marielle Saunois⁴, Rona L. Thompson⁶, Kushal Tibrewal⁴, Wouter Peters^{7,8}, Brendan Byrne⁹, Giacomo Grassi¹⁰, Paul I. Palmer^{11,12}, Ingrid T. Luijkx⁷, Zhu Liu^{1,2,3,*}, Junjie Liu^{9,13}, Xuekun Fang⁵, Tengjiao Wang¹⁴, Hanqin Tian¹⁵, Katsumasa Tanaka^{4,16}, Ana Bastos¹⁷, Stephen Sitch¹⁸, Benjamin Poulter¹⁹, Clément Albergel²⁰, Aki Tsuruta²¹, Shamil Maksyutov¹⁶, Rajesh Janardanan¹⁶, Yosuke Niwa^{16,22}, Bo Zheng^{23,24}, Joël Thanwerdas²⁵, Dmitry Belikov²⁶, Arjo Segers²⁷, Frédéric Chevallier⁴

Correspondence to: Philippe Ciais (philippe.ciais@lsce.ipsl.fr); Zhu Liu (zhuliu@hku.hk)

¹Department of Geography, University of Hong Kong, Hong Kong SAR, China

²Institute for Climate and Carbon Neutrality, University of Hong Kong, Hong Kong SAR, China

³Department of Earth System Science, Tsinghua Unverisity, Beijing, China

⁴Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

⁵College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China

⁶Norwegian Institute for Air Research (NILU), Kjeller, Norway

⁷Meteorology and Air Quality Department, Wageningen University & Research, Wageningen, the Netherlands

⁸Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen, the Netherlands

⁹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

¹⁰Joint Research Centre, European Commission, Ispra (VA), Italy

¹¹National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK

¹²School of GeoSciences, University of Edinburgh, Edinburgh, UK

¹³Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

¹⁴Institute of Blue and Green Development, Shandong University, Weihai, China

¹⁵International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA

¹⁶Earth System Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan

¹⁷Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans Knöll Str. 10, Jena, Germany

¹⁸Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK

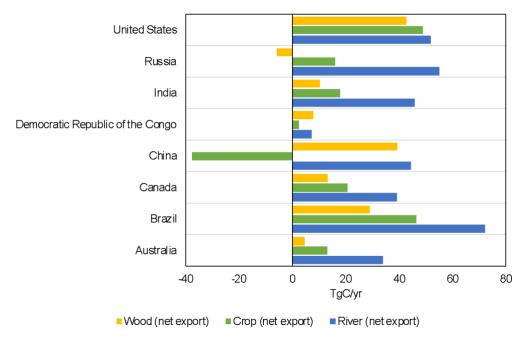
¹⁹NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USA

²⁰European Space Agency Climate Office, ECSAT, Harwell Campus, Didcot, Oxfordshire, UK

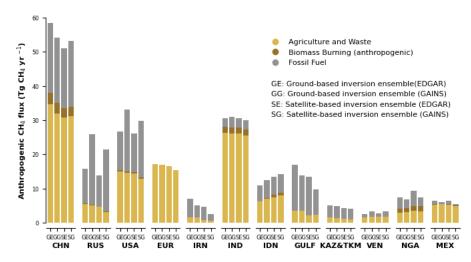
²¹Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland

²²Department of Climate and Geochemistry Research, Meteorological Research Institute (MRI), Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan

²³Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China


²⁴State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China

²⁵Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland


²⁶Center for Environmental Remote Sensing, Chiba University, Chiba, Japan

²⁷TNO, Department of Air quality and Emissions Research, P.O. Box 80015, NL-3508-TA, Utrecht, the Netherland

Supplementary Information

SI Fig 1. National annual lateral CO₂ flux from wood (yellow bars) and crop (green bars) trade and from river transportation (blue bars) from selected countries.

SI Fig 2. Annual average of anthropogenic CH4 emissions from in-situ and satellite inversions based on two different priors during the period of 2010-2020. GE and SE denote the anthropogenic CH4 flux from the in-situ and satellite inversion ensembles based on EDGARv6.0 as the prior, while GG and SG represent the in-situ and satellite CH4 inversions based on GAINS as the prior.