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Abstract. In this study, we provide an update of the methodology and data used by Deng et al. (2022) to compare the national 40 

greenhouse gas inventories (NGHGIs) and atmospheric inversion model ensembles contributed by international research teams 41 
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coordinated by the Global Carbon Project. The comparison framework uses transparent processing of the net ecosystem 42 

exchange fluxes of carbon dioxide (CO2) from inversions to provide estimates of terrestrial carbon stock changes over managed 43 

land that can be used to evaluate NGHGIs. For methane (CH4), and nitrous oxide (N2O), we separate anthropogenic emissions 44 

from natural sources based directly on the inversion results, to make them compatible with NGHGIs. Our global harmonized 45 

NGHGIs database was updated with inventory data until February 2023 by compiling data from periodical UNFCCC 46 

inventories by Annex I countries and sporadic and less detailed emissions reports by non-Annex I countries given by National 47 

Communications and Biennial Update Reports. For the inversion data, we used an ensemble of 22 global inversions produced 48 

for the most recent assessments of the global budgets of CO2, CH4 and N2O coordinated by the Global Carbon Project with 49 

ancillary data. The CO2 inversion ensemble in this study goes through 2021, building on our previous report from 1990 to 50 

2019, and includes three new satellite inversions compared to the previous study, and an improved managed land mask. As a 51 

result, although significant differences exist between the CO2 inversion estimates, both satellite and in-situ inversions over 52 

managed lands indicate that Russia and Canada had a larger land carbon sink in recent years than reported in their NGHGIs, 53 

while the NGHGIs reported a significant upward trend of carbon sink in Russia but a downward trend in Canada. For CH4 and 54 

N2O, the results of the new inversion ensembles are extended to 2020. Rapid increases in anthropogenic CH4 emissions were 55 

observed in developing countries, with varying levels of agreement between NGHGIs and inversion results, while developed 56 

countries showed a slow declining or stable trend in emissions. Much denser sampling of atmospheric CO2 and CH4 57 

concentrations by different satellites, coordinated into a global constellation, is expected in the coming years. The methodology 58 

proposed here to compare inversion results with NGHGIs can be applied regularly for monitoring the effectiveness of 59 

mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed for this study is 60 

publicly available at https://doi.org/10.5281/zenodo.13887128 (Deng et al., 2024). 61 

1 Introduction 62 

If modeled pathways align with Nationally Determined Contributions (NDCs) declared prior to COP26 (in 2021) until 2030 63 

and do not involve any subsequent increase in ambition, the projected global warming by 2100 would be 2.1-3.4°C (IPCC, 64 

2023). The global stocktake coordinated by the secretariat of the United Nations Framework Convention on Climate Change 65 

(UNFCCC) considers data from national greenhouse gas inventories (NGHGIs) to assess the collective climate progress to 66 

curb emissions. It is expected there will be differences in the quality of NGHGIs being reported to the UNFCCC (Perugini et 67 

al., 2021). UNFCCC Annex I Parties, which include all OECD (Organisation for Economic Co-operation and Development) 68 

countries and several EIT (Economies In Transition) already report annually their emissions following the same IPCC 69 

guidelines (IPCC 2006) in a common reporting format, with a time latency of roughly 1.5 years. In contrast, non-Annex I 70 

Parties, mostly developing and less developed countries, are currently not required to provide reports as regularly and as 71 

detailed as Annex I Parties and in a few cases use different IPCC Guidelines in their National Communications (NC) or 72 

Biennial Update Reports (BUR) submitted to the UNFCCC. Non-Annex I Parties are scheduled in 2024 to move to regular 73 
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and harmonized reporting of their emissions in the national inventory reports (NIRs) in the format of common reporting tables 74 

(CRTs), following the Paris Agreement’s enhanced transparency framework (ETF).  75 

The IPCC guidelines for NGHGIs encourage countries to use independent information to verify emissions and removals 76 

(IPCC, 1997, 2006, 2019), such as comparisons with independently compiled inventory databases (e.g. IEA, CDIAC, EDGAR, 77 

FAOSTAT), or with atmospheric mole fraction measurements interpreted by atmospheric inversion models (see Section 6.10.2 78 

in IPCC (2019)). Such verification of ‘bottom-up’ national reports against ‘top-down’ atmospheric inversion results is not 79 

mandatory. However, a few countries (e.g. Switzerland, United Kingdom, New Zealand, and Australia) have already added 80 

inversions as a consistency check of their national reports. In our study, we utilized the latest global inversion results from the 81 

budget assessments of CO2, CH4, and N2O conducted by the Global Carbon Project (GCP), focusing on three ensembles of 82 

inversions with global coverage. Compared to our previous study (Deng et al., 2022), the CO2 inversion ensemble used in this 83 

study has been updated to the global CO2 budget of Friedlingstein et al. (2022) that includes nine CO2 inversions using mole 84 

fraction data from the surface network and/or retrieval products from the Greenhouse Gases Observing Satellite (GOSAT) and 85 

Orbiting Carbon Observatory-2 (OCO-2) satellites. The CH4 inversion ensemble and N2O inversion (Tian et al., 2023) 86 

ensemble used in this study are also extended to the 2020. As a result, the new ensembles cover up to 2021 for CO2, 2020 for 87 

CH4 and 2020 for N2O, compared to 2019, 2017 and 2016 respectively in our previous study (Deng et al., 2022), allowing us 88 

to track and analyze the most recent flux variations. 89 

Our framework to process the inversion data aims at making them comparable to inventories at countries or groups of countries 90 

scale (ie,with an area larger than the spatial resolution of atmospheric transport models typically used for inversions). 91 

Atmospheric inversions use a priori information for the spatial and temporal patterns of fluxes. Some inversions correct prior 92 

fluxes at the spatial resolution of their transport models to match atmospheric observations and use spatial error correlations 93 

(usually e-folding length scales) that tie the adjustment of fluxes from one grid cell to its neighbors at distances of tens to 94 

hundreds of kilometers. Other inversions adjust fluxes over coarse regions that are larger than the resolution of the transport 95 

model, implicitly assuming a perfect correlation of flux errors within these regions, causing an aggregation error (Kaminski et 96 

al., 2001). Thus, to minimize aggregation errors, the results of inversions are shown preferentially for selected large area 97 

emitter countries or large absorbers in the case of CO2. We have selected a different set of countries or groups of countries for 98 

each gas, according to their importance in the global emission budget. According to the median of inversion data we used in 99 

this study, selected countries collectively represent ~70% of global fossil fuel CO2 emissions, ~90% of global land CO2 sink, 100 

～60% of anthropogenic CH4 emissions, and ~55% of anthropogenic N2O emissions (Fig S1). To more robustly interpret 101 

global inversion results for comparison with inventories, we follow the same criterion and choose high-emitting countries 102 

covered (if possible) by atmospheric measurements, although most selected tropical countries have few or no atmospheric in-103 

situ stations. Uncertainties are given by the spread among inversion models (min-max range given the small number of 104 

inversions), and the causes for discrepancies with inventories are analyzed systematically and on a case-by-case basis, 105 

considering both individual countries and specific greenhouse gases, for annual variations and for mean budgets over several 106 

years.  107 
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Based on the newly updated inversion results and inventory, and an improvement in the methodology framework proposed in 108 

the previous study (Deng et al., 2022), we specifically address the following questions: 1) how do inversion models compare 109 

with NGHGIs for the three gases?; 2) what are the plausible reasons for mismatches between inversions and NGHGIs?; 3) did 110 

the new maps of managed land masks in this study reduce the mismatch between the inversions and NGHGIs for CO2 and 111 

N2O?; 4) what independent information can be extracted from inversions to evaluate the mean values or the trends of 112 

greenhouse gas emissions and removals?; 5) does this information exhibit a good agreement with NGHGIs?; and 6) how do 113 

satellite-retrieval driven inversion models differ from the surface in-situ and flask sampling driven inversion model results? 114 

Sections 2 presents the updated global database of national emissions reports for selected countries and its grouping into 115 

sectors, the global atmospheric inversions used for the study, the processing of fluxes from these inversions to make their 116 

results as comparable as possible with inventories. The time series of inversions compared with inventories for each gas, with 117 

insights on key sectors for CH4 are discussed in Sections 3 to 5. The discussion (Section 6) focuses on the plausible reasons 118 

for mismatches between inversions and NGHGIs, comparison between inversion ensembles in this study and previous study, 119 

and different priors applied in the CH4 inversions. Finally, concluding remarks are drawn on how inversions could be used 120 

systematically to support the evaluation and possible improvement of inventories for the Paris Agreement. 121 

2 Material and methods  122 

2.1 Compilation and harmonization of national inventories reported to the UNFCCC 123 

All UNFCCC Parties shall periodically update and submit their national GHG inventories of emissions by sources and 124 

removals by sinks to the Convention parties. Annex I countries submit their NIRs in common reporting format (CRF) tables 125 

every year with a complete time series starting in 1990. Non-Annex I Parties are required to submit their NC roughly every 126 

four years after entering the Convention and submit BUR, every two years since 2014. Currently, there are in total 427 127 

submissions of NC and over 166 submissions of BUR (UNFCCC, 2021b, a) (Fig 1).  128 

 129 
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Figure 1. Numbers of non-Annex I parties for each submission round (as of February 28, 2023). The numbers in the middle of the dots 130 

denote the numbers of non-Annex I parties for each submission, while the black dots denote the total number of non-Annex I parties, the 131 

blue dots denote the numbers of non-Annex I parties who has submitted National Communications (NC), green dots for Biennial Update 132 

Reports (BUR), yellow dots for National Inventory Report (NIR), and purple dots for Technical Annex on REDD+ . The numbers after the 133 

NC and BUR denote the total number of submission reports. 134 

We collected NGHGIs data submitted to UNFCCC by February 28, 2023. For Annex I countries, data collection is 135 

straightforward, as their reports are provided as Excel files under a Common Reporting Format (CRF) until the year 2020 last 136 

accessed on February 28, 2023. For non-Annex I countries, the data were directly extracted from the original reports provided 137 

in Portable Document Format (PDF) last accessed on February 28, 2023. Data from successive reports for the same country 138 

were extracted, except when they relate to the same years, in which case only the latest version is considered. While Annex I 139 

countries are required to compile their inventory following IPCC 2006 guidelines and the subdivision between sectors 140 

established by the UNFCCC decision (dec. 24/CP.19), non-Annex I countries are increasingly adopting the IPCC 2006 141 

Guidelines, although some still utilize the older IPCC 1996 Guidelines, with different approaches and sectors. Consequently, 142 

the methods used and the reported sectors may differ among NC and BUR reports. 143 

 144 

Figure 2. Number of years covered by NGHGI reports (NC+BUR) in each non-Annex I country (as of February 28, 2023). Emissions 145 

from Greenland are reported by Denmark.  146 

2.2 Atmospheric inversions 147 

CO2 inversions 148 

Nine CO2 inversion systems from the 2022 Global Carbon Budget of the GCP (Friedlingstein et al., 2022) are used, including 149 

CarbonTracker-Europe (CTE) v2022 (van der Laan-Luijkx et al., 2017), Jena Carboscope v2022 (Rödenbeck et al., 2003), the 150 
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surface air-sample inversion from the Copernicus Atmosphere Monitoring Service (CAMS) v21r1 (Chevallier et al., 2005), 151 

the inversion from the CAMS Satellite FT21r2 (Chevallier et al., 2005), the inversion from the University of Edinburgh (UoE) 152 

v6.1b (Feng et al., 2016), the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) v2022.1 (Niwa et al., 153 

2022), CMS-Flux v2022 (Liu et al., 2021), GONGGA v2022 (Jin et al., 2023), and THU v2022 (Kong et al., 2022). A variety 154 

of transport models are used by these systems, which allows for representing a major driver factor behind differences in flux 155 

estimates based on atmospheric inversions, particularly their distribution over latitudinal bands. Among the nine inversions, 156 

four systems (CAMS Satellite FT21r2, GONGGA v2022, THU v2022, and CMS-Flux v2022) utilize satellite CO2 column 157 

retrievals from GOSAT and/or OCO-2, calibrated to the World Meteorological Organization (WMO) 2019 standards. CMS-158 

Flux additionally incorporates in-situ observed CO2 mole fraction records. The remaining five inversion systems (CAMS 159 

v21r1, CTE v2022, Jena Carboscope v2022, UoE v6.1b, and NISMON-CO2 v2022.1) solely rely on CO2 mole fractions that 160 

were observed in-situ or collected in flasks (Schuldt et al., 2021, 2022). The CO2 inversion records extend up to and including 161 

2021. Their flux estimates are available at https://meta.icos-cp.eu/objects/GahdRITjT22GGmq_GCi4o_wy and details are 162 

summarized in Table 1.  163 

Table 1 | Atmospheric CO2 inversions used in this study (Friedlingstein et al., 2022)  164 

Inversion System Versio
n 

Period Observation Transport 
Model 

CarbonTracker Europe (CTE): CTE2022_SiB4 
(van der Laan-Luijkx et al., 2017) 

v2022 2001-2021 Ground-based 

Obspack GLOBALVIEW plus v7.0 
and NRT_v7.2 

TM5 

Jena Carboscope sEXTocNEET (Rödenbeck et 

al., 2003) 
v2022 1960-2021 TM3 

Copernicus Atmosphere Monitoring Service 
(CAMS) (Chevallier et al., 2005) 

v21r1 1979-2021 LMDZ v6 

The University of Edinburgh (UoE) (Feng et al., 
2016) 

v6.1b 2001-2021 GEOS-CHEM 

the NICAM-based Inverse Simulation for 
Monitoring CO2 (NISMON-CO2) (Niwa et al., 
2022) 

v2022.1 1990-2021 NICAN-TM 

https://meta.icos-cp.eu/objects/GahdRITjT22GGmq_GCi4o_wy
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CMS-Flux (Liu et al., 2021), v2022 2010-2021 Ground-based & ACOS-GOSAT v9r; 

OCO-2 v10 scaled to WMO2019  
GEOS-CHEM 

CAMS-Satellite (Chevallier et al., 2005) FT21r2 2010-2021 bias-corrected ACOS GOSAT v9 

over land until August 2014 + bias- 
corrected ACO S OCO-2 v10 over 
land, both rescaled to WMO2019 

LMDZ v6 

THU (Kong et al., 2022) v2022 2015-2021 OCO-2 v10r data scaled to 
WMO2019  

GEOS-CHEM 

GONGGA (Jin et al., 2023) v2022 2015-2021 OCO-2 v10r data scaled to 
WMO2019  

GEOS-CHEM 

CH4 inversions 165 

The CH4 emissions come from the new ensemble of inversions (Saunois et al. 2024) from 2000 to 2020, using seven different 166 

inverse systems for a total nine inversions (Table 2). The inverse systems include: CarbonTracker-Europe CH4 (Tsuruta et 167 

al., 2017), LMDZ-PYVAR (Yin et al., 2015; Zheng et al., 2018), CIF-LMDZ(Berchet et al., 2021), MIROC4-ACTM (Patra 168 

et al., 2018; Chandra et al., 2021), NISMON-CH4 (Niwa et al., 2022), NIES-TM-FLEXPART (Maksyutov et al., 2021; 169 

Janardanan et al., 2024), and TM5-CAMS (Segers and Houweling, 2017). This ensemble of inversions gathers various 170 

chemistry transport models, differing in vertical and horizontal resolutions, meteorological forcing, advection (horizontal 171 

transport of air) and convection (vertical transport) schemes, and boundary layer mixing (detailed characteristics can be found 172 

in Table S11 in Saunois et al. 2024). Including these different systems is a conservative approach that allows to cover different 173 

potential uncertainties of the inversion, among them: model transport, set-up issues, and prior dependency. All inversions 174 

except two, use updated common prior emission maps for natural and anthropogenic prior emissions divided into 12 sectors, 175 

particularly the EDGAR v6 inventory for prior fossil fuel emissions (Crippa et al., 2021a extrapolated to Jan 1st, 2021), GFED 176 

for fires and ecosystem models for wetland emissions. During the production of the inversion simulations, GAINS inventory 177 

(Höglund-Isaksson, 2013) was proposed to use another prior for fossil fuel sources, instead of using EDGAR v6 (see 178 

Supplementary Text 3 in Saunois et al, 2024). GAINS has higher fossil emissions, in particular over the US and a higher 179 

increase of fossil emissions over time in the US (Tibrewal et al., 2024). As Tibrewal et al. showed that inversions are strongly 180 

attracted to their priors, comparison between results with GAINS and EDGAR v6 priors is informative about how robust are 181 

inversions to their priors when they are used to ‘verify’ NGHGIs. Some inversions optimize emissions in groups of sectors, 182 

and others only provide total gridded emissions (MIROC4-ACTM and TM5-CAMS, details can be found in Table S10 in 183 
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Saunois et al, 2024). For the latter, we computed the emission from each sector within each pixel based on the proportion of 184 

the prior fluxes. Such processing can lead to significant uncertainties if not all sources increase or change at the same rate in a 185 

given region/pixel. The inversions assimilating surface stations mole fraction observations provide results since 2000, and 186 

those assimilating satellite observations from column CH4 measurements (XCH4) of the GOSAT satellite provide results since 187 

2010, first full year of GOSAT observations. Inversion results were gridded into 1° by 1° monthly emission maps and 188 

aggregated nationally using a country mask (Klein Goldewijk et al., 2017). 189 

Table 2 | Atmospheric CH4 inversions used in this study (Saunois et al, 2024) 190 

Inversion system Abbreviation Institution Observations Period 

Carbon Tracker-Europe CH4 CTE FMI Surface stations 2000-2020 

CIF-LMDz CIF-LMDz LSCE/CEA Surface stations 2000-2020 

LMDz-PYVAR PYVAR-LMDz LSCE/CEA GOSAT Leicester v7.2 2010-2020 

MIROC4-ACTM MIROC4-ACTM JAMSTEC Surface stations 2000-2020 

NISMON-CH4 NISMON-CH4 NIES/MRI Surface stations 2000-2020 

NIES-TM-FLEXPART (NTF) NIES NIES Surface stations 2000-2020 

NIES-TM-FLEXPART (NTF) NIES NIES Surface + GOSAT NIES L2 

v02.95 
2010-2020 

TM5-CAMS TM5 TNO/VU Surface stations 2000-2020 
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TM5-CAMS TM5 TNO/VU GOSAT ESA/CCI v2.3.8 

(combined with surface 
observations) 

2010-2020 

N2O inversions  191 

Four N2O inversion systems from the updated GCP Nitrous Oxide Budget (Tian et al., 2023) are used: INVICAT (Wilson et 192 

al., 2014), PyVAR-CAMS (Thompson et al., 2014), MIROC4-ACTM (Patra et al., 2018, 2022) and GEOS-Chem (Wells et 193 

al., 2015). The N2O inversion results are updated up to 2020. 194 

Table 3 | Atmospheric N2O inversions used in this study (Tian et al., 2023)   195 

Inversion system Institution Period 

INVICAT (Wilson et al., 2014) Univ. Leeds 1995-2020 

PyVAR-CAMS (Thompson et al., 2014), NILU/LSCE 1995-2020 

MIROC4-ACTM (Patra et al., 2018, 2022) JAMSTEC 1997-2019 

GEOS-Chem (Wells et al., 2015) Univ. 

Minnesota 
1995-2019 

Aggregating the gridded inversion results into national totals 196 

To obtain national annual-scale flux estimates, we aggregated the gridded flux maps of each inversion with various native 197 

resolutions following the methodology outlined in Chevallier (2021). This involved using the 0.08° x 0.08° land country mask 198 

of Klein Goldewijk et al. (2017) to calculate the fraction of each country in each inversion grid box.  199 

2.3 Processing of CO2 inversion data for comparison with NGHGIs 200 

Fossil fuel emissions re-gridding - managed land mask  201 

To analyze terrestrial CO2 fluxes, we subtracted the same fossil fuel emissions (including cement) of GridFEDv2022.2 (Jones 202 

et al., 2022) from the total CO2 flux of each inversion. This is equivalent to assuming perfect knowledge of fossil emissions, 203 
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adding up to a global total of 9.7 Gt C/yr for the year 2021. The dataset used national annual emissions estimates from the 204 

2022 global carbon budget (Friedlingstein et al., 2022) which uses the reported NGHGIs data from Annex I countries and are 205 

assumed to be broadly consistent with the non-Annex I countries. This assumption may lead to underestimating the uncertainty 206 

of terrestrial CO2 fluxes deduced from inversions. 207 

As defined in the IPCC Guidelines for NGHGIs (IPCC, 2006), only CO2 emissions and removals from managed land are 208 

reported in NGHGIs as a proxy for human-induced effects (direct effects and indirect effects such as CO2 fertilization and 209 

nitrogen deposition). However, inversion models retrieve all CO2 fluxes (due to both direct and indirect effects, plus the natural 210 

interannual variability) over all lands. We thus retained inversions’ national estimates of the Net Ecosystem Exchange (NEE) 211 

CO2 flux (𝐹𝑀𝐿
𝑖𝑛𝑣 𝑁𝐸𝐸) over managed lands grid cells only (𝑀𝐿, here defined as all land except intact forests) because the fluxes 212 

over unmanaged land are not counted by NGHGIs. We use NEE from the definition of Ciais et al. (2020), representing all non-213 

fossil CO2 exchange fluxes between terrestrial surfaces and the atmosphere. Other work may use Net Biome Production (NBP) 214 

with a similar meaning. CO2 fluxes over unmanaged lands were excluded from the terrestrial CO2 flux totals that will be 215 

compared with NGHGIs, proportional to their presence in each inversion grid box. The new maps of non-intact forests are 216 

compiled by Grassi et al. (2023). These maps include official country-managed forest and other managed land areas for Canada 217 

and Brazil used for their NGHGIs, and the intact forest map (Potapov et al., 2017) as a substitute for unmanaged land where 218 

country-based information is not available. For Russia, we used non-intact forest maps for each province with thresholds 219 

adjusted to match the official managed land areas from Russia's NIRs, and assumed that all grasslands were managed. This 220 

approach assumes that non-intact forest areas can serve as a reasonably good proxy for managed forests reported in the 221 

NGHGIs (Grassi et al., 2021, 2023). It is important to note that this approach is somewhat arbitrary, as highlighted in previous 222 

studies (Ogle et al., 2018; Chevallier, 2021; Grassi et al., 2021). However, in the absence of a machine-readable definition of 223 

managed plots in many NGHGIs, there is currently no better alternative available.  224 

Adjusting CO2 fluxes due to lateral carbon transport by crop and wood products trade and by rivers  225 

In addition to the extraction of fossil CO2 flux and managed land CO2 flux, there are CO2 fluxes that are part of 𝐹𝑀𝐿
𝑖𝑛𝑣 𝑁𝐸𝐸  but 226 

are not counted by NGHGIs. These fluxes are induced by (i) soils to rivers to oceans carbon export (𝐹𝑀𝐿
𝑟𝑖𝑣𝑒𝑟𝑠) which has an 227 

anthropogenic and a natural component (Regnier et al., 2013), and (ii) net anthropogenic export of crop and wood products 228 

across each country’s boundary (𝐹𝑎𝑛𝑡
𝑐𝑟𝑜𝑝 𝑡𝑟𝑎𝑑𝑒

and 𝐹𝑎𝑛𝑡
𝑤𝑜𝑜𝑑 𝑡𝑟𝑎𝑑𝑒 ). The magnitudes of these CO2 fluxes are different between 229 

countries, and values from the selected countries are presented in Fig S2. We assume that NGHGIs include CO2 losses from 230 

fire (wildfire and prescribed fire) and other disturbances (wind, pests) and from domestic harvesting, as recommended by the 231 

IPCC reporting guidelines (IPCC, 2006, 2019) (although some countries, such as Canada and Australia exclude some 232 

emissions from these disturbances, and the subsequent removals from the same areas (Grassi et al., 2023)). The adjusted 233 

inversion NEE that can be compared with inventories, 𝐹𝑎𝑑𝑗
𝑖𝑛𝑣 𝑁𝐸𝐸, is given by: 234 

𝐹𝑎𝑑𝑗
𝑖𝑛𝑣 𝑁𝐸𝐸= 𝐹𝑀𝐿

𝑖𝑛𝑣 𝑁𝐸𝐸- 𝐹𝑀𝐿
𝑟𝑖𝑣𝑒𝑟𝑠 - 𝐹𝑎𝑛𝑡

𝑐𝑟𝑜𝑝 𝑡𝑟𝑎𝑑𝑒
- 𝐹𝑎𝑛𝑡

𝑤𝑜𝑜𝑑 𝑡𝑟𝑎𝑑𝑒    ⇔  𝐹𝑎𝑛𝑡−𝑛𝑓
𝑛𝑖 ,      (1) 235 
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where the sign ⇔ means ‘compared with’, 𝐹𝑎𝑛𝑡−𝑛𝑓
𝑛𝑖  is the non-fossil part of the anthropogenic CO2 flux from NGHGIs, 𝐹𝑡𝑜𝑡

𝑟𝑖𝑣𝑒𝑟𝑠 236 

is the sum of the natural and anthropogenic CO2 flux on land from CO2 fixation by plants that is leached as carbon via soils 237 

and channeled to inland waters to be exported to the ocean or to another country. All countries export river carbon, but some 238 

countries also receive river inputs, e.g., Romania receives carbon from Serbia via the Danube River. We estimated the lateral 239 

carbon export by rivers minus the imports from rivers entering each country, including dissolved organic carbon, particulate 240 

organic carbon and dissolved inorganic carbon of atmospheric origin distinguished from lithogenic, by using the data and 241 

methodology described by Ciais et al. (2021). Data are from Mayorga et al. (2010) and Hartmann et al. (2009) and follow the 242 

approach of Ciais et al. (2021) proposed for large regions. We also extracted the lateral flux by rivers over the managed land 243 

by using the same methodology as inversion CO2 flux. Thus, in a country that only exports river carbon to the ocean, the 244 

amount of carbon exported is equivalent to an atmospheric CO2 sink, denoted as 𝐹𝑀𝐿
𝑟𝑖𝑣𝑒𝑟𝑠 as in eq. (1), thus ignoring burial, 245 

which is a small term. Over a country that receives carbon from rivers flowing into its territory, a small national CO2 outgassing 246 

is produced by a fraction of this imported flux. In that case, we assumed that the fraction of outgassed to incoming river carbon 247 

is equal to the fraction of outgassed to soil-leached carbon in the RECCAP2 region to which a country belongs, estimated with 248 

data from Ciais et al. (2021). 249 

𝐹𝑎𝑛𝑡
𝑐𝑟𝑜𝑝 𝑡𝑟𝑎𝑑𝑒

 is the sum of CO2 sinks and sources induced by the trade of crop products. This flux was estimated from the annual 250 

trade balance of crop commodities calculated for each country from data from the United Nations Statistics Division of the 251 

Food and Agriculture Organization (FAOSTAT) combined with the carbon content values of each commodity (Xu et al., 2021; 252 

FAO, 2024). All the traded carbon in crop commodities is assumed to be oxidized as CO2 in one year, neglecting stock changes 253 

of products, and the fraction of carbon from crop products going to waste pools and sewage waters after consumption, thus 254 

not necessarily oxidized to atmospheric CO2. 𝐹𝑎𝑛𝑡
𝑤𝑜𝑜𝑑 𝑡𝑟𝑎𝑑𝑒 is the sum of CO2 sinks and sources induced by the trade of wood 255 

products (Zscheischler et al., 2017). Here, we followed Ciais et al. (2021) who used a bookkeeping model to calculate the 256 

fraction of domestically produced and imported carbon in wood products that are oxidized in each country during subsequent 257 

years, with product lifetimes defined by Mason Earles et al (2012) and encompassing all products (including roundwood and 258 

processed products). The underlying assumption in estimating CO2 fluxes from wood harvest is that the emissions from 259 

domestically harvested wood, in addition to imported wood minus exported wood that is not allocated to wood product pools, 260 

are released into the atmosphere during the year of harvest. Conversely, wood allocated to wood product pools is gradually 261 

released into the atmosphere over time, based on their respective lifetimes. Domestic harvest is assumed to be balanced by an 262 

atmospheric CO2 sink of equivalent magnitude, which is not necessarily the case given that harvest is rarely in equilibrium 263 

with forest increment, but inversions NEE will correct for this imbalance in our results, and can thus be compared with 264 

NGHGIs. We included in the 𝐹𝑎𝑛𝑡
𝑐𝑟𝑜𝑝 𝑡𝑟𝑎𝑑𝑒

 flux the emissions of CO2 by domestic animals consuming specific crop products 265 

delivered as feed. On the other hand, emissions of CO2 from grazing animals and the decomposition of their manure are 266 

supposed to occur in the same grid box where grass is grazed, so that the CO2 net flux captured by an inversion is comparable 267 
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with grazed grasslands' carbon stock changes of inventories. Emissions of reduced carbon compounds (VOCs, CH4, CO) are 268 

not included in this analysis (see Ciais et al. (2021) for a discussion of their importance in inversion CO2 budgets). 269 

In summary, the purpose of the adjustment of eq. (1) is to make inversion output comparable to the NGHGIs that do not include 270 

𝐹𝑀𝐿
𝑟𝑖𝑣𝑒𝑟𝑠 , 𝐹𝑎𝑛𝑡

𝑐𝑟𝑜𝑝 𝑡𝑟𝑎𝑑𝑒
 and 𝐹𝑎𝑛𝑡

𝑤𝑜𝑜𝑑 𝑡𝑟𝑎𝑑𝑒 . The UNFCCC accounting rules (IPCC, 2006) assume that all the harvested wood 271 

products are emitted in the territory of a country that produces them, which is equivalent to ignoring 𝐹𝑎𝑛𝑡
𝑤𝑜𝑜𝑑 𝑡𝑟𝑎𝑑𝑒as a national 272 

sink or source of CO2, hence the need to remove 𝐹𝑎𝑛𝑡
𝑤𝑜𝑜𝑑 𝑡𝑟𝑎𝑑𝑒 from inversion NEE. The adjusted inversion fluxes from eq. (1) 273 

depict the national CO2 stock change which match better the carbon accounting system boundaries of UNFCCC NGHGIs. In 274 

the following, we will only discuss adjusted inversion CO2 fluxes (𝐹𝑎𝑑𝑗
𝑖𝑛𝑣 𝑁𝐸𝐸), but for simplicity call them “inversion fluxes”.  275 

2.4 Processing of CH4 inversions for comparison with national inventories 276 

Most atmospheric inversions derive total net CH4 emissions at the surface as it is difficult for them to disentangle overlapping 277 

emissions from different sectors at the pixel/regional scale based on atmospheric CH4 observations only. However, five of the 278 

seven inverse systems solve for some source categories owing to different spatio-temporal distributions between the sectors. 279 

For each inversion, monthly gridded posterior flux estimates were provided at 1°x1° grid resolution for the net flux at the 280 

surface (𝐸𝑛𝑒𝑡
𝑖𝑛𝑣), the soil uptake at the surface (𝐸𝑠𝑜𝑖𝑙

𝑖𝑛𝑣 ), the total emission at the surface (𝐸𝑡𝑜𝑡
𝑖𝑛𝑣)  and five emitting ‘super sectors’ 281 

which regroup several IPCC sectors: Agriculture & Waste (𝐸𝐴𝑔𝑊
𝑖𝑛𝑣 ), Fossil Fuel (𝐸𝐹𝐹

𝑖𝑛𝑣), Biomass & Biofuel Burning (𝐸𝐵𝐵
𝑖𝑛𝑣), 282 

Wetlands (𝐸𝑊𝑒𝑡
𝑖𝑛𝑣 ), and Other Natural (𝐸𝑂𝑡ℎ

𝑖𝑛𝑣) emissions. Considering the soil uptake as a ‘negative source’ given separately, the 283 

following equations apply: 284 

𝐸𝑛𝑒𝑡
𝑖𝑛𝑣 = 𝐸𝑡𝑜𝑡

𝑖𝑛𝑣 + 𝐸𝑠𝑜𝑖𝑙
𝑖𝑛𝑣  = 𝐸𝐴𝑔𝑊

𝑖𝑛𝑣  + 𝐸𝐹𝐹
𝑖𝑛𝑣  + 𝐸𝐵𝐵

𝑖𝑛𝑣  + 𝐸𝑊𝑒𝑡
𝑖𝑛𝑣  + 𝐸𝑂𝑡ℎ

𝑖𝑛𝑣 + 𝐸𝑠𝑜𝑖𝑙
𝑖𝑛𝑣        (2) 285 

For inversions solving for net emissions only, the partition to source sectors was created based on using a fixed ratio of sources 286 

calculated from prior flux information at the pixel scale. For inversions solving for some categories, a similar approach was 287 

used to partition the solved categories to the five aforementioned emitting sectors. Such processing can lead to significant 288 

uncertainties if not all sources increase or change at the same rate in a given region/pixel. National values have been estimated 289 

using the country land mask described in the CO2 section, thus offshore emissions are not counted as part of inversion results 290 

unless they are in a coastal grid cell. 291 

In our previous study (Deng et al., 2022), four methods were proposed to separate CH4 anthropogenic emissions from 292 

inversions  (𝐸𝐴𝑛𝑡ℎ
𝑖𝑛𝑣 ) to compare them with national inventories (𝐸𝐴𝑛𝑡ℎ

𝑛𝑖 ) aiming to discuss the uncertainties in anthropogenic 293 

CH4 emissions associated with the chosen separation methods. These four methods include: (1) summing prior estimates based 294 

on inversions for anthropogenic sectors (method 1); (2) subtracting natural emissions from total fluxes (method 2); and (3) 295 

subtracting natural emissions derived from other bottom-up assessments from the total inversion flux (methods 3/1 and 3/2, 296 

differing only in the bottom-up wetland CH4 data used). The calculations of anthropogenic emissions by each method were 297 

performed separately for GOSAT inversions and in-situ inversions. However, the uncertainty from the separation method is 298 
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generally much smaller than the variability between different inversion models (see Deng et al. (2022) Fig 9). Therefore, we 299 

apply only one method in this study which consists of using inversion partitioning as defined in Saunois et al. (2020): 300 

𝐸𝐴𝑛𝑡ℎ
𝑖𝑛𝑣 = 𝐸𝐴𝑔𝑊

𝑖𝑛𝑣  + 𝐸𝐹𝐹
𝑖𝑛𝑣  + 𝐸𝐵𝐵 

𝑖𝑛𝑣  −  𝐸𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠 
𝐵𝑈 ⇔ 𝐸𝐴𝑛𝑡ℎ

𝑛𝑖         (3) 301 

This method has some uncertainties. First, the partitioning relies on prior fractions within each pixel, and second, emissions 302 

from wildfires are counted for in the Biomass and Biofuel burning (𝐵𝐵) inversion category while they are not necessarily 303 

reported in NGHGIs. The BB inversion category includes methane emissions from wildfires in forests, savannahs, grasslands, 304 

peats, agricultural residues, and the burning of biofuels in the residential sector (stoves, boilers, fireplaces). Therefore, we 305 

subtracted bottom-up (𝐵𝑈) emissions from wildfires (𝐸𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠 
𝐵𝑈 ) based on the GFEDv4 dataset (van Wees et al., 2022) using 306 

their reported dry matter burned and CH4 emission factors. Because the GFEDv4 dataset also reports specific agricultural and 307 

waste fire emissions data, we assumed that those fires (on managed lands) are reported by NGHGIs, so they were not counted 308 

in 𝐸𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠
𝐵𝑈 . Figure S3 presents a comparison between our adjusted BB flux and the wood fuel emissions reported by Flammini      309 

et al. (2023). This comparison highlights the broader scope and definition of our adjusted BB flux, illustrating the differences 310 

in emissions estimation methodologies. 311 

2.5 Processing of N2O inversions for comparison with inventories 312 

We subtracted estimates of natural N2O sources from the N2O emission budget (𝐸𝑡𝑜𝑡
𝑖𝑛𝑣) of each inversion, to provide inversions 313 

of anthropogenic emissions (𝐸𝑎𝑛𝑡
𝑖𝑛𝑣) that can be compared with national inventories (𝐸𝑎𝑛𝑡

𝑛𝑖 ):  314 

𝐸𝑎𝑛𝑡
𝑖𝑛𝑣= 𝐸𝑀𝐿 

𝑖𝑛𝑣- 𝐸𝑛𝑎𝑡
𝑎𝑞

 -  𝐸𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠 
𝐺𝐹𝐸𝐷 ⇔  𝐸𝑎𝑛𝑡

𝑛𝑖         (4) 315 

Here, the natural N2O sources include natural emission from freshwater systems ( 𝑛𝑎𝑡
𝑎𝑞

) and natural emissions from wildfires 316 

( 𝑎𝑛𝑡
𝑛𝑖 ). 317 

In our previous study, intact forest grid cells (assumed unmanaged) from Potapov et al. (2017) and lightly grazed grassland 318 

areas from Chang et al. (2021) were removed from the gridded N2O emissions in proportion to their presence in each inversion 319 

grid box. Here we used the new managed land mask defined in Section 2.3 to filter gridded N2O emissions from inversions to 320 

obtain 𝐸𝑀𝐿 
𝑖𝑛𝑣. We verified that the inversion grid box fractions classified as unmanaged do not contain point source emissions 321 

from the industry, energy, and diffuse emissions from the waste sector, to make sure that we do not inadvertently remove 322 

anthropogenic sources by masking unmanaged pixels. From the EDGARv4.3.2 inventory (Janssens-Maenhout et al., 2019), 323 

we found that N2O from wastewater handling covers a relatively large area that might be partly located in unmanaged land. 324 

But the corresponding emission rates are more than 1 order of magnitude smaller than those from agricultural soils. For other 325 

sectors, only very few of the unmanaged grid boxes contain point sources, and none of them have an emission rate that is 326 

comparable with agricultural soils (managed land). Thus, our assumption that emissions from these other anthropogenic sectors 327 

are primarily over managed land pixels is solid (other sectors include: the power industry; oil refineries and transformation 328 

industry; combustion for manufacturing; aviation; road transportation no resuspension; railways, pipelines, off-road transport; 329 
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shipping; energy for buildings; chemical processes; solvents and products use; solid waste incineration; wastewater handling; 330 

solid waste landfills).  331 

The flux 𝐸𝑛𝑎𝑡
𝑎𝑞

is the natural emission from freshwater systems given by a gridded simulation of the DLEM model (Yao et al., 332 

2019) describing pre-industrial N2O emissions from N leached by soils and lost to the atmosphere by rivers in the absence of 333 

anthropogenic perturbations (considered as the average of 1900-1910). Natural emissions from lakes were estimated only at a 334 

global scale by Tian et al. (2020), and represent a small fraction of rivers’ emissions. Therefore, they are neglected in this 335 

study. The flux 𝐸𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠 
𝐺𝐹𝐸𝐷  is based on the GFED4s dataset (van Wees et al., 2022) using their reported dry matter burned and 336 

N2O emission factors. Because the GFED dataset reports specific agricultural and waste fire emissions data, we assume that 337 

those fires (on managed lands) are reported by NGHGIs so they were not counted in 𝐸𝑤𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠
𝐺𝐹𝐸𝐷  just like for CH4 emissions. 338 

Note that there could also be a background natural N2O emission from natural soils over managed lands (𝐸𝑚𝑎𝑛𝑎𝑔𝑒𝑑 𝑙𝑎𝑛𝑑
𝑠𝑜𝑖𝑙 ) which 339 

is not necessarily reported by NGHGIs. We did not try to subtract this flux from managed land emissions because we assumed 340 

that, after a land use change from natural to fertilized agricultural land, background emissions decrease and become very small 341 

compared to N-fertilizers induced anthropogenic emissions. In a future study, we could use for 𝐸 𝑚𝑎𝑛𝑎𝑔𝑒𝑑 𝑙𝑎𝑛𝑑
𝑠𝑜𝑖𝑙  the estimate 342 

given by simulations of pre-industrial N2O emissions from the NMIP ensemble of dynamic vegetation models with carbon-343 

nitrogen interactions (number of models; n = 7). Namely, their simulation S0 in which climate forcing is recycled from 1901-344 

1920; CO2 is at the level of 1860, and no anthropogenic nitrogen is added to terrestrial ecosystems (Tian et al., 2019).  345 

Another important point to ensure a rigorous comparison between inversion and NGHGI data is whether anthropogenic indirect 346 

emissions (AIE) of N2O are reported in NGHGI reports. This is not always the case even though UNFCCC parties are required 347 

to report these in their NGHGIs according to the IPCC guidelines. For example, South Africa’s BUR3 did not report indirect 348 

N2O emissions due to the lack of activity data. AIE arise from anthropogenic nitrogen from fertilizers leached to rivers and 349 

anthropogenic nitrogen deposited from the atmosphere to soils. AIEs represent typically 20% of direct anthropogenic emissions 350 

and cannot be ignored in a comparison with inversions. For Annex I countries, AIEs are systematically reported, generally 351 

based on emission factors since these fluxes cannot be directly measured, and we assumed that indirect emissions only occur 352 

on managed land. For non-Annex I countries, we checked manually from the original NC and BUR documents if AIE was 353 

reported or not by each non-Annex I country. If AIEs were reported by a country, they were used as such to compare NGHGI 354 

data with inversion results, and grouped into the agricultural sector. If they were not reported, or if their values were outside 355 

plausible ranges, AIE were independently estimated by the perturbation simulation of N fertilizers leaching, CO2 and climate 356 

on rivers and lakes fluxes in the DLEM model (Yao et al., 2019), and by the perturbation simulation of atmospheric nitrogen 357 

deposition on N2O fluxes from the NMIP model ensemble (Tian et al., 2019). 358 

2.6 Grouping sectors for comparison  359 

The bottom-up NGHGIs are compiled based on activity data (statistics) following the IPCC 1996/2006 Guidelines (IPCC, 360 

1997, 2006) with detailed information on subsectors. However, the top-down inversions can only distinguish between very 361 
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few groups of sectors at most. Thus, in this study, we aggregated NGHGI sectors into some ‘super sectors’ to make inversions 362 

and inventories comparable for each GHG (Table 2). For CO2, the inversions are divided into two aggregated super-sectors: 363 

fossil fuel and cement CO2 emissions, and adjusted net land flux. Inversions use a prior gridded fossil fuel dataset as 364 

summarized in Section 1.2, thus, in this study, we compare only the net land flux between inversions and inventories. To 365 

calculate the net land flux over managed lands from NGHGIs, we subtracted fossil emissions from the IPCC/CRF 1. Energy 366 

and 2. Industrial Processes (or 2. Industrial Processes and Product Use) sectors from the Total GHG emissions including 367 

LULUCF/LUCF (or Total national emissions and removals) sector. For CH4, we compare inversions and inventories based on 368 

three super sectors, including Fossil, Agriculture and Waste, and Total Anthropogenic. To compare with NGHGIs, we group 369 

the IPCC/CRF sectors of 1. Energy and 2. Industrial Processes (or 2. Industrial Processes and Product Use) by excluding 370 

Biofuel Burning (reported under 1. Energy sector) into the super sector of Fossil; we group sectors of 4. Agriculture (or 3. 371 

Agriculture) and 6. Waste (or 5. Waste) into the super sector of Agriculture and Waste; and we aggregate anthropogenic flux 372 

from Fossil and Agriculture and Waste and Biofuel Burning into Anthropogenic. For N2O, we grouped the NGHGI sectors 373 

into Anthropogenic flux being the sum of 1. Energy + 2. Industrial Processes (or 2. Industrial Processes and Product Use) + 374 

4. Agriculture (or 3.  Agriculture) + 6. Waste (or 5. Waste) + Anthropogenic Indirect Emissions. 375 

Table 2. Grouping of NGHGIs sectors into aggregated ‘super-sectors’ for comparisons with inversions. * Biofuel burning is likely not 376 

included in NGHGIs but under 1.A.4 Other Sectors if it is reported. ** Field burning of agricultural residues is reported in Annex I countries 377 

under the Agricultural sector. Note that indirect N2O emissions are reported by Annex I countries but not systematically by non-Annex I 378 

ones 379 

Gas Super-Sectors Inversions NGHGIs (IPCC/CRF) 

CO2 Net Land Flux 
 (adjusted) 

Total - Fossil - lateral C Non-Annex I (IPCC): Total GHG emissions 
including LULUCF/LUCF - (Energy + Industrial 
Processes) 

Annex I (CRF): Total national emissions and 
removals) - (Energy + Industrial Processes and 
Product Use) 

CH4 Anthropogenic Fossil + Agriculture & 
Waste + Biofuel Burning 

Energy + Industrial Processes + Agriculture + 
Waste + Biofuel Burning* 

Fossil Fossil Energy + Industrial Processes - Biofuel Burning* 
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Agriculture and Waste Agriculture & Waste Agriculture + Waste - Field burning of agricultural 

residues** 

N2O  Anthropogenic Total - pre-industrial inland 

waters 

Agriculture + Waste direct + anthropogenic 

indirect emissions (AIE = anthropogenic N 
leached to inland waters + anthropogenic N 
deposited from atmosphere) + energy and 
industry 

2.7 Choice of example countries for analysis  380 

For the analysis, we selected 12 countries (or groups of countries) based on specific criteria for each aggregated sector. Firstly, 381 

each chosen country had to possess a sufficiently large land area, as the limitations of coarse-spatial-resolution inversions 382 

make it difficult to reliably estimate GHG budgets for smaller countries. Additionally, it was preferable for the selected 383 

countries to have some coverage provided by the in situ global network of monitoring stations.  384 

For CO2, we focus on the land CO2 fluxes of large fossil fuel CO2 emitters. Although inversions do not allow to verify fossil 385 

emissions in these countries as they are used as a fixed prior map of emissions, it is crucial to compare the magnitude of 386 

national land CO2 sinks with fossil fuel CO2 emissions in those large emitters. It is important to note that fitting net fluxes to 387 

changes in atmospheric CO2 and then subtracting the prior fossil fuel (FF) fluxes can result in errors in the residual values, 388 

which are typically attributed exclusively to the sum of all non-FF fluxes. Additionally, we included two large boreal forested 389 

countries (Russia - RUS and Canada - CAN), two tropical countries with large forest areas (Brazil - BRA and the Democratic 390 

Republic of Congo - COD), two large countries with ground-based stations (Mongolia - MNG and Kazakhstan - KAZ), and 391 

two large dry Southern Hemisphere countries also with high rankings in fossil fuel CO2 emissions (South Africa - ZAF and 392 

Australia - AUS), both of which possess atmospheric stations to constrain their land CO2 flux.  393 

For CH4, we first ranked countries (or groups of countries) based on their total anthropogenic, fossil, and agricultural emissions. 394 

This study includes China (CHN), India (IND), the United States (USA), the European Union (EUR), Russia (RUS), Argentina 395 

(ARG) and Indonesia (IDN), all of which are among the top emitters of both fossil fuel and agricultural CH4 and possess large 396 

areas. Criteria of large land areas and the presence of atmospheric stations is crucial for in situ inversions. The advantage of 397 

utilizing GOSAT in CH4 atmospheric inversions is its ability to provide observations over countries where surface in-situ data 398 

are sparse or absent, such as in the tropics. This allows us to consider countries with limited or few ground-based observations. 399 

Small countries were excluded due to the coarse spatial resolution. However, among the selected countries, Venezuela, with 400 

an area of 916,400 km2, was chosen specifically for the analysis of CH4 emissions. Despite being relatively small, Venezuela 401 

is a large producer of oil and gas, potentially allowing for inversions using GOSAT satellite observations to constrain its 402 

emissions. In major oil- and gas-extracting countries that have negligible agricultural and wetland emissions like Kazakhstan 403 



17 

 

(KAZ), grouped in this study with Turkmenistan (TKM) into KAZ&TKM; Iran (IRN); and Persian Gulf countries (GULF), 404 

fossil emissions should be easier to separate by inversions and thus to be compared with NGHGIs. 405 

For N2O, we selected the top 12 emitters based on the NGHGIs reports. Anthropogenic N2O emissions in most of these 406 

countries are predominantly driven by the agricultural sector, which accounts for a share (including indirect emissions) ranging 407 

from 6% in Venezuela (VEN) to 95% in Brazil (BRA) of their total NGHGIs emissions.  408 

Together, the selected countries (or groups of countries) with a different selection for each gas, account for more than 90% of 409 

the global land CO2 sink, 60% of the global anthropogenic CH4 emissions (around 15% of fossil fuel emissions and 410 

approximately 40% of agriculture and waste emissions separately), and 55% of the global anthropogenic N2O emissions, as 411 

estimated by the NGHGIs. 412 

Table 3. Lists of countries or groups of countries are analyzed and displayed in the result section for each aggregated sector. 413 

Argentina (ARG), Australia (AUS), BRA (Brazil), Bangladesh (BGD), Canada (CAN), China (CHN), Columbia (COL), Democratic 414 

Republic of the Congo (COD), Indonesia (IDN), India (IND), Iran (IRN), European Union (EUR), Kazakhstan (KAZ), Mexico (MEX), 415 

Mongolia (MNG), Nigeria (NGA), Pakistan (PAK), Russia (RUS), South Africa (ZAF), Sudan (SDN), Thailand (THA), United States 416 

(USA), Venezuela (VEN), GULF = Saudi Arabia + Oman + United Arab Emirates + Kuwait + Bahrain + Iraq + Qatar, KAZ&TKM = 417 

Kazakhstan + Turkmenistan. For CH4, acronyms underlined denotes the countries appear in both Anthropogenic and Fossil or Agriculture 418 

and Waste sectors. 419 

Gas Super Sector Country List 

CO2  Net Land Flux AUS, BRA, CAN, CHN, COD, EUR, IND, KAZ, MNG, RUS, USA, ZAF 

CH4  Anthropogenic ARG, AUS, BRA, CHN, EUR, IDN, IND, IRN, MEX, PAK, RUS, USA 

Fossil CHN, EUR, GULF, IDN, IND, IRN, KAZ&TKM, MEX, NGA, RUS, USA, 

VEN  

Agriculture and Waste ARG, BGD, BRA, CHN, EUR, IDN, IND, MEX, PAK, RUS, THA, USA 

N2O  Anthropogenic AUS, BRA, CHN, COD, COL, EUR, IDN, IND, MEX, SDN, USA, VEN 
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3 Results for net land CO2 fluxes 420 

 421 

Figure 3 | Net land CO2 fluxes (unit: Tg C yr-1) during 1990-2021 from China (CHN), United States (USA), European Union 422 

(EUR), Russia (RUS), Canada (CAN), Kazakhstan (KAZ), Mongolia (MNG), India (IND), Brazil (BRA), Democratic 423 

Republic of the Congo (COD), South Africa (ZAF), and Australia (AUS). By convention, CO2 removals from the atmosphere 424 

are counted negatively, while CO2 emissions are counted positively. The black dots denote the reported values from NGHGIs. 425 

The light green color denotes the in-situ-alone CO2 inversion (n=5) set while the dark green color denotes the set that uses 426 

satellite data (n=4). The green lines denote the median of land fluxes over managed land of CO2 inversions, after adjustment 427 

of CO2 fluxes from lateral transport by rivers, crop, and wood trade. When all inverse models within the inversion sets (in-428 

situ: n=5; satellite: n=4) have available data for the same time interval, their median values are depicted as solid green lines. 429 

Otherwise, when the inversion sets have incomplete inverse models within the time interval (in-situ: n<5; satellite: n<4), their 430 

median values are represented as dashed green lines. Besides, before 2015, only GOSAT was available for the 2 of 4 satellite-431 

based inversions, until September 2014 when the OCO-2 record started. The shading area denotes the min-max range of 432 

inversions. The purple dashed lines denote the median of inversions presented by the previous study (Deng et al., 2022).  433 

 434 
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Fig 3 presents the time series of land-to-atmosphere CO2 fluxes for the selected countries listed in Table 2. The median of 435 

inversions across the 12 countries shows significant interannual variability, reflecting the impact of climate variability on 436 

terrestrial carbon fluxes and annual variations of land-use emissions. In this paper, for inversion results covering a time interval, 437 

we present the data as mean ± standard deviation, where the mean is the multi-year average of the median flux values from the 438 

inversion models, and the standard deviation represents the interannual variability.  439 

The adjustments of lateral CO2 flux generally tend to lower land carbon sinks or increase land carbon emissions, especially in 440 

China (CHN), United States (USA), European Union (EUR), Russia (RUS), Canada (CAN), India (IND), and Brazil (BRA). 441 

In these countries, adjusting inversions by CO2 fluxes induced by river carbon transport and by the trade of crop and wood 442 

products tends to lower CO2 sinks, especially for large crop exporters like the USA and CAN. The adjusted net lateral transport 443 

fluxes for these countries are 48 (CHN), 143 (USA), 86 (EUR), 63 (RUS), 72 (CAN), 75 (IND), and 145 (BRA) Tg C/yr, 444 

which represent 20%, 38%, 48%, 11%, 41%, 94%, and 60% of the managed land CO2 fluxes before lateral transport 445 

adjustments, respectively. However, even with these adjustments, in countries of temperate latitudes, the median values of the 446 

five in-situ-alone inversion ensemble all indicate a net carbon sink during the 2010s, such as CHN with a sink of 180 ± 100 447 

Tg C/yr, USA (210 ± 180 Tg C/yr), EUR (90 ± 50 Tg C/yr), RUS (490 ± 100 Tg C/yr) and CAN (110 ± 40 Tg C/yr). In CHN, 448 

despite only 5 reported values to UNFCCC, NGHGIs show a good agreement with the inversion results, with both NGHGIs 449 

and inversions exhibiting an overall increase in carbon sink over the study period. However, during 2015-2021, the median 450 

values of the satellite-based inversion ensemble show a higher carbon sink of 320 ± 60 Tg C/yr than those from in-situ inversion 451 

results (220 ± 50 Tg C/yr) in CHN. In IND, there are also only five reported estimates from the NGHGIs. The in-situ inversion 452 

results indicate that India exhibited fluctuations between being a carbon source and a carbon sink during the period of 2001-453 

2014 (40 ± 70 Tg C/yr). During 2015-2019, the in-situ inversion results in IND show a median carbon sink of 65 ± 20 Tg C/yr, 454 

however, the median reverted to being a carbon source of 90 Tg C/yr (ranging from a sink of 350 to a source of 260) in 2020. 455 

In contrast, the median values of satellite-based inversion ensemble indicate a carbon source of 65 ± 64 Tg C/yr during 2015-456 

2021 in IND. 457 

As Annex I countries, USA, EUR, RUS, CAN, and Kazakhstan (KAZ) have continuously reported annual NGHGIs since 458 

1990. The NGHGIs reported values for the USA and CAN indicate a decline trend (Mann-Kendall Z=-0.6, p<0.01) of carbon 459 

sinks by an annual average rate of 0.7 Tg C/yr2 and 0.5 Tg C/yr2. Like in Deng et al. 2022, we found that the carbon sink of 460 

Canada’s managed land is significantly larger (-130 ± 50 Tg C/yr over 2001-2021 from in-situ inversions) than the NGHGIs 461 

reports (5 ± 4 Tg C/yr over 2001-2021). Part of this difference could be due to the fact that Canada decides in its inventory not 462 

to report fire emissions as they are considered to have a natural cause. Doing so, Canada also excludes recovery sinks after 463 

burning and those recovery sinks could surpass on average fire emissions, although remote sensing estimates of post fire 464 

biomass changes suggest that fire emissions have exceeded regrowth on average in Western Canada and Alaska until ≈ 2010 465 

(Wang et al., 2021). One reason for the difference may be that the NGHGI used old growth curves for forests, potentially 466 

underestimating the actual forest growth. Another reason for the difference may be shrubland and natural peatland carbon 467 

uptake and possibly an underestimated increase of soil carbon in the national inventory. For the USA we have a good agreement 468 
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between inversions (-290 ± 180 Tg C/yr for in-situ over 2001-2021) and the NGHGIs data (-220 ± 10 Tg C/yr over 2001-2021) 469 

with the inversion showing much more interannual variability, the US being a net source of carbon in the years 2011, 2015 470 

and 2016 from the median of in-situ inversons. The lower variability in the NGHGIs data reflects the 5-years averaging of C 471 

stock changes by the national forest inventory. In EUR, the new in-situ inversion ensemble gives a lower carbon sink than the 472 

previous one (red line in Fig 3, see discussion in section 6.1), now being in good agreement (-80 ± 60 Tg C/yr) with NGHGIs 473 

(-85 ± 10 Tg C/yr) over 2001-2021. The OCO-2 satellite inversions give a higher sink than in-situ inversions by -200 ± 80 Tg 474 

C/yr, possibly because the in-situ surface network does not cover Eastern European countries which have a larger NEE than 475 

Western European ones, whereas OCO-2 data have  a more even coverage of the continent, as discussed by Winkler et al. 476 

(2023) ( see their Fig. 2 showing that OCO-2 inversions have a similar NEE than in-situ ones in Western Europe but a larger 477 

mean NEE uptake in Eastern Europe). 478 

In contrast, the NGHGIs in RUS reports a rapid trend of increasing sink by a rate of 4.6 Tg C/yr2 (Mann-Kendall Z=0.69, 479 

p<0.01) during 1990-2020, supported by the significant strong correlation with the medians of in-situ inversion ensemble 480 

(ρ=0.7, p<0.01) during 2001-2020. However, the median values for both the in-situ (480 ± 100 Tg C/yr) and satellite-based 481 

(450 ± 90 Tg C/yr) inversion ensemble over RUS indicate larger larger land carbon sinks than those reported in the NGHGIs 482 

(180 ± 10 Tg C/yr) during 2011-2020. For KAZ, the NGHGIs suggest that managed land is a slight carbon source (6 ± 5 Tg 483 

C/yr) during 2000-2020. However, the median values for both satellite-based and in-situ inversion ensemble indicate a carbon 484 

sink of 50 ± 30 Tg C/yr and 60 ± 30 Tg C/yr, respectively, during 2015-2021 and 2001-2021. It is worth noting that the 485 

satellite-based inversion results for USA, CAN, and KAZ all exhibit shifts in their fluxes between 2010 and 2015 compared 486 

to the results after 2015. This is attributed to the use of different satellite data and the number of different ensembles during 487 

these periods. Before 2015, only GOSAT was available, and only 2 out of 4 systems were available. After the OCO-2 record 488 

started, in September 2014, the satellite-driven inversion set only assimilated OCO-2. This indicates that inversion results 489 

based on GOSAT data are not consistent at the country scale with OCO-2 inversions. As a result, we can compare OCO-2 490 

inversions with NGHGIs since 2015, but not the trends from inversions using GOSAT and/or OCO-2 inversions since 2009.  491 

In BRA, both the NGHGIs reports (240 ± 170 Tg C/yr during 1990-2016) and inversion results (in-situ: 350 ± 190 Tg C/yr 492 

during 2001-2021; satellite-based: 280 ± 120 Tg C/yr during 2015-2021) indicate that the country has been a net carbon source 493 

since 1990. The carbon source from managed land in Brazil increased from the late 1990s, reaching a peak around 2005 494 

according to NGHGIs (677 Tg C/yr). This evolution is confirmed by in-situ inversions with a source peaking in 2005 (~650 495 

Tg C/yr). The net carbon source from inversions then decreased from 2005 to 2011, which is consistent with the observed 496 

reduction in deforestation due to forest protection policies implemented by the Brazilian government. This is an encouraging 497 

result as the inversions did not explicitly consider land use emissions in their prior assumptions, although some included an 498 

estimate of carbon released by fires in their prior which is part of land-use emissions in Brazil. Since NEE is defined as all 499 

land fluxes except fossil fuel emissions, NEE from all inversions nevertheless include land use emissions from deforestation, 500 

degradation emissions and fire emissions including fires from deforestation, degradation and other fires. After 2011, inversions 501 

show a new increase in land emissions, with a peak during the 2015-2016 El Niño. There have been higher average land 502 
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emissions thereafter. These ongoing changes may be attributed to various factors such as the legacy effects of drought leading 503 

to increased tree mortality (Aragão et al., 2018), higher wildfire emissions (Naus et al., 2022; Gatti et al., 2023), carbon losses 504 

from forest degradation, and climate change-induced reductions in forest growth due to regional drying and warming in the 505 

southern and eastern parts of the Amazon (Gatti et al., 2021). From 2011 to 2016, the NGHGIs reports indicate that carbon 506 

emissions from Brazilian managed lands were stable at around 47 Tg C/yr. However, the medians of in-situ inversions suggest 507 

that carbon emissions rapidly increased from ~100 Tg C/yr in 2011 to ~600 Tg C/yr in 2016, which peaked in 2015 (~610 Tg 508 

C/yr). From 2016 to 2021, the medians for both in-situ and satellite inversion results show a decrease in carbon emissions from 509 

2016 to 2018 but a transient peak in 2019, a year with large fires (Gatti et al., 2023) (in-situ: 480 Tg C/yr; satellite: 270 Tg 510 

C/yr). Then carbon emissions decreased again until 2021, which experienced wetter conditions and fewer fires (Peng et al., 511 

2022); The in-situ inversion results show a continuous decrease to -10 Tg C/yr in 2021, while the satellite inversion results 512 

showed a persistent source carbon anomaly of 300 Tg C/yr. We emphasize moreover that available CO2 observations from a 513 

network of aircraft vertical sampling (Gatti et al., 2021) were not used to constrain the inverse models used here. 514 

For Democratic Republic of the Congo (COD), the available NGHGIs data indicates that before 2000, the country’s managed 515 

lands were a net carbon sink (50 Tg C/yr in 1994 and 30 Tg C/yr in 1999). Since 2000, the NGHGIs reports indicated three 516 

stages of different levels of CO2 flux, which COD managed land was a carbon source during 2000-2010 (~95 Tg C/yr), a larger 517 

carbon source during 2011-2014 (~135 Tg C/yr), and a very small sink during 2015-2018 (~-1 Tg C/yr). The medians of in-518 

situ inversion ensemble indicate a similar annual average carbon source (70 ± 45 Tg C/yr) during 2001-2021 with the NGHGIs, 519 

despite the few observations over Africa (Byrne et al., 2023). In the recent decade, satellite inversion results from 2015 to 2021 520 

indicate a smaller source (30 ± 55 Tg C/yr) compared to the in-situ results (85 ± 25 Tg C/yr). Moreover, the satellite inversion 521 

results indicate a sink anomaly in 2020 (-60 Tg C/yr) which is not found in the in-situ inversions. The sink anomaly in 2020 522 

from the satellite inversions is consistent with wetter conditions during that year over COD. 523 

For South Africa (ZAF), the NGHGIs show a stable very small sink of 3 Tg C/yr during 1990-2010 that doubled from 4 Tg 524 

C/yr in 2010 to 8 Tg C/yr in 2017, while the in-situ inversion results indicate large fluctuations from a carbon sink (especially 525 

peaked in 2006, 2009, 2011, 2017 and 2021) to a small carbon source (e.g., in 2013, and 2018-2019). From 2015 to 2021, the 526 

satellite-based inversion results are consistent with the in-situ results for annual variability (ρ=0.8, p<0.05), which is a good 527 

sign of the consistency between different atmospheric observing systems. During the transition to El Niño conditions and 528 

drought from 2014 to 2015, however, the satellite-based inversion results indicate a switch from a carbon sink to a source 529 

anomaly of 50 Tg C/yr in ZAF which is not seen in the in-situ inversions.  530 

In Australia (AUS), the NGHGIs data shows a land source of carbon from 1990 to 2012, which decreased over time (from 48 531 

Tg C/yr in 1990 to 1 Tg C/yr in 2012) and changed into a carbon sink since 2013 (that increased from a sink of 1 Tg C/yr in 532 

2013 to 15 Tg C/yr in 2020). However, the in-situ inversions indicate fluctuations between a carbon source and a sink with an 533 

annual average small sink of 10 ± 71 Tg C/yr observed over the period of 2001-2021, except for 2009-2011, the medians of 534 

in-situ inversions reveal a strong carbon sink of 105 ± 35 Tg C/yr. Between 2010 and the strong La Niña year of 2011, the 535 

medians of in-situ inversion ensemble from the previous study (Deng et al., 2022) showed an increase in carbon uptake of 536 
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145%. This high carbon sink persisted in 2012, which was a dryer year with maximum bushfire activity. However, in this 537 

study, the medians of updated in-situ inversion ensemble indicate that there is a sink anomaly in 2011 followed by a source 538 

anomaly in 2013, which appears to be more realistic. 2019 was the driest and hottest year recorded in Australia, including 539 

extreme fires at the end of 2019 (Byrne et al., 2021). As a result, the medians for both in-situ and satellite inversion ensemble 540 

show a carbon source anomaly in 2019, with 55 Tg C/yr (ranging from a sink of 1060 to a source of 480) and 200 Tg C/yr 541 

(raging from a sink of 120 to a source of 320) respectively. When it comes to the wet La Niña year of 2021, the medians for 542 

both in-situ and satellite inversion ensemble indicate that AUS managed land became a carbon sink of 130 Tg C/yr (ranging 543 

from a sink of 1120 to a source of 25) and 150 Tg C/yr (ranging from a sink of 260 to a source of 40).  544 

Last, we give the global comparison between NGHGIs and inversions, using NGHGIs data compiled for all countries by Grassi 545 

et al. (2023) which include Annex I countries reports, non-Annex I NC, BUR and NDCs.  The river correction is the only one 546 

that changes the global NEE, because the global mean of CO2 fluxes from wood and crop products is close to zero. The river-547 

induced CO2 uptake over land that is removed from inversion NEE is equal to the C flux transported to the ocean at river 548 

mouths (0.9 GtC/yr in our estimate, close to the value of Regnier et al.  2022). The (in-situ) inversions without the river 549 

correction give a global NEE sink of 1.8 GtC/yr over 2001-2020, managed land: 1.3 GtC/yr (72% of total), unmanaged land: 550 

0.5 GtC/yr (28%). The in-situ inversions with the river correction study give a global NEE sink of 0.91 GtC/yr, managed land 551 

0.51 GtC/yr (56% of total), unmanaged land 0.4 GtC/yr (44% of the total). This is an important update from Deng et al. 2022 552 

where the river CO2 flux correction was not applied separately to managed / unmanaged lands. Because managed lands have 553 

a much larger area than unmanaged ones and because of the spatial patterns of the CO2 sinks in the river correction are 554 

distributed with MODIS NPP which has low values in unmanaged lands of northern Canada and Russia, the river correction 555 

reduces strongly the C storage change with respect to NEE over managed lands, and marginally in unmanaged lands. Inventory 556 

data recently compiled by Grassi et al. (2023) indicates a similar global land sink (on managed land) of 0.53 GtC yr-1 with gap-557 

filled data during the same period than the inversions with our improved river correction. 558 
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4 Results for anthropogenic CH4 emissions  559 

4.1 Total anthropogenic CH4 emissions 560 

 561 

Figure 4. Total anthropogenic CH4 fluxes for the 12 top emitters: China (CHN), India (IND), United States (USA), Brazil (BRA), 562 

Russia (RUS), European Union (EUR), Indonesia (IDN), Pakistan (PAK), Argentina (ARG), Iran (IRN), Mexico (MEX), and 563 

Australia (AUS). The black dots denote the reported values from NGHGIs. The light and dark blue lines/areas denote the median and 564 

maximum-minimum ranges of in-situ and satellite-based CH4 inversions based on EDGARv6.0 as the prior respectively.  565 

 566 

Fig 4 presents the variations in anthropogenic CH4 emissions for the 12 selected countries, where these emissions are summing 567 

the sectors of agriculture and waste, fossil fuels, and biofuel burning. The distribution of emissions is highly skewed even 568 

among the top 12 emitters, with the largest and most populated countries such as China (CHN), India (IND), United States 569 

(USA), Brazil (BRA), Russia (RUS), and European Union (EUR) which emits more than 10 Tg CH4/yr annually, while other 570 

countries have smaller emissions (ranging from 3 to 10 CH4/yr) that are more challenging to quantify through inversions. 571 

During 2010-2020, CHN has the highest total anthropogenic emissions at around 50 ± 4      Tg CH4/yr, followed by IND with 572 

30 ± 1      Tg CH4/yr, USA with 24 ± 1      Tg CH4/yr, BRA with 24 ± 1      Tg CH4/yr, EUR with 19 ± 1      Tg CH4/yr, 573 

Indonesia (IDN) with 14 ± 1      Tg CH4/yr and RUS with 13 ± 1      Tg CH4/yr, according to the medians of satellite-based 574 

inversion ensemble based on EDGARv6.0 as prior. The remaining countries have emissions of approximately 5 Tg CH4/yr. In 575 
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general, the difference between NGHGIs and inversions aligns in the same direction based on both satellite and in-situ 576 

inversions. This provides some confidence for using inversions to evaluate NGHGIs as the satellite observations are 577 

independent from in situ networks. Overall, satellite-based inversions may be more robust across most countries due to better 578 

observation coverage, except in EUR and the USA where the in-situ network is more extensive.  579 

Developing countries, such as CHN, IND, BRA, IDN, Pakistan (PAK), Iran (IRN) and Mexico (MEX), show a rapid increase 580 

in anthropogenic CH4 emissions supported by reported values from NGHGIs and results from inversions. In CHN, the reported 581 

values from NGHGIs (when available) generally align with the results obtained through inversions (e.g., during 2010-2015, 582 

NGHGIs: 54 ± 1 Tg CH4/yr, in-situ: 58 ± 1 Tg CH4/yr, satellite-based: 48 ± 3 Tg CH4/yr). During 2010-2020, the median 583 

values for the in-situ and satellite-based inversion ensemble show a similar increase trend at an annual growth rate of 0.28 Tg 584 

CH4/yr2 and 0.26 Tg CH4/yr2 respectively, although the medians of in-situ inversion ensemble (58 ± 2 Tg CH4/yr) were slight 585 

higher than the satellite-based ensemble (50 ± 3 Tg CH4/yr). However, in 2020, the medians of the emission estimates for both 586 

in-situ and satellite-based inversions reveal a rapid increase by 9% and 11% compared to 2019 in CHN, indicating a possible 587 

surge in anthropogenic methane emissions for that year, possibly an artifact from the fact that the decreased OH sink in 2020 588 

is not well accounted for here. Indeed OH interannual variability were not prescribed to all inversions, and when accounted 589 

for the OH interannual variability prescribed (based on Patra et al., 2021) was much smaller than those suggested by recent 590 

studies (e.g., Peng et al., 2022). As a result overestimating the sink in the inversions leads to overestimated surface emissions. 591 

The surge in emissions could also be due to spin-down, the last six month to one year of inversions being less constrained by 592 

the observations, even though the inversion period covered up to June 2021.  593 

In IND, PAK and MEX, there is good agreement (r>0.8, p<0.01) between the in-situ and satellite-based inversion ensembles 594 

(respectively, 31 ± 1 Tg CH4/yr and 30 ± 1 Tg CH4/yr in IND, 8 ± 1 Tg CH4/yr and 7 ± 1 Tg CH4/yr in PAK, and 6 ± 1 Tg 595 

CH4/yr and 6 ± 1 Tg CH4/yr in MEX), while both of them present a significant increasing trend of anthropogenic methane 596 

emissions in these countries (Mann-Kendall p<0.05). However, when comparing to NGHGIs values, the inversion results in 597 

IND and PAK indicate >50% larger emissions than the values reported from the NGHGIs during 2010-2020. In contrast, 598 

values reported from the NGHGIs (~6 Tg CH4/yr) by MEX also show good agreement with the inversion results.  599 

In BRA, IDN and Argentina (ARG), the medians for in-situ and satellite-based inversion ensembles show good consistency 600 

(r=0.8, p<0.01) in these two countries, while satellite-based inversion results are generally higher than the in-situ inversion 601 

results. Specifically, in BRA, the satellite-based inversions (24 ± 1 Tg CH4/yr) were 16% higher than the in-situ inversions (21 602 

± 1 Tg CH4/yr) and 52% higher than the NGHGIs estimation (~17 Tg CH4/yr) during 2010-2020, possibly owing to difficulties 603 

for inversions to separate between natural (wetlands, inland waters) and anthropogenic sources in this country, and possible 604 

flaws in the prior used for natural and anthropogenic fluxes. In IDN, NGHGIs reported a significant continuous upward trend 605 

at an annual average growth of 0.3 Tg CH4/yr, with a noticeable positive outlier in 2000. The medians for both in-situ and 606 

satellite-based inversion ensembles also indicate an upward trend in IDN, but both of them present sudden dips in 607 

anthropogenic methane emissions in 2015 and 2019 by 15~23% and 16~25%, compared to the previous year respectively. It 608 

is unlikely that anthropogenic activities could contribute such large year to year variations except for different flooded areas 609 



25 

 

used for rice paddies. In ARG, the satellite-based inversion results also indicate two sudden dips in 2016 and 2019, however, 610 

such pattern was not found in the in-situ inversion results. A cause of year to year variations from inversions is the lack of in-611 

situ sites and variable cloud cover affecting the density of GOSAT data. 612 

Regarding IRN, NGHGIs only provided data for three years (1994, 2000, and 2010), making it difficult to compare with 613 

inversion results. However, NGHGIs show a rapid growth in anthropogenic CH4 emissions (+9.4%/yr) during this period. 614 

There are significant differences between inversion results and for IRN, with satellite inversions generally giving lower 615 

emissions than in-situ inversions and different trends. Satellite inversions suggest a declining trend between 2010 and 2015, 616 

followed by a fluctuating increase until 2020. In contrast, in-situ-based inversions (by any nearby measurement stations, thus 617 

likely reflecting the prior trend) show a rapid rise in emissions after 2010, reaching a peak in 2018, followed by a decline.  618 

NGHGIs for RUS indicate that anthropogenic CH4 emissions have been reduced during the 1990s and remained stable since 619 

2000 (12.0 ± 0.3 Tg CH4/yr during 2000-2020), which is similar with the trend observed from satellite-based inversion results 620 

(12.7 ± 0.9 Tg CH4/yr during 2000-2020). However, in 2016, there was a sudden increase of emissions in satellite inversion 621 

results (+14% increase from 12.5 Tg CH4/yr in 2015 to 14.2 Tg CH4/yr in 2016), followed by a gradual decline, and then a 622 

new increase in 2020 (+11% increase from 12.8 Tg CH4/yr in 2019 to 14.3 Tg CH4/yr in 2020). This recent change was not 623 

observed in the in-situ inversion results or the NGHGIs.  624 

For USA, Australia (AUS), and EUR, NGHGIs reported a slow declining trend (EUR: 0.4 Tg CH4/yr; USA: 0.2 Tg CH4/yr; 625 

AUS: -0.04 Tg CH4/yr) in anthropogenic CH4 emissions. In the case of the USA, inversion-derived emissions are slightly 626 

lower than NGHGIs (in-situ-based: 9% lower during 2000-2020; satellite-based: 11% lower during 2010-2020). However, 627 

both ground-based and satellite-based inversions indicate that anthropogenic CH4 emissions have remained relatively steady 628 

since 2000, without reflecting the slow decline reported by NGHGIs. In EUR, NGHGIs indicate that anthropogenic CH4 629 

emissions have been decreasing rapidly since 1990 (-1.4%/yr), consistent with the trend obtained from inversion results. 630 

However, in-situ inversion emissions are on average slightly higher than NGHGIs, and this difference has been gradually 631 

increasing from 8% in the 2000s to 15% in the 2010s.  632 
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4.2 Fossil CH4 emissions   633 

 634 

Figure 5. CH4 emissions from the fossil fuel sector from the top 12 emitters of this sector: China (CHN), Russia (RUS), United States 635 

(USA), European Union (EUR), Iran (IRN), India (IND), Indonesia (IDN), Persian Gulf countries (GULF = Saudi Arabia + Iraq + 636 

Kuwait + Oman + United Arab Emirates + Bahrain + Qatar), Kazakhstan & Turkmenistan (KAZ&TKM), Venezuela (VEN), 637 

Nigeria (NGA), and Mexico (MEX). The black dots denote the reported value from the NGHGIs. In the NGHGI data shown in Fig 5 for 638 

GULF, Saudi Arabia reported four NGHGIs in 1990, 2000, 2010, and 2012, Iraq reported one in 1997, Kuwait reported three in 1994, 2000, 639 

and 2016, Oman reported one in 1994, United Arab Emirates reported four in 1994, 2000, 2005 and 2014, Bahrain reported three in 1994, 640 

2000 and 2006, and Qatar reported one in 2007. The reported values are interpolated over the study period to be summed up and plotted in 641 

the figure. For KAZ&TKM, the reported values of Turkmenistan during 2001-2003, 2005-2009, 2011-2020 are interpolated and added to 642 

annual reports from Kazakhstan, an Annex I country for which annual data are available. Other lines, colors and symbols as Fig 4.  643 

 644 

Fig 5 presents the fossil CH4 emissions for the top 12 emitters from the fossil sector based on EDGARv6.0 as the prior. The 645 

largest emitter is China (CHN), mainly from the sub-sector of coal extraction, followed by Russia (RUS) and the United States 646 

(USA). In CHN, the in-situ (20 ± 2 Tg CH4/yr) and satellite inversions (17 ± 1 Tg CH4/yr) emissions in the 2010s are 24% and 647 

35% lower than in the NGHGIs (~26 Tg CH4/yr), respectively. The NGHGIs in CHN suggest a decrease from 28 in 2012 to 648 

24 Tg CH4/yr in 2014. However, both in-situ and satellite inversion results indicate an increasing trend since 2018. In India 649 

(IND) and Indonesia (IDN), NGHGIs report a decreasing trend during the study period, while inversions suggest a rapid 650 
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increase in IDN and a stable value in IND after a peak in 2012. In IND, satellite inversions suggest a peak of fossil CH4 651 

emissions during 2011-2012, which then dropped in 2013 and remained stable afterward. In IDN, both in-situ and satellite 652 

inversions indicate a fluctuating trend, with a significant drop between 2015 and 2019. In RUS, both in-situ and satellite 653 

inversion-based estimates of fossil fuel emissions are higher than NGHGIs, and show an increasing trend, while NGHGIs 654 

report a decreasing trend. This discrepancy may be due to inversion problems for separating between wetland emissions and 655 

gas extraction industries both located in the Yamal peninsula area, or leaks not captured in NGHGIs. In USA, NGHGIs overall 656 

show a significant declining trend (Mann-Kendall Z=-0.8, p<0.01). In-situ inversion estimates of fossil fuel emissions are 26% 657 

lower than NGHGIs during 2000-2010, and remained consistent until around 2011. Nearly all in-situ inversions show a jump 658 

in fossil fuel emissions in 2011. In the European Union (EUR), both NGHGIs and inversion results demonstrate a consistent 659 

declining trend. However, starting from 2010, both in-situ and satellite inversions are higher than NGHGIs reports. 660 

Major oil-producing countries in the persian Gulf are too small compared to the model resolution to be studied individually. 661 

Hence, NGHGIs from the GULF countries (Saudi Arabia, Iraq, Kuwait, Oman, United Arab Emirates, Bahrain, and Qatar) 662 

were grouped and show much lower emissions compared to inversion results. In the 2010s, in-situ and satellite inversions 663 

estimate that emissions in GULF were 9 times and 8 times higher than the estimates reported in NGHGIs, respectively. This 664 

huge under-reporting of emissions in GULF could be partly attributed to the omission of ultra-emitters in NGHGIs. The ultra-665 

emitters defined by Lauvaux et al. (2022) are namely all short-duration leaks from oil and gas facilities (e.g., wells, 666 

compressors) with an individual emission >20 t CH4/h, each event lasting generally less than one day. Such leaks are often 667 

random occurrences and difficult to quantify, which is why most countries do not account for these significant and episodic 668 

events in the national inventories. Indeed, recent studies by Lauvaux et al. (2022) have identified more ultra-emitters and larger 669 

emission budgets from ultra-emitters in Qatar, Kuwait, and Iraq. In KAZ&TKM, grouped together because of their rather small 670 

individual areas, both in-situ (3 ± 0.2 Tg CH4/yr) and satellite (3 ± 0.1 Tg CH4/yr) inversions estimate emissions to be 2 times 671 

higher than NGHGIs (1.5 Tg CH4/yr) in the 2010s. Similarly, KAZ is located downwind of TKM, which has a high share of 672 

ultra-emitters. The global inversions operating at a coarse resolution may misallocate emissions from TKM to KAZ. It is worth 673 

noting that KAZ has two in-situ stations for CH4 measurements, whereas the GULF countries lack in-situ station networks. 674 

On the other hand, the GOSAT satellite provides a dense sampling of atmospheric column CH4 in the Persian Gulf region due 675 

to frequent cloud-free conditions. Therefore, GOSAT inversions can be considered more accurate than in-situ inversions for 676 

Iran (IRN), GULF countries, and Kazakhstan & Turkmenistan (KAZ&TKM). Additionally, it is important to note that GOSAT 677 

inversions generally give lower emissions than in-situ inversions in those countries. Venezuela (VEN) is a rare case where 678 

NGHGIs report much higher CH4 emissions than inversions. While the uncertainty of GOSAT inversions (model spread) has 679 

decreased compared to the results reported by Deng et al. 2022, the gap between inversions and NGHGIs has increased. In 680 

2010, NGHGIs reports of fossil CH4 emissions in VEN were 298% higher than GOSAT inversions and 326% than in-situ 681 

inversions. We do not have a clear explanation for this large difference, except that VEN has strongly decreased oil and gas 682 

extraction due to sanctions curbing its crude production from 2.7 mb/d in 2015 to 0.6 mb/d in 2020 (OPEC, 2023), which may 683 

not be reflected in their NGHGIs. In Nigeria (NGA) and Mexico (MEX), NGHGIs estimates fall between the median of in-684 
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situ and satellite inversions during 2010-2020. However, in MEX, the in-situ inversion was 50% lower than NGHGIs in the 685 

2000s and showed a sudden large increase in 2010. 686 

4.3 Agriculture and waste CH4 emissions 687 

 688 

Figure 6. CH4 emissions from agriculture and waste for the 12 largest emitters in this sector, China (CHN), India (IND), Brazil 689 

(BRA), United States (USA), European Union (EUR), Pakistan (PAK), Indonesia (IDN), Russia (RUS), Argentina (ARG), Thailand 690 

(THA), Mexico (MEX), and Bangladesh (BGD). The black dots denote the reported estimates from NGHGIs. Other lines, colors, and 691 

symbols as Fig 4. 692 

 693 

Fig 6 presents CH4 emissions of the Agriculture and Waste sector for the top 12 emitters of this sector. In all countries except 694 

for the United States (USA) and Russia (RUS), the values reported by NGHGIs are systematically lower than the inversion 695 

results. The results from the previous ensemble of in-situ inversions (red dotted line) are consistent with those of the inversions 696 

used in this study except in the USA where previous inversions are 3.2 Tg CH4/yr higher, in RUS where they show a drop 697 

after 2015 although they remain in the range from the new satellite and in-situ inversions, and in Mexico (MEX) where they 698 

are systematically lower by 1.6 Tg CH4/yr. 699 
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In China (CHN), the most recent NGHGIs reports in 2012 and 2014 estimate agriculture and waste emissions at 28 Tg CH4/yr, 700 

which is close to satellite inversions (28 ± 1 Tg CH4/yr) but 22.4% lower than the median in-situ inversions (35 ± 1 Tg CH4/yr) 701 

and closer to their minimum value. The trend in agricultural and waste emissions is consistent between inversions and NGHGIs 702 

for CHN. In India (IND), inversions consistently show higher emissions than NGHGIs by approximately 50% and indicate an 703 

increasing trend during 2000-2020, whereas the NGHGI last communication being for 2016, it does not allow us to give a 704 

recent trend. According to the national inventory of IND, enteric fermentation is the primary source of CH4 emissions in the 705 

agriculture and waste sector, contributing 61% of emissions, with rice cultivation accounting for 20% and waste contributing 706 

16%. A similar pattern is observed in Bangladesh (BGD), where agricultural emissions are dominated by rice production (48% 707 

in 2012) and enteric fermentation (42% in 2012). Satellite and in-situ inversions estimate emissions in BGD are nearly double 708 

than those reported by NGHGIs during 2001 and 2012, the last communication. The significant discrepancies between 709 

inversions and NGHGIs in IND and BGD may be attributed to potential underestimation of livestock or waste CH4 emissions 710 

by NGHGIs. NGHGIs utilized the Tier 1 method and associated emission factors from the 2006 IPCC Guidelines for National 711 

Greenhouse Gas Inventories (IPCC, 2006). However, a recent study (Chang et al., 2021) found that estimates using revised 712 

Tier 1 or Tier 2 methods from the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 713 

(IPCC, 2019) give livestock emissions 48%-60% and 42%-61% higher for IND and BGD by 2010, respectively, compared to 714 

Tier 1 IPCC (2006) methods, which would bring bottom up emissions closer to inversions. In Brazil (BRA), both satellite and 715 

in-situ inversions consistently estimate larger emissions than the NGHGIs by 34% and 29%, respectively, and show a 716 

consistent increasing trend over their study periods. In the USA, the medians of satellite and in-situ inversions are slightly 717 

lower than those of NGHGIs, but they exhibit a similar trend throughout the study period. The trend of inversions is comparable 718 

to the one of the NGHGIs in BRA during their period of overlap, although there is no NGHGIs communication later than 2016. 719 

In Argentina (ARG), Pakistan (PAK) and Thailand (THA), the medians of in-situ inversions show good consistency with 720 

satellite inversion results. Nevertheless, in-situ inversion emissions in the 2010s are, on average, 47% higher in PAK, 20% 721 

higher in ARG, and 64% higher in THA compared to the NGHGIs reports. In European Union (EUR), emissions from 722 

agriculture and waste were reported to have significantly decreased over time in the NGHGI data, mainly from solid waste 723 

disposal (Petrescu et al., 2021), a trend that is captured by inversions and is close to the one of the NGHGIs over the study 724 

period. In contrast, emissions from agriculture and waste in RUS are reported to have a positive trend after 2010 by the NGHGI, 725 

with in-situ inversions producing a consistent trend from 2000 to 2014 but a sharp decrease thereafter, while satellite inversions 726 

are producing stable emissions, albeit lower than the NGHGIs and in-situ inversions after 2010.  727 
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5 Results for anthropogenic N2O emissions  728 

  729 

Figure 7. Anthropogenic N2O fluxes of the top 12 emitters: China (CHN), Brazil (BRA), India (IND), United States (USA), 730 

Democratic Republic of the Congo (COD), European Union (EUA), Indonesia (IDN), Mexico (MEX), Colombia (COL), Sudan 731 

(SDN), Australia (AUS), and Venezuela (VEN). The black dots denote the anthropogenic emissions from the UNFCCC national 732 

greenhouse gas inventories. The thick orange lines and the light orange areas denote the median and the maximum-minimum ranges of 733 

anthropogenic fluxes respectively among all N2O inversions. We restricted our analysis to data starting from 1997 because it was the year 734 

when data from the all four inversion models are available. 735 

 736 

We present the 12 countries/regions with the largest anthropogenic N2O emissions in the world (Fig 7), which in total 737 

contribute approximately 55% of global anthropogenic N2O emissions. The estimates from both NGHGIs and inversions in 738 

China (CHN), United States (USA), and European Union (EUR) demonstrate a relatively close match between NGHGIs and 739 

inversions (in-situ only). These three large emitting countries/regions exhibit different trends in their anthropogenic N2O 740 

emissions. In CHN, both NGHGIs and inversions indicate an increasing trend in anthropogenic N2O emissions. In the USA, 741 

anthropogenic N2O emissions seem to have reached a state of relative stability, with NGHGIs and inversion results showing 742 

similar mean values and lack of trends. In EUR, both NGHGIs and inversions show a declining trend in anthropogenic N2O 743 

emissions, but from 2010 to 2020, the NGHGIs estimates are lower (20%) than the median values derived from inversion 744 

models, that is, the negative trend from inversions is less pronounced than the one of NGHGIs. Most other selected countries 745 

display higher anthropogenic N2O emissions from inversions than from NGHGIs (i.e., Brazil (BRA), India (IND), Democratic 746 
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Republic of the Congo (COD), Indonesia (IDN), Mexico (MEX), Colombia (COL), Sudan (SDN), Venezuela (VEN)). These 747 

discrepancies in anthropogenic N2O emissions are possibly attributable to factors that have been analyzed in our previous study 748 

(Deng et al., 2022). Firstly, nearly all these non-Annex 1 countries utilize Tier 1 emission factors (EFs), which may 749 

underestimate emissions when soil and climate dependence are taken into account (Cui et al., 2021). This has been noted in 750 

previous studies (Philibert et al., 2013; Shcherbak et al., 2014; Wang et al., 2020). Furthermore, the observed concave response 751 

of cropland soil emissions as a function of added N fertilizers may also contribute to underestimated emissions in NGHGIs, as 752 

the relationship is non-linear and higher than the linear relation used by NGHGIs in Tier 1 approaches (Zhou et al., 2015). In 753 

an improved reporting framework, EFs should also account for both natural and anthropogenic components, as they cannot be 754 

distinguished through field measurements, from which EFs are derived. However, in practice, EFs are mostly based on 755 

measurements made in temperate climates and soils from established croplands with few "background" emissions. 756 

Consequently, there could be a systematic underestimation of default IPCC EFs from tropical climates and for recently 757 

established agricultural lands, for which the IPCC EFs also have a huge uncertainty of up to ±75%–100%. Another factor that 758 

might contribute to the discrepancy is the omission of emissions from reactive nitrogen contained in organic fertilizers 759 

(manure), for which NGHGIs do not provide specific details for non-Annex 1 reports. Lastly, anthropogenic indirect emissions 760 

(AIEs) from atmospheric nitrogen deposition and leaching of human-induced nitrogen additions to aquifers and inland waters 761 

are reported by Annex 1 countries using simple emission factors, but non-Annex 1 countries do not consistently report AIE. 762 

However, in Australia (AUS), the gap between inversions and NGHGIs has      even expanded compared to our previous study. 763 

We do acknowledge that the density of the N2O in-situ network in tropical countries and around AUS is so low that inversions 764 

most likely are attracted to their priors. The use of a lower prior could thus also be consistent with scarce atmospheric 765 

observations, and we have only a low confidence on N2O inversion results for tropical countries and AUS. 766 
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6 Discussion 767 

6.1 Comparing net land CO2 flux estimates from different inversion model ensembles 768 

 769 

Figure 8. Net CO2 land fluxes during the period of a) 2011-2015; and b) 2016-2020 in China (CHN), United States (USA), European 770 

Union (EUR), Russia (RUS), Canada (CAN), Kazakhstan (KAZ), Mongolia (MNG), India (IND), Brazil (BRA), Democratic Republic 771 

of the Congo (COD), South Africa (ZAF), and Australia (AUS). Blue boxes denote the in-situ inversion results from Deng et al. (2022) 772 

processed from Global Carbon Budget 2020 (Friedlingstein et al., 2020). Light green boxes denote the in-situ inversion results processed in 773 

this study, while dark green boxes denote the satellite inversion results. Black boxes denote the NGHGIs reported values. The white lines in 774 
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the boxes denote the medians of the land CO2 fluxes. Note that the inversion results here have been adjusted by the lateral flux before the 775 

comparison. Additionally, we extend the comparison with national land use change emissions from global bookkeeping models in Fig S4. 776 

In this section, we compare four different estimates of land CO2 fluxes during the period 2010-2020 (Fig 8), including: 1) 777 

medians of in-situ inversion results from our previous study (Deng et al., 2022), 2) medians of in-situ and 3) satellite-based 778 

inversion results processed in this study based on the Global Carbon Budget 2022 (Friedlingstein et al., 2022), and 4) NGHGIs. 779 

This enables a comparison of the median and range of our in-situ inversion results (n=5) with those from previous study (n=6), 780 

and assesses the performance differences between satellite-based (n=4) and in-situ inversion models. To ensure a fair 781 

comparison and avoid anomalies in the satellite-based inversion results during 2010-2015 when some of these inversions used 782 

GOSAT after 2010 and then OCO-2 after 2015, we separate the analysis into two periods: 2011-2015 and 2016-2020.  783 

The variations of yearly land CO2 fluxes span a comparable range between the current and previous in-situ inversion 784 

ensembles, indicating that consistency of the inversion results, but the uncertainty within the new in-situ inversion ensemble 785 

was not improved. However, examining the median values, results from the new in-situ inversion ensemble may be closer to 786 

NGHGIs in most countries (such as China (CHN), United States (USA), European Union (EUR), Canada (CAN), Kazakhstan 787 

(KAZ), India (IND)). This suggests that the new in-situ inversion ensemble used in this study has partially narrowed down the 788 

gaps between inversion results and NGHGIs compared to the previous one. However, in Russia (RUS) and Brazil (BRA), the 789 

difference between the median of in-situ inversion ensembles and NGHGIs has enlarged. For example, in RUS, median the 790 

new in-situ inversion ensemble indicate a larger carbon sink than those from Deng et al. (2022), while the difference between 791 

median of in-situ inversions and NGHGIs increases 51% during 2011-2015 (from 208 Tg C/yr to 314 Tg C/yr) and 49% during 792 

2016-2020 (from 168 Tg C/yr to 249 Tg C/yr). Conversely, in BRA, median of the new in-situ inversion ensemble indicate a 793 

larger carbon source, while the difference increases over 100% during 2011-2015 (from 200 Tg C/yr to 423 Tg C/yr) and 794 

nearly 300% during 2016-2020 (from 56 Tg C/yr to 223 Tg C/yr). 795 

As for the inversion ensemble used in this study, in most countries, the variations of yearly land CO2 fluxes also span a similar 796 

range between satellite-based inversion ensemble and in-situ inversion ensemble. However, in the cases of USA, RUS, CHN 797 

and BRA, the spread of satellite-based inversion results are narrower than those of in-situ inversion results, indicating a better 798 

consistency among available satellite-based inversion models, at least when similar satellite data are assimilated. In addition, 799 

in most cases, smaller differences were found between the median of inversion results and the NGHGIs. For countries with 800 

dense surface monitoring networks such as in the  USA and EUR, the satellite-based inversion results show good agreement 801 

in-situ inversion results. However, for countries with sparse station coverage like Kazakhstan (KAZ) and Mongolia (MNG), 802 

satellite-based inversion results could provide more reliable estimates due to more extensive spatial sampling from satellites, 803 

although the medians of satellite-based inversion results indicate larger carbon sinks and larger differences compared with 804 

NGHGIs (than for in-situ inversion results). In USA and CAN, the difference during 2011-2015 (only GOSAT period) between 805 

in-situ and satellite-based inversion ensembles is larger than that during 2016-2020 (OCO-2 period). This can be attributed to 806 

the use of different satellite data during these periods and different numbers of ensemble members. Before 2015, only GOSAT 807 
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was available, and only 2 out of 4 systems. The inversion of OCO-2 data starting in 2014 resulted in a better alignment among 808 

OCO-2 ACOS v10 inversions, indicating the in-situ and satellite evaluations were similar (Byrne et al., 2023). 809 

6.2 Adjustment of the national managed land masks to separate the net land CO2 flux estimates  810 

 811 
Figure 9. Net CO2 land fluxes during the period of 2015-2020 in Canada (CAN), Brazil (BRA), and Russia (RUS). ‘IFL’ stands for 812 

using the intact forest landscape data as a mask for non-managed land to extract land CO2 flux from managed land and ‘ML’ indicates the 813 

adjusted mask used by Grassi et al. (2023) to extract land CO2 flux from managed land. The ‘in-situ’ stands for inversion results using in-814 

situ observations, and ‘satellite represents inversions using satellite observations. Note that the inversion results here have been adjusted by 815 

the lateral flux before the comparison. 816 

Following the method proposed by Grassi et al. (2023), we updated in this study the managed land mask for Canada (CAN) 817 

and Brazil (BRA) by using maps of managed land derived from NGHGI, and for Russia (RUS) by adjusting tree-cover 818 

threshold in the tree cover map from Hansen et al.  (2013) to match the average area of managed land per Oblast (province) 819 

that is used for the NGHGIs.  Thus, the new mask is now more consistent with the definition of managed land in the NGHGIs 820 

for these three countries, so that can further analyze the impacts of different definitions of managed land masks to separate the 821 

managed land CO2 fluxes in inversions (Fig 9). Generally, in Russia (RUS) and Canada (CAN), the managed land CO2 fluxes 822 

extracted from the new mask are closer to NGHGIs than those separated by the previous mask used by Deng et al. 2022. In 823 

addition, in Brazil (BRA), adjusting the national managed land mask resulted in greater land carbon emissions, increasing the 824 

gap with NGHGIs. However, the improvement of the managed land mask in this study is still not able to explain all the existing 825 

discrepancy between inversion estimates and NGHGIs, in which the sources and reasons for these differences and uncertainties 826 

still need further analysis. We also observe in Fig. 9 that the impact of our new managed land mask compared to the previous 827 

one, is qualitatively similar whether it is applied to in-situ inversions or satellite inversions gridded flux fields. 828 
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6.3 Comparsion of anthropogenic CH4 emissions with Deng et al 2022 829 

830 

Figure 10. Annual average of anthropogenic CH4 emissions from in-situ (G) and satellite (S) inversions and national greenhouse gas 831 

inventories (N) during the period of 2010-2020. G’ and S’ denote the anthropogenic CH4 flux from the in-situ and satellite inversion 832 

ensembles in the previous study (Deng et al., 2022) respectively, while G and S denote the fluxes from the in-situ and satellite inversion 833 

ensembles used in this study. N denotes the estimates from NGHGIs. Grey, yellow, and brown bars represent the CH4 fluxes from the sectors 834 

of fossil fuel combustion, agriculture and waste, and biomass burning respectively. On top of NGHGI emissions, emissions from ultra-835 

emitters (red) are added to NGHGI estimates (diagnosed from S5P-TROPOMI measurements for the period 2019–2020; Lauvaux et al., 836 

2022). 837 

In our previous study, we found that satellite inversion models appear to have a better agreement      with NGHGIs than in-situ 838 

stations based inversion models, and on the other hand, that differences between inversion models and NGHGIs in large oil- 839 

and gas-producing countries suggest an underestimation of national reports, possibly due to the omission of ultra-emitting 840 

sources by NGHGIs. With the new inversion ensemble in this study, we confirm those results (Fig 10). In countries such as 841 

China (CHN), India (IND), and Russia (RUS), the updated inversion model set provides estimates that are closer to NGHGIs, 842 

but differences still exist, and the reasons for these differences are not the same. For example, differences in anthropogenic 843 

methane emissions in IND are mainly due to differences in agricultural and waste methane flux with the new inversion 844 

ensemble used in this study. In RUS, the updated inversion ensemble shows lower fossil fuel emissions, reducing the 845 

differences with NGHGIs for this sector, but higher agricultural and waste emissions than in Deng et al. (2022). Nevertheless, 846 

the updated fossil fuel emission flux is still higher than the NGHGIs estimate for RUS. The remaining differences may be 847 

attributed to ultra-emitting sources or underestimated emission factors for some components of the oil and gas extraction and 848 

distribution industry in RUS. Conversely, in GULF (GULF = Saudi Arabia + Iraq + Kuwait + Oman + United Arab Emirates 849 
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+ Bahrain + Qatar), the new inversion model ensemble consistently reflects higher fossil fuel emission fluxes than NGHGIs 850 

like in our previous study, and expands the difference in estimates of artificial methane flux between inversion models and 851 

NGHGIs, possibly indicating more methane leakage. 852 

6.4 Influence of the prior used in CH4 inversions 853 

 854 

Figure 11. Total anthropogenic CH4 fluxes for the 12 top emitters: China (CHN), India (IND), United States (USA), Brazil (BRA), 855 

Russia (RUS), European Union (EUR), Indonesia (IDN), Pakistan (PAK), Argentina (ARG), Iran (IRN), Mexico (MEX), and 856 

Australia (AUS). The black dots denote the reported values from NGHGIs. The light blue lines/areas denote the median and maximum-857 

minimum ranges of in-situ CH4 inversions based on EDGARv6.0 as the prior and the dark blue ones of satellite inversions, respectively. 858 

The light purple lines/areas denote the median and maximum-minimum ranges of in-situ CH4 inversions based on GAINS (Höglund-Isaksson 859 

et al., 2020) as the prior and the dark purple ones of satellite inversions, respectively. 860 

 861 

The use of different priors can also influence the inversion results of the data. Fig 11 presents the sets of inversion results using 862 

EDGAR (blue) and GAINS (purple) as priors. In most countries, the median values of the two inversion result sets are similar. 863 

However, in countries such as Russia (RUS), United States (USA), Iran (IRN), Mexico (MEX), significant differences are 864 

observed between the two inversion result sets, which may primarily stem from the differences in the inversion results for 865 

fossil CH4 emissions (Fig 12). In RUS and USA, the inversion results using GAINS as priors are consistently higher than those 866 
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using EDGAR as priors. In RUS, the satellite inversion results using GAINS as priors are higher by 45% during 2010-2020, 867 

and the ground-based inversion results are higher by 75% during 2000-2020. In the case of the USA, the inversion results 868 

using GAINS as priors exhibit a completely different trend compared to the ones obtained using NGHGIs and EDGAR as 869 

priors. The inversion results using GAINS as priors, both from satellite and ground-based measurements, show a rapid growth 870 

trend by increasing 24% from 2010 to 2020. In IRN and MEX, the inversion results using GAINS as priors are lower than 871 

those using EDGAR as priors. For IRN, the differences between satellite inversion results using different priors are not 872 

significant, and the trends are similar. However, the ground-based inversion results are very close between 2000-2013, but 873 

after 2013, a steep increase is observed in the ground-based inversion results using GAINS as priors. On the other hand, in 874 

MEX, the ground-based inversion results are similar, but the satellite inversion results using GAINS as priors are relatively 875 

lower by 14% averagely. Such discrepancies may arise from differences in inventory methodologies and the resulting 876 

estimations. As shown in Supplementary Figure S1 in Tibrewal et al. (2024), similar discrepancies were found between the 877 

two inventories in these countries, which reports a higher estimation from GAINS in RUS and USA compared to EDGAR 878 

during 2011-2020, and a lower estimation in IRN. As noted in Tibrewal et al. (2024), EDGAR is based on various versions of 879 

National Inventory Reports (NIR) that utilize different combinations of emission factors from the IPCC, while GAINS employs 880 

an independent estimation approach. This highlights the critical role of prior data selection in determining the accuracy of CH4 881 

emission estimates. 882 

 883 

Fig 12. Annual average of anthropogenic CH4 emissions from in-situ and satellite inversions based on two different priors 884 

during the period of 2010-2020. GE and SE denote the anthropogenic CH4 flux from the in-situ and satellite inversion 885 

ensembles based on EDGARv6.0 as the prior, while GG and SG represent the in-situ and satellite CH4 inversions based on 886 

GAINS as the prior. 887 
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6.5 Comparing anthropogenic N2O flux with the previous study 888 

 889 

Figure 13. Anthropogenic N2O fluxes during the period of 2005-2015 in China (CHN), Brazil (BRA), India (IND), United States 890 

(USA), Democratic Republic of the Congo (COD), European Union (EUR), Indonesia (IDN), Mexico (MEX), Colombia (COL), SDN 891 

(Sudan), Australia (AUS), and Venezuela (VEN). Blue boxes denote the in-situ inversion results from Deng et al. 2022 processed from 892 

Global Carbon Budget 2020 (Friedlingstein et al., 2020). Dark yellow boxes denote the inversion results processed in this study. Black boxes 893 

denote the NGHGIs reported values. 894 

 895 

The updated N2O inversion results show systematically higher anthropogenic emissions than the previous N2O inversion results 896 

(Deng et al, 2022), resulting in larger discrepancies between N2O inversion results and NGHGIs in most countries in Fig 13,  897 

Countries such as Brazil (BRA), Democratic Republic of the Congo (COD), Indonesia (IDN), Colombia (COL), Sudan (SDN), 898 

Australia (AUS), and Venezuela (VEN) exhibit significant differences. These discrepancies may be attributed to the use of 899 

lower IPCC default emission factors in the national inventories of these tropical countries, leading to lower NGHGI results. 900 

The IPCC default emission factors are derived from measurements primarily conducted in temperate regions of the Northern 901 

Hemisphere (e.g., Europe and the United States (USA)), which explains the better alignment of inversion results with 902 

inventories in those regions. Notably, , in the case of the USA, the median of the updated N2O inversion results is very close 903 

to NGHGIs. The median of the N2O inversion results from Deng et al. (2022) was 42% lower than the NGHGIs between 2005 904 

and 2015, whereas the median of the updated inversion models is only 4% lower. This demonstrates improved consistency in 905 

the updated inversion system results for the USA. Additionally, in countries such as India (IND), IDN, COL,COD, Sudan 906 

(SDN), and VEN, our N2O inversion results have a larger distribution compared to the previous study, indicating that the new 907 

N2O inversion ensemble (n=4) has less consistency in these countries compared to the previous ensemble (n=3).  908 
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Conclusions  909 

This study reconciles the gap between atmospheric inversions and UNFCCC NGHGIs for each of the three greenhouse gases, 910 

based on the post-processing framework we proposed in our previous study (Deng et al., 2022). We update inversion results 911 

and NGHGIs datasets to present the most-up-to-date discrepancies between these two estimates. For CO2, we updated the 912 

inversion results up to 2021, added a new inversion ensemble including inversions based on satellite observations, and applied 913 

a new mask of national managed land based on NGHGI reports in Russia, Brazil and Canada. For CH4, we compared NGHGIs 914 

and CH4 inversion results up to 2020 by splitting the anthropogenic fluxes from inversions by aggregating prior estimates from 915 

each sector or by removing fluxes of natural processes and discussed the uncertainties by using different priors in CH4 916 

inversions. For N2O, we updated the inversion results up to 2019 and included the MIROC4-ACTM N2O inversion, also 917 

separated the fluxes from managed land by using the same method on CO2.  918 

In the case of CO2, we updated the managed land mask for Canada, Brazil, and Russia based on maps derived from NGHGIs 919 

and adjusted tree-cover thresholds. The analysis of different managed land mask definitions shows that the new mask, which 920 

is more consistent with the definition of managed land in the NGHGIs for these countries, improves the agreement between 921 

managed land CO2 fluxes and NGHGIs in Russia and Canada. However, in Brazil, the new mask increases the gap between 922 

the estimated land carbon emissions and NGHGIs. Further analysis is needed to understand the sources and reasons for 923 

discrepancies and uncertainties between inversion estimates and NGHGIs. Thus, we still recommend that countries should 924 

report their managed land in a spatially explicit manner to enable a better evaluation of national emission reports using 925 

inversions (and other observation-based approaches), and countries should also follow the recommendations of the IPCC 2006 926 

Guidelines encouraging countries to use atmospheric data as an independent check on their national reports (IPCC 2006, 2019). 927 

Three additional satellite-based inversion results have been introduced for comparison with the in-situ inversion results and 928 

NGHGIs. In some countries, the satellite-based inversions demonstrate better consistency with NGHGIs compared to the in-929 

situ inversion models.  930 

For CH4, despite the large spread of inversions, both in-situ and GOSAT inversions show systematic differences with NGHGIs. 931 

We also found that Kazakhstan and Turkmenistan in Central Asia and the Gulf countries in the Middle East, characterized by 932 

oil- and gas-producing industries, report much less CH4 emissions than atmospheric inversions estimates. While in this region, 933 

there are few ground stations, and inversions depend on their prior fluxes, the fact that GOSAT and in-situ based inversions 934 

point to NGHGI emissions being underestimated suggests areas for future research to constrain the emissions of these 935 

countries. We recommend here to develop regional campaigns (such as those performed in Alvarez et al. (2018)), to refine 936 

emission factors, and to track regional oil, gas and coal basins emissions and ultra-emitter site-level emissions using new tools 937 

(such as moderate and high-resolution satellite imagery).  938 

For N2O, the prevalence of large tropical natural sources, being outside the responsibility of countries if they are located on 939 

unmanaged lands, has been overlooked before. For example, nearly half of the forests in Brazil are unmanaged according to 940 

its national inventory report. We did not solve this problem, but highlighted it and proposed a new method to remove natural 941 
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emissions from inversion total emissions. As many non-Annex I countries, which will have to produce inventories for the 942 

global stocktake are tropical countries with a very active nitrogen cycle and large natural N2O emissions, a decoupling will 943 

exist between targeted emissions reductions and the observed growth rate of N2O: it may hamper the eventual effectiveness of 944 

mitigation policies, that are directly reflected in the UNFCCC NGHGIs reports, especially for this greenhouse gas. It is fair to 945 

say that the uncertainty from the spread of different inversions is large enough that inversions cannot ‘falsify’ N2O NGHGIs 946 

in most instances. Nevertheless, for CH4 in countries around the Persian Gulf and Central Asia, and to some extent in Russia, 947 

and for N2O in tropical countries, Mexico and Australia, we found that NGHGIs emissions are significantly lower than 948 

inversions, which suggests that activity data or emission factors may need to be re-evaluated. Despite their large spread, 949 

inversions have the advantage of providing fluxes that are consistent with the accurately observed growth rates of each 950 

greenhouse gas in the atmosphere. The uncertainty of inversions is mainly a systematic bias due to internal settings or to the 951 

choice of a transport model. It does not mean that inversions cannot be used for monitoring interannual variability and trends 952 

of fluxes, in response to mitigation efforts, since most of their bias should have a small temporal component.  953 

The study of global inversions at the country scale rather than at the traditional subcontinent scale (e.g. the “Transcom3 954 

regions” of Gurney et al. (2002)) obviously pushes inversions close to the limit of their domain of validity, even in the case of 955 

large countries. The densification of observation networks and systems, especially from space, increases the observational 956 

information available at all spatial scales and gradually makes it possible to study smaller countries and reduce uncertainties 957 

of inversion results. This densification must be accompanied by a corresponding increase in the horizontal resolution of 958 

inversion systems (both the transport model and the control vector to be optimized). Note that the spatial resolution of most 959 

inverse models such as those contributing to the global carbon/methane/nitrous oxide budget is larger than 1 degree (see Table 960 

A4 in Friedlingstein et al. (2022), Table S6 in Saunois et al. (2020), and Table 1 in Tian et al. (2023)). They will likely soon 961 

have to go below one degree on a global scale to remain competitive for this type of study, despite the high computational 962 

challenge posed by the atmospheric inversion of long-lived tracers.  963 

Data availability 964 

Processed GHG (CO2, CH4, and N2O) data from inverse models and UNFCCC NGHGIs are available at 965 

https://doi.org/10.5281/zenodo.13887128 (Deng et al., 2024). 966 

This dataset contains 5 data files: 967 

- The file Inversions_CO2_v2022.csv includes the NEE CO2 flux from managed lands for the nine CO2 inverse 968 

models. It includes 8 fields: years (from 1960 to 2021), country, value (unit: Tg C/yr), sector ("land": without the 969 

adjustment of lateral C flux; "land_cor": with later C flux adjustment), source, gas, observation ("in-situ": in-situ-970 

based; "satellite": satellite-based), version ("CO2_ML_v2022" only). 971 

- The file Inversions_CH4_v2022.csv includes CH4 flux from anthropogenic sources for the six CH4 inverse models. 972 

It includes 8 fields: years (from 2000 to 2020), country, value (unit: Tg CH4/yr), sector ("agrw": agriculture and 973 
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waste; "fos": fossil fuel; "ant": anthropogenic=agrw+fos), source, gas, observation ("in-situ": in-situ-based; 974 

"satellite": satellite-based), version ("CH4_2022_V1": use EDGAR as priors; "CH4_2022_V2": use GAINS as 975 

priors). 976 

- The file Inversions_N2O_v2022.csv includes the anthropogenic N2O flux from managed lands for the four N2O 977 

inverse models. It includes 8 fields: years (from 1995 to 2020), country, value (unit: TgN2O/yr), sector ("ant" only, 978 

for anthropogenic), source, gas, observation ("in-situ" only, for in-situ-based), version ("N2O_ML_v2022" only). 979 

- The file lateral_CO2_v2022.csv includes the national lateral C flux from river and trade. 980 

- The file NGHGIs_v2022.csv includes the national inventory data collected from UNFCCC NGHGIs (unit: Gg/yr) 981 
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