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coordinated by the Global Carbon Project. The comparison framework uses transparent processing of the net ecosystem 43 

exchange fluxes of carbon dioxide (CO2) from inversions to provide estimates of terrestrial carbon stock changes over managed 44 

land that can be used to evaluate NGHGIs. For methane (CH4), and nitrous oxide (N2O), we separate anthropogenic emissions 45 

from natural sources based directly on the inversion results, to make them compatible with NGHGIs. Our global harmonized 46 

NGHGIs database was updated with inventory data until February 2023 by compiling data from periodical UNFCCC 47 

inventories by Annex I countries and sporadic and less detailed emissions reports by non-Annex I countries given by National 48 

Communications and Biennial Update Reports. For the inversion data, we used an ensemble of 22 global inversions produced 49 

for the most recent assessments of the global budgets of CO2, CH4 and N2O coordinated by the Global Carbon Project with 50 

ancillary data. The CO2 inversion ensemble in this study goes through 2021, building on our previous report from 1990 to 51 

2019, and includes three new satellite inversions compared to the previous study, and an improved managed land mask. As a 52 

result, although significant differences exist between the CO2 inversion estimates, both satellite and in-situ inversions over 53 

managed lands indicate that Russia and Canada had a larger land carbon sink in recent years than reported in their NGHGIs, 54 

while the NGHGIs reported a significant upward trend of carbon sink in Russia but a downward trend in Canada. For CH4 and 55 

N2O, the results of the new inversion ensembles are extended to 2020. Rapid increases in anthropogenic CH4 emissions were 56 

observed in developing countries, with varying levels of agreement between NGHGIs and inversion results, while developed 57 

countries showed a slow declining or stable trend in emissions. Much denser sampling of atmospheric CO2 and CH4 58 

concentrations by different satellites, coordinated into a global constellation, is expected in the coming years. The methodology 59 

proposed here to compare inversion results with NGHGIs can be applied regularly for monitoring the effectiveness of 60 

mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed for this study is 61 

publicly available at https://doi.org/10.5281/zenodo.13887128 (Deng et al., 2024). 62 

1 Introduction 63 

If modeled pathways align with Nationally Determined Contributions (NDCs) declared prior to COP26 (in 2021) until 2030 64 

and do not involve any subsequent increase in ambition, the projected global warming by 2100 would be 2.1-3.4°C (IPCC, 65 

2023). The global stocktake coordinated by the secretariat of the United Nations Framework Convention on Climate Change 66 

(UNFCCC) considers data from national greenhouse gas inventories (NGHGIs) to assess the collective climate progress to 67 

curb emissions. It is expected there will be differences in the quality of NGHGIs being reported to the UNFCCC (Perugini et 68 

al., 2021). UNFCCC Annex I Parties, which include all OECD (Organisation for Economic Co-operation and Development) 69 

countries and several EIT (Economies In Transition) already report annually their emissions following the same IPCC 70 

guidelines (IPCC 2006) in a common reporting format, with a time latency of roughly 1.5 years. In contrast, non-Annex I 71 

Parties, mostly developing and less developed countries, are currently not required to provide reports as regularly and as 72 

detailed as Annex I Parties and in a few cases use different IPCC Guidelines in their National Communications (NC) or 73 

Biennial Update Reports (BUR) submitted to the UNFCCC. Non-Annex I Parties are scheduled in 2024 to move to regular 74 
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and harmonized reporting of their emissions in the national inventory reports (NIRs) in the format of common reporting tables 75 

(CRTs), following the Paris Agreement’s enhanced transparency framework (ETF).  76 

The IPCC guidelines for NGHGIs encourage countries to use independent information to verify emissions and removals (IPCC, 77 

1997, 2006, 2019), such as comparisons with independently compiled inventory databases (e.g. IEA, CDIAC, EDGAR, 78 

FAOSTAT), or with atmospheric mole fraction measurements interpreted by atmospheric inversion models (see Section 6.10.2 79 

in IPCC (2019)). Such verification of ‘bottom-up’ national reports against ‘top-down’ atmospheric inversion results is not 80 

mandatory. However, a few countries (e.g. Switzerland, United Kingdom, New Zealand, and Australia) have already added 81 

inversions as a consistency check of their national reports. In our study, we utilized the latest global inversion results from the 82 

budget assessments of CO2, CH4, and N2O conducted by the Global Carbon Project (GCP), focusing on three ensembles of 83 

inversions with global coverage. Compared to our previous study (Deng et al., 2022), the CO2 inversion ensemble used in this 84 

study has been updated to the global CO2 budget of Friedlingstein et al. (2022) that includes nine CO2 inversions using mole 85 

fraction data from the surface network and/or retrieval products from the Greenhouse Gases Observing Satellite (GOSAT) and 86 

Orbiting Carbon Observatory-2 (OCO-2) satellites. The CH4 inversion ensemble and N2O inversion (Tian et al., 2023) 87 

ensemble used in this study are also extended to the 2020. As a result, the new ensembles cover up to 2021 for CO2, 2020 for 88 

CH4 and 2020 for N2O, compared to 2019, 2017 and 2016 respectively in our previous study (Deng et al., 2022), allowing us 89 

to track and analyze the most recent flux variations. 90 

Our framework to process the inversion data aims at making them comparable to inventories at countries or groups of countries 91 

scale (ie,with an area larger than the spatial resolution of atmospheric transport models typically used for inversions). 92 

Atmospheric inversions use a priori information for the spatial and temporal patterns of fluxes. Some inversions correct prior 93 

fluxes at the spatial resolution of their transport models to match atmospheric observations and use spatial error correlations 94 

(usually e-folding length scales) that tie the adjustment of fluxes from one grid cell to its neighbors at distances of tens to 95 

hundreds of kilometers. Other inversions adjust fluxes over coarse regions that are larger than the resolution of the transport 96 

model, implicitly assuming a perfect correlation of flux errors within these regions, causing an aggregation error (Kaminski et 97 

al., 2001). Thus, to minimize aggregation errors, the results of inversions are shown preferentially for selected large area 98 

emitter countries or large absorbers in the case of CO2. We have selected a different set of countries or groups of countries for 99 

each gas, according to their importance in the global emission budget. According to the median of inversion data we used in 100 

this study, selected countries collectively represent ~70% of global fossil fuel CO2 emissions, ~90% of global land CO2 sink, ～101 

60% of anthropogenic CH4 emissions, and ~55% of anthropogenic N2O emissions (Fig S1). To more robustly interpret global 102 

inversion results for comparison with inventories, we follow the same criterion and choose high-emitting countries covered (if 103 

possible) by atmospheric measurements, although most selected tropical countries have few or no atmospheric in-situ stations. 104 

Uncertainties are given by the spread among inversion models (min-max range given the small number of inversions), and the 105 

causes for discrepancies with inventories are analyzed systematically and on a case-by-case basis, considering both individual 106 

countries and specific greenhouse gases, for annual variations and for mean budgets over several years.  107 
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Based on the newly updated inversion results and inventory, and an improvement in the methodology framework proposed in 108 

the previous study (Deng et al., 2022), we specifically address the following questions: 1) how do inversion models compare 109 

with NGHGIs for the three gases?; 2) what are the plausible reasons for mismatches between inversions and NGHGIs?; 3) did 110 

the new maps of managed land masks in this study reduce the mismatch between the inversions and NGHGIs for CO2 and 111 

N2O?; 4) what independent information can be extracted from inversions to evaluate the mean values or the trends of 112 

greenhouse gas emissions and removals?; 5) does this information exhibit a good agreement with NGHGIs?; and 6) how do 113 

satellite-retrieval driven inversion models differ from the surface in-situ and flask sampling driven inversion model results? 114 

Sections 2 presents the updated global database of national emissions reports for selected countries and its grouping into sectors, 115 

the global atmospheric inversions used for the study, the processing of fluxes from these inversions to make their results as 116 

comparable as possible with inventories. The time series of inversions compared with inventories for each gas, with insights 117 

on key sectors for CH4 are discussed in Sections 3 to 5. The discussion (Section 6) focuses on the plausible reasons for 118 

mismatches between inversions and NGHGIs, comparison between inversion ensembles in this study and previous study, and 119 

different priors applied in the CH4 inversions. Finally, concluding remarks are drawn on how inversions could be used 120 

systematically to support the evaluation and possible improvement of inventories for the Paris Agreement. 121 

2 Material and methods  122 

2.1 Compilation and harmonization of national inventories reported to the UNFCCC 123 

All UNFCCC Parties shall periodically update and submit their national GHG inventories of emissions by sources and 124 

removals by sinks to the Convention parties. Annex I countries submit their NIRs in common reporting format (CRF) tables 125 

every year with a complete time series starting in 1990. Non-Annex I Parties are required to submit their NC roughly every 126 

four years after entering the Convention and submit BUR, every two years since 2014. Currently, there are in total 427 127 

submissions of NC and over 166 submissions of BUR (UNFCCC, 2021b, a) (Fig 1).  128 

 129 
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Figure 1. Numbers of non-Annex I parties for each submission round (as of February 28, 2023). The numbers in the middle of the dots 130 
denote the numbers of non-Annex I parties for each submission, while the black dots denote the total number of non-Annex I parties, the 131 
blue dots denote the numbers of non-Annex I parties who has submitted National Communications (NC), green dots for Biennial Update 132 
Reports (BUR), yellow dots for National Inventory Report (NIR), and purple dots for Technical Annex on REDD+ . The numbers after the 133 
NC and BUR denote the total number of submission reports. 134 
We collected NGHGIs data submitted to UNFCCC by February 28, 2023. For Annex I countries, data collection is 135 

straightforward, as their reports are provided as Excel files under a Common Reporting Format (CRF) until the year 2020 last 136 

accessed on February 28, 2023. For non-Annex I countries, the data were directly extracted from the original reports provided 137 

in Portable Document Format (PDF) last accessed on February 28, 2023. Data from successive reports for the same country 138 

were extracted, except when they relate to the same years, in which case only the latest version is considered. While Annex I 139 

countries are required to compile their inventory following IPCC 2006 guidelines and the subdivision between sectors 140 

established by the UNFCCC decision (dec. 24/CP.19), non-Annex I countries are increasingly adopting the IPCC 2006 141 

Guidelines, although some still utilize the older IPCC 1996 Guidelines, with different approaches and sectors. Consequently, 142 

the methods used and the reported sectors may differ among NC and BUR reports. 143 

 144 
Figure 2. Number of years covered by NGHGI reports (NC+BUR) in each non-Annex I country (as of February 28, 2023). Emissions 145 
from Greenland are reported by Denmark.  146 

2.2 Atmospheric inversions 147 

CO2 inversions 148 

Nine CO2 inversion systems from the 2022 Global Carbon Budget of the GCP (Friedlingstein et al., 2022) are used, including 149 

CarbonTracker-Europe (CTE) v2022 (van der Laan-Luijkx et al., 2017), Jena Carboscope v2022 (Rödenbeck et al., 2003), the 150 
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surface air-sample inversion from the Copernicus Atmosphere Monitoring Service (CAMS) v21r1 (Chevallier et al., 2005), 151 

the inversion from the CAMS Satellite FT21r2 (Chevallier et al., 2005), the inversion from the University of Edinburgh (UoE) 152 

v6.1b (Feng et al., 2016), the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) v2022.1 (Niwa et al., 153 

2022), CMS-Flux v2022 (Liu et al., 2021), GONGGA v2022 (Jin et al., 2023), and THU v2022 (Kong et al., 2022). A variety 154 

of transport models are used by these systems, which allows for representing a major driver factor behind differences in flux 155 

estimates based on atmospheric inversions, particularly their distribution over latitudinal bands. Among the nine inversions, 156 

four systems (CAMS Satellite FT21r2, GONGGA v2022, THU v2022, and CMS-Flux v2022) utilize satellite CO2 column 157 

retrievals from GOSAT and/or OCO-2, calibrated to the World Meteorological Organization (WMO) 2019 standards. CMS-158 

Flux additionally incorporates in-situ observed CO2 mole fraction records. The remaining five inversion systems (CAMS v21r1, 159 

CTE v2022, Jena Carboscope v2022, UoE v6.1b, and NISMON-CO2 v2022.1) solely rely on CO2 mole fractions that were 160 

observed in-situ or collected in flasks (Schuldt et al., 2021, 2022). The CO2 inversion records extend up to and including 2021. 161 

Their flux estimates are available at https://meta.icos-cp.eu/objects/GahdRITjT22GGmq_GCi4o_wy and details are 162 

summarized in Table 1.  163 

Table 1 | Atmospheric CO2 inversions used in this study (Friedlingstein et al., 2022)  164 

Inversion System Version Period Observation Transport Model 

CarbonTracker Europe (CTE): CTE2022_SiB4 (van 
der Laan-Luijkx et al., 2017) 

v2022 2001-2021 Ground-based 

Obspack GLOBALVIEW plus v7.0 and 
NRT_v7.2 

TM5 

Jena Carboscope sEXTocNEET (Rödenbeck et al., 
2003) 

v2022 1960-2021 TM3 

Copernicus Atmosphere Monitoring Service (CAMS) 
(Chevallier et al., 2005) 

v21r1 1979-2021 LMDZ v6 

The University of Edinburgh (UoE) (Feng et al., 
2016) 

v6.1b 2001-2021 GEOS-CHEM 

the NICAM-based Inverse Simulation for Monitoring 
CO2 (NISMON-CO2) (Niwa et al., 2022) 

v2022.1 1990-2021 NICAN-TM 



7 
 

CMS-Flux (Liu et al., 2021), v2022 2010-2021 Ground-based & ACOS-GOSAT v9r; 
OCO-2 v10 scaled to WMO2019  

GEOS-CHEM 

CAMS-Satellite (Chevallier et al., 2005) FT21r2 2010-2021 bias-corrected ACOS GOSAT v9 over 
land until August 2014 + bias- corrected 
ACO S OCO-2 v10 over land, both 
rescaled to WMO2019 

LMDZ v6 

THU (Kong et al., 2022) v2022 2015-2021 OCO-2 v10r data scaled to WMO2019  GEOS-CHEM 

GONGGA (Jin et al., 2023) v2022 2015-2021 OCO-2 v10r data scaled to WMO2019  GEOS-CHEM 

CH4 inversions 165 

The CH4 emissions come from the new ensemble of inversions (Saunois et al. 2024) from 2000 to 2020, using seven different 166 

inverse systems for a total nine inversions (Table 2). The inverse systems include: CarbonTracker-Europe CH4 (Tsuruta et al., 167 

2017), LMDZ-PYVAR (Yin et al., 2015; Zheng et al., 2018), CIF-LMDZ(Berchet et al., 2021), MIROC4-ACTM (Patra et al., 168 

2018; Chandra et al., 2021), NISMON-CH4 (Niwa et al., 2022), NIES-TM-FLEXPART (Maksyutov et al., 2021; Janardanan 169 

et al., 2024), and TM5-CAMS (Segers and Houweling, 2017). This ensemble of inversions gathers various chemistry transport 170 

models, differing in vertical and horizontal resolutions, meteorological forcing, advection (horizontal transport of air) and 171 

convection (vertical transport) schemes, and boundary layer mixing (detailed characteristics can be found in Table S11 in 172 

Saunois et al. 2024). Including these different systems is a conservative approach that allows to cover different potential 173 

uncertainties of the inversion, among them: model transport, set-up issues, and prior dependency. All inversions except two, 174 

use updated common prior emission maps for natural and anthropogenic prior emissions divided into 12 sectors, particularly 175 

the EDGAR v6 inventory for prior fossil fuel emissions (Crippa et al., 2021a extrapolated to Jan 1st, 2021), GFED for fires 176 

and ecosystem models for wetland emissions. During the production of the inversion simulations, GAINS inventory (Höglund-177 

Isaksson, 2013) was proposed to use another prior for fossil fuel sources, ) instead of using EDGAR v6 (see Supplementary 178 

Text 3 in Saunois et al, 2024). GAINS has higher fossil emissions, in particular over the US and a higher increase of fossil 179 

emissions over time in the US (Tibrewal et al., 2024). As Tibrewal et al. showed that inversions are strongly attracted to their 180 

priors, comparison between results with GAINS and EDGAR v6 priors is informative about how robust are inversions to their 181 

priors when they are used to ‘verify’ NGHGIs. Some inversions optimize emissions in groups of sectors, and others only 182 

provide total gridded emissions (MIROC4-ACTM and TM5-CAMS, details can be found in Table S10 in Saunois et al, 2024). 183 

For the latter, we computed the emission from each sector within each pixel based on the proportion of the prior fluxes. Such 184 
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processing can lead to significant uncertainties if not all sources increase or change at the same rate in a given region/pixel. 185 

The inversions assimilating surface stations mole fraction observations provide results since 2000, and those assimilating 186 

satellite observations from column CH4 measurements (XCH4) of the GOSAT satellite provide results since 2010, first full 187 

year of  GOSAT observations. Inversion results were gridded into 1° by 1° monthly emission maps and aggregated nationally 188 

using a country mask (Klein Goldewijk et al., 2017). 189 

Table 2 | Atmospheric CH4 inversions used in this study (Saunois et al, 2024) 190 

Inversion system Abbreviation Institution Observations Period 

Carbon Tracker-Europe CH4 CTE FMI Surface stations 2000-2020 

CIF-LMDz CIF-LMDz LSCE/CEA Surface stations 2000-2020 

LMDz-PYVAR PYVAR-LMDz LSCE/CEA GOSAT Leicester v7.2 2010-2020 

MIROC4-ACTM MIROC4-ACTM JAMSTEC Surface stations 2000-2020 

NISMON-CH4 NISMON-CH4 NIES/MRI Surface stations 2000-2020 

NIES-TM-FLEXPART (NTF) NIES NIES Surface stations 2000-2020 

NIES-TM-FLEXPART (NTF) NIES NIES Surface + GOSAT NIES L2 v02.95 2010-2020 

TM5-CAMS TM5 TNO/VU Surface stations 2000-2020 

TM5-CAMS TM5 TNO/VU GOSAT ESA/CCI v2.3.8 (combined 
with surface observations) 

2010-2020 
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N2O inversions  191 

Four N2O inversion systems from the updated GCP Nitrous Oxide Budget (Tian et al., 2023) are used: INVICAT (Wilson et 192 

al., 2014), PyVAR-CAMS (Thompson et al., 2014), MIROC4-ACTM (Patra et al., 2018, 2022) and GEOS-Chem (Wells et 193 

al., 2015). The N2O inversion results are updated up to 2020. 194 

Table 3 | Atmospheric N2O inversions used in this study (Tian et al., 2023)   195 

Inversion system Institution Period 

INVICAT (Wilson et al., 2014) Univ. Leeds 1995-2020 

PyVAR-CAMS (Thompson et al., 2014), NILU/LSCE 1995-2020 

MIROC4-ACTM (Patra et al., 2018, 2022) JAMSTEC 1997-2019 

GEOS-Chem (Wells et al., 2015) Univ. Minnesota 1995-2019 

Aggregating the gridded inversion results into national totals 196 

To obtain national annual-scale flux estimates, we aggregated the gridded flux maps of each inversion with various native 197 

resolutions following the methodology outlined in Chevallier (2021). This involved using the 0.08° x 0.08° land country mask 198 

of Klein Goldewijk et al. (2017) to calculate the fraction of each country in each inversion grid box.  199 

2.3 Processing of CO2 inversion data for comparison with NGHGIs 200 

Fossil fuel emissions re-gridding - managed land mask  201 

To analyze terrestrial CO2 fluxes, we subtracted the same fossil fuel emissions (including cement) of GridFEDv2022.2 (Jones 202 

et al., 2022) from the total CO2 flux of each inversion. This is equivalent to assuming perfect knowledge of fossil emissions, 203 

adding up to a global total of 9.7 GtC/yr for the year 2021. The dataset used national annual emissions estimates from the 2022 204 

global carbon budget (Friedlingstein et al., 2022) which uses the reported NGHGIs data from Annex I countries and are 205 

assumed to be broadly consistent with the non-Annex I countries. This assumption may lead to underestimating the uncertainty 206 

of terrestrial CO2 fluxes deduced from inversions. 207 
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As defined in the IPCC Guidelines for NGHGIs (IPCC, 2006), only CO2 emissions and removals from managed land are 208 

reported in NGHGIs as a proxy for human-induced effects (direct effects and indirect effects such as CO2 fertilization and 209 

nitrogen deposition). However, inversion models retrieve all CO2 fluxes (due to both direct and indirect effects, plus the natural 210 

interannual variability) over all lands. We thus retained inversions’ national estimates of the Net Ecosystem Exchange (NEE) 211 

CO2 flux (𝐹!"#$%	'(() over managed lands grid cells only (𝑀𝐿, here defined as all land except intact forests) because the fluxes 212 

over unmanaged land are not counted by NGHGIs. We use NEE from the definition of Ciais et al. (2020), representing all non-213 

fossil CO2 exchange fluxes between terrestrial surfaces and the atmosphere. Other work may use Net Biome Production (NBP) 214 

with a similar meaning. CO2 fluxes over unmanaged lands were excluded from the terrestrial CO2 flux totals that will be 215 

compared with NGHGIs, proportional to their presence in each inversion grid box. The new maps of non-intact forests are 216 

compiled by Grassi et al. (2023). These maps include official country-managed forest and other managed land areas for Canada 217 

and Brazil used for their NGHGIs, and the intact forest map (Potapov et al., 2017) as a substitute for unmanaged land where 218 

country-based information is not available. For Russia, we used non-intact forest maps for each province with thresholds 219 

adjusted to match the official managed land areas from Russia's NIRs, and assumed that all grasslands were managed. This 220 

approach assumes that non-intact forest areas can serve as a reasonably good proxy for managed forests reported in the 221 

NGHGIs (Grassi et al., 2021, 2023). It is important to note that this approach is somewhat arbitrary, as highlighted in previous 222 

studies (Ogle et al., 2018; Chevallier, 2021; Grassi et al., 2021). However, in the absence of a machine-readable definition of 223 

managed plots in many NGHGIs, there is currently no better alternative available.  224 

Adjusting CO2 fluxes due to lateral carbon transport by crop and wood products trade and by rivers  225 

In addition to the extraction of fossil CO2 flux and managed land CO2 flux, there are CO2 fluxes that are part of 𝐹!"#$%	'(( but 226 

are not counted by NGHGIs. These fluxes are induced by (i) soils to rivers to oceans carbon export (𝐹!")#%*)+) which has an 227 

anthropogenic and a natural component (Regnier et al., 2013), and (ii) net anthropogenic export of crop and wood products 228 

across each country’s boundary (𝐹,$-
.)/0	-),1*and 𝐹,$-2//1	-),1* ). The magnitudes of these CO2 fluxes are different between 229 

countries, and values from the selected countries are presented in Fig S2. We assume that NGHGIs include CO2 losses from 230 

fire (wildfire and prescribed fire) and other disturbances (wind, pests) and from domestic harvesting, as recommended by the 231 

IPCC reporting guidelines (IPCC, 2006, 2019) (although some countries, such as Canada and Australia exclude some 232 

emissions from these disturbances, and the subsequent removals from the same areas (Grassi et al., 2023)). The adjusted 233 

inversion NEE that can be compared with inventories, 𝐹,13#$%	'((, is given by: 234 

𝐹,13#$%	'((= 𝐹!"#$%	'((- 𝐹!")#%*)+ - 𝐹,$-
.)/0	-),1*- 𝐹,$-2//1	-),1* 			⇔  𝐹,$-4$5$# ,      (1) 235 

where the sign ⇔ means ‘compared with’, 𝐹,$-4$5$#  is the non-fossil part of the anthropogenic CO2 flux from NGHGIs, 𝐹-/-)#%*)+ 236 

is the sum of the natural and anthropogenic CO2 flux on land from CO2 fixation by plants that is leached as carbon via soils 237 

and channeled to inland waters to be exported to the ocean or to another country. All countries export river carbon, but some 238 

countries also receive river inputs, e.g., Romania receives carbon from Serbia via the Danube River. We estimated the lateral 239 
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carbon export by rivers minus the imports from rivers entering each country, including dissolved organic carbon, particulate 240 

organic carbon and dissolved inorganic carbon of atmospheric origin distinguished from lithogenic, by using the data and 241 

methodology described by Ciais et al. (2021). Data are from Mayorga et al. (2010) and Hartmann et al. (2009) and follow the 242 

approach of Ciais et al. (2021) proposed for large regions. We also extracted the lateral flux by rivers over the managed land 243 

by using the same methodology as inversion CO2 flux. Thus, in a country that only exports river carbon to the ocean, the 244 

amount of carbon exported is equivalent to an atmospheric CO2 sink, denoted as 𝐹!")#%*)+ as in eq. (1), thus ignoring burial, 245 

which is a small term. Over a country that receives carbon from rivers flowing into its territory, a small national CO2 outgassing 246 

is produced by a fraction of this imported flux. In that case, we assumed that the fraction of outgassed to incoming river carbon 247 

is equal to the fraction of outgassed to soil-leached carbon in the RECCAP2 region to which a country belongs, estimated with 248 

data from Ciais et al. (2021). 249 

𝐹,$-
.)/0	-),1*	is the sum of CO2 sinks and sources induced by the trade of crop products. This flux was estimated from the annual 250 

trade balance of crop commodities calculated for each country from data from the United Nations Statistics Division of the 251 

Food and Agriculture Organization (FAOSTAT) combined with the carbon content values of each commodity (Xu et al., 2021; 252 

FAO, 2024). All the traded carbon in crop commodities is assumed to be oxidized as CO2 in one year, neglecting stock changes 253 

of products, and the fraction of carbon from crop products going to waste pools and sewage waters after consumption, thus 254 

not necessarily oxidized to atmospheric CO2. 𝐹,$-2//1	-),1* is the sum of CO2 sinks and sources induced by the trade of wood 255 

products (Zscheischler et al., 2017). Here, we followed Ciais et al. (2021) who used a bookkeeping model to calculate the 256 

fraction of domestically produced and imported carbon in wood products that are oxidized in each country during subsequent 257 

years, with product lifetimes defined by Mason Earles et al (2012) and encompassing all products (including roundwood and 258 

processed products). The underlying assumption in estimating CO2 fluxes from wood harvest is that the emissions from 259 

domestically harvested wood, in addition to imported wood minus exported wood that is not allocated to wood product pools, 260 

are released into the atmosphere during the year of harvest. Conversely, wood allocated to wood product pools is gradually 261 

released into the atmosphere over time, based on their respective lifetimes. Domestic harvest is assumed to be balanced by an 262 

atmospheric CO2 sink of equivalent magnitude, which is not necessarily the case given that harvest is rarely in equilibrium 263 

with forest increment, but inversions NEE will correct for this imbalance in our results, and can thus be compared with 264 

NGHGIs. We included in the 𝐹,$-
.)/0	-),1* flux the emissions of CO2 by domestic animals consuming specific crop products 265 

delivered as feed. On the other hand, emissions of CO2 from grazing animals and the decomposition of their manure are 266 

supposed to occur in the same grid box where grass is grazed, so that the CO2 net flux captured by an inversion is comparable 267 

with grazed grasslands' carbon stock changes of inventories. Emissions of reduced carbon compounds (VOCs, CH4, CO) are 268 

not included in this analysis (see Ciais et al. (2021) for a discussion of their importance in inversion CO2 budgets). 269 

In summary, the purpose of the adjustment of eq. (1) is to make inversion output comparable to the NGHGIs that do not include 270 

𝐹!")#%*)+ , 𝐹,$-
.)/0	-),1*  and 𝐹,$-2//1	-),1* . The UNFCCC accounting rules (IPCC, 2006) assume that all the harvested wood 271 

products are emitted in the territory of a country that produces them, which is equivalent to ignoring 𝐹,$-2//1	-),1*as a national 272 
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sink or source of CO2, hence the need to remove 𝐹,$-2//1	-),1* from inversion NEE. The adjusted inversion fluxes from eq. (1) 273 

depict the national CO2 stock change which match better the carbon accounting system boundaries of UNFCCC NGHGIs. In 274 

the following, we will only discuss adjusted inversion CO2 fluxes (𝐹,13#$%	'((), but for simplicity call them “inversion fluxes”.  275 

2.4 Processing of CH4 inversions for comparison with national inventories 276 

Most atmospheric inversions derive total net CH4 emissions at the surface as it is difficult for them to disentangle overlapping 277 

emissions from different sectors at the pixel/regional scale based on atmospheric CH4 observations only. However, five of the 278 

seven inverse systems solve for some source categories owing to different spatio-temporal distributions between the sectors. 279 

For each inversion, monthly gridded posterior flux estimates were provided at 1°x1° grid resolution for the net flux at the 280 

surface (𝐸$*-#$%), the soil uptake at the surface (𝐸+/#6#$% ), the total emission at the surface (𝐸-/-#$%)  and five emitting ‘super sectors’ 281 

which regroup several IPCC sectors: Agriculture & Waste (𝐸789#$% ), Fossil Fuel (𝐸::#$%), Biomass & Biofuel Burning (𝐸;;#$%), 282 

Wetlands (𝐸9*-#$% ), and Other Natural (𝐸<-=#$% ) emissions. Considering the soil uptake as a ‘negative source’ given separately, the 283 

following equations apply: 284 

𝐸$*-#$% = 𝐸-/-#$% + 𝐸+/#6#$% 	= 𝐸789#$% 	+ 𝐸::#$% 	+ 𝐸;;#$% 	+ 𝐸9*-#$% 	+ 𝐸<-=#$% +	𝐸+/#6#$% 	      (2) 285 

For inversions solving for net emissions only, the partition to source sectors was created based on using a fixed ratio of sources 286 

calculated from prior flux information at the pixel scale. For inversions solving for some categories, a similar approach was 287 

used to partition the solved categories to the five aforementioned emitting sectors. Such processing can lead to significant 288 

uncertainties if not all sources increase or change at the same rate in a given region/pixel. National values have been estimated 289 

using the country land mask described in the CO2 section, thus offshore emissions are not counted as part of inversion results 290 

unless they are in a coastal grid cell. 291 

In our previous study (Deng et al., 2022), four methods were proposed to separate CH4 anthropogenic emissions from 292 

inversions  (𝐸7$-=#$% ) to compare them with national inventories (𝐸7$-=$# ) aiming to discuss the uncertainties in anthropogenic 293 

CH4 emissions associated with the chosen separation methods. These four methods include: (1) summing prior estimates based 294 

on inversions for anthropogenic sectors (method 1); (2) subtracting natural emissions from total fluxes (method 2); and (3) 295 

subtracting natural emissions derived from other bottom-up assessments from the total inversion flux (methods 3/1 and 3/2, 296 

differing only in the bottom-up wetland CH4 data used). The calculations of anthropogenic emissions by each method were 297 

performed separately for GOSAT inversions and in-situ inversions. However, the uncertainty from the separation method is 298 

generally much smaller than the variability between different inversion models (see Deng et al. (2022) Fig 9). Therefore, we 299 

apply only one method in this study which consists of using inversion partitioning as defined in Saunois et al. (2020): 300 

𝐸7$-=#$% = 𝐸789#$% 	+ 𝐸::#$% 	+ 𝐸;;	#$% 	−	𝐸2#615#)*+	;> ⇔ 𝐸7$-=$# 	       (3) 301 

This method has some uncertainties. First, the partitioning relies on prior fractions within each pixel, and second, emissions 302 

from wildfires are counted for in the Biomass and Biofuel burning (𝐵𝐵) inversion category while they are not necessarily 303 

reported in NGHGIs. The BB inversion category includes methane emissions from wildfires in forests, savannahs, grasslands, 304 
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peats, agricultural residues, and the burning of biofuels in the residential sector (stoves, boilers, fireplaces). Therefore, we 305 

subtracted bottom-up (𝐵𝑈) emissions from wildfires (𝐸2#615#)*+	;> ) based on the GFEDv4 dataset (van Wees et al., 2022) using 306 

their reported dry matter burned and CH4 emission factors. Because the GFEDv4 dataset also reports specific agricultural and 307 

waste fire emissions data, we assumed that those fires (on managed lands) are reported by NGHGIs, so they were not counted 308 

in 𝐸2#615#)*+;> . Figure S3 presents a comparison between our adjusted BB flux and the wood fuel emissions reported by Flammini 309 

et al. (2023). This comparison highlights the broader scope and definition of our adjusted BB flux, illustrating the differences 310 

in emissions estimation methodologies. 311 

2.5 Processing of N2O inversions for comparison with inventories 312 

We subtracted estimates of natural N2O sources from the N2O emission budget (𝐸-/-#$%) of each inversion, to provide inversions 313 

of anthropogenic emissions (𝐸,$-#$%) that can be compared with national inventories (𝐸,$-$# ):  314 

𝐸,$-#$%= 𝐸!"	#$%- 𝐸$,-
,?  -		𝐸2#615#)*+	@:(A ⇔  𝐸,$-$#         (4) 315 

Here, the natural N2O sources include natural emission from freshwater systems ( $,-
,? ) and natural emissions from wildfires 316 

( ,$-
$# ). 317 

In our previous study, intact forest grid cells (assumed unmanaged) from Potapov et al. (2017) and lightly grazed grassland 318 

areas from Chang et al. (2021) were removed from the gridded N2O emissions in proportion to their presence in each inversion 319 

grid box. Here we used the new managed land mask defined in Section 2.3 to filter gridded N2O emissions from inversions to 320 

obtain 𝐸!"	#$%. We verified that the inversion grid box fractions classified as unmanaged do not contain point source emissions 321 

from the industry, energy, and diffuse emissions from the waste sector, to make sure that we do not inadvertently remove 322 

anthropogenic sources by masking unmanaged pixels. From the EDGARv4.3.2 inventory (Janssens-Maenhout et al., 2019), 323 

we found that N2O from wastewater handling covers a relatively large area that might be partly located in unmanaged land. 324 

But the corresponding emission rates are more than 1 order of magnitude smaller than those from agricultural soils. For other 325 

sectors, only very few of the unmanaged grid boxes contain point sources, and none of them have an emission rate that is 326 

comparable with agricultural soils (managed land). Thus, our assumption that emissions from these other anthropogenic sectors 327 

are primarily over managed land pixels is solid (other sectors include: the power industry; oil refineries and transformation 328 

industry; combustion for manufacturing; aviation; road transportation no resuspension; railways, pipelines, off-road transport; 329 

shipping; energy for buildings; chemical processes; solvents and products use; solid waste incineration; wastewater handling; 330 

solid waste landfills).  331 

The flux 𝐸$,-
,? is the natural emission from freshwater systems given by a gridded simulation of the DLEM model (Yao et al., 332 

2019) describing pre-industrial N2O emissions from N leached by soils and lost to the atmosphere by rivers in the absence of 333 

anthropogenic perturbations (considered as the average of 1900-1910). Natural emissions from lakes were estimated only at a 334 

global scale by Tian et al. (2020), and represent a small fraction of rivers’ emissions. Therefore, they are neglected in this 335 

study. The flux 𝐸2#615#)*+	@:(A  is based on the GFED4s dataset (van Wees et al., 2022) using their reported dry matter burned and 336 

删除了: Flammi337 
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N2O emission factors. Because the GFED dataset reports specific agricultural and waste fire emissions data, we assume that 338 

those fires (on managed lands) are reported by NGHGIs so they were not counted in 𝐸2#615#)*+@:(A  just like for CH4 emissions. 339 

Note that there could also be a background natural N2O emission from natural soils over managed lands (𝐸B,$,8*1	6,$1+/#6 ) which 340 

is not necessarily reported by NGHGIs. We did not try to subtract this flux from managed land emissions because we assumed 341 

that, after a land use change from natural to fertilized agricultural land, background emissions decrease and become very small 342 

compared to N-fertilizers induced anthropogenic emissions. In a future study, we could use for 𝐸	B,$,8*1	6,$1+/#6  the estimate 343 

given by simulations of pre-industrial N2O emissions from the NMIP ensemble of dynamic vegetation models with carbon-344 

nitrogen interactions (number of models; n = 7). Namely, their simulation S0 in which climate forcing is recycled from 1901-345 

1920; CO2 is at the level of 1860, and no anthropogenic nitrogen is added to terrestrial ecosystems (Tian et al., 2019).  346 

Another important point to ensure a rigorous comparison between inversion and NGHGI data is whether anthropogenic indirect 347 

emissions (AIE) of N2O are reported in NGHGI reports. This is not always the case even though UNFCCC parties are required 348 

to report these in their NGHGIs according to the IPCC guidelines. For example, South Africa’s BUR3 did not report indirect 349 

N2O emissions due to the lack of activity data. AIE arise from anthropogenic nitrogen from fertilizers leached to rivers and 350 

anthropogenic nitrogen deposited from the atmosphere to soils. AIEs represent typically 20% of direct anthropogenic emissions 351 

and cannot be ignored in a comparison with inversions. For Annex I countries, AIEs are systematically reported, generally 352 

based on emission factors since these fluxes cannot be directly measured, and we assumed that indirect emissions only occur 353 

on managed land. For non-Annex I countries, we checked manually from the original NC and BUR documents if AIE was 354 

reported or not by each non-Annex I country. If AIEs were reported by a country, they were used as such to compare NGHGI 355 

data with inversion results, and grouped into the agricultural sector. If they were not reported, or if their values were outside 356 

plausible ranges, AIE were independently estimated by the perturbation simulation of N fertilizers leaching, CO2 and climate 357 

on rivers and lakes fluxes in the DLEM model (Yao et al., 2019), and by the perturbation simulation of atmospheric nitrogen 358 

deposition on N2O fluxes from the NMIP model ensemble (Tian et al., 2019). 359 

2.6 Grouping sectors for comparison  360 

The bottom-up NGHGIs are compiled based on activity data (statistics) following the IPCC 1996/2006 Guidelines (IPCC, 361 

1997, 2006) with detailed information on subsectors. However, the top-down inversions can only distinguish between very 362 

few groups of sectors at most. Thus, in this study, we aggregated NGHGI sectors into some ‘super sectors’ to make inversions 363 

and inventories comparable for each GHG (Table 2). For CO2, the inversions are divided into two aggregated super-sectors: 364 

fossil fuel and cement CO2 emissions, and adjusted net land flux. Inversions use a prior gridded fossil fuel dataset as 365 

summarized in Section 1.2, thus, in this study, we compare only the net land flux between inversions and inventories. To 366 

calculate the net land flux over managed lands from NGHGIs, we subtracted fossil emissions from the IPCC/CRF 1. Energy 367 

and 2. Industrial Processes (or 2. Industrial Processes and Product Use) sectors from the Total GHG emissions including 368 

LULUCF/LUCF (or Total national emissions and removals) sector. For CH4, we compare inversions and inventories based on 369 
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three super sectors, including Fossil, Agriculture and Waste, and Total Anthropogenic. To compare with NGHGIs, we group 370 

the IPCC/CRF sectors of 1. Energy and 2. Industrial Processes (or 2. Industrial Processes and Product Use) by excluding 371 

Biofuel Burning (reported under 1. Energy sector) into the super sector of Fossil; we group sectors of 4. Agriculture (or 3. 372 

Agriculture) and 6. Waste (or 5. Waste) into the super sector of Agriculture and Waste; and we aggregate anthropogenic flux 373 

from Fossil and Agriculture and Waste and Biofuel Burning into Anthropogenic. For N2O, we grouped the NGHGI sectors 374 

into Anthropogenic flux being the sum of 1. Energy + 2. Industrial Processes (or 2. Industrial Processes and Product Use) + 375 

4. Agriculture (or 3.  Agriculture) + 6. Waste (or 5. Waste) + Anthropogenic Indirect Emissions. 376 

Table 2. Grouping of NGHGIs sectors into aggregated ‘super-sectors’ for comparisons with inversions. * Biofuel burning is likely not 377 
included in NGHGIs but under 1.A.4 Other Sectors if it is reported. ** Field burning of agricultural residues is reported in Annex I countries 378 
under the Agricultural sector. Note that indirect N2O emissions are reported by Annex I countries but not systematically by non-Annex I 379 
ones 380 

Gas Super-Sectors Inversions NGHGIs (IPCC/CRF) 

CO2 Net Land Flux 
 (adjusted) 

Total - Fossil - lateral C Non-Annex I (IPCC): Total GHG emissions including 
LULUCF/LUCF - (Energy + Industrial Processes) 

Annex I (CRF): Total national emissions and 
removals) - (Energy + Industrial Processes and 
Product Use) 

CH4 Anthropogenic Fossil + Agriculture & Waste 
+ Biofuel Burning 

Energy + Industrial Processes + Agriculture + Waste + 
Biofuel Burning* 

Fossil Fossil Energy + Industrial Processes - Biofuel Burning* 

Agriculture and Waste Agriculture & Waste Agriculture + Waste - Field burning of agricultural 
residues** 

N2O  Anthropogenic Total - pre-industrial inland 
waters 

Agriculture + Waste direct + anthropogenic indirect 
emissions (AIE = anthropogenic N leached to inland 
waters + anthropogenic N deposited from atmosphere) 
+ energy and industry 
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2.7 Choice of example countries for analysis  381 

For the analysis, we selected 12 countries (or groups of countries) based on specific criteria for each aggregated sector. Firstly, 382 

each chosen country had to possess a sufficiently large land area, as the limitations of coarse-spatial-resolution inversions 383 

make it difficult to reliably estimate GHG budgets for smaller countries. Additionally, it was preferable for the selected 384 

countries to have some coverage provided by the in situ global network of monitoring stations.  385 

For CO2, we focus on the land CO2 fluxes of large fossil fuel CO2 emitters. Although inversions do not allow to verify fossil 386 

emissions in these countries as they are used as a fixed prior map of emissions, it is crucial to compare the magnitude of 387 

national land CO2 sinks with fossil fuel CO2 emissions in those large emitters. It is important to note that fitting net fluxes to 388 

changes in atmospheric CO2 and then subtracting the prior fossil fuel (FF) fluxes can result in errors in the residual values, 389 

which are typically attributed exclusively to the sum of all non-FF fluxes. Additionally, we included two large boreal forested 390 

countries (Russia - RUS and Canada - CAN), two tropical countries with large forest areas (Brazil - BRA and the Democratic 391 

Republic of Congo - COD), two large countries with ground-based stations (Mongolia - MNG and Kazakhstan - KAZ), and 392 

two large dry Southern Hemisphere countries also with high rankings in fossil fuel CO2 emissions (South Africa - ZAF and 393 

Australia - AUS), both of which possess atmospheric stations to constrain their land CO2 flux.  394 

For CH4, we first ranked countries (or groups of countries) based on their total anthropogenic, fossil, and agricultural emissions. 395 

This study includes China (CHN), India (IND), the United States (USA), the European Union (EUR), Russia (RUS), Argentina 396 

(ARG) and Indonesia (IDN), all of which are among the top emitters of both fossil fuel and agricultural CH4 and possess large 397 

areas. Criteria of large land areas and the presence of atmospheric stations is crucial for in situ inversions. The advantage of 398 

utilizing GOSAT in CH4 atmospheric inversions is its ability to provide observations over countries where surface in-situ data 399 

are sparse or absent, such as in the tropics. This allows us to consider countries with limited or few ground-based observations. 400 

Small countries were excluded due to the coarse spatial resolution. However, among the selected countries, Venezuela, with 401 

an area of 916,400 km2, was chosen specifically for the analysis of CH4 emissions. Despite being relatively small, Venezuela 402 

is a large producer of oil and gas, potentially allowing for inversions using GOSAT satellite observations to constrain its 403 

emissions. In major oil- and gas-extracting countries that have negligible agricultural and wetland emissions like Kazakhstan 404 

(KAZ), grouped in this study with Turkmenistan (TKM) into KAZ&TKM; Iran (IRN); and Persian Gulf countries (GULF), 405 

fossil emissions should be easier to separate by inversions and thus to be compared with NGHGIs. 406 

For N2O, we selected the top 12 emitters based on the NGHGIs reports. Anthropogenic N2O emissions in most of these 407 

countries are predominantly driven by the agricultural sector, which accounts for a share (including indirect emissions) ranging 408 

from 6% in Venezuela (VEN) to 95% in Brazil (BRA) of their total NGHGIs emissions.  409 

Together, the selected countries (or groups of countries) with a different selection for each gas, account for more than 90% of 410 

the global land CO2 sink, 60% of the global anthropogenic CH4 emissions (around 15% of fossil fuel emissions and 411 

approximately 40% of agriculture and waste emissions separately), and 55% of the global anthropogenic N2O emissions, as 412 

estimated by the NGHGIs. 413 
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Table 3. Lists of countries or groups of countries are analyzed and displayed in the result section for each aggregated sector. 414 
Argentina (ARG), Australia (AUS), BRA (Brazil), Bangladesh (BGD), Canada (CAN), China (CHN), Columbia (COL), Democratic 415 
Republic of the Congo (COD), Indonesia (IDN), India (IND), Iran (IRN), European Union (EUR), Kazakhstan (KAZ), Mexico (MEX), 416 
Mongolia (MNG), Nigeria (NGA), Pakistan (PAK), Russia (RUS), South Africa (ZAF), Sudan (SDN), Thailand (THA), United States (USA), 417 
Venezuela (VEN), GULF = Saudi Arabia + Oman + United Arab Emirates + Kuwait + Bahrain + Iraq + Qatar, KAZ&TKM = Kazakhstan 418 
+ Turkmenistan. For CH4, acronyms underlined denotes the countries appear in both Anthropogenic and Fossil or Agriculture and Waste 419 
sectors. 420 

Gas Super Sector Country List 

CO2  Net Land Flux AUS, BRA, CAN, CHN, COD, EUR, IND, KAZ, MNG, RUS, USA, ZAF 

CH4  Anthropogenic ARG, AUS, BRA, CHN, EUR, IDN, IND, IRN, MEX, PAK, RUS, USA 

Fossil CHN, EUR, GULF, IDN, IND, IRN, KAZ&TKM, MEX, NGA, RUS, USA, 
VEN  

Agriculture and Waste ARG, BGD, BRA, CHN, EUR, IDN, IND, MEX, PAK, RUS, THA, USA 

N2O  Anthropogenic AUS, BRA, CHN, COD, COL, EUR, IDN, IND, MEX, SDN, USA, VEN 
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3 Results for net land CO2 fluxes 421 

 422 
Figure 3 | Net land CO2 fluxes (unit: TgC yr-1) during 1990-2021 from China (CHN), United States (USA), European Union 423 

(EUR), Russia (RUS), Canada (CAN), Kazakhstan (KAZ), Mongolia (MNG), India (IND), Brazil (BRA), Democratic 424 

Republic of the Congo (COD), South Africa (ZAF), and Australia (AUS). By convention, CO2 removals from the atmosphere 425 

are counted negatively, while CO2 emissions are counted positively. The black dots denote the reported values from NGHGIs. 426 

The light green color denotes the in-situ-alone CO2 inversion (n=5) set while the dark green color denotes the set that uses 427 

satellite data (n=4). The green lines denote the median of land fluxes over managed land of CO2 inversions, after adjustment 428 

of CO2 fluxes from lateral transport by rivers, crop, and wood trade. When all inverse models within the inversion sets (in-situ: 429 

n=5; satellite: n=4) have available data for the same time interval, their median values are depicted as solid green lines. 430 

Otherwise, when the inversion sets have incomplete inverse models within the time interval (in-situ: n<5; satellite: n<4), their 431 

median values are represented as dashed green lines. Besides, before 2015, only GOSAT was available for the 2 of 4 satellite-432 

based inversions, until September 2014 when the OCO-2 record started. The shading area denotes the min-max range of 433 

inversions. The purple dashed lines denote the median of inversions presented by the previous study (Deng et al., 2022).  434 

 435 

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标



19 
 

Fig 3 presents the time series of land-to-atmosphere CO2 fluxes for the selected countries listed in Table 2. The median of 436 

inversions across the 12 countries shows significant interannual variability, reflecting the impact of climate variability on 437 

terrestrial carbon fluxes and annual variations of land-use emissions. In this paper, for inversion results covering a time interval, 438 

we present the data as mean ± standard deviation, where the mean is the multi-year average of the median flux values from the 439 

inversion models, and the standard deviation represents the interannual variability.  440 

The adjustments of lateral CO2 flux generally tend to lower land carbon sinks or increase land carbon emissions, especially in 441 

China (CHN), United States (USA), European Union (EUR), Russia (RUS), Canada (CAN), India (IND), and Brazil (BRA). 442 

In these countries, adjusting inversions by CO2 fluxes induced by river carbon transport and by the trade of crop and wood 443 

products tends to lower CO2 sinks, especially for large crop exporters like the USA and CAN. The adjusted net lateral transport 444 

fluxes for these countries are 48 (CHN), 143 (USA), 86 (EUR), 63 (RUS), 72 (CAN), 75 (IND), and 145 (BRA) TgC/yr, which 445 

represent 20%, 38%, 48%, 11%, 41%, 94%, and 60% of the managed land CO2 fluxes before lateral transport adjustments, 446 

respectively. However, even with these adjustments, in countries of temperate latitudes, the median values of the five in-situ-447 

alone inversion ensemble all indicate a net carbon sink during the 2010s, such as CHN with a sink of 180 ± 100 TgC/yr, USA 448 

(210 ± 180 TgC/yr), EUR (90 ± 50 TgC/yr), RUS (490 ± 100 TgC/yr) and CAN (110 ± 40 TgC/yr). In CHN, despite only 5 449 

reported values to UNFCCC, NGHGIs show a good agreement with the inversion results, with both NGHGIs and inversions 450 

exhibiting an overall increase in carbon sink over the study period. However, during 2015-2021, the median values of the 451 

satellite-based inversion ensemble show a higher carbon sink of 320 ± 60 TgC/yr than those from in-situ inversion results (220 452 

± 50 TgC/yr) in CHN. In IND, there are also only five reported estimates from the NGHGIs. The in-situ inversion results 453 

indicate that India exhibited fluctuations between being a carbon source and a carbon sink during the period of 2001-2014 (40 454 

± 70 TgC/yr). During 2015-2019, the in-situ inversion results in IND show a median carbon sink of 65 ± 20 TgC/yr, however, 455 

the median reverted to being a carbon source of 90 TgC/yr (ranging from a sink of 350 to a source of 260) in 2020. In contrast, 456 

the median values of satellite-based inversion ensemble indicate a carbon source of 65 ± 64 TgC/yr during 2015-2021 in IND. 457 

As Annex I countries, USA, EUR, RUS, CAN, and Kazakhstan (KAZ) have continuously reported annual NGHGIs since 1990. 458 

The NGHGIs reported values for the USA and CAN indicate a decline trend (Mann-Kendall Z=-0.6, p<0.01) of carbon sinks 459 

by an annual average rate of 0.7 TgC/yr2 and 0.5 TgC/yr2. Like in Deng et al. 2022, we found that the carbon sink of Canada’s 460 

managed land is significantly larger (-130 ± 50 TgC/yr over 2001-2021 from in-situ inversions) than the NGHGIs reports (5 ± 461 

4 TgC/yr over 2001-2021). Part of this difference could be due to the fact that Canada decides in its inventory not to report 462 

fire emissions as they are considered to have a natural cause. Doing so, Canada also excludes recovery sinks after burning and 463 

those recovery sinks could surpass on average fire emissions, although remote sensing estimates of post fire biomass 464 

changes suggest that fire emissions have exceeded regrowth on average in Western Canada 465 

and Alaska until ≈ 2010 (Wang et al., 2021). One reason for the difference may be that the NGHGI used old growth 466 

curves for forests, potentially underestimating the actual forest growth. Another reason for the difference may be shrubland 467 

and natural peatland carbon uptake and possibly an underestimated increase of soil carbon in the national inventory. For the 468 
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USA we have a good agreement between inversions (-290 ± 180 TgC/yr for in-situ over 2001-2021) and the NGHGIs data (-480 

220 ± 10 TgC/yr over 2001-2021) with the inversion showing much more interannual variability, the US being a net source of 481 

carbon in the years 2011, 2015 and 2016 from the median of in-situ inversons. The lower variability in the NGHGIs data 482 

reflects the 5-years averaging of C stock changes by the national forest inventory. In EUR, the new in-situ inversion ensemble 483 

gives a lower carbon sink than the previous one (red line in Fig 3, see discussion in section 6.1), now being in good agreement 484 

(-80 ± 60 TgC/yr) with NGHGIs (-85 ± 10 TgC/yr) over 2001-2021. The OCO-2 satellite inversions give a higher sink than 485 

in-situ inversions by -200 ± 80 TgC/yr, possibly because the in-situ surface network does not cover Eastern European countries 486 

which have a larger NEE than Western European ones, whereas OCO-2 data have  a more even coverage of the continent, as 487 

discussed by Winkler et al. (2023) ( see their Fig. 2 showing that OCO-2 inversions have a similar NEE than in-situ ones in 488 

Western Europe but a larger mean NEE uptake in Eastern Europe). 489 

In contrast, the NGHGIs in RUS reports a rapid trend of increasing sink by a rate of 4.6 TgC/yr2 (Mann-Kendall Z=0.69, 490 

p<0.01) during 1990-2020, supported by the significant strong correlation with the medians of in-situ inversion ensemble 491 

(ρ=0.7,  p<0.01) during 2001-2020. However, the median values for both the in-situ (480 ± 100 TgC/yr) and satellite-based 492 

(450 ± 90 TgC/yr) inversion ensemble over RUS indicate larger larger land carbon sinks than those reported in the NGHGIs 493 

(180 ± 10 TgC/yr) during 2011-2020. For KAZ, the NGHGIs suggest that managed land is a slight carbon source (6 ± 5 TgC/yr) 494 

during 2000-2020. However, the median values for both satellite-based and in-situ inversion ensemble indicate a carbon sink 495 

of 50 ± 30TgC/yr and 60 ± 30TgC/yr, respectively, during 2015-2021 and 2001-2021. It is worth noting that the satellite-based 496 

inversion results for USA, CAN, and KAZ all exhibit shifts in their fluxes between 2010 and 2015 compared to the results 497 

after 2015. This is attributed to the use of different satellite data and the number of different ensembles during these periods. 498 

Before 2015, only GOSAT was available, and only 2 out of 4 systems were available. After the OCO-2 record started, in 499 

September 2014, the satellite-driven inversion set only assimilated OCO-2. This indicates that inversion results based on 500 

GOSAT data are not consistent at the country scale with OCO-2 inversions. As a result, we can compare OCO-2 inversions 501 

with NGHGIs since 2015, but not the trends from inversions using GOSAT and/or OCO-2 inversions since 2009.  502 

In BRA, both the NGHGIs reports (240 ± 170 TgC/yr during 1990-2016) and inversion results (in-situ: 350 ± 190 TgC/yr 503 

during 2001-2021; satellite-based: 280 ± 120 TgC/yr during 2015-2021) indicate that the country has been a net carbon source 504 

since 1990. The carbon source from managed land in Brazil increased from the late 1990s, reaching a peak around 2005 505 

according to NGHGIs (677 TgC/yr). This evolution is confirmed by in-situ inversions with a source peaking in 2005 (~650 506 

TgC/yr). The net carbon source from inversions then decreased from 2005 to 2011, which is consistent with the observed 507 

reduction in deforestation due to forest protection policies implemented by the Brazilian government. This is an encouraging 508 

result as the inversions did not explicitly consider land use emissions in their prior assumptions, although some included an 509 

estimate of carbon released by fires in their prior which is part  of land-use emissions in Brazil. Since NEE is defined as all 510 

land fluxes except fossil fuel emissions, NEE from all inversions nevertheless include land use emissions from deforestation, 511 

degradation emissions and fire emissions including fires from deforestation, degradation and other fires. After 2011, inversions 512 

show a new increase in land emissions, with a peak during the 2015-2016 El Niño. There have been higher average land 513 
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emissions thereafter. These ongoing changes may be attributed to various factors such as the legacy effects of drought leading 524 

to increased tree mortality (Aragão et al., 2018), higher wildfire emissions (Naus et al., 2022; Gatti et al., 2023), carbon losses 525 

from forest degradation, and climate change-induced reductions in forest growth due to regional drying and warming in the 526 

southern and eastern parts of the Amazon (Gatti et al., 2021). From 2011 to 2016, the NGHGIs reports indicate that carbon 527 

emissions from Brazilian managed lands were stable at around 47 TgC/yr. However, the medians of in-situ inversions suggest 528 

that carbon emissions rapidly increased from ~100 TgC/yr in 2011 to ~600 TgC/yr in 2016, which peaked in 2015 (~610 529 

TgC/yr). From 2016 to 2021, the medians for both in-situ and satellite inversion results show a decrease in carbon emissions 530 

from 2016 to 2018 but a transient peak in 2019, a year with large fires (Gatti et al., 2023) (in-situ: 480 TgC/yr; satellite: 270 531 

TgC/yr). Then carbon emissions decreased again until 2021, which experienced wetter conditions and fewer fires (Peng et al., 532 

2022);  The in-situ inversion results show a continuous decrease to -10 TgC/yr in 2021, while the satellite inversion results 533 

showed a persistent source carbon anomaly of 300 TgC/yr. We emphasize moreover that available CO2 observations from a 534 

network of aircraft vertical sampling (Gatti et al., 2021) were not used to constrain the inverse models used here. 535 

For Democratic Republic of the Congo (COD), the available NGHGIs data indicates that before 2000, the country’s managed 536 

lands were a net carbon sink (50 TgC/yr in 1994 and 30 TgC/yr in 1999). Since 2000, the NGHGIs reports indicated three 537 

stages of different levels of CO2 flux, which COD managed land was a carbon source during 2000-2010 (~95 TgC/yr), a larger 538 

carbon source during 2011-2014 (~135 TgC/yr), and a very small sink during 2015-2018 (~-1 TgC/yr). The medians of in-situ 539 

inversion ensemble indicate a similar annual average carbon source (70 ± 45 TgC/yr) during 2001-2021 with the NGHGIs, 540 

despite the few observations over Africa (Byrne et al., 2023). In the recent decade, satellite inversion results from 2015 to 2021 541 

indicate a smaller source (30 ± 55 TgC/yr) compared to the in-situ results (85 ± 25 TgC/yr). Moreover, the satellite inversion 542 

results indicate a sink anomaly in 2020 (-60 TgC/yr) which is not found in the in-situ inversions. The sink anomaly in 2020 543 

from the satellite inversions is consistent with wetter conditions during that year over COD. 544 

For South Africa (ZAF), the NGHGIs show a stable very small sink of 3 TgC/yr during 1990-2010 that doubled from 4 TgC/yr 545 

in 2010 to 8 TgC/yr in 2017, while the in-situ inversion results indicate large fluctuations from a carbon sink (especially peaked 546 

in 2006, 2009, 2011, 2017 and 2021) to a small carbon source (e.g., in 2013, and 2018-2019). From 2015 to 2021, the satellite-547 

based inversion results are consistent with the in-situ results for annual variability (ρ=0.8, p<0.05), which is a good sign of the 548 

consistency between different atmospheric observing systems. During the transition to El Niño conditions and drought from 549 

2014 to 2015, however, the satellite-based inversion results indicate a switch from a carbon sink to a source anomaly of 50 550 

TgC/yr in ZAF which is not seen in the in-situ inversions.  551 

In Australia (AUS), the NGHGIs data shows a land source of carbon from 1990 to 2012, which decreased over time (from 48 552 

TgC/yr in 1990 to 1 TgC/yr in 2012) and changed into a carbon sink since 2013 (that increased from a sink of 1 TgC/yr in 553 

2013 to 15 TgC/yr in 2020). However, the in-situ inversions indicate fluctuations between a carbon source and a sink with an 554 

annual average small sink of 10 ± 71 TgC/yr observed over the period of 2001-2021, except for 2009-2011, the medians of in-555 

situ inversions reveal a strong carbon sink of 105 ± 35 TgC/yr. Between 2010 and the strong La Niña year of 2011, the medians 556 

of in-situ inversion ensemble from the previous study (Deng et al., 2022) showed an increase in carbon uptake of 145%. This 557 
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high carbon sink persisted in 2012, which was a dryer year with maximum bushfire activity. However, in this study, the 561 

medians of updated in-situ inversion ensemble indicate that there is a sink anomaly in 2011 followed by a source anomaly in 562 

2013, which appears to be more realistic. 2019 was the driest and hottest year recorded in Australia, including extreme fires at 563 

the end of 2019 (Byrne et al., 2021). As a result, the medians for both in-situ  and satellite inversion ensemble show a carbon 564 

source anomaly in 2019, with 55 TgC/yr (ranging from a sink of 1060 to a source of 480) and 200 TgC/yr (raging from a sink 565 

of 120 to a source of 320) respectively. When it comes to the wet La Niña year of 2021, the medians for both in-situ and 566 

satellite inversion ensemble indicate that AUS managed land became a carbon sink of 130 TgC/yr (ranging from a sink of 567 

1120 to a source of 25) and 150 TgC/yr (ranging from a sink of 260 to a source of 40).  568 

Last, we give the global comparison between NGHGIs and inversions, using NGHGIs data compiled for all countries by Grassi 569 

et al. (2023) which include Annex I countries reports, non-Annex I NC, BUR and NDCs.  The river correction is the only one 570 

that changes the global NEE, because the global mean of CO2 fluxes from wood and crop products is close to zero. The river-571 

induced CO2 uptake over land that is removed from inversion NEE is equal to the C flux transported to the ocean at river 572 

mouths (0.9 GtC/yr in our estimate, close to the value of Regnier et al.  2022).The (in-situ) inversions without the river 573 

correction give a global NEE sink of 1.8 GtC/yr over 2001-2020, managed land: 1.3 GtC/yr (72% of total), unmanaged land: 574 

0.5 GtC/yr (28%). The in-situ inversions with the river correction study give a global NEE sink of 0.91 GtC/yr, managed 575 

land:0.51 GtC/yr (56% of total), unmanaged land 0.4 GtC/yr (44% of the total)  This is an important update from Deng et al. 576 

2022 where the river CO2 flux correction was not applied separately to managed / unmanaged lands. Because managed lands 577 

have a much larger area than unmanaged ones and because of the spatial patterns of the CO2 sinks in the river correction are 578 

distributed with MODIS NPP which has low values in unmanaged lands of northern Canada and Russia, the river correction 579 

reduces strongly the C storage change with respect to NEE over managed lands, and marginally in unmanaged lands.. Inventory 580 

data recently compiled by Grassi et al. (2023) indicates a similar global land sink (on managed land) of 0.53 GtC yr-1 with gap-581 

filled data during the same period than the inversions with our improved river correction. 582 
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4 Results for anthropogenic CH4 emissions  583 

4.1 Total anthropogenic CH4 emissions 584 

 585 
Figure 4. Total anthropogenic CH4 fluxes for the 12 top emitters: China (CHN), India (IND), United States (USA), Brazil (BRA), 586 
Russia (RUS), European Union (EUR), Indonesia (IDN), Pakistan (PAK), Argentina (ARG), Iran (IRN), Mexico (MEX), and 587 
Australia (AUS). The black dots denote the reported values from NGHGIs. The light and dark blue lines/areas denote the median and 588 
maximum-minimum ranges of in-situ and satellite-based CH4 inversions based on EDGARv6.0 as the prior respectively.  589 
 590 
Fig 4 presents the variations in anthropogenic CH4 emissions for the 12 selected countries, where these emissions are summing 591 

the sectors of agriculture and waste, fossil fuels, and biofuel burning. The distribution of emissions is highly skewed even 592 

among the top 12 emitters, with the largest and most populated countries such as China (CHN), India (IND), United States 593 

(USA), Brazil (BRA), Russia (RUS), and European Union (EUR) which emits more than 10 TgCH4/yr annually, while other 594 

countries have smaller emissions (ranging from 3 to 10 CH4/yr) that are more challenging to quantify through inversions. 595 

During 2010-2020, CHN has the highest total anthropogenic emissions at around 50 ± 4 Tg CH4/yr, followed by IND with 30 596 

± 1 Tg CH4/yr, USA with 24 ± 1 Tg CH4/yr, BRA with 24 ± 1 Tg CH4/yr, EUR with 19 ± 1 Tg CH4/yr, Indonesia (IDN) with 597 

14 ± 1 Tg CH4/yr and RUS with 13 ± 1 Tg CH4/yr, according to the medians of satellite-based inversion ensemble based on 598 

EDGARv6.0 as prior. The remaining countries have emissions of approximately 5 Tg CH4/yr. In general, the difference 599 
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between NGHGIs and inversions aligns in the same direction based on both satellite and in-situ inversions. This provides some 607 

confidence for using inversions to evaluate NGHGIs as the satellite observations are independent from in situ networks. Overall, 608 

satellite-based inversions may be more robust across most countries due to better observation coverage, except in EUR and 609 

the USA where the in-situ network is more extensive.  610 

Developing countries, such as CHN, IND, BRA, IDN, Pakistan (PAK), Iran (IRN) and Mexico (MEX), show a rapid increase 611 

in anthropogenic CH4 emissions supported by reported values from NGHGIs and results from inversions. In CHN, the reported 612 

values from NGHGIs (when available) generally align with the results obtained through inversions (e.g., during 2010-2015, 613 

NGHGIs: 54 ± 1 Tg CH4/yr, in-situ: 58 ± 1 Tg CH4/yr, satellite-based: 48 ± 3 Tg CH4/yr). During 2010-2020, the median 614 

values for the in-situ and satellite-based inversion ensemble show a similar increase trend at an annual growth rate of 0.28 Tg 615 

CH4/yr2 and 0.26 Tg CH4/yr2 respectively, although the medians of in-situ inversion ensemble (58 ± 2 TgCH4/yr) were slight 616 

higher than the satellite-based ensemble (50 ± 3 TgCH4/yr). However, in 2020, the medians of the emission estimates for both 617 

in-situ and satellite-based inversions reveal a rapid increase by 9% and 11% compared to 2019 in CHN, indicating a possible 618 

surge in anthropogenic methane emissions for that year, possibly an artifact from the fact that the decreased OH sink in 2020 619 

is not well accounted for here. Indeed OH interannual variability were not prescribed to all inversions, and when accounted 620 

for the OH interannual variability prescribed (based on Patra et al., 2021) was much smaller than those suggested by recent 621 

studies (e.g., Peng et al., 2022). As a result overestimating the sink in the inversions leads to overestimated surface emissions. 622 

The surge in emissions could also be due to spin-down, the last six month to one year of inversions being less constrained by 623 

the observations, even though the inversion period covered up to June 2021.  624 

In IND, PAK and MEX, there is good agreement (r>0.8, p<0.01) between the in-situ and satellite-based inversion ensembles 625 

(respectively, 31 ± 1 Tg CH4/yr and 30 ± 1 Tg CH4/yr in IND, 8 ± 1 Tg CH4/yr and 7 ± 1 Tg CH4/yr in PAK, and 6 ± 1 Tg 626 

CH4/yr and 6 ± 1 Tg CH4/yr in MEX), while both of them present a significant increasing trend of anthropogenic methane 627 

emissions in these countries (Mann-Kendall p<0.05). However, when comparing to NGHGIs values, the inversion results in 628 

IND and PAK indicate >50% larger emissions than the values reported from the NGHGIs during 2010-2020. In contrast, 629 

values reported from the NGHGIs (~6 Tg CH4/yr) by MEX also show good agreement with the inversion results.  630 

In BRA, IDN and Argentina (ARG), the medians for in-situ and satellite-based inversion ensembles show good consistency 631 

(r=0.8, p<0.01) in these two countries, while satellite-based inversion results are generally higher than the in-situ inversion 632 

results. Specifically, in BRA, the satellite-based inversions (24 ± 1 Tg CH4/yr) were 16% higher than the in-situ inversions (21 633 

± 1 Tg CH4/yr) and 52% higher than the NGHGIs estimation (~17 Tg CH4/yr) during 2010-2020, possibly owing to difficulties 634 

for inversions to separate between natural (wetlands, inland waters) and anthropogenic sources in this country, and possible 635 

flaws in the prior used for natural and anthropogenic fluxes. In IDN, NGHGIs reported a significant continuous upward trend 636 

at an annual average growth of 0.3 TgCH4/yr, with a noticeable positive outlier in 2000. The medians for both in-situ and 637 

satellite-based inversion ensembles also indicate an upward trend in IDN, but both of them present sudden dips in 638 

anthropogenic methane emissions in 2015 and 2019 by 15~23% and 16~25%, compared to the previous year respectively. It 639 

is unlikely that anthropogenic activities could contribute such large year to year variations except for different flooded areas 640 
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used for rice paddies. In ARG, the satellite-based inversion results also indicate two sudden dips in 2016 and 2019, however, 656 

such pattern was not found in the in-situ inversion results. A cause of year to year variations from inversions is the lack of in-657 

situ sites and variable cloud cover affecting the density of GOSAT data. 658 

Regarding IRN, NGHGIs only provided data for three years (1994, 2000, and 2010), making it difficult to compare with 659 

inversion results. However, NGHGIs show a rapid growth in anthropogenic CH4 emissions (+9.4%/yr) during this period. 660 

There are significant differences between inversion results and for IRN, with satellite inversions generally giving lower 661 

emissions than in-situ inversions and different trends. Satellite inversions suggest a declining trend between 2010 and 2015, 662 

followed by a fluctuating increase until 2020. In contrast, in-situ-based inversions (by any nearby measurement stations, thus 663 

likely reflecting the prior trend) show a rapid rise in emissions after 2010, reaching a peak in 2018, followed by a decline.  664 

NGHGIs for RUS indicate that anthropogenic CH4 emissions have been reduced during the 1990s and remained stable since 665 

2000 (12.0 ± 0.3 Tg CH4/yr during 2000-2020), which is similar with the trend observed from satellite-based inversion results 666 

(12.7 ± 0.9 Tg CH4/yr during 2000-2020). However, in 2016, there was a sudden increase of emissions in satellite inversion 667 

results (+14% increase from 12.5 Tg CH4/yr in 2015 to 14.2 Tg CH4/yr in 2016), followed by a gradual decline, and then a 668 

new increase in 2020 (+11% increase from 12.8 Tg CH4/yr in 2019 to 14.3 Tg CH4/yr in 2020). This recent change was not 669 

observed in the in-situ inversion results or the NGHGIs.  670 

For USA, Australia (AUS), and EUR, NGHGIs reported a slow declining trend (EUR: 0.4 Tg CH4/yr; USA: 0.2 Tg CH4/yr; 671 

AUS: -0.04 Tg CH4/yr) in anthropogenic CH4 emissions. In the case of the USA, inversion-derived emissions are slightly 672 

lower than NGHGIs (in-situ-based: 9% lower during 2000-2020; satellite-based: 11% lower during 2010-2020). However, 673 

both ground-based and satellite-based inversions indicate that anthropogenic CH4 emissions have remained relatively steady 674 

since 2000, without reflecting the slow decline reported by NGHGIs. In EUR, NGHGIs indicate that anthropogenic CH4 675 

emissions have been decreasing rapidly since 1990 (-1.4%/yr), consistent with the trend obtained from inversion results. 676 

However, in-situ inversion emissions are on average slightly higher than NGHGIs, and this difference has been gradually 677 

increasing from 8% in the 2000s to 15% in the 2010s.  678 
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4.2 Fossil CH4 emissions   684 

 685 
Figure 5. CH4 emissions from the fossil fuel sector from the top 12 emitters of this sector: China (CHN), Russia (RUS), United States 686 
(USA), European Union (EUR), Iran (IRN), India (IND), Indonesia (IDN), Persian Gulf countries (GULF = Saudi Arabia + Iraq + 687 
Kuwait + Oman + United Arab Emirates + Bahrain + Qatar), Kazakhstan & Turkmenistan (KAZ&TKM), Venezuela (VEN), 688 
Nigeria (NGA), and Mexico (MEX). The black dots denote the reported value from the NGHGIs. In the NGHGI data shown in Fig 5 for 689 
GULF, Saudi Arabia reported four NGHGIs in 1990, 2000, 2010, and 2012, Iraq reported one in 1997, Kuwait reported three in 1994, 2000, 690 
and 2016, Oman reported one in 1994, United Arab Emirates reported four in 1994, 2000, 2005 and 2014, Bahrain reported three in 1994, 691 
2000 and 2006, and Qatar reported one in 2007. The reported values are interpolated over the study period to be summed up and plotted in 692 
the figure. For KAZ&TKM, the reported values of Turkmenistan during 2001-2003, 2005-2009, 2011-2020 are interpolated and added to 693 
annual reports from Kazakhstan, an Annex I country for which annual data are available. Other lines, colors and symbols as Fig 4.  694 
Fig 5 presents the fossil CH4 emissions for the top 12 emitters from the fossil sector based on EDGARv6.0 as the prior. The 695 

largest emitter is China (CHN), mainly from the sub-sector of coal extraction, followed by Russia (RUS) and the United States 696 

(USA). In CHN, the in-situ (20 ± 2 Tg CH4/yr) and satellite inversions (17 ± 1 Tg CH4/yr) emissions in the 2010s are 24% and 697 

35% lower than in the NGHGIs (~26 Tg CH4/yr), respectively. The NGHGIs in CHN suggest a decrease from 28 in 2012 to 698 

24 TgCH4/yr in 2014. However, both in-situ and satellite inversion results indicate an increasing trend since 2018. In India 699 

(IND) and Indonesia (IDN), NGHGIs report a decreasing trend during the study period, while inversions suggest a rapid 700 

increase in IDN and a stable value in IND after a peak in 2012. In IND, satellite inversions suggest a peak of fossil CH4 701 
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emissions during 2011-2012, which then dropped in 2013 and remained stable afterward. In IDN, both in-situ and satellite 707 

inversions indicate a fluctuating trend, with a significant drop between 2015 and 2019. In RUS, both in-situ and satellite 708 

inversion-based estimates of fossil fuel emissions are higher than NGHGIs, and show an increasing trend, while NGHGIs 709 

report a decreasing trend. This discrepancy may be due to inversion problems for separating between wetland emissions and 710 

gas extraction industries both located in the Yamal peninsula area, or leaks not captured in NGHGIs. In USA, NGHGIs overall 711 

show a significant declining trend (Mann-Kendall Z=-0.8, p<0.01). In-situ inversion estimates of fossil fuel emissions are 26% 712 

lower than NGHGIs during 2000-2010, and remained consistent until around 2011. Nearly all in-situ inversions show a jump 713 

in fossil fuel emissions in 2011. In the European Union (EUR), both NGHGIs and inversion results demonstrate a consistent 714 

declining trend. However, starting from 2010, both in-situ and satellite inversions are higher than NGHGIs reports. 715 

Major oil-producing countries in the persian Gulf are too small compared to the model resolution to be studied individually. 716 

Hence, NGHGIs from the GULF countries (Saudi Arabia, Iraq, Kuwait, Oman, United Arab Emirates, Bahrain, and Qatar) 717 

were grouped and show much lower emissions compared to inversion results. In the 2010s, in-situ and satellite inversions 718 

estimate that emissions in GULF were 9 times and 8 times higher than the estimates reported in NGHGIs, respectively. This 719 

huge under-reporting of emissions in GULF could be partly attributed to the omission of ultra-emitters in NGHGIs. The ultra-720 

emitters defined by Lauvaux et al. (2022) are namely all short-duration leaks from oil and gas facilities (e.g., wells, compressors) 721 

with an individual emission >20 t CH4/h, each event lasting generally less than one day. Such leaks are often random 722 

occurrences and difficult to quantify, which is why most countries do not account for these significant and episodic events in 723 

the national inventories. Indeed, recent studies by Lauvaux et al. (2022) have identified more ultra-emitters and larger emission 724 

budgets from ultra-emitters in Qatar, Kuwait, and Iraq. In KAZ&TKM, grouped together because of their rather small 725 

individual areas, both in-situ (3 ± 0.2 Tg CH4/yr) and satellite (3 ± 0.1 Tg CH4/yr) inversions estimate emissions to be 2 times 726 

higher than NGHGIs (1.5 Tg CH4/yr) in the 2010s. Similarly, KAZ is located downwind of TKM, which has a high share of 727 

ultra-emitters. The global inversions operating at a coarse resolution may misallocate emissions from TKM to KAZ. It is worth 728 

noting that KAZ has two in-situ stations for CH4 measurements, whereas the GULF countries lack in-situ station networks. 729 

On the other hand, the GOSAT satellite provides a dense sampling of atmospheric column CH4 in the Persian Gulf region due 730 

to frequent cloud-free conditions. Therefore, GOSAT inversions can be considered more accurate than in-situ inversions for 731 

Iran (IRN), GULF countries, and Kazakhstan & Turkmenistan (KAZ&TKM). Additionally, it is important to note that GOSAT 732 

inversions generally give lower emissions than in-situ inversions in those countries. Venezuela (VEN) is a rare case where 733 

NGHGIs report much higher CH4 emissions than inversions. While the uncertainty of GOSAT inversions (model spread) has 734 

decreased compared to the results reported by Deng et al. 2022, the gap between inversions and NGHGIs has increased . In 735 

2010, NGHGIs reports of fossil CH4 emissions in VEN were  298% higher than GOSAT inversions and 326% than in-situ 736 

inversions. We do not have a clear explanation for this large difference, except that VEN has strongly decreased oil and gas 737 

extraction due to sanctions curbing its crude production from 2.7 mb/d in 2015 to 0.6 mb/d in 2020 (OPEC, 2023), which may 738 

not be reflected in their NGHGIs. In Nigeria (NGA) andMexico (MEX), NGHGIs estimates fall between the median of in-situ 739 
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and satellite inversions during 2010-2020. However, in MEX, the in-situ inversion was 50% lower than NGHGIs in the 2000s 747 

and showed a sudden large increase in 2010. 748 

4.3 Agriculture and waste CH4 emissions 749 

 750 
Figure 6. CH4 emissions from agriculture and waste for the 12 largest emitters in this sector, China (CHN), India (IND), Brazil 751 
(BRA), United States (USA), European Union (EUR), Pakistan (PAK), Indonesia (IDN), Russia (RUS), Argentina (ARG), Thailand 752 
(THA), Mexico (MEX), and Bangladesh (BGD). The black dots denote the reported estimates from NGHGIs. Other lines, colors, and 753 
symbols as Fig 4. 754 
 755 
Fig 6 presents CH4 emissions of the Agriculture and Waste sector for the top 12 emitters of this sector. In all countries except 756 

for the United States (USA) and Russia (RUS), the values reported by NGHGIs are systematically lower than the inversion 757 

results. The results from the previous ensemble of in-situ inversions (red dotted line) are consistent with those of the inversions 758 

used in this study except in the USA where previous inversions are 3.2 TgCH4/yr higher, in RUS where they show a drop after 759 

2015 although they remain in the range from the new satellite and in-situ inversions, and inMexico (MEX) where they are 760 

systematically lower by 1.6 TgCH4/yr. 761 
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In China (CHN), the most recent NGHGIs reports in 2012 and 2014 estimate agriculture and waste emissions at 28 Tg CH4/yr, 762 

which is close to satellite inversions (28 ± 1 TgCH4/yr) but 22.4% lower than the median in-situ inversions (35 ± 1 TgCH4/yr) 763 

and closer to their minimum value. The trend in agricultural and waste emissions is consistent between inversions and NGHGIs 764 

for CHN. In India (IND), inversions consistently show higher emissions than NGHGIs by approximately 50% and indicate an 765 

increasing trend during 2000-2020, whereas the NGHGI last communication being for 2016, it does not allow us to give a 766 

recent trend. According to the national inventory of IND, enteric fermentation is the primary source of CH4 emissions in the 767 

agriculture and waste sector, contributing 61% of emissions, with rice cultivation accounting for 20% and waste contributing 768 

16%. A similar pattern is observed in Bangladesh (BGD), where agricultural emissions are dominated by rice production (48% 769 

in 2012) and enteric fermentation (42% in 2012). Satellite and in-situ inversions estimate emissions in BGD are nearly double 770 

than those reported by NGHGIs during 2001 and 2012, the last communication. The significant discrepancies between 771 

inversions and NGHGIs in IND and BGD may be attributed to potential underestimation of livestock or waste CH4 emissions 772 

by NGHGIs. NGHGIs utilized the Tier 1 method and associated emission factors from the 2006 IPCC Guidelines for National 773 

Greenhouse Gas Inventories (IPCC, 2006). However, a recent study (Chang et al., 2021) found that estimates using revised 774 

Tier 1 or Tier 2 methods from the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 775 

(IPCC, 2019) give livestock emissions 48%-60% and 42%-61% higher for IND and BGD by 2010, respectively, compared to 776 

Tier 1 IPCC (2006) methods, which would bring bottom up emissions closer to inversions. In Brazil (BRA), both satellite and 777 

in-situ inversions consistently estimate larger emissions than the NGHGIs by 34% and 29%, respectively, and show a 778 

consistent increasing trend over their study periods. In the USA, the medians of satellite and in-situ inversions are slightly 779 

lower than those of NGHGIs, but they exhibit a similar trend throughout the study period. The trend of inversions is comparable 780 

to the one of the NGHGIs in BRA during their period of overlap, although there is no NGHGIs communication later than 2016. 781 

In Argentina (ARG), Pakistan (PAK) and Thailand (THA), the medians of in-situ inversions show good consistency with 782 

satellite inversion results. Nevertheless, in-situ inversion emissions in the 2010s are, on average, 47% higher in PAK, 20% 783 

higher in ARG, and 64% higher in THA compared to the NGHGIs reports. In European Union (EUR), emissions from 784 

agriculture and waste were reported to have significantly decreased over time in the NGHGI data, mainly from solid waste 785 

disposal (Petrescu et al., 2021), a trend that is captured by inversions and is close to the one of the NGHGIs over the study 786 

period. In contrast, emissions from agriculture and waste in RUS are reported to have a positive trend after 2010 by the NGHGI, 787 

with in-situ inversions producing a consistent trend from 2000 to 2014 but a sharp decrease thereafter, while satellite inversions 788 

are producing stable emissions, albeit lower than the NGHGIs and in-situ inversions after 2010.  789 
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5 Results for anthropogenic N2O emissions  791 

  792 
Figure 7. Anthropogenic N2O fluxes of the top 12 emitters: China (CHN), Brazil (BRA), India (IND), United States (USA), 793 
Democratic Republic of the Congo (COD), European Union (EUA), Indonesia (IDN), Mexico (MEX), Colombia (COL), Sudan (SDN), 794 
Australia (AUS), and Venezuela (VEN). The black dots denote the anthropogenic emissions from the UNFCCC national greenhouse gas 795 
inventories. The thick orange lines and the light orange areas denote the median and the maximum-minimum ranges of anthropogenic fluxes 796 
respectively among all N2O inversions. We restricted our analysis to data starting from 1997 because it was the year when data from the all 797 
four inversion models are available. 798 
 799 
We present the 12 countries/regions with the largest anthropogenic N2O emissions in the world (Fig 7), which in total 800 

contribute approximately 55% of global anthropogenic N2O emissions. The estimates from both NGHGIs and inversions in 801 

China (CHN), United States (USA), and European Union (EUR) demonstrate a relatively close match between NGHGIs and 802 

inversions (in-situ only). These three large emitting countries/regions exhibit different trends in their anthropogenic N2O 803 

emissions. In CHN, both NGHGIs and inversions indicate an increasing trend in anthropogenic N2O emissions. In the USA, 804 

anthropogenic N2O emissions seem to have reached a state of relative stability, with NGHGIs and inversion results showing 805 

similar mean values and lack of trends. In EUR, both NGHGIs and inversions show a declining trend in anthropogenic N2O 806 

emissions, but from 2010 to 2020, the NGHGIs estimates are lower (20%) than the median values derived from inversion 807 

models, that is, the negative trend from inversions is less pronounced than the one of NGHGIs. Most other selected countries 808 

display higher anthropogenic N2O emissions from inversions than from NGHGIs (i.e., Brazil (BRA), India (IND), Democratic 809 
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Republic of the Congo (COD), Indonesia (IDN), Mexico (MEX), Colombia (COL), Sudan (SDN), Venezuela (VEN)). These 810 

discrepancies in anthropogenic N2O emissions are possibly attributable to factors that have been analyzed in our previous study 811 

(Deng et al., 2022). Firstly, nearly all these non-Annex 1 countries utilize Tier 1 emission factors (EFs), which may 812 

underestimate emissions when soil and climate dependence are taken into account (Cui et al., 2021). This has been noted in 813 

previous studies (Philibert et al., 2013; Shcherbak et al., 2014; Wang et al., 2020). Furthermore, the observed concave response 814 

of cropland soil emissions as a function of added N fertilizers may also contribute to underestimated emissions in NGHGIs, as 815 

the relationship is non-linear and higher than the linear relation used by NGHGIs in Tier 1 approaches (Zhou et al., 2015). In 816 

an improved reporting framework, EFs should also account for both natural and anthropogenic components, as they cannot be 817 

distinguished through field measurements, from which EFs are derived. However, in practice, EFs are mostly based on 818 

measurements made in temperate climates and soils from established croplands with few "background" emissions. 819 

Consequently, there could be a systematic underestimation of default IPCC EFs from tropical climates and for recently 820 

established agricultural lands, for which the IPCC EFs also have a huge uncertainty of up to ±75%–100%. Another factor that 821 

might contribute to the discrepancy is the omission of emissions from reactive nitrogen contained in organic fertilizers 822 

(manure), for which NGHGIs do not provide specific details for non-Annex 1 reports. Lastly, anthropogenic indirect emissions 823 

(AIEs) from atmospheric nitrogen deposition and leaching of human-induced nitrogen additions to aquifers and inland waters 824 

are reported by Annex 1 countries using simple emission factors, but non-Annex 1 countries do not consistently report AIE. 825 

However, in Australia (AUS), the gap between inversions and NGHGIs has even expanded compared to our previous study. 826 

We do acknowledge that the density of the N2O in-situ network in tropical countries and around AUS is so low that inversions 827 

most likely are attracted to their priors. The use of a lower prior could thus also be consistent with scarce atmospheric 828 

observations, and we have only a low confidence on N2O inversion results for tropical countries and AUS. 829 
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6 Discussion 831 

6.1 Comparing net land CO2 flux estimates from different inversion model ensembles 832 

 833 
Figure 8. Net CO2 land fluxes during the period of a) 2011-2015; and b) 2016-2020 in China (CHN), United States (USA), European 834 
Union (EUR), Russia (RUS), Canada (CAN), Kazakhstan (KAZ), Mongolia (MNG), India (IND), Brazil (BRA), Democratic Republic 835 
of the Congo (COD), South Africa (ZAF), and Australia (AUS). Blue boxes denote the in-situ inversion results from Deng et al. (2022) 836 
processed from Global Carbon Budget 2020 (Friedlingstein et al., 2020). Light green boxes denote the in-situ inversion results processed in 837 
this study, while dark green boxes denote the satellite inversion results. Black boxes denote the NGHGIs reported values. The white lines in 838 
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the boxes denote the medians of the land CO2 fluxes. Note that the inversion results here have been adjusted by the lateral flux before the 839 
comparison. Additionally, we extend the comparison with national land use change emissions from global bookkeeping models in Fig S4. 840 
In this section, we compare four different estimates of land CO2 fluxes during the period 2010-2020 (Fig 8), including: 1) 841 

medians of in-situ inversion results from our previous study (Deng et al., 2022), 2) medians of in-situ and 3) satellite-based 842 

inversion results processed in this study based on the Global Carbon Budget 2022 (Friedlingstein et al., 2022), and 4) NGHGIs. 843 

This enables a comparison of the median and range of our in-situ inversion results (n=5) with those from previous study (n=6), 844 

and assesses the performance differences between satellite-based (n=4) and in-situ inversion models. To ensure a fair 845 

comparison and avoid anomalies in the satellite-based inversion results during 2010-2015 when some of these inversions used 846 

GOSAT after 2010 and then OCO-2 after 2015, we separate the analysis into two periods: 2011-2015 and 2016-2020.  847 

The variations of yearly land CO2 fluxes span a comparable range between the current and previous in-situ inversion ensembles, 848 

indicating that consistency of the inversion results, but the uncertainty within the new in-situ inversion ensemble was not 849 

improved. However, examining the median values, results from the new in-situ inversion ensemble may be closer to NGHGIs 850 

in most countries (such as China (CHN), United States (USA), European Union (EUR), Canada (CAN), Kazakhstan (KAZ), 851 

India (IND)). This suggests that the new in-situ inversion ensemble used in this study has partially narrowed down the gaps 852 

between inversion results and NGHGIs compared to the previous one. However, in Russia (RUS) and Brazil (BRA), the 853 

difference between the median of in-situ inversion ensembles and NGHGIs has enlarged. For example, in RUS, median the 854 

new in-situ inversion ensemble indicate a larger carbon sink than those from Deng et al. (2022), while the difference between 855 

median of in-situ inversions and NGHGIs increases 51% during 2011-2015 (from 208 TgC/yr to 314 TgC/yr) and 49% during 856 

2016-2020 (from 168 TgC/yr to 249 TgC/yr). Conversely, in BRA, median of the new in-situ inversion ensemble indicate a 857 

larger carbon source, while the difference increases over 100% during 2011-2015 (from 200 TgC/yr to 423 TgC/yr) and nearly 858 

300% during 2016-2020 (from 56 TgC/yr to 223 TgC/yr). 859 

As for the inversion ensemble used in this study, in most countries, the variations of yearly land CO2 fluxes also span a similar 860 

range between satellite-based inversion ensemble and in-situ inversion ensemble. However, in the cases of USA, RUS, CHN 861 

and BRA, the spread of satellite-based inversion results are narrower than those of in-situ inversion results, indicating a better 862 

consistency among available satellite-based inversion models, at least when similar satellite data are assimilated. In addition, 863 

in most cases, smaller differences were found between the median of inversion results and the NGHGIs. For countries with 864 

dense surface monitoring networks such as in the  USA and EUR, the satellite-based inversion results show good agreement 865 

in-situ inversion results. However, for countries with sparse station coverage like Kazakhstan (KAZ) and Mongolia (MNG), 866 

satellite-based inversion results could provide more reliable estimates due to more extensive spatial sampling from satellites, 867 

although the medians of satellite-based inversion results indicate larger carbon sinks and larger differences compared with 868 

NGHGIs (than for in-situ inversion results). In USA and CAN, the difference during 2011-2015 (only GOSAT period) between 869 

in-situ and satellite-based inversion ensembles is larger than that during 2016-2020 (OCO-2 period). This can be attributed to 870 

the use of different satellite data during these periods and different numbers of ensemble members. Before 2015, only GOSAT 871 
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was available, and only 2 out of 4 systems. The inversion of OCO-2 data starting in 2014 resulted in a better alignment among 872 

OCO-2 ACOS v10 inversions, indicating the in-situ and satellite evaluations were similar (Byrne et al., 2023). 873 

6.2 Adjustment of the national managed land masks to separate the net land CO2 flux estimates  874 

 875 
Figure 9. Net CO2 land fluxes during the period of 2015-2020 in Canada (CAN), Brazil (BRA), and Russia (RUS). ‘IFL’ stands for 876 
using the intact forest landscape data as a mask for non-managed land to extract land CO2 flux from managed land and ‘ML’ indicates the 877 
adjusted mask used by Grassi et al. (2023) to extract land CO2 flux from managed land. The ‘in-situ’ stands for inversion results using in-878 
situ observations, and ‘satellite represents inversions using satellite observations. Note that the inversion results here have been adjusted by 879 
the lateral flux before the comparison. 880 
Following the method proposed by Grassi et al. (2023), we updated in this study the managed land mask for Canada (CAN) 881 

and Brazil (BRA) by using maps of managed land derived from NGHGI, and for Russia (RUS) by adjusting tree-cover 882 

threshold in the tree cover map from Hansen et al.  (2013) to match the average area of managed land per Oblast (province) 883 

that is used for the NGHGIs.  Thus, the new mask is now more consistent with the definition of managed land in the NGHGIs 884 

for these three countries, so that can further analyze the impacts of different definitions of managed land masks to separate the 885 

managed land CO2 fluxes in inversions (Fig 9). Generally, in Russia (RUS) and Canada (CAN), the managed land CO2 fluxes 886 

extracted from the new mask are closer to NGHGIs than those separated by the previous mask used by Deng et al. 2022. In 887 

addition, in Brazil (BRA), adjusting the national managed land mask resulted in greater land carbon emissions, increasing the 888 

gap with NGHGIs. However, the improvement of the managed land mask in this study is still not able to explain all the existing 889 

discrepancy between inversion estimates and NGHGIs, in which the sources and reasons for these differences and uncertainties 890 

still need further analysis. We also observe in Fig. 9 that the impact of our new managed land mask compared to the previous 891 

one, is qualitatively similar whether it is applied to in-situ inversions or satellite inversions gridded flux fields. 892 
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6.3 Comparsion of anthropogenic CH4 emissions with Deng et al 2022 893 

894 
Figure 10. Annual average of anthropogenic CH4 emissions from in-situ (G) and satellite (S) inversions and national greenhouse gas 895 
inventories (N) during the period of 2010-2020. G’ and S’ denote the anthropogenic CH4 flux from the in-situ and satellite inversion 896 
ensembles in the previous study (Deng et al., 2022) respectively, while G and S denote the fluxes from the in-situ and satellite inversion 897 
ensembles used in this study. N denotes the estimates from NGHGIs. Grey, yellow, and brown bars represent the CH4 fluxes from the sectors 898 
of fossil fuel combustion, agriculture and waste, and biomass burning respectively. On top of NGHGI emissions, emissions from ultra-899 
emitters (red) are added to NGHGI estimates (diagnosed from S5P-TROPOMI measurements for the period 2019–2020; Lauvaux et al., 900 
2022). 901 
In our previous study, we found that satellite inversion models appear to have a better agreement with NGHGIs than in-situ 902 

stations based inversion models, and on the other hand, that differences between inversion models and NGHGIs in large oil- 903 

and gas-producing countries suggest an underestimation of national reports, possibly due to the omission of ultra-emitting 904 

sources by NGHGIs. With the new inversion ensemble in this study, we confirm those results (Fig 10). In countries such as 905 

China (CHN), India (IND), and Russia (RUS), the updated inversion model set provides estimates that are closer to NGHGIs, 906 

but differences still exist, and the reasons for these differences are not the same. For example, differences in anthropogenic 907 

methane emissions in IND are mainly due to differences in agricultural and waste methane flux with the new inversion 908 

ensemble used in this study. In RUS, the updated inversion ensemble shows lower fossil fuel emissions, reducing the 909 

differences with NGHGIs for this sector, but higher agricultural and waste emissions than in Deng et al. (2022). Nevertheless, 910 

the updated fossil fuel emission flux is still higher than the NGHGIs estimate for RUS. The remaining differences may be 911 

attributed to ultra-emitting sources or underestimated emission factors for some components of the oil and gas extraction and 912 

distribution industry in RUS. Conversely, in GULF (GULF = Saudi Arabia + Iraq + Kuwait + Oman + United Arab Emirates 913 
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+ Bahrain + Qatar), the new inversion model ensemble consistently reflects higher fossil fuel emission fluxes than NGHGIs 915 

like in our previous study, and expands the difference in estimates of artificial methane flux between inversion models and 916 

NGHGIs, possibly indicating more methane leakage. 917 

6.4 Influence of the prior used in CH4 inversions 918 

 919 
Figure 11. Total anthropogenic CH4 fluxes for the 12 top emitters: China (CHN), India (IND), United States (USA), Brazil (BRA), 920 
Russia (RUS), European Union (EUR), Indonesia (IDN), Pakistan (PAK), Argentina (ARG), Iran (IRN), Mexico (MEX), and 921 
Australia (AUS). The black dots denote the reported values from NGHGIs. The light blue lines/areas denote the median and maximum-922 
minimum ranges of in-situ CH4 inversions based on EDGARv6.0 as the prior and the dark blue ones of satellite inversions, respectively. 923 
The light purple lines/areas denote the median and maximum-minimum ranges of in-situ CH4 inversions based on GAINS (Höglund-Isaksson 924 
et al., 2020) as the prior and the dark purple ones of satellite inversions, respectively. 925 
 926 
The use of different priors can also influence the inversion results of the data. Fig 11 presents the sets of inversion results using 927 

EDGAR (blue) and GAINS (purple) as priors. In most countries, the median values of the two inversion result sets are similar. 928 

However, in countries such as Russia (RUS), United States (USA), Iran (IRN), Mexico (MEX), significant differences are 929 

observed between the two inversion result sets, which may primarily stem from the differences in the inversion results for 930 

fossil CH4 emissions (Fig 12). In RUS and USA, the inversion results using GAINS as priors are consistently higher than those 931 
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using EDGAR as priors. In RUS, the satellite inversion results using GAINS as priors are higher by 45% during 2010-2020, 932 

and the ground-based inversion results are higher by 75% during 2000-2020. In the case of the USA, the inversion results 933 

using GAINS as priors exhibit a completely different trend compared to the ones obtained using NGHGIs and EDGAR as 934 

priors. The inversion results using GAINS as priors, both from satellite and ground-based measurements, show a rapid growth 935 

trend by increasing 24% from 2010 to 2020. In IRN and MEX, the inversion results using GAINS as priors are lower than 936 

those using EDGAR as priors. For IRN, the differences between satellite inversion results using different priors are not 937 

significant, and the trends are similar. However, the ground-based inversion results are very close between 2000-2013, but 938 

after 2013, a steep increase is observed in the ground-based inversion results using GAINS as priors. On the other hand, in 939 

MEX, the ground-based inversion results are similar, but the satellite inversion results using GAINS as priors are relatively 940 

lower by 14% averagely. Such discrepancies may arise from differences in inventory methodologies and the resulting 941 

estimations. As shown in Supplementary Figure S1 in Tibrewal et al. (2024), similar discrepancies were found between the 942 

two inventories in these countries, which reports a higher estimation from GAINS in RUS and USA compared to EDGAR 943 

during 2011-2020, and a lower estimation in IRN. As noted in Tibrewal et al. (2024), EDGAR is based on various versions of 944 

National Inventory Reports (NIR) that utilize different combinations of emission factors from the IPCC, while GAINS employs 945 

an independent estimation approach. This highlights the critical role of prior data selection in determining the accuracy of CH4 946 

emission estimates. 947 

 948 
Fig 12. Annual average of anthropogenic CH4 emissions from in-situ and satellite inversions based on two different priors 949 

during the period of 2010-2020. GE and SE denote the anthropogenic CH4 flux from the in-situ and satellite inversion 950 

ensembles based on EDGARv6.0 as the prior, while GG and SG represent the in-situ and satellite CH4 inversions based on 951 

GAINS as the prior. 952 



38 
 

6.5 Comparing anthropogenic N2O flux with the previous study 953 

 954 
Figure 13. Anthropogenic N2O fluxes during the period of 2005-2015 in China (CHN), Brazil (BRA), India (IND), United States 955 
(USA), Democratic Republic of the Congo (COD), European Union (EUR), Indonesia (IDN), Mexico (MEX), Colombia (COL), SDN 956 
(Sudan), Australia (AUS), and Venezuela (VEN). Blue boxes denote the in-situ inversion results from Deng et al. 2022 processed from 957 
Global Carbon Budget 2020 (Friedlingstein et al., 2020). Dark yellow boxes denote the inversion results processed in this study. Black boxes 958 
denote the NGHGIs reported values. 959 
 960 
The updated N2O inversion results show systematically higher anthropogenic emissions than the previous N2O inversion results 961 

(Deng et al, 2022), resulting in larger discrepancies between N2O inversion results and NGHGIs in most countries in Fig 13,  962 

Countries such as Brazil (BRA), Democratic Republic of the Congo (COD), Indonesia (IDN), Colombia (COL), Sudan (SDN), 963 

Australia (AUS), and Venezuela (VEN) exhibit significant differences. These discrepancies may be attributed to the use of 964 

lower IPCC default emission factors in the national inventories of these tropical countries, leading to lower NGHGI results. 965 

The IPCC default emission factors are derived from measurements primarily conducted in temperate regions of the Northern 966 

Hemisphere (e.g., Europe and the United States (USA)), which explains the better alignment of inversion results with 967 

inventories in those regions. Notably, , in the case of the USA, the median of the updated N2O inversion results is very close 968 

to NGHGIs. The median of the N2O inversion results from Deng et al. (2022) was 42% lower than the NGHGIs between 2005 969 

and 2015, whereas the median of the updated inversion models is only 4% lower. This demonstrates improved consistency in 970 

the updated inversion system results for the USA. Additionally, in countries such as India (IND), IDN, COL,COD, Sudan 971 

(SDN), and VEN, our N2O inversion results have a larger distribution compared to the previous study, indicating that the new 972 

N2O inversion ensemble (n=4) has less consistency in these countries compared to the previous ensemble (n=3).  973 
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Conclusions  974 

This study reconciles the gap between atmospheric inversions and UNFCCC NGHGIs for each of the three greenhouse gases, 975 

based on the post-processing framework we proposed in our previous study (Deng et al., 2022). We update inversion results 976 

and NGHGIs datasets to present the most-up-to-date discrepancies between these two estimates. For CO2, we updated the 977 

inversion results up to 2021, added a new inversion ensemble including inversions based on satellite observations, and applied 978 

a new mask of national managed land based on NGHGI reports in Russia, Brazil and Canada. For CH4, we compared NGHGIs 979 

and CH4 inversion results up to 2020 by splitting the anthropogenic fluxes from inversions by aggregating prior estimates from 980 

each sector or by removing fluxes of natural processes and discussed the uncertainties by using different priors in CH4 981 

inversions. For N2O, we updated the inversion results up to 2019 and included the MIROC4-ACTM N2O inversion, also 982 

separated the fluxes from managed land by using the same method on CO2.  983 

In the case of CO2, we updated the managed land mask for Canada, Brazil, and Russia based on maps derived from NGHGIs 984 

and adjusted tree-cover thresholds. The analysis of different managed land mask definitions shows that the new mask, which 985 

is more consistent with the definition of managed land in the NGHGIs for these countries, improves the agreement between 986 

managed land CO2 fluxes and NGHGIs in Russia and Canada. However, in Brazil, the new mask increases the gap between 987 

the estimated land carbon emissions and NGHGIs. Further analysis is needed to understand the sources and reasons for 988 

discrepancies and uncertainties between inversion estimates and NGHGIs. Thus, we still recommend that countries should 989 

report their managed land in a spatially explicit manner to enable a better evaluation of national emission reports using 990 

inversions (and other observation-based approaches), and countries should also follow the recommendations of the IPCC 2006 991 

Guidelines encouraging countries to use atmospheric data as an independent check on their national reports (IPCC 2006, 2019). 992 

Three additional satellite-based inversion results have been introduced for comparison with the in-situ inversion results and 993 

NGHGIs. In some countries, the satellite-based inversions demonstrate better consistency with NGHGIs compared to the in-994 

situ inversion models.  995 

For CH4, despite the large spread of inversions, both in-situ and GOSAT inversions show systematic differences with NGHGIs. 996 

We also found that Kazakhstan and Turkmenistan in Central Asia and the Gulf countries in the Middle East, characterized by 997 

oil- and gas-producing industries, report much less CH4 emissions than atmospheric inversions estimates. While in this region, 998 

there are few ground stations, and inversions depend on their prior fluxes, the fact that GOSAT and in-situ based inversions 999 

point to NGHGI emissions being underestimated suggests areas for future research to constrain the emissions of these countries. 1000 

We recommend here to develop regional campaigns (such as those performed in Alvarez et al. (2018)), to refine emission 1001 

factors, and to track regional oil, gas and coal basins emissions and ultra-emitter site-level emissions using new tools (such as 1002 

moderate and high-resolution satellite imagery).  1003 

For N2O, the prevalence of large tropical natural sources, being outside the responsibility of countries if they are located on 1004 

unmanaged lands, has been overlooked before. For example, nearly half of the forests in Brazil are unmanaged according to 1005 

its national inventory report. We did not solve this problem, but highlighted it and proposed a new method to remove natural 1006 
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emissions from inversion total emissions. As many non-Annex I countries, which will have to produce inventories for the 1007 

global stocktake are tropical countries with a very active nitrogen cycle and large natural N2O emissions, a decoupling will 1008 

exist between targeted emissions reductions and the observed growth rate of N2O: it may hamper the eventual effectiveness of 1009 

mitigation policies, that are directly reflected in the UNFCCC NGHGIs reports, especially for this greenhouse gas. It is fair to 1010 

say that the uncertainty from the spread of different inversions is large enough that inversions cannot ‘falsify’ N2O NGHGIs 1011 

in most instances. Nevertheless, for CH4 in countries around the Persian Gulf and Central Asia, and to some extent in Russia, 1012 

and for N2O in tropical countries, Mexico and Australia, we found that NGHGIs emissions are significantly lower than 1013 

inversions, which suggests that activity data or emission factors may need to be re-evaluated. Despite their large spread, 1014 

inversions have the advantage of providing fluxes that are consistent with the accurately observed growth rates of each 1015 

greenhouse gas in the atmosphere. The uncertainty of inversions is mainly a systematic bias due to internal settings or to the 1016 

choice of a transport model. It does not mean that inversions cannot be used for monitoring interannual variability and trends 1017 

of fluxes, in response to mitigation efforts, since most of their bias should have a small temporal component.  1018 

The study of global inversions at the country scale rather than at the traditional subcontinent scale (e.g. the “Transcom3 regions” 1019 

of Gurney et al. (2002)) obviously pushes inversions close to the limit of their domain of validity, even in the case of large 1020 

countries. The densification of observation networks and systems, especially from space, increases the observational 1021 

information available at all spatial scales and gradually makes it possible to study smaller countries and reduce uncertainties 1022 

of inversion results. This densification must be accompanied by a corresponding increase in the horizontal resolution of 1023 

inversion systems (both the transport model and the control vector to be optimized). Note that the spatial resolution of most 1024 

inverse models such as those contributing to the global carbon/methane/nitrous oxide budget is larger than 1 degree (see Table 1025 

A4 in Friedlingstein et al. (2022), Table S6 in Saunois et al. (2020), and Table 1 in Tian et al. (2023)). They will likely soon 1026 

have to go below one degree on a global scale to remain competitive for this type of study, despite the high computational 1027 

challenge posed by the atmospheric inversion of long-lived tracers.  1028 

Data availability 1029 

Processed GHG (CO2, CH4, and N2O) data from inverse models and UNFCCC NGHGIs are available at 1030 

https://doi.org/10.5281/zenodo.13887128 (Deng et al., 2024). 1031 

This dataset contains 5 data files: 1032 

- The file Inversions_CO2_v2022.csv includes the NEE CO2 flux from managed lands for the nine CO2 inverse models. 1033 

It includes 8 fields: years (from 1960 to 2021), country, value (unit: TgC/yr), sector ("land": without the adjustment 1034 

of lateral C flux; "land_cor": with later C flux adjustment), source, gas, observation ("in-situ": in-situ-based; "satellite": 1035 

satellite-based), version ("CO2_ML_v2022" only). 1036 

- The file Inversions_CH4_v2022.csv includes CH4 flux from anthropogenic sources for the six CH4 inverse models. 1037 

It includes 8 fields: years (from 2000 to 2020), country, value (unit: TgCH4/yr), sector ("agrw": agriculture and waste; 1038 
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"fos": fossil fuel; "ant": anthropogenic=agrw+fos), source, gas, observation ("in-situ": in-situ-based; "satellite": 1039 

satellite-based), version ("CH4_2022_V1": use EDGAR as priors; "CH4_2022_V2": use GAINS as priors). 1040 

- The file Inversions_N2O_v2022.csv includes the anthropogenic N2O flux from managed lands for the four N2O 1041 

inverse models. It includes 8 fields: years (from 1995 to 2020), country, value (unit: TgN2O/yr), sector ("ant" only, 1042 

for anthropogenic), source, gas, observation ("in-situ" only, for in-situ-based), version ("N2O_ML_v2022" only). 1043 

- The file lateral_CO2_v2022.csv includes the national lateral C flux from river and trade. 1044 

- The file NGHGIs_v2022.csv includes the national inventory data collected from UNFCCC NGHGIs (unit: Gg/yr) 1045 
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