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Abstract 36 

International efforts to assess the status of marine ecosystems have been hampered by insufficient 37 

observations of food web interactions across many species, their various life stages, and geographic 38 

ranges. Hence, we collated data from multiple databases of fish stomach contents from samples taken 39 

across the North Atlantic and Arctic Oceans containing 944,129 stomach samples from larvae to 40 

adults, with 14,196 unique interactions between 227 predator species and 2158 prey taxa. We use 41 

these data to develop a data-driven, reproducible approach to classifying broad functional feeding 42 

guilds and then apply these to fish survey data from the Northeast Atlantic shelf seas to reveal spatial 43 

and temporal changes in ecosystem structure and functioning. In doing so, we construct predator-44 

prey body size scaling models to predict the biomass of prey functional groups, e.g., zooplankton, 45 

benthos, and fish, for different predator species. These predictions provide empirical estimates of 46 

species- and size-specific feeding traits of fish, such as predator-prey mass ratios, individual prey mass, 47 

and the biomass contribution of different prey to predator diets. The functional groupings and feeding 48 

traits provided here help to further resolve our understanding of interactions within marine food webs 49 

and support the use of trait-based indicators in biodiversity assessments. The data used and 50 

predictions generated in this study are published on the Cefas Data Hub at: 51 

https://doi.org/10.14466/CefasDataHub.149 (Thompson et al., 2024). 52 
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 56 

1 Introduction 57 
 58 
Human pressures are affecting global patterns in marine ecosystem structure and functioning, from 59 

species distributions and their body sizes, to how and where energy fluxes through food webs 60 

(Daufresne et al., 2009; du Pontavice et al., 2020; Kortsch et al., 2015). Grouping organisms into broad 61 

functional feeding guilds and assessing change in their populations has been widely advocated to 62 

assess marine ecosystem status, gauge sustainable levels of human pressure, and inform management 63 

interventions (ICES, 2018; Rombouts et al., 2013; Tam et al., 2017). Yet, international efforts to 64 

develop indicators of marine ecosystem status have been hampered by the large number of 65 

observations needed to understand food web processes involving many species, their various life 66 

stages, and geographic ranges. 67 

Despite the complexity of natural food webs, their structure and dynamics are largely determined by 68 

the size of the interacting organisms because predators are systematically larger than their prey, 69 

especially in aquatic ecosystems (Brose et al., 2006; Petchey et al., 2008; Woodward et al., 2005). The 70 

behaviour of organisms relating to their evolutionary history, including adaptations for specific 71 

foraging strategies and habitats, also affects predator-prey interactions (Brose et al., 2019; Link, 2004; 72 

Pecuchet et al., 2020; Pomeranz et al., 2019). Fish fulfil many different roles in an ecosystem (Katara 73 

et al., 2021), often starting life as planktivores which feed lower in the food web, with some species 74 

developing into intermediate (e.g., benthivores) and higher predator feeding guilds (e.g., piscivores) 75 

which consume larger prey as they grow. Fish feeding guild biomasses are also responsive to human 76 

pressures including fishing and climate change (Garrison & Link, 2000a, 2000b; Thompson et al., 2020). 77 

Analysing change in fish feeding guild biomass can, therefore, provide simultaneous information on 78 

ecosystem structure and functioning, by revealing temporal change in the spatial distribution of, e.g., 79 
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planktivore biomass (structure) which is also indicative of change in energy flux between plankton and 80 

fish (functioning). Change in feeding guild species richness provides a measure of functional 81 

redundancy where, for instance, relatively low and decreasing values highlight areas where a function 82 

is supported by only a few species and is at risk.  83 

Internationally coordinated surveys with observations on fish species distributions, body sizes and 84 

biomass provide extensive data to assess change in fish feeding guilds (Lynam & Ribeiro, 2022). 85 

Complementing these, many fish stomach content data that contain information on food web 86 

interactions have been collected across the North Atlantic and Arctic Oceans (Arroyo et al., 2017; 87 

Cachera et al., 2017; ICES, 1997; Pinnegar, 2019; Smith & Link, 2010; Torres et al., 2013). However, 88 

idiosyncrasies in how feeding information has been quantified and reported across different stomach 89 

content databases have hampered efforts to depict general feeding traits. Specifically, four feeding 90 

guilds relevant to fish are used in OSPAR (The Convention for the Protection of the Marine 91 

Environment of the North-East Atlantic) and EU’s MSFD (Marine Strategy Framework Directive) 92 

reporting processes, but without an agreed, data-driven method to categorise predators into them 93 

(i.e., planktivores, sub-apex demersal, sub-apex pelagic and apex predators; Boschetti et al., 2021; 94 

Walmsley et al., 2016; see also https://oap.ospar.org/en/resource-catalogue/enumeration-95 

tables/cemp-enumeration-tables/). Any macroecological assessment of feeding guilds may therefore 96 

be confounded because changes could have a methodological basis. This has constrained the 97 

contribution of food web indicators to marine ecosystem status assessment.  98 

The body size scaling relationship between predators and their prey offers a means to depict general 99 

feeding traits across many species, their various life stages, and geographic ranges that have so far 100 

been lacking. Predator-prey body size scaling is also important to measure empirically because it can 101 

affect the pathway and quantity of energy flux through a food web (Barnes et al., 2010; Brose et al., 102 

2019; Nakazawa et al., 2011; Schneider et al., 2012). Predators feeding on relatively small prey with 103 

high predator-prey mass ratios (PPMR) can dampen strong oscillatory dynamics and thus help to 104 

maintain stability in food webs (Otto et al., 2007; Rooney et al., 2006) and ecosystem functioning 105 
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(Nakazawa et al., 2011; Schneider et al., 2012; Wang & Brose, 2018). Moreover, both predator and 106 

prey taxonomy and their traits can be used to predict interactions with typically high PPMRs that may 107 

be particularly important (Brose et al., 2019; Reum et al., 2019). For instance, we anticipate that 108 

planktivorous and benthivorous fish will have some of the highest PPMRs, especially those that remain 109 

in the same feeding guild through ontogeny, while fish species which develop into piscivores could 110 

see the largest change (a decrease) in their PPMR across their body size range.  111 

Here we make use of predator-prey body size scaling relationships to draw on multiple stomach 112 

content databases and derive comparable fish feeding trait information for the North Atlantic and 113 

Arctic Oceans. This new data collation contains observations from 944,129 fish stomachs collected 114 

between 1836 - 2020. We use these feeding traits to categorise fish into feeding guilds in a way that 115 

is conducive to their application internationally, across ecosystems. Feeding guilds are then applied to 116 

survey data collected from across the northeast Atlantic shelf seas to demonstrate macroecological 117 

patterns in ecosystem structure and functioning relevant to status assessment advocated by OSPAR. 118 

We test the following hypotheses: i) intra and interspecific body size scaling for predator species is 119 

dependent on prey group (e.g., plankton, benthos, and fish prey); ii) multiple distinct feeding guilds 120 

are evident based on feeding trait data; iii) feeding guilds capture significant spatio-temporal trends 121 

in survey data. Our aim was twofold: to generate empirical estimates of fish feeding traits that could 122 

help improve understanding of changes in marine ecosystem structure and functioning; and to achieve 123 

international consensus on the best approach to assessing feeding guilds across ecosystems within 124 

the OSPAR Maritime Area and in a way that can be readily extended to other areas (e.g., Northeast 125 

US continental shelf) and organisms (e.g., invertebrates and mammals).  126 

 127 

2 Methods 128 
 129 
2.1 Stomach contents data 130 
 131 
We draw together stomach contents data primarily collected from the North Atlantic shelf seas, with 132 

important contributions from the Baltic, Barents and Norwegian Seas (Fig. 1, S1). These data were 133 
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sourced from a combination of previously published and unpublished data including DAPSTOM 134 

(Pinnegar, 2019), ICES Year of the Stomach (Daan, 1981; ICES, 1997), the Northeast US continental 135 

shelf (Smith & Link, 2010), Northern Spanish shelf (Arroyo et al., 2017), Gulf of Cadiz (Torres et al., 136 

2013), Swedish-, Icelandic-, Norwegian-, French- (Cachera et al., 2017; Timmerman et al., 2020; 137 

Travers-Trolet, 2017; Verin, 2018) and German-led surveys (e.g., FishNet, https://www.nationalpark-138 

wattenmeer.de/wissensbeitrag/fishnet/). We have included stomach contents data from outside the 139 

OSPAR Area (i.e., Northeast US continental shelf and Baltic Sea) to demonstrate the wider applicability 140 

of our approach to defining feeding guilds and because those data have been used to classify feeding 141 

guilds previously (Garrison & Link, 2000a). The full data collation contains observations from larvae 142 

(<1 g) to adults (up to 351 kg), representing 14,196 unique interactions between 227 predator species 143 

and 2158 prey taxa (https://doi.org/10.14466/CefasDataHub.149; Thompson et al., 2024). We provide 144 

a summary of data sources, spatial and temporal ranges, and sample distributions in Table 1. All data 145 

processing and subsequent analyses were conducted in R version 4.02 (R Core Team, 2020). Predator 146 

and prey taxonomy were processed using the “taxize” package (Chamberlain et al., 2020) and assigned 147 

to ‘zooplankton’, ‘benthos’, ‘fish’, ‘nekton’ and ‘other’ functional groups after Webb & Vanhoorne 148 

(2020) using the “worrms” package (Chamberlain, 2019).  149 

 150 

 151 
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 152 
Figure 1: Number of stomach samples on a 1° longitudinal by 1° latitudinal grid. 153 
 154 
Table 1. A summary of data sources, spatial and temporal ranges, and sample distributions (see also 155 
Fig. S1).  156 

Source Temporal 
range 

Latitudinal 
range 

Longitudinal 
range n stomachs 

n 
predator 
taxa 

n 
prey 
taxa 

DAPSTOM 1836 to 2016 44 to 80 -57 to 50 89500 113 838 
France 2009 to 2018 49 to 51 -2 to 2 895 16 254 
Germany 2019 to 2020 54 to 55 8 to 9 312 21 67 
Iceland 1992 to 1992 63 to 67 -27 to -10 32744 22 506 
ICES - Baltic 1963 to 2014 54 to 60 10 to 24 66829 1 124 
ICES - North Sea 1980 to 2013 51 to 62 -6 to 12 251006 29 781 
Norway 2004 to 2020 69 to 82 -9 to 51 56406 3 348 
Spain 1988 to 2019 36 to 44 -10 to -1 181494 97 354 
Sweden 2013 to 2013 56 to 59 8 to 13 268 1 52 
USA 1973 to 2019 35 to 45 -76 to -65 264675 58 258 

 157 

2.2 Quantifying intra- and interspecific body size scaling relationships between predators and 158 
different prey functional groups  159 
 160 
Prey count and biomass observations (wet weight in grams) are needed to estimate predator-prey 161 

mass ratios (PPMR), but these were available for only 56% of the stomach contents data. Therefore, 162 

to make use of all the data (Fig. 1; Table 1) when assigning fish to feeding guilds, a linear mixed effect 163 

model of predator-prey body size scaling was constructed to estimate prey counts or biomass where 164 
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either were unavailable; using only data where taxonomy for both predator and prey was resolved 165 

(i.e., to species and functional group, respectively), and predator body size, prey body size and prey 166 

counts were all available. Major axis regression following Brose et al. (2019) was not suitable because 167 

we needed to make predictions of prey body size and minimise the squared residuals in the response 168 

(Legendre, 1998). Log10 transformed individual prey mass (wet weight in g) was fit as the response, 169 

with an interaction term between log10 transformed predator body mass (wet weight in g). Random 170 

intercepts and slopes were fit for both predator taxa or prey functional group to test if either 171 

interacted with predator body mass. Random intercepts were fit for datasets to test for systematic 172 

differences in how data were generated: grouped into those from Spain, USA, and ICES, which each 173 

follow their own protocols for measuring prey biomass, and all others which represent a mixture of 174 

methods from across studies. Random intercepts were also fit for years, sites (a 3 by 3 grid across the 175 

study area based on splitting the gradients of longitude and latitude into 3 equal lengths; Fig S1) and 176 

the number of stomachs sampled with two levels, 1 = from multiple stomachs and 2 = were stomach 177 

samples were pooled (some stomach samples contained in DAPSTOM and ICES Year of the Stomach 178 

were pooled at the point of collection for size classes of predator species). We use a Student’s t-179 

distribution to account for heavy tails in the distribution of the response. The Akaike Information 180 

Criterion (AIC) was used on nested models to assess the importance of all predictors. The full model 181 

had the lowest AIC by >2 units meaning all predictors were retained (Table S1). Model diagnostic plots 182 

were performed using the R package DHARMa (Hartig, 2022). 183 

The ‘full’ model was used to predict the mean individual body mass of prey functional groups for 184 

predator species of a given size. This enabled us to make use of many observations in DAPSTOM, for 185 

instance, which have recorded prey counts but no prey biomass. In such cases, we estimated the 186 

biomass of each prey taxa by multiplying the predicted mean individual body mass for their functional 187 

group by the observed prey count. Where prey counts were missing, e.g., much of the data from Smith 188 

& Link (2010; USA data in Fig. S1), we estimate these by dividing the observed biomass of each prey 189 

taxa by the predicted mean individual prey mass for their functional group. We provide R script and 190 
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the data underlying our model, with an example showing how to predict individual prey size based on 191 

a list of predator taxa, predator sizes and prey functional groups 192 

(https://github.com/MurraySAThompson/fish-feeding-traits-glmm). Our full model has temporal and 193 

spatial information as random effects because we were interested in developing general feeding traits 194 

for the study area, irrespective of spatial and temporal gradients. However, the significance of spatial 195 

and temporal random effects (Table S1) suggests future work exploring environmental change drivers 196 

of predator-prey scaling could be fruitful. All linear mixed effects models were fit using the glmmTMB 197 

R package (Brooks et al., 2017).  198 

 199 

2.3 Classifying predator feeding guilds based on feeding trait data 200 
 201 
Predators were categorised by species and size. We use 20 equal size bins to categorise predator mass 202 

along a log10 transformed gradient from 0.1 micrograms to 190 tonnes, capable of capturing organisms 203 

from plankton to blue whales (Table S2). Data for each species size class was then estimated across all 204 

available stomach samples (Fig. 1; Table 1), with means calculated for % prey functional group 205 

biomass, biomass weighted PPMR (after Reum et al., 2019) and mean individual prey mass (Table S3). 206 

We used directly observed data where available and predictions from our predator-prey body size 207 

scaling models where data were missing. Feeding guilds were assigned based on cluster analysis using 208 

the ‘ward D2’ agglomeration method on Bray-Curtis dissimilarities between predator diets available 209 

in the R stats package (R Core Team, 2020).  210 

We compared different methods to classifying feeding guilds where the dissimilarity matrix used in 211 

the cluster analysis was generated using either: 1) the biomass of prey taxa (Garrison & Link, 2000a); 212 

2) prey taxa occurrence (Thompson et al., 2020) or; 3) via a novel method where dissimilarities are 213 

based on broad feeding traits (henceforth, the biomass, occurrence and trait methods). Feeding traits 214 

were log10 transformed mean individual prey mass (g), log10 transformed mean biomass weighted 215 

PPMR, and the mean % biomass contribution to the stomach contents of zooplankton (including fish 216 

<0.5g), benthos, nekton (other than fish) and fish (all fish prey ≥ 0.5g); with all variables rescaled to 217 
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values of or between 0 and 1. We tested for differences between these methods to classifying feeding 218 

guilds by comparing them after re-sampling (n = 1000) subsets of the data (n = 30 unique stomach 219 

samples per predator). Predators with fewer than 30 samples were not classified into feeding guilds. 220 

Compositional change in predators between successively reclassified feeding guilds was used to 221 

determine the ability of each method to consistently classify similar predators in the same guild. 222 

Compositional change was measured using the distance to centroid following analysis of multivariate 223 

homogeneity of groups dispersions (Anderson, 2006). The method with the lowest mean distance to 224 

centroid was determined to have the most robust feeding guild classifications as determined using 225 

analysis of variance tests. First, we tested whether compositional change across feeding guilds was 226 

non-random for each method: distance to centroid (i.e., compositional change) was the response, 227 

with ‘Guild’, and ‘Data’ (i.e., a factor identifying each unique re-sampling event) as predictors. We then 228 

tested for significant differences between methods: distance to centroid (i.e., compositional change) 229 

was the response, with ‘Method’, ‘Guild’, and ‘Data’ as predictors. Significant predictors were 230 

determined using the F-test on nested models. Targeted tests for differences between the mean 231 

distance to centroid across methods were carried out using Tukey’s all-pairwise comparisons that 232 

corrects for multiple comparisons in the “multcomp” package (Hothorn et al., 2016). 233 

The ability to classify common feeding guilds across ecosystems (e.g., sub-apex and apex predators) 234 

rather than area-specific guilds (e.g., a feeding guild unique to the North Sea) is another important 235 

quality for a feeding guild indicator to exhibit. We assessed how important spatial gradients were in 236 

our three different approaches to classifying feeding guilds. First, we generated latitudinal and 237 

longitudinal coordinate centroids for each predator by taking a mean across their stomach samples. 238 

We then took a mean across these predator centroids to generate a centroid for all the data, and also 239 

means across these predator centroids but grouped by feeding guild and method to generate method-240 

specific guild centroids. Next, we measured the distance between the overall data centroid to the 241 

method-specific guild centroids using the geosphere package (Hijmans et al., 2021) and summed 242 

distances for each method. A large sum of distances for a method to the overall data centroid would 243 
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indicate that feeding guilds were area-specific, largely made up of predators found close together, and 244 

thus spatial gradients would be important determinants of feeding guild structure. The method with 245 

the lowest sum of distances to the overall data centroid was deemed to be least affected by spatial 246 

gradients and thus preferred.  247 

Four feeding guilds have been called for in OSPAR and MSFD guidance, i.e., planktivores, sub-apex 248 

demersal, sub-apex pelagic and apex predators (Boschetti et al., 2021; Walmsley et al., 2016; see also 249 

https://oap.ospar.org/en/resource-catalogue/enumeration-tables/cemp-enumeration-tables/), 250 

without consensus on how to categorise predators into these guilds. We use four feeding guilds here 251 

to help bridge this gap and so that we can elegantly capture a broad set of ecosystem components 252 

while exploring guild responses in biomass and species richness in the survey data. Changing the 253 

number of feeding guilds could be justified, depending on the question, and is straightforward to 254 

implement by taking a higher or lower split in the classification tree. We see this as a strength of our 255 

approach because feeding guilds are hierarchically structured much like how taxonomic or other trait 256 

information has been organised. We provide a table which details the branches for up to five feeding 257 

guilds so future assessments can choose which level of complexity suits their need. We also present 258 

axis scores from a non-metric multidimensional scaling analysis of the dissimilarities used in our 259 

cluster analysis which provide a more nuanced understanding (i.e., bounded data as opposed to 260 

categorical) of different predator feeding traits in relation to others. Moreover, because it is a data-261 

driven, reproducible approach, new information can be systematically integrated to 1) further resolve 262 

differences in feeding traits, 2) feeding guild composition and 3) test if changes in predator feeding 263 

traits provides evidence for spatially or temporally flexible classifications. 264 

 265 

2.4 Using feeding guilds to capture spatiotemporal trends in survey data 266 
 267 
The new feeding guild classifications have been applied to processed otter trawl survey data for the 268 

Northeast Atlantic shelf seas collected between 1997–2020 (Lynam & Ribeiro, 2022) to reveal spatial 269 

and temporal patterns in feeding guild responses. These survey data have been processed specifically 270 
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to support state indicators, with observations for the biomass of species size classes standardised to 271 

the area swept for each haul. Survey data corresponding with all our stomach content data, from north 272 

of Norway, Icelandic waters, the Baltic Sea and eastern shelf seas of the USA, have not yet been 273 

standardised and processed in the same way, hence why we haven’t included them here. Extending 274 

this work to assess change in ecosystem structure and function across the study region covered by the 275 

stomach contents data (Fig. 1) represents a key area for future development.  276 

Compared with quarter 2 and 3 (April – September), data from quarters 1 and 4 (January-March and 277 

October – December, respectively) typically have longer time-series available over much of the study 278 

region and so were preferentially selected. Where data from quarters 1 or 4 were not available, otter 279 

trawl data from other quarters were used. Table S4 provides information on the surveys used and 280 

their spatial and temporal ranges. The temporal assessment covers 1997-2020 because the majority 281 

of the surveys considered have at least a near complete time-series covering that period. Longer time-282 

series do exist for some surveys but including these data would mean we are looking at long-term 283 

change for some areas, but shorter-term change for others which could confound interpretation. 284 

Spatial and temporal change in feeding guild responses were determined for the Greater North Sea, 285 

Celtic Seas, Bay of Biscay and Iberian Coast, and the wider Atlantic. The assessment strata used here 286 

replicate those used for the OSPAR food web indicators: mean-maximum length and size-composition 287 

in fish communities (Lynam et al., 2022; Lynam & Piet, 2022).  288 

Kendall’s τ trend analysis was used to identify areas of significant temporal change in feeding guild 289 

responses based on the relationship between mean haul-level values of feeding biomass and species 290 

richness for each assessment strata and year. Kendall’s τ scores of –1 to +1 represent a 100% 291 

probability of a decreasing or increasing trend, respectively. By using Kendall’s τ, which is rank-based 292 

and non-parametric, we can detect correlations which may be non-linear. Stomach contents data, 293 

prey size predictions, haul-level estimates of feeding guild biomass and their species richness along 294 

with Kendall’s τ correlation coefficients and p have all been made available 295 

(https://doi.org/10.14466/CefasDataHub.149; Thompson et al., 2024). 296 
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 297 

 298 
Figure 2: The process used to classify feeding guilds based on predator stomach contents data, assign 299 
them to survey data and calculate feeding guild responses across the assessment strata. Yellow circles 300 
= stomach contents data, blue circle = otter trawl survey data, green circles = survey data with feeding 301 
guild information appended.  302 
 303 

3 Results 304 
 305 
3.1 Unique intra- and interspecific body size scaling relationships between predators and prey 306 
functional groups  307 
 308 
There were significant differences in the log10 transformed scaling relationship between predator and 309 

prey body mass captured by the interactions between predator body mass and predator species and 310 

prey functional group combinations (Fig. 3). These results support our first hypothesis that predator 311 

species can have unique intra- and interspecific body size scaling relationships with different prey 312 

functional groups. Fish prey tended to be the biggest, meaning fish-fish interactions tended to have 313 

higher intercepts and slopes (Fig. 3a, c, d, h) and thus the lowest mean PPMR, with predator species 314 

of the same size consuming relatively small benthic and zooplankton prey (Fig. 3b, e, f, g, I, j, k, l). 315 

These models enabled us to estimate prey biomass, counts and predator-prey mass ratios across the 316 

different stomach contents datasets, species and size classes useful for feeding guild classifications 317 

(Table S3).  318 
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  319 
Figure 3: A subset of the 498 unique combinations of predator species and prey functional group body 320 
mass scaling relationships on log10 transformed axes. Blue points = observed values for specific 321 
relationships, red points = model predictions for specific relationships, grey points = all observed 322 
values. The final plot ‘Predator species and prey groups’ shows the different scaling relationships 323 
across the preceding plots, ordered by prey size at maximum predator size with a dashed 1:1 line to 324 
show scaling relationships were generally sublinear (i.e., prey increased less than their predators per 325 
unit increase in body size).  326 
 327 

3.2 Feeding trait data reveal multiple distinct feeding guilds  328 
 329 
Feeding guilds captured significant variation in the composition of predators for each cluster-based 330 

method (Table 2), confirming our second hypothesis that multiple feeding guilds can be delineated 331 
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from the analysis of feeding traits. The occurrence method had the most robust feeding guilds with 332 

the lowest compositional change in predators following re-sampling (mean distance to centroid = 333 

0.13), followed by the trait (mean distance to centroid = 0.22) and then the biomass methods (mean 334 

distance to centroid = 0.34; randomly generated feeding guild mean distance to centroid ranged 335 

between 0.6 – 0.61; Fig. S2; Table S5). The trait method had the lowest sum of distances to the data 336 

centroid (2,655 km) followed by the biomass (7,034 km) and occurrence methods (8757 km; Fig. S3). 337 

The trait method was therefore preferred because it could identify multiple distinct feeding guilds 338 

even where we consider small subsets of predator stomach contents (n = 30 stomach samples) while 339 

being the least affected by spatial gradients in prey taxa.  340 

The four feeding guilds identified using the trait method have been named based on the % biomass of 341 

prey functional groups as follows: planktivores, benthivores, bentho-piscivores and piscivores (Fig. 4). 342 

Differences between feeding guilds were related to predator size, which correlated positively with 343 

piscivory and negatively with planktivory (Fig. S4). Small size classes of species often occur in the 344 

planktivore guild, moving to another guild as they increase in size, with multiple medium- to larger 345 

size-classes of a species often in the same guild (Table S3). Typically, the biggest fish within and across 346 

feeding guilds had the highest PPMR (hence the sublinear relationship in Fig. 3, where prey increased 347 

less than their predators per unit increase in body size), yet piscivores were typically the biggest and 348 

had the lowest PPMR on average. This apparent contradiction is largely because small piscivores had 349 

some of the lowest PPMR values, whereas big planktivores and benthivores had some of the highest 350 

values (Fig. 4; Table S3).  351 

 352 

 353 

 354 

 355 

 356 

 357 
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Table 2. Analysis of variance results across nested models for each cluster-based method and across 358 
methods. Data for biomass, occurrence and trait methods were used to test whether guild (i.e., 359 
cluster-based groups) and data (i.e., a factor identifying each unique re-sampling event) captured 360 
significant variation in the composition of predators. Data for all was used to test for differences 361 
between the different methods (see also Table S5; Fig. S2). The term dropped column indicates which 362 
term was dropped from each model (blanks indicate no predictors were dropped), AIC reveals change 363 
in model fit, and p-values from F-tests highlight significant change in model fit.  364 

Data 
Term 
dropped Df AIC F-value p 

Biomass 
    -19197     
Guild 3 -18942 67.42 <0.001 
Data 999 -19400 1.7 <0.001 

Occurrence 
    -16383     
Guild 3 -14526 592.83 <0.001 
Data 999 -15784 2.74 <0.001 

Trait 
    -16383     
Guild 3 -14526 592.83 <0.001 
Data 999 -15784 2.74 <0.001 

All 

<none>   -48990     
Guild 3 -47509 483.29 <0.001 
Method 2 -43609 3113.44 <0.001 
Data 999 -49756 1.19 <0.001 

 365 
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    366 
Figure 4: Differences between feeding guilds in predator size, individual prey size, predator-prey mass 367 
ratio (PPMR) and the % biomass contribution of different prey functional groups to stomach contents. 368 
Points represent means for species size classes (Table S3), error bars represent standard error.  Bottom 369 
panel: PPMR increases with predator body size within (solid, coloured) and across (black, dashed line) 370 
feeding guilds.  371 
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3.3 Feeding guilds capture significant spatiotemporal trends in survey data  372 
 373 
When assigning feeding guilds in the survey data, we were able to classify 92% of the biomass which 374 

included 122 species size classes. Many rare predators observed in the survey data (n = 366, 375 

representing 8% of the surveyed biomass) remain unclassified due to insufficient stomach contents 376 

data (Table S6). The perspective of change in the survey data is therefore weighted towards predators 377 

contributing most to community biomass and ecosystem functioning. We found clear spatial structure 378 

and regions of contrasting temporal change in feeding guild biomasses and their species richness (Figs. 379 

5-6), confirming our third hypothesis. For instance, significant and spatially extensive temporal 380 

decreases in planktivore feeding guild biomass lower in the food web were evident in the Celtic Seas 381 

and Bay of Biscay where the biomass of the bentho-piscivore and piscivore feeding guilds higher in 382 

the food web has increased (Fig. 5). Benthivore biomass has increased in the southern North Sea, 383 

where there has been little change in other feeding guilds. Planktivore, bentho-piscivore and piscivore 384 

biomass have all decreased in at least one assessment strata in the northern North Sea. Regions of 385 

temporal change in species richness were also different across feeding guilds (Fig. 6). For instance, 386 

over large areas in the Celtic Seas, Bay of Biscay and northern North Sea where there was relatively 387 

limited change in planktivore species richness, the species richness of benthivores, bentho-piscivores 388 

and piscivores all increased (see Fig. S5 for changes in unclassified biomass).  389 

 390 

 391 
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 392 

Figure 5: Mean spatial distribution (top row) and temporal change (bottom row) in feeding guild 393 
biomass by assessment strata based on otter trawl data. Significant temporal trends are highlighted 394 
with a black border and coloured blue or red to depict a decreasing or increasing trend, respectively 395 
(Kendall’s τ scores of –1 to +1 represent a 100% probability of a decreasing or increasing trend).  396 
 397 

 398 
Figure 6:  Mean spatial distribution (top row) and temporal change (bottom row) in feeding guild 399 
species richness by assessment strata based on otter trawl data. Significant temporal trends are 400 
highlighted with a black border and coloured blue or red to depict a decreasing or increasing trend, 401 
respectively (Kendall’s τ scores of –1 to +1 represent a 100% probability of a decreasing or increasing 402 
trend). 403 
 404 
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4 Discussion 405 
 406 
Our predator-prey body size scaling models enabled predictions of mean individual prey mass for 407 

different predator species and prey functional groups across the Atlantic and Arctic Oceans. With 408 

these predictions we could estimate key fish feeding traits across species and sizes, such as predator-409 

prey mass ratios and the relative biomass contribution of zooplankton, benthos and fish prey to 410 

predator diets. Our feeding trait-based approach to categorising feeding guilds was also less 411 

susceptible to large spatial gradients in the composition of prey than previously used methods 412 

(Garrison & Link, 2000a; Thompson et al., 2020). By using feeding guilds to assess routinely collected 413 

survey data, we revealed contrasting patterns of change in the biomass and species richness of fish 414 

feeding at different levels within the food web across the Northeast Atlantic shelf seas. For example, 415 

extensive decreases in the biomass of consumers lower in the food web (planktivores) were evident 416 

in the Celtic Seas and Bay of Biscay and this contrasted with biomass increases higher up (bentho-417 

piscivores and piscivores; Fig 5). These contrasting patterns of change in how biomass and species are 418 

distributed across the food web indicate regions of temporal change in marine ecosystem structure 419 

and functioning as the relative importance of different energy pathways changes across the fish 420 

assemblage. This is because changes in species richness and the distribution of biomass across the 421 

food web can influence nutrient uptake and the efficiency of communities in converting nutritional 422 

resources into biomass (Cardinale et al., 2012; Wang & Brose, 2018; Worm et al., 2006).  423 

A wide range of prey sizes could be consumed by a given predator species and size and this variability 424 

was generally captured well by our models (Fig. 3). Omnivory was also ubiquitous with all prey groups 425 

occurring in the diet of all feeding guilds, albeit to markedly different levels (Fig. 4; Table S3). This, 426 

along with the variability in our re-sampled feeding guild classifications (Fig. S2), highlights the 427 

plasticity of fish feeding behaviour with some individuals of, e.g., a typically planktivorous species 428 

having consumed mostly fish prey. Feeding guilds provide a necessary simplification of this complexity 429 

as a means to indicate change in marine food webs across ecosystems by taking the typical behaviour 430 

of a species size class. We have also provided more nuanced information, including empirical 431 
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estimates of predator-prey mass ratios, relative contributions of different prey groups, and from 432 

multivariate analysis on the dissimilarity of species size class feeding traits (Table S3; Fig. S4) which 433 

could help further unpick what such change means. This information is also widely applicable for 434 

quantifying and predicting the effects of different fishing and climate regimes where changes in the 435 

distribution of species and body sizes are anticipated (Kleisner et al., 2016; Lotze et al., 2019; Spence 436 

et al., 2021; Thompson et al., 2023). 437 

Previous studies which identified feeding guilds used differing approaches, relied on a subset of the 438 

stomach contents data we use here and assessed different survey data to one-another (Garrison & 439 

Link, 2000a, 2000b; Thompson et al., 2020). It was therefore not clear which method would be optimal 440 

as an indicator across ecosystems. Moreover, differences in how feeding trait information has been 441 

quantified and reported has hampered the synthesis of stomach contents data. Here, we brought 442 

those different stomach contents data together by developing models to predict prey biomass and 443 

counts where information was missing. We were then able to compare different approaches to 444 

classifying feeding guilds across the datasets and apply the optimal approach to the same survey data. 445 

This approach has helped achieve international consensus on how to assess feeding guilds across 446 

ecosystems within the OSPAR Area (Thompson, Lynam, et al., 2023).  The work we present here 447 

represents a development of that pilot indicator, with improvements in how we estimated prey 448 

weights (i.e., improved modelling framework that made use of more stomach contents data) which 449 

affected feeding guild classifications; and the use of Kendall’s τ trend analysis on the classified survey 450 

data (as opposed to Pearson’s correlation coefficients) in order to detect correlations which may be 451 

non-linear. Many of the temporal patterns we present here are similar to those in the pilot indicator. 452 

The most notable differences appear for feeding guild species richness where values were relatively 453 

low (i.e., where relatively little change could have a large influence) in the central and northern North 454 

Sea. 455 

We use a trend-based assessment rather than one based on reference limits. Setting thresholds for 456 

feeding guilds was outside the remit of this study and will require reference limits for Good 457 
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Environmental Status to be established. This could be done through synthesising empirical evidence 458 

on feeding guild response to environmental change and human pressure (e.g., following Garrison & 459 

Link, 2000b; Thompson et al., 2020) with dynamical modelling capable of predicting ecosystem state 460 

under varying levels of human pressure (Link et al., 2010; Rossberg et al., 2017; Samhouri et al., 2010), 461 

for instance. Such work would benefit from data products capable of integrating information from 462 

different surveys, e.g., acoustic and various trawl gears, that catch a broad range of species and sizes 463 

including smaller pelagic species which are likely under-sampled by demersal trawls (Kotwicki et al., 464 

2018; Nnanatu et al., 2020). Developing understanding of the drivers in spatial and temporal change 465 

in fish feeding behaviour (Table S1) could also be fruitful, potentially leading to the quantification of 466 

energy fluxes from different habitats (e.g., benthos and pelagic), regions, species, and seasons, for 467 

instance. Such work could help develop understanding of the connections between the wider suite of 468 

indicators which draw on different assemblages and often rely on data collected at different times and 469 

at different spatial scales (e.g., Preciado et al., 2023). The inventory of feeding interactions could also 470 

continue to develop, e.g., via surveys targeting areas and predators with limited information (e.g., Fig. 471 

S5; Table S6), via DNA metabarcoding of stomach contents (Jakubavičiute et al., 2017), inference from 472 

similar predators (Gray et al., 2015; Hicks et al., 2019), biotracers (Pethybridge et al., 2018) and 473 

predictive modelling (Hernvann et al., 2022; Link, 2004; Petchey et al., 2008). Variability in digestion 474 

rates driven by environmental gradients such as temperature and differences in prey sizes and tissue 475 

composition could also be modelled to help improve estimates of biomass flux across the food web 476 

(Temming & Herrmann, 2003).   477 

Using change in functionally distinct feeding guilds to assess environmental status has been widely 478 

advocated to fulfil OSPAR and the Marine Strategy Framework Directive requirements (Boschetti et 479 

al., 2021; ICES, 2018; Rombouts et al., 2013; Tam et al., 2017; Walmsley et al., 2016), but international 480 

consensus on how to do this has been lacking. We drew together data and expertise from across the 481 

North Atlantic and Arctic Oceans to help achieve this. In doing so, we have made empirical estimates 482 

of a range of key fish feeding traits that are widely applicable in marine ecosystem science, identified 483 
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robust feeding guilds, and revealed how and where ecosystem structure and function was changing 484 

across the OSPAR Area. Such information will be critical to help better quantify and predict the effect 485 

of human pressures, such as fishing and climate change, on global patterns in marine ecosystem 486 

structure and functioning. 487 

 488 

5 Conclusions 489 
 490 
We make use of multiple stomach contents databases to predict species- and size-specific feeding 491 

traits for fish across the North Atlantic and Arctic Oceans. We then developed a repeatable, data-492 

driven workflow that categorises fish based on these feeding traits and show how they can be applied 493 

to robustly define the feeding guilds required in OSPAR and the Marine Strategy Framework Directive 494 

guidance. This has provided an indicator capable of revealing change in ecosystem structure and 495 

function across the OSPAR Area based on routinely collected survey data. For instance, we reveal 496 

significant and spatially extensive temporal changes across the food web, with decreases in the 497 

biomass of smaller planktivorous fish which contrasted with increases in the biomass of larger more 498 

piscivorous fish. The information we have generated can be tailored to fulfil other specific evidence 499 

needs, such as improving the parametrisation of ecosystem models and quantifying sustainable levels 500 

of human pressure. Our study provides evidence supporting a candidate food web indicator for the 501 

OSPAR Area that can be readily extended to other areas and organisms.  502 
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