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Abstract 36 

International efforts to assess the status of marine ecosystems have been hampered by insufficient 37 

observations of food web interactions across many species, their various life stages, and geographic 38 

ranges. Hence, we collated data from multiple databases of fish stomach contents from samples taken 39 

across the North Atlantic and Arctic Oceans containing 944,129 stomach samples from larvae to 40 

adults, with 14,196 unique interactions between 227 predator species and 2158 prey taxa. We use 41 

these data to develop a data-driven, reproducible approach to classifying broad functional feeding 42 

guilds and then apply these to fish survey data from the Northeast Atlantic shelf seas to reveal spatial 43 

and temporal changes in ecosystem structure and functioning. In doing so, we construct individual 44 

predator-prey body-mass scaling models to predict the biomass of prey functional groups, e.g., 45 

zooplankton, benthos, and fish, for different predator species. These predictions provide empirical 46 

estimates of species- and size-specific feeding traits of fish, such as predator-prey mass ratios, 47 

individual prey mass, and the biomass contribution of different prey to predator diets. The functional 48 

groupings and feeding traits provided here help to further resolve our understanding of interactions 49 

within marine food webs and support the use of trait-based indicators in biodiversity assessments. 50 

The data used and predictions generated in this study are published on the Cefas Data Hub at: 51 

https://doi.org/10.14466/CefasDataHub.149 (Thompson et al., 2024). 52 

https://doi.org/10.14466/CefasDataHub.149
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 56 

1 Introduction 57 
 58 
Human pressures are affecting global patterns in marine ecosystem structure and functioning, from 59 

species distributions and their body sizes, to how and where energy fluxes through food webs 60 

(Daufresne et al., 2009; du Pontavice et al., 2020; Kortsch et al., 2015). Grouping organisms into broad 61 

functional feeding guilds and assessing change in their populations has been widely advocated to 62 

assess marine ecosystem status, gauge sustainable levels of human pressure, and inform management 63 

interventions (ICES, 2018; Rombouts et al., 2013; Tam et al., 2017). Yet, international efforts to 64 

develop indicators of marine ecosystem status have been hampered by the large number of 65 

observations needed to understand food web processes involving many species, their various life 66 

stages, and geographic ranges. 67 

Despite the complexity of natural food webs, their structure and dynamics are largely determined by 68 

the size of the interacting organisms because predators are systematically larger than their prey, 69 

especially in aquatic ecosystems (Brose et al., 2006; Petchey et al., 2008; Woodward et al., 2005). The 70 

behaviour of organisms relating to their evolutionary history, including adaptations for specific 71 

foraging strategies and habitats, also affects predator-prey interactions (Brose et al., 2019; Link, 2004; 72 

Pecuchet et al., 2020; Pomeranz et al., 2019a). Fish fulfil many different roles in an ecosystem (Katara 73 

et al., 2021), often starting life as planktivores which feed lower in the food web, with some species 74 

developing into intermediate (e.g., benthivores) and higher predator feeding guilds (e.g., piscivores) 75 

which consume larger prey as they grow. Despite differing methods being used to classify fish into 76 

feeding guilds, their biomasses have been shown to respond to human pressures including fishing and 77 

climate change (Garrison & Link, 2000a, 2000b; Thompson et al., 2020). Analysing change in fish 78 

feeding guild biomass can, therefore, provide simultaneous information on ecosystem structure and 79 
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functioning, by revealing temporal change in the spatial distribution of, e.g., planktivore biomass 80 

(structure) which is also indicative of change in energy flux between plankton and fish (functioning). 81 

Change in the species richness of predators in feeding guilds provides a measure of functional 82 

redundancy where, for instance, relatively low and decreasing values highlight areas where a function 83 

is supported by only a few species and is at risk.  84 

Internationally coordinated surveys with observations on fish species distributions, body sizes and 85 

biomass provide extensive data to assess change in fish feeding guilds (Lynam & Ribeiro, 2022). 86 

Complementing these, many fish stomach content data that contain information on food web 87 

interactions have been collected across the North Atlantic and Arctic Oceans (Arroyo et al., 2017; 88 

Cachera et al., 2017; ICES, 1997; Pinnegar, 2019; Smith & Link, 2010; Torres et al., 2013). However, 89 

idiosyncrasies in how feeding information has been quantified and reported across different stomach 90 

content databases have hampered efforts to depict general feeding traits. Specifically, four feeding 91 

guilds relevant to fish are used in OSPAR (The Convention for the Protection of the Marine 92 

Environment of the North-East Atlantic) and EU’s MSFD (Marine Strategy Framework Directive) 93 

reporting processes, but without an agreed, data-driven method to categorise predators into them 94 

(i.e., planktivores, sub-apex demersal, sub-apex pelagic and apex predators; Boschetti et al., 2021; 95 

Walmsley et al., 2016). Any macroecological assessment of feeding guilds may therefore be 96 

confounded because changes could have a methodological basis. This has constrained the 97 

contribution of food web indicators to marine ecosystem status assessment.  98 

The body-mass scaling relationship between individual predators and individual prey (henceforth, 99 

predator-prey body-mass scaling) offers a means to depict general feeding traits across many species, 100 

their various life stages, and geographic ranges that have so far been lacking. Predator-prey body-101 

mass scaling is also important to measure empirically because it can affect the pathway and quantity 102 

of energy flux through a food web (Barnes et al., 2010; Brose et al., 2019; Nakazawa et al., 2011; 103 

Schneider et al., 2012). Predators feeding on relatively small prey yield high predator-prey mass ratios 104 

(PPMR) that can dampen strong oscillatory dynamics and thus help to maintain stability in food webs 105 
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(Otto et al., 2007; Rooney et al., 2006) and ecosystem functioning (Nakazawa et al., 2011; Schneider 106 

et al., 2012; Wang & Brose, 2018). Moreover, both predator and prey taxonomy and their traits can 107 

be used to predict interactions with typically high PPMRs that may be particularly important to 108 

conserve (Brose et al., 2019; Reum et al., 2019). For instance, we anticipate that planktivorous and 109 

benthivorous fish will have some of the highest PPMRs, especially those that remain in the same 110 

feeding guild through ontogeny, while fish species which develop into piscivores could see the largest 111 

change (a decrease) in their PPMR across their individual body mass range.  112 

Here we make use of predator-prey body-mass scaling relationships to draw on multiple stomach 113 

content databases and derive comparable fish feeding trait information for the North Atlantic and 114 

Arctic Oceans. This new data collation contains observations from 944,129 fish stomachs collected 115 

between 1836 - 2020. We use these feeding traits to categorise fish into feeding guilds in a way that 116 

is conducive to their application internationally, across ecosystems. Feeding guilds are then applied to 117 

survey data collected from across the northeast Atlantic shelf seas to demonstrate macroecological 118 

patterns in ecosystem structure and functioning relevant to status assessment advocated by OSPAR. 119 

We test the following hypotheses: i) intra and interspecific body-mass scaling for predator species is 120 

dependent on prey group (e.g., plankton, benthos, and fish prey); ii) multiple distinct feeding guilds 121 

are evident based on feeding trait data; iii) the effectiveness to reliably and robustly classify predators 122 

into feeding guilds applicable across ecosystems varies due to whether classifications are based on 123 

the biomass of prey taxa, prey taxa occurrence, or broad feeding traits (i.e. PPMR, mean prey body-124 

mass, and the % biomass contribution of different prey functional groups); iv) feeding guilds capture 125 

significant spatio-temporal trends in survey data. Our aim was twofold: to generate empirical 126 

estimates of fish feeding traits that could help improve understanding of changes in marine ecosystem 127 

structure and functioning; and to achieve international consensus on the best approach to assessing 128 

feeding guilds across ecosystems within the OSPAR Maritime Area and in a way that can be readily 129 

extended to other areas (e.g., northeast US continental shelf where applicable and routinely collected 130 
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survey data exist but were outside the scope of our assessment) and organisms (e.g., invertebrates 131 

and mammals).  132 

 133 

2 Methods 134 
 135 
2.1 Stomach contents data 136 
 137 
We draw together stomach contents data primarily collected from the North Atlantic shelf seas, with 138 

important contributions from the Baltic, Barents and Norwegian Seas (Fig. 1, S1). These data were 139 

sourced from a combination of previously published and unpublished data including DAPSTOM (An 140 

Integrated Database & Portal for Fish Stomach Records; Pinnegar, 2019), ICES Year of the Stomach 141 

(Daan, 1981; ICES, 1997), the Northeast US continental shelf (Smith & Link, 2010), Northern Spanish 142 

shelf (Arroyo et al., 2017), Gulf of Cadiz (Torres et al., 2013), Swedish-, Icelandic-, Norwegian-, French- 143 

(Cachera et al., 2017; Timmerman et al., 2020; Travers-Trolet, 2017; Verin, 2018) and German-led 144 

surveys (e.g., FishNet, https://www.nationalpark-wattenmeer.de/wissensbeitrag/fishnet/). We have 145 

included stomach contents data from outside the OSPAR Area (i.e., Northeast US continental shelf and 146 

Baltic Sea) to demonstrate the wider applicability of our approach to defining feeding guilds and 147 

because those data have been used to classify feeding guilds previously (Garrison & Link, 2000a). The 148 

full data collation contains observations from larval to adult predators (i.e. fish whose stomach 149 

contents have been sampled, ranging from <1g to  351 kg), representing 14,196 unique interactions 150 

between 227 predator species and 2158 prey taxa (i.e., prey are defined as organisms found in 151 

stomach contents; https://doi.org/10.14466/CefasDataHub.149; Thompson et al., 2024). We provide a 152 

summary of data sources, spatial and temporal ranges, and sample distributions in Table 1. All data 153 

processing and subsequent analyses were conducted in R version 4.02 (R Core Team, 2020). Predator 154 

and prey taxonomy were processed using the “taxize” package (Chamberlain et al., 2020) and assigned 155 

to ‘zooplankton’, ‘benthos’, ‘fish’, ‘nekton’ and ‘other’ functional groups after Webb & Vanhoorne 156 

(2020) using the “worrms” package (Chamberlain, 2019).  157 

 158 

https://www.nationalpark-wattenmeer.de/wissensbeitrag/fishnet/
https://doi.org/10.14466/CefasDataHub.149
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 159 

 160 
Figure 1: Number of stomach samples on a 1° longitudinal by 1° latitudinal grid. 161 
 162 
Table 1. A summary of data sources, spatial and temporal ranges, and sample distributions (see also 163 
Fig. S1).  164 

Source Temporal 
range 

Latitudinal 
range 

Longitudinal 
range n stomachs 

n 
predator 
taxa 

n 
prey 
taxa 

DAPSTOM 1836 to 2016 44 to 80 -57 to 50 89500 113 838 
France 2009 to 2018 49 to 51 -2 to 2 895 16 254 
Germany 2019 to 2020 54 to 55 8 to 9 312 21 67 
Iceland 1992 to 1992 63 to 67 -27 to -10 32744 22 506 
ICES - Baltic 1963 to 2014 54 to 60 10 to 24 66829 1 124 
ICES - North Sea 1980 to 2013 51 to 62 -6 to 12 251006 29 781 
Norway 2004 to 2020 69 to 82 -9 to 51 56406 3 348 
Spain 1988 to 2019 36 to 44 -10 to -1 181494 97 354 
Sweden 2013 to 2013 56 to 59 8 to 13 268 1 52 
USA 1973 to 2019 35 to 45 -76 to -65 264675 58 258 

 165 

2.2 Quantifying intra- and interspecific body-mass scaling relationships between predators and 166 
different prey functional groups  167 
 168 
Prey count and biomass observations (wet weight in grams) are needed to estimate predator-prey 169 

mass ratios (PPMR), but these were available for only 56% of the stomach contents data. Therefore, 170 

to make use of all the data (Fig. 1; Table 1) when assigning fish to feeding guilds, a linear mixed effect 171 
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model of predator-prey body-mass scaling was constructed to estimate prey counts or biomass where 172 

either were unavailable; using only data where taxonomy for both predator and prey was resolved 173 

(i.e., to species and functional group, respectively), and individual predator body mass, individual prey 174 

body mass and prey counts were all available. Major axis regression following Brose et al. (2019) was 175 

not suitable because we needed to make predictions of individual prey body mass and minimise the 176 

squared residuals in the response (Legendre, 1998). Log10-transformed individual prey mass (wet 177 

weight in g) was modelled as the response variable, with log10-transformed predator body mass (wet 178 

weight in g) as a fixed effect. Random intercepts and slopes were included for predator taxa and prey 179 

functional group to account for potential variation in their relationships with predator body mass. 180 

Random intercepts were fit for datasets which follow different protocols to test for systematic 181 

differences in how data were generated (i.e. Spain, USA, and ICES, which each follow their own 182 

protocols for measuring prey biomass, and all others which represent a mixture of methods from 183 

across studies). Random intercepts were also fit for years, sites (Fig S1; sites based on a 3 by 3 grid 184 

across the study region) and the number of stomachs sampled (i.e. 1 = from multiple stomachs and 2 185 

= where stomach samples were pooled). We use a Student’s t-distribution to account for heavy tails 186 

in the distribution of the response. We use the following model:  187 

Log10(prey mass)𝑖𝑖  ∼ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑡𝑡 �𝛼𝛼𝑗𝑗[𝑖𝑖],𝑘𝑘[𝑖𝑖],𝑙𝑙[𝑖𝑖],𝑚𝑚[𝑖𝑖],𝑛𝑛[𝑖𝑖],𝑜𝑜[𝑖𝑖] + 𝛽𝛽1𝑗𝑗[𝑖𝑖],𝑘𝑘[𝑖𝑖](predator mass), 𝜎𝜎2, ν� 188 
 189 

�
𝛼𝛼𝑗𝑗
𝛽𝛽1𝑗𝑗

� ∼ 𝑁𝑁��
𝜇𝜇𝛼𝛼𝑗𝑗
𝜇𝜇𝛽𝛽1𝑗𝑗

� , �
𝜎𝜎𝛼𝛼𝑗𝑗
2 𝜌𝜌𝛼𝛼𝑗𝑗𝛽𝛽1𝑗𝑗

𝜌𝜌𝛽𝛽1𝑗𝑗𝛼𝛼𝑗𝑗 𝜎𝜎𝛽𝛽1𝑗𝑗
2 �� , for predator_taxa j = 1, … ,J 190 

 191 

� 𝛼𝛼𝑘𝑘
𝛽𝛽1𝑘𝑘

� ∼ 𝑁𝑁��
𝜇𝜇𝛼𝛼𝑘𝑘
𝜇𝜇𝛽𝛽1𝑘𝑘

� , �
𝜎𝜎𝛼𝛼𝑘𝑘
2 𝜌𝜌𝛼𝛼𝑘𝑘𝛽𝛽1𝑘𝑘

𝜌𝜌𝛽𝛽1𝑘𝑘𝛼𝛼𝑘𝑘 𝜎𝜎𝛽𝛽1𝑘𝑘
2 �� , for prey_functional_group k = 1, … ,K 192 

 193 
𝛼𝛼𝑙𝑙 ∼ 𝑁𝑁�𝜇𝜇𝛼𝛼𝑙𝑙, 𝜎𝜎𝛼𝛼𝑙𝑙

2 �, for year l = 1, … ,L 194 
 195 

𝛼𝛼𝑚𝑚 ∼ 𝑁𝑁�𝜇𝜇𝛼𝛼𝑚𝑚, 𝜎𝜎𝛼𝛼𝑚𝑚
2 �, for data source m = 1, … ,M 196 

 197 
𝛼𝛼𝑛𝑛  ∼ 𝑁𝑁�𝜇𝜇𝛼𝛼𝑛𝑛, 𝜎𝜎𝛼𝛼𝑛𝑛

2 �, for site n = 1, … ,N 198 
 199 

𝛼𝛼𝑜𝑜 ∼ 𝑁𝑁�𝜇𝜇𝛼𝛼𝑜𝑜, 𝜎𝜎𝛼𝛼𝑜𝑜
2 �, for n stomachs pooled o = 1, … ,O 200 

 201 
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Where Log10 transformed individual prey mass (wet weight in g) is modelled following a Student’s t-202 

distribution with mean 𝜇𝜇, variance 𝜎𝜎2, and degrees of freedom ν. The parameters 𝛼𝛼 and 𝛽𝛽 represent 203 

intercepts and slopes, respectively, that vary by grouping factors j to o. The Akaike Information 204 

Criterion (AIC) was used on nested models to assess the importance of all predictors. The full model 205 

had the lowest AIC by >2 units meaning all predictors were retained (Table S1). Model diagnostic plots 206 

were performed using the R package DHARMa (Hartig, 2022). 207 

The ‘full’ model was used to predict the mean individual body mass of prey functional groups for 208 

predator species of a given size. This enabled us to make use of many observations in DAPSTOM, for 209 

instance, which have recorded prey counts but no prey biomass. In such cases, we estimated the 210 

biomass of each prey taxa by multiplying the predicted mean individual body mass for their functional 211 

group by the observed prey count. Where prey counts were missing, e.g., much of the data from Smith 212 

& Link (2010; USA data in Fig. S1), we estimate these by dividing the observed biomass of each prey 213 

taxa by the predicted mean individual prey mass for their functional group. We provide R script and 214 

the data underlying our model, with an example showing how to predict mean individual prey size 215 

(i.e. generate fitted values) based on a list of predator taxa, predator body mass and prey functional 216 

groups (https://github.com/MurraySAThompson/fish-feeding-traits-glmm). Here we also 217 

demonstrate how to simulate data using the uncertainty measured by our model to help gauge its 218 

performance and because variability in individual prey masses is useful in food web research more 219 

broadly (Brose et al., 2019; Pomeranz et al., 2019b; Scott et al., 2014). Our full model has temporal 220 

and spatial information as random effects because we were interested in developing general feeding 221 

traits for the study area, irrespective of spatial and temporal gradients. However, the significance of 222 

spatial and temporal random effects (Table S1) suggests future work exploring environmental change 223 

drivers of predator-prey body-mass scaling could be fruitful. All linear mixed effects models were fit 224 

using the glmmTMB R package (Brooks et al., 2017).  225 

 226 

https://github.com/MurraySAThompson/fish-feeding-traits-glmm
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2.3 Classifying predator feeding guilds based on feeding trait data 227 
 228 
Predators were categorised by species and individual body mass. We use 20 equal size bins to 229 

categorise predator mass along a log10 transformed gradient from 0.1 micrograms to 190 tonnes, 230 

capable of capturing organisms from plankton to blue whales (Table S2). Data for each species 231 

grouped into body mass bins (henceforth species body-mass bins) was then estimated across all 232 

available stomach samples (Fig. 1; Table 1), with means calculated for % prey functional group 233 

biomass, biomass weighted PPMR (after Reum et al., 2019) and mean individual prey mass (see 234 

feeding guilds.csv; https://doi.org/10.14466/CefasDataHub.149). We used directly observed data 235 

where available and predictions (i.e. the fitted values) from our predator-prey body-mass scaling 236 

models where data were missing. Feeding guilds were assigned based on cluster analysis using the 237 

‘ward D2’ agglomeration method on Bray-Curtis dissimilarities between predator diets available in the 238 

R stats package (R Core Team, 2020).  239 

We compared different methods to classifying feeding guilds where the dissimilarity matrix used in 240 

the cluster analysis was generated using either: 1) the biomass of prey taxa (Garrison & Link, 2000a); 241 

2) prey taxa occurrence (Thompson et al., 2020) or; 3) via a novel method where dissimilarities are 242 

based on broad feeding traits (henceforth, the biomass, occurrence and trait methods). Feeding traits 243 

were log10 transformed mean individual prey mass (g), log10 transformed mean biomass weighted 244 

PPMR, and the mean % biomass contribution to the stomach contents of zooplankton (including fish 245 

<0.5g), benthos, nekton (other than fish) and fish (all fish prey ≥ 0.5g); with all variables rescaled to 246 

values of or between 0 and 1. We tested for differences between these methods to classifying feeding 247 

guilds by comparing them after re-sampling (n = 1000) subsets of the data (n = 30 unique stomach 248 

samples per predator). Predators with fewer than 30 samples were not classified into feeding guilds. 249 

Compositional change in predators between successively reclassified feeding guilds was used to 250 

determine the ability of each method to consistently classify similar predators in the same guild. 251 

Compositional change was measured using the distance to centroid following analysis of multivariate 252 

homogeneity of groups dispersions (Anderson, 2006). The method with the lowest mean distance to 253 

https://doi.org/10.14466/CefasDataHub.149
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centroid was determined to have the most robust feeding guild classifications as determined using 254 

analysis of variance tests. First, we tested whether compositional change across feeding guilds was 255 

non-random for each method: distance to centroid (i.e., compositional change) was the response, 256 

with ‘Guild’, and ‘Data’ (i.e., a factor identifying each unique re-sampling event) as predictors. We then 257 

tested for significant differences between methods: distance to centroid (i.e., compositional change) 258 

was the response, with ‘Method’, ‘Guild’, and ‘Data’ as predictors. Significant predictors were 259 

determined using the F-test on nested models. Targeted tests for differences between the mean 260 

distance to centroid across methods were carried out using Tukey’s all-pairwise comparisons that 261 

corrects for multiple comparisons in the “multcomp” package (Hothorn et al., 2016). 262 

The ability to classify common feeding guilds across ecosystems (e.g., sub-apex and apex predators) 263 

rather than area-specific guilds (e.g., a feeding guild unique to the North Sea) is another important 264 

quality for a feeding guild indicator to exhibit. We assessed how important spatial gradients were in 265 

our three different approaches to classifying feeding guilds. First, we generated latitudinal and 266 

longitudinal coordinate centroids for each predator by taking a mean across their stomach samples. 267 

We then took a mean across these predator centroids to generate a centroid for all the data, and also 268 

means across these predator centroids but grouped by feeding guild and method to generate method-269 

specific guild centroids. Next, we measured the distance between the overall data centroid to the 270 

method-specific guild centroids using the geosphere package (Hijmans et al., 2021) and summed 271 

distances for each method. A large sum of distances for a method to the overall data centroid would 272 

indicate that feeding guilds were area-specific, largely made up of predators found close together, and 273 

thus spatial gradients would be important determinants of feeding guild structure. The method with 274 

the lowest sum of distances to the overall data centroid was deemed to be least affected by spatial 275 

gradients and thus preferred.  276 

We provide a sensitivity analysis for whether our modelled stomach contents data affected our 277 

conclusions about which approach to feeding guild classification was optimal. Using only observed 278 

data for prey weight and counts from DAPSTOM, ICES Year of the Stomach and data from the 279 
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Northeast US continental shelf (i.e. those that have published prey taxa information), we compare the 280 

ability of the different approaches to consistently classify similar predators in the same guild and 281 

classify common feeding guilds across ecosystems, as described above. Results are provided in the 282 

Supporting Material. 283 

Four feeding guilds have been called for in OSPAR and MSFD guidance, i.e., planktivores, sub-apex 284 

demersal, sub-apex pelagic and apex predators (Boschetti et al., 2021; Walmsley et al., 2016; see also 285 

https://oap.ospar.org/en/resource-catalogue/enumeration-tables/cemp-enumeration-tables/), 286 

without consensus on how to categorise predators into these guilds. We use four feeding guilds here 287 

to help bridge this gap and so that we can elegantly capture a broad set of ecosystem components 288 

while exploring guild responses in biomass and species richness in the survey data. Changing the 289 

number of feeding guilds could be justified, depending on the question, and is straightforward to 290 

implement by taking a higher or lower split in the classification tree. We see this as a strength of our 291 

approach because feeding guilds are hierarchically structured much like how taxonomic or other trait 292 

information has been organised. We provide a table which details the branches for up to five feeding 293 

guilds so future assessments can choose which level of complexity suits their need. We also present 294 

axis scores from a non-metric multidimensional scaling analysis of the dissimilarities used in our 295 

cluster analysis which provide a more nuanced understanding (i.e., bounded data as opposed to 296 

categorical) of different predator feeding traits in relation to others. Moreover, because it is a data-297 

driven, reproducible approach, new information can be systematically integrated to 1) further resolve 298 

differences in feeding traits, 2) feeding guild composition and 3) test if changes in predator feeding 299 

traits provides evidence for spatially or temporally flexible classifications. 300 

 301 

2.4 Using feeding guilds to capture spatiotemporal trends in survey data 302 
 303 
The new feeding guild classifications have been applied to processed otter trawl survey data for the 304 

Northeast Atlantic shelf seas collected between 1997–2020 (Lynam & Ribeiro, 2022) to reveal spatial 305 

and temporal patterns in feeding guild responses (Fig. 2). These survey data have been processed 306 

https://oap.ospar.org/en/resource-catalogue/enumeration-tables/cemp-enumeration-tables/
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specifically to support state indicators, with observations for the biomass of species body-mass bins 307 

standardised to the area swept for each haul. Survey data corresponding with all our stomach content 308 

data, from north of Norway, Icelandic waters, the Baltic Sea and eastern shelf seas of the USA, have 309 

not yet been standardised and processed in the same way, hence why we haven’t included them here. 310 

Extending this work to assess change in ecosystem structure and function across the study region 311 

covered by the stomach contents data (Fig. 1) represents a key area for future development. We also 312 

provide the necessary R code (https://github.com/MurraySAThompson/fish-feeding-guild-313 

classifcation) so that our feeding guilds can be readily appended to new survey data when available 314 

and processed as required.  315 

 316 
Figure 2: The process used to classify feeding guilds based on predator stomach contents data, assign 317 
them to survey data and calculate feeding guild responses across the assessment strata. Yellow circles 318 
= stomach contents data, blue circle = otter trawl survey data, green circles = survey data with feeding 319 
guild information appended, arrows = flow of information.  320 
 321 

Compared with quarter 2 and 3 (April – September), data from quarters 1 and 4 (January-March and 322 

October – December, respectively) typically have longer time-series available over much of the study 323 

https://github.com/MurraySAThompson/fish-feeding-guild-classifcation
https://github.com/MurraySAThompson/fish-feeding-guild-classifcation
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region and so were preferentially selected. Where data from quarters 1 or 4 were not available, otter 324 

trawl data from other quarters were used. Table S3 provides information on the surveys used and 325 

their spatial and temporal ranges and Figure S2 depicts survey locations within OSPAR regions (e.g., 326 

Celtic Sea, North Sea). The temporal assessment covers 1997-2020 because the majority of the surveys 327 

considered have at least a near complete time-series covering that period. Longer time-series do exist 328 

for some surveys but including these data would mean we are looking at long-term change for some 329 

areas, but shorter-term change for others which could confound interpretation. Spatial and temporal 330 

change in feeding guild responses were determined for the Greater North Sea, Celtic Seas, Bay of 331 

Biscay and Iberian Coast, and the wider Atlantic. The assessment strata used here replicate those used 332 

for the OSPAR food web indicators: mean-maximum length and size-composition in fish communities 333 

(Lynam et al., 2022; Lynam & Piet, 2022).  334 

Kendall’s τ trend analysis was used to identify areas of significant temporal change in feeding guild 335 

responses based on the relationship between mean haul-level values of feeding biomass and species 336 

richness for each assessment strata and year. Kendall’s τ scores of –1 to +1 represent a 100% 337 

probability of a decreasing or increasing trend, respectively. By using Kendall’s τ, which is rank-based 338 

and non-parametric, we can detect correlations which may be non-linear. Stomach contents data, 339 

prey size predictions, haul-level estimates of feeding guild biomass and their species richness along 340 

with Kendall’s τ correlation coefficients and p have all been made available 341 

(https://doi.org/10.14466/CefasDataHub.149; Thompson et al., 2024). 342 

 343 

3 Results 344 
 345 
3.1 Unique intra- and interspecific individual body-mass scaling relationships between 346 
predators and prey functional groups  347 
 348 
There were significant differences in the predator-prey body-mass scaling relationships between the 349 

different combinations of predators and prey functional groups (Fig. 3). These results support our first 350 

hypothesis that predator species can have unique intra- and interspecific body-mass scaling 351 

https://doi.org/10.14466/CefasDataHub.149
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relationships with different prey functional groups. Fish prey tended to be the biggest, meaning fish-352 

fish interactions tended to have higher intercepts and slopes (Fig. 3m, lines a, c, d, and h) and thus the 353 

lowest mean PPMR, with predator species of the same size consuming relatively small benthic and 354 

zooplankton prey (Fig. 3m, lines b, e, f, g, I, j, k, l). These models enabled us to estimate prey biomass, 355 

counts and predator-prey mass ratios across the different stomach contents datasets and species 356 

body-mass bins useful for feeding guild classifications.  357 
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  358 
Figure 3. Panels a-l: a subset of the 498 unique combinations of predator species and prey functional 359 
group body-mass scaling relationships on log10 transformed axes ordered from largest to smallest by 360 
prey mass at maximum predator mass. Predator individual body mass was fit as the predictor of prey 361 
individual body mass in our model, hence appearing on the x- and y-axes, respectively. We selected 362 
this subset because they represent important predators of fish, benthos and zooplankton across 363 
ecosystems (see https://github.com/MurraySAThompson/fish-feeding-traits-glmm for R script to 364 

https://github.com/MurraySAThompson/fish-feeding-traits-glmm
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reproduce any unique predator species and prey functional group combination). White points = 365 
observed values for specific relationships, blue points = model predictions for specific relationships. 366 
Panel m: the different scaling relationships across the preceding plots with all observations (white 367 
points) and a dashed 1:1 line to show scaling relationships were generally sublinear (i.e., prey 368 
increased less than their predators per unit increase in individual body mass).  369 
 370 

3.2 Feeding trait data reveal multiple distinct feeding guilds  371 
 372 
Feeding guilds captured significant variation in the composition of predators for each cluster-based 373 

method (Table 2), confirming our second hypothesis that multiple feeding guilds can be delineated 374 

from the analysis of feeding traits. The occurrence method had the most robust feeding guilds with 375 

the lowest compositional change in predators following re-sampling (mean distance to centroid = 376 

0.13), followed by the trait (mean distance to centroid = 0.22) and then the biomass methods (mean 377 

distance to centroid = 0.34; randomly generated feeding guild mean distance to centroid ranged 378 

between 0.6 – 0.61; Fig. S3; Table S4). The trait method had the lowest sum of distances to the data 379 

centroid (2,655 km) followed by the biomass (7,034 km) and occurrence methods (8757 km; Fig. S4). 380 

The trait method was therefore preferred because it could identify multiple distinct feeding guilds 381 

even where we consider small subsets of predator stomach contents (n = 30 stomach samples) while 382 

being the least affected by spatial gradients in prey taxa composition. These results also confirm our 383 

third hypothesis that the effectiveness to reliably and robustly classify predators into feeding guilds 384 

applicable across ecosystems varies due to whether classifications are based on the biomass of prey 385 

taxa, prey taxa occurrence, or broad feeding traits. Results from our sensitivity analysis using only 386 

directly observed prey count and weight information reveals that the trait approach had both the 387 

most robust feeding guilds and lowest sum of distances to the data centroid, providing further support 388 

for our decision to use it to assess change in survey data (Table S4; Fi. S3). 389 

The four feeding guilds identified using the trait method have been named based on the % biomass of 390 

prey functional groups as follows: planktivores, benthivores, bentho-piscivores and piscivores (Fig. 4). 391 

Differences between feeding guilds were related to predator size, which correlated positively with 392 

piscivory and negatively with planktivory (Fig. S5). Small body-mass classes of species often occur in 393 
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the planktivore guild, moving to another guild as they increase in size, with multiple medium- to larger 394 

body-mass classes of a species often in the same guild (see feeding guilds.csv; 395 

https://doi.org/10.14466/CefasDataHub.149). Typically, the biggest fish within and across feeding 396 

guilds had the highest PPMR (hence the sublinear relationship in Fig. 3 m, where prey increased less 397 

than their predators per unit increase in individual body mass), yet piscivores were typically the 398 

biggest and had the lowest PPMR on average. This apparent contradiction is largely because small 399 

piscivores had some of the lowest PPMR values, whereas big planktivores and benthivores had some 400 

of the highest values (Fig. 4).  401 

Table 2. Analysis of variance results across nested models for each cluster-based method and across 402 
methods. Data for biomass, occurrence and trait methods were used to test whether guild (i.e., 403 
cluster-based groups) and data (i.e., a factor identifying each unique re-sampling event) captured 404 
significant variation in the composition of predators. Data for all were used to test for differences 405 
between the different methods (see also Table S4; Fig. S3). The term dropped column indicates which 406 
term was dropped from each model (blanks indicate no predictors were dropped), AIC reveals change 407 
in model fit, and p-values from F-tests highlight significant change in model fit.  408 

Data 
Term 
dropped Df AIC F-value p 

Biomass 
    -19197     
Guild 3 -18942 67.42 <0.001 
Data 999 -19400 1.7 <0.001 

Occurrence 
    -16383     
Guild 3 -14526 592.83 <0.001 
Data 999 -15784 2.74 <0.001 

Trait 
    -20261     
Guild 3 -14129 3634.91 <0.001 
Data 999 -20505 1.65 <0.001 

All 

<none>   -48990     
Guild 3 -47509 483.29 <0.001 
Method 2 -43609 3113.44 <0.001 
Data 999 -49756 1.19 <0.001 

 409 

https://doi.org/10.14466/CefasDataHub.149
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    410 
Figure 4: Differences between feeding guilds in predator size (a), individual prey mass (b), predator-411 
prey mass ratio (PPMR; c) and the % biomass contribution of zooplankton (d), benthos (e), and fish (f) 412 
to predator stomach contents. Points represent means for predator species body-mass bins, error bars 413 
represent standard error. Panel g: PPMR increases with predator individual body mass within (solid, 414 
coloured) and across (black, dashed line) feeding guilds.  415 
 416 
 417 
 418 
 419 



20 
 

3.3 Feeding guilds capture significant spatiotemporal trends in survey data  420 
 421 
When assigning feeding guilds in the survey data, we were able to classify 92% of the biomass which 422 

included 122 species body-mass bins. Many rare predators observed in the survey data (n = 366, 423 

representing 8% of the surveyed biomass) remain unclassified due to insufficient stomach contents 424 

data (Table S5). The perspective of change in the survey data is therefore weighted towards predators 425 

contributing most to community biomass and ecosystem functioning. We found clear spatial structure 426 

and regions of contrasting temporal change in feeding guild biomasses and their species richness (Figs. 427 

5-6), confirming our fourth hypothesis. For instance, significant and spatially extensive temporal 428 

decreases in planktivore feeding guild biomass (i.e., lower in the food web) were evident in the Celtic 429 

Seas and Bay of Biscay where the biomass of the bentho-piscivore and piscivore feeding guilds (i.e., 430 

higher in the food web) has increased (Fig. 5). Benthivore biomass has increased in the southern North 431 

Sea, where there has been little change in other feeding guilds. Planktivore, bentho-piscivore and 432 

piscivore biomass have all decreased in at least one assessment strata in the northern North Sea. 433 

Regions of temporal change in species richness were also different across feeding guilds (Fig. 6). For 434 

instance, over large areas in the Celtic Seas, Bay of Biscay and northern North Sea where there was 435 

relatively limited change in planktivore species richness, the species richness of benthivores, bentho-436 

piscivores and piscivores all increased (see Fig. S6 for changes in unclassified biomass).  437 

 438 

 439 
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Figure 5: Mean spatial 440 
distribution (a, c, e, g) 441 
and temporal change 442 
(b, d, f, h) in feeding 443 
guild biomass by 444 
assessment strata 445 
based on otter trawl 446 
data for planktivores 447 
(a, b), benthivores (c, 448 
d), bentho-piscivores 449 
(e, f), and piscivores 450 
(g, h). Significant 451 
temporal trends are 452 
highlighted with a 453 
black border and 454 
coloured blue or red 455 
to depict a decreasing 456 
or increasing trend, 457 
respectively (Kendall’s 458 
τ scores of –1 to +1 459 
represent a 100% 460 
probability of a 461 
decreasing or 462 
increasing trend).  463 
 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 



22 
 

Figure 6:  Mean 478 
spatial distribution 479 
(a, c, e, g) and 480 
temporal change (b, 481 
d, f, h) in feeding 482 
guild species 483 
richness by 484 
assessment strata 485 
based on otter 486 
trawl data for 487 
planktivores (a, b), 488 
benthivores (c, d), 489 

bentho-piscivores 490 
(e, f), and piscivores 491 
(g, h). Significant 492 
temporal trends are 493 
highlighted with a 494 
black border and 495 
coloured blue or 496 
red to depict a 497 
decreasing or 498 
increasing trend, 499 

respectively 500 
(Kendall’s τ scores 501 
of –1 to +1 502 
represent a 100% 503 
probability of a 504 
decreasing or 505 
increasing trend).  506 
 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 
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4 Discussion 518 
 519 
Our predator-prey body-mass scaling models enabled predictions of mean individual prey mass for 520 

different predator species and prey functional groups across the North Atlantic and Arctic Ocean’s 521 

shelf seas. With these predictions we could estimate key fish feeding traits across species and sizes, 522 

such as predator-prey mass ratios and the relative biomass contribution of zooplankton, benthos and 523 

fish prey to predator diets. Our feeding trait-based approach to categorising feeding guilds was also 524 

less susceptible to large spatial gradients in the composition of prey than previously used methods 525 

(Garrison & Link, 2000a; Thompson et al., 2020). By using feeding guilds to assess routinely collected 526 

survey data, we revealed contrasting patterns of change in the biomass and species richness of fish 527 

feeding at different levels within the food web across the Northeast Atlantic shelf seas. For example, 528 

extensive decreases in the biomass of consumers lower in the food web (planktivores) were evident 529 

in the Celtic Seas and Bay of Biscay and this contrasted with biomass increases higher up (bentho-530 

piscivores and piscivores; Fig 5). These contrasting patterns of change in how biomass and species are 531 

distributed across the food web indicate regions of temporal change in marine ecosystem structure 532 

and functioning as the relative importance of different energy pathways changes across the fish 533 

assemblage. This is because changes in species richness and the distribution of biomass across the 534 

food web can influence nutrient uptake and the efficiency of communities in converting nutritional 535 

resources into biomass (Cardinale et al., 2012; Wang & Brose, 2018; Worm et al., 2006).  536 

A wide range of prey sizes could be consumed by a given predator species and size and this variability 537 

was generally captured well by our models (Fig. 3). Omnivory was also ubiquitous with all prey groups 538 

occurring in the diet of all feeding guilds, albeit to markedly different levels (Fig. 4). This, along with 539 

the variability in our re-sampled feeding guild classifications (Fig. S2), highlights the plasticity of fish 540 

feeding behaviour with some individuals of, e.g., a typically planktivorous species having consumed 541 

mostly fish prey. Feeding guilds provide a necessary simplification of this complexity as a means to 542 

indicate change in marine food webs across ecosystems by taking the typical behaviour of a species 543 

size class. We have also provided more nuanced information, including empirical estimates of 544 
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predator-prey mass ratios, relative contributions of different prey groups, and from multivariate 545 

analysis on the dissimilarity of species size class feeding traits (Fig. S5) which could help further unpick 546 

what such change means. This information is also widely applicable for quantifying and predicting the 547 

effects of different fishing and climate regimes where changes in the distribution of species and body 548 

sizes are anticipated (Kleisner et al., 2016; Lotze et al., 2019; Spence et al., 2021; Thompson et al., 549 

2023). 550 

Previous studies which identified feeding guilds used differing approaches, relied on a subset of the 551 

stomach contents data we use here and assessed different survey data to one-another (Garrison & 552 

Link, 2000a, 2000b; Thompson et al., 2020). It was therefore not clear which method would be optimal 553 

as an indicator across ecosystems. Moreover, differences in how feeding trait information has been 554 

quantified and reported has hampered the synthesis of stomach contents data. Here, we brought 555 

those different stomach contents data together by developing models to predict prey biomass and 556 

counts where information was missing. We were then able to compare different approaches to 557 

classifying feeding guilds across the datasets and apply the optimal approach to the same survey data. 558 

This approach has helped achieve international consensus on how to assess feeding guilds across 559 

ecosystems within the OSPAR Area (Thompson, Lynam, et al., 2023).  The work we present here 560 

represents a development of that pilot indicator, with improvements in how we estimated prey 561 

weights (i.e., improved modelling framework that made use of more stomach contents data) which 562 

affected feeding guild classifications; and the use of Kendall’s τ trend analysis on the classified survey 563 

data (as opposed to Pearson’s correlation coefficients) in order to detect correlations which may be 564 

non-linear. Many of the temporal patterns we present here are similar to those in the pilot indicator. 565 

The most notable differences appear for feeding guild species richness where values were relatively 566 

low (i.e., where relatively little change could have a large influence) in the central and northern North 567 

Sea. 568 

We use a trend-based assessment rather than one based on reference limits. Setting thresholds for 569 

feeding guilds was outside the remit of this study and will require reference limits for Good 570 
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Environmental Status to be established. This could be done through synthesising empirical evidence 571 

on feeding guild response to environmental change and human pressure (e.g., following Garrison & 572 

Link, 2000b; Thompson et al., 2020) with dynamical modelling capable of predicting ecosystem state 573 

under varying levels of human pressure (Link et al., 2010; Rossberg et al., 2017; Samhouri et al., 2010), 574 

for instance. Such work would benefit from data products capable of integrating information from 575 

different surveys, e.g., acoustic and various trawl gears, that catch a broad range of species and sizes 576 

including smaller pelagic species which are likely under-sampled by demersal trawls (Kotwicki et al., 577 

2018; Nnanatu et al., 2020). Developing understanding of the drivers in spatial and temporal change 578 

in fish feeding behaviour (Table S1) could also be fruitful, potentially leading to the quantification of 579 

energy fluxes from different habitats (e.g., benthos and pelagic), regions, species, and seasons, for 580 

instance. Such work could help develop understanding of the connections between the wider suite of 581 

indicators which draw on different assemblages and often rely on data collected at different times and 582 

at different spatial scales (e.g., Preciado et al., 2023). The inventory of feeding interactions could also 583 

continue to develop, e.g., via surveys targeting areas and predators with limited information (e.g., Fig. 584 

S6; Table S5), via DNA metabarcoding of stomach contents (Jakubavičiute et al., 2017), inference from 585 

similar predators (Gray et al., 2015; Hicks et al., 2019), biotracers (Pethybridge et al., 2018) and 586 

predictive modelling (Hernvann et al., 2022; Link, 2004; Petchey et al., 2008). Variability in digestion 587 

rates driven by environmental gradients such as temperature and differences in prey sizes and tissue 588 

composition could also be modelled to help improve estimates of biomass flux across the food web 589 

(Temming & Herrmann, 2003).   590 

Using change in functionally distinct feeding guilds to assess environmental status has been widely 591 

advocated to fulfil OSPAR and the Marine Strategy Framework Directive requirements (Boschetti et 592 

al., 2021; ICES, 2018; Rombouts et al., 2013; Tam et al., 2017; Walmsley et al., 2016), but international 593 

consensus on how to do this has been lacking. We drew together data and expertise from across the 594 

North Atlantic and Arctic Oceans to help achieve this. In doing so, we have made empirical estimates 595 

of a range of key fish feeding traits that are widely applicable in marine ecosystem science, identified 596 
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robust feeding guilds, and revealed how and where ecosystem structure and function was changing 597 

across the OSPAR Area. Such information will be critical to help better quantify and predict the effect 598 

of human pressures, such as fishing and climate change, on global patterns in marine ecosystem 599 

structure and functioning. 600 

 601 

5 Conclusions 602 
 603 
We made use of multiple stomach contents databases to predict species- and size-specific feeding 604 

traits for fish across the North Atlantic and Arctic Oceans. We then developed a repeatable, data-605 

driven workflow that categorised fish based on these feeding traits and showed how they can be 606 

applied to robustly define the feeding guilds required in OSPAR and the Marine Strategy Framework 607 

Directive guidance. This has provided an indicator capable of revealing change in ecosystem structure 608 

and function across the OSPAR Area based on routinely collected survey data. For instance, we 609 

revealed significant and spatially extensive temporal changes across the food web, with decreases in 610 

the biomass of smaller planktivorous fish which contrasted with increases in the biomass of larger 611 

more piscivorous fish. The information we have generated can be tailored to fulfil other specific 612 

evidence needs, such as improving the parametrisation of ecosystem models and quantifying 613 

sustainable levels of human pressure. Our study provides evidence supporting a candidate food web 614 

indicator for the OSPAR Area that can be readily extended to other areas and organisms.  615 
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