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Abstract. Vehicles are among the most important contributors to global anthropogenic CO2 emissions. 11 

However, the lack of fuel-, vehicle type-, and age-specific information about global on-road CO2 12 

emissions in existing datasets, which are available only at the sector level, makes these datasets 13 

insufficient to support the establishment of emission mitigation strategies. Thus, a fleet turnover model 14 

is developed in this study, and CO2 emissions from global on-road vehicles from 1970 to 2020 are 15 

estimated for each country. Here, we analyze the evolution of the global vehicle stock over 50 years, 16 

identify the dominant emission contributors by vehicle and fuel type, and further characterize the age 17 

distribution of on-road CO2 emissions. We find that trucks accounted for less than 5% of global vehicle 18 

ownership but represented more than 20% of on-road CO2 emissions in 2020. The contribution of diesel 19 

vehicles to global on-road CO2 emissions doubled during the 1970-2020 period, driven by the shift in 20 

the fuel-type distribution of vehicle ownership. The proportion of CO2 emissions from vehicles in 21 

developing countries such as China and India in terms of global emissions from newly registered vehicles 22 

significantly increased after 2000, but global CO2 emissions from vehicles that survived more than 15 23 

years in 2020 still originated mainly from developed countries such as the United States and countries in 24 

the European Union. 25 
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1 Introduction 26 

To meet the Paris Agreement's 1.5℃ long-term temperature goal, many efforts have been made to 27 

determine pathways for reducing the emissions of greenhouse gases such as CO2 (Matthews & Caldeira, 28 

2008; Meinshausen et al., 2009; Rogelj et al., 2018; Davis et al., 2018). Historical emission data and 29 

consistent emission series of on-road vehicles, which are key sources of CO2 emissions, are important 30 

inputs for Earth system models, atmospheric chemistry and transport models, and integrated assessment 31 

models to support studies on both climate change and global climate governance (Bhalla et al., 2014; 32 

Janssens-Maenhout et al., 2019; Lelieveld et al., 2015; Niklas et al., 2020; Shindell et al., 2011; Silva et 33 

al., 2016; Unger et al., 2010). Thus, estimating long-term CO2 emissions from global on-road vehicles 34 

with detailed source information is necessary as deep greenhouse gas emission reductions are pursued. 35 

Several global emission inventories that cover emissions from on-road vehicles have been 36 

developed and are widely used in global research and modeling. CO2 emissions from on-road vehicles 37 

can be derived from global anthropogenic emission inventories, including the Emissions Database for 38 

Global Atmospheric Research (EDGAR), the Open-source Data Inventory for Atmospheric CO2 39 

(ODIAC), the Carbon Emission and Accounts Datasets (CEADs), and the Peking University (PKU)-CO2 40 

inventory. On-road CO2 emissions are estimated with the total fuel consumption of the road sector at the 41 

country level and fleet average emission factors in EDGAR (Amstel et al., 1999; Crippa et al., 2016; 42 

Crippa et al., 2018; Janssens-Maenhout et al., 2019). Following the method in EDGAR, local data sources 43 

are introduced more often in ODIAC (Boden et al., 2016; Boden et al., 2017; Od et al., 2018), CEDS 44 

(Hoesly et al., 2018) and PKU-CO2 (Wang et al., 2013) when estimating on-road CO2 emissions. Global 45 

CO2 emissions from on-road vehicles in these widely used emission inventories are estimated as a whole 46 

at the sector level in each country using the fuel-based method, and fleet structure information (e.g., fuel-, 47 

vehicle type-, and age-specific characteristics) on on-road CO2 emissions is omitted. Technology-based 48 

models such as the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) (Klimont et 49 

al., 2017) and Speciated Pollutant Emissions Wizard (SPEW)-Trend (Tami et al., 2004 and 2007; Yan et 50 

al., 2011 and 2014) models can be used to describe fleet structure information on emissions from global 51 

on-road vehicles, but emission inventories built on these models include only emissions of air pollutants. 52 

Here, a new global inventory of fuel-, vehicle type-, and age-specific CO2 emissions from on-road 53 

vehicles for each country from 1970 to 2020 is developed with the global fleet turnover model, in which 54 
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six types of fuel, five types of vehicles, and 231 countries are considered. Based on this inventory, we 55 

analyze the evolution of the global vehicle stock over 50 years; identify the dominant emission 56 

contributors by vehicle and fuel type; and further characterize the age distribution of on-road CO2 57 

emissions. 58 

2 Materials and methods 59 

2.1 Methodological framework 60 

For a given country 𝑐𝑐, the annual CO2 emissions from on-road vehicles in year 𝑦𝑦 are estimated as 61 
follows: 62 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣 × 𝑋𝑋𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑖𝑖 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 × 𝐹𝐹𝐸𝐸𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 × 𝐸𝐸𝐹𝐹𝑐𝑐,𝑓𝑓
𝑖𝑖=𝑇𝑇
𝑖𝑖=0 ,   (1) 63 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣 = 𝑉𝑉𝑐𝑐,𝑦𝑦,𝑣𝑣
∗ × 𝐹𝐹𝛼𝛼𝑐𝑐,𝑣𝑣𝑒𝑒

𝛽𝛽𝑐𝑐,𝑣𝑣𝐸𝐸𝑐𝑐,𝑦𝑦 × 𝑃𝑃𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝑃𝑃𝑆𝑆𝐸𝐸𝑆𝑆𝑃𝑃𝑐𝑐,𝑦𝑦,          (2) 64 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣 = ∑ 𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦−𝑖𝑖,𝑣𝑣 × 𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆𝑐𝑐,𝑣𝑣,𝑖𝑖
𝑖𝑖=𝑇𝑇
𝑖𝑖=0 ,            (3) 65 

𝑋𝑋𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑖𝑖 = 𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦−𝑖𝑖,𝑣𝑣 × 𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆𝑐𝑐 ,𝑣𝑣,𝑖𝑖 ∑ 𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦−𝑖𝑖,𝑣𝑣 × 𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆𝑐𝑐 ,𝑣𝑣,𝑖𝑖
𝑖𝑖=𝑇𝑇
𝑖𝑖=0⁄ ,        (4) 66 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦,𝑓𝑓 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣𝑣𝑣 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐 ,𝑦𝑦,𝑣𝑣,𝑓𝑓 × 𝐹𝐹𝐸𝐸𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓,       (5) 67 

where 𝑦𝑦 is the target year, which ranges from 1970 to 2020; 𝐸𝐸 is the age of the vehicles registered in 68 
year (𝑦𝑦 − 𝐸𝐸); 𝑉𝑉 is the lifetime of vehicles; 𝑆𝑆 is the vehicle type, which includes two types of light-69 
duty vehicles, namely, passenger cars (PLDVs) and light commercial vehicles (CLDVs), two types of 70 
heavy-duty vehicles, namely, buses and trucks, and motorcycles (MCs); and 𝑓𝑓 is the fuel type, which 71 
includes gasoline, diesel, natural gas (NG), liquefied petroleum gas (LPG), electricity, and other fuels. 72 
As shown in Eq. 1, annual CO2 emissions (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓) are estimated by the vehicle stock (𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣), 73 
the fleet-average fuel structure (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓), the annual average kilometers traveled (𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐 ,𝑦𝑦,𝑣𝑣,𝑓𝑓), the 74 
fleet-average fuel economy (𝐹𝐹𝐸𝐸𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓), the age distribution of the vehicle stock (𝑋𝑋𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑖𝑖), and the CO2 75 
emission factor (𝐸𝐸𝐹𝐹𝑐𝑐,𝑓𝑓). 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣 can be modeled using the Gompertz function (Eq. 2), which is an S-76 
shaped curve determined by two negative parameters (𝛼𝛼 and 𝛽𝛽), with the saturated vehicle stock per 77 
1000 people (𝑉𝑉∗), per capita GDP (𝐸𝐸), and population (𝑃𝑃𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝑃𝑃𝑆𝑆𝐸𝐸𝑆𝑆𝑃𝑃𝑐𝑐,𝑦𝑦) as inputs. The age distribution of 78 
the vehicle stock (𝑋𝑋𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑖𝑖 ), which represents the proportion of surviving vehicles registered in year 79 
(𝑦𝑦 − 𝐸𝐸) in target year 𝑦𝑦, is modeled on the basis of the dynamic balance function (Eqs. 3 and 4) using 80 
the number of newly registered vehicles (𝑆𝑆𝑃𝑃𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦−𝑖𝑖,𝑣𝑣) and survival rates (𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆𝑐𝑐,𝑣𝑣,𝑖𝑖). Fuel consumption by 81 
vehicle type, which is calculated using 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐,𝑦𝑦,𝑣𝑣, 𝑋𝑋𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑖𝑖 , 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 , 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓, and 𝐹𝐹𝐸𝐸𝑐𝑐,𝑦𝑦,𝑣𝑣,𝑓𝑓 , is 82 
constrained by total on-road fuel consumption (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑦𝑦,𝑓𝑓) at the country level (Eq. 5). 83 

In this study, the fleet turnover emission model (Figure 1) is constructed based on functions 1-5. In 84 
summary, we first build an integrated vehicle stock database by combining and harmonizing the available 85 
vehicle stock data from a series of global, regional and national statistics and filling data gaps with the 86 
modeled stock based on the Gompertz function (Eq. 2). Second, the age distribution of the stock is 87 
simulated with a combined vehicle sale statistical database and an integrated vehicle stock database using 88 
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the dynamic balance function (Eqs. 3 and 4). Then, vehicular fuel consumption is estimated using outputs 89 
from the first two steps and other vehicle activity-related data and is constrained by national fuel 90 
consumption statistics (Eq. 5). Finally, fuel- and vehicle type-specific CO2 emissions from global on-91 
road vehicles from 1970 to 2020 are modeled on the basis of constrained vehicular fuel consumption and 92 
CO2 emission factors (Eq. 1). 93 

 94 

Fig. 1. Schematic methodology for estimating vehicular CO2 emissions. 95 

2.2 Modeling the vehicle stock 96 

In the first step, an integrated vehicle stock database from 1970 to 2020 was constructed with both 97 
statistical and modeled data. The statistical data used in this study was collected from various available 98 
vehicle stock statistics, in which global statistics were used as the default vehicle stock and local statistics 99 
were used to supplement and amend the default data. When statistical data was unavailable for a country 100 
in a given year, vehicle stock modeled by the Gompertz function was used. 101 

To determine the default vehicle stock database, two widely used vehicle stock statistics from the 102 
Wold Road Statistics (WRS) 2021 Edition (IRF) and the International Organization of Motor Vehicle 103 
Manufacturers (OICA) were collected and compared. We found that the trends of vehicle stock in the 104 
WRS and OICA data were similar, but the absolute value of the vehicle stock in the OICA data was lower 105 
than that in the WRS data, especially for developing countries (Figure S2). Taking India as an example, 106 
the vehicle stock in the OICA data was 85% less than that in the WRS data. To further confirm the 107 
reliability of these two global databases, local statistics were used for comparison. The WRS data were 108 
more similar to the local vehicle statistics than were the OICA data (Figure S2). After comprehensive 109 
consideration of spatiotemporal coverage, updating frequency and stability, and data reliability, the WRS 110 
data were used as the default for global vehicle statistics, and the OICA data were used if there were no 111 
data available from the WRS. 112 

We also collected a series of local statistics as supplements and amendments to the global vehicle 113 
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statistics, in which 49 developing and developed countries were included (ACEA; CEIC; EC; JAMA; 114 
MEIC; MOSPI; NBS; TEDB). By coupling multiple global and local vehicle databases, a combined 115 
vehicle statistical database by vehicle category was established in this study. As the division of vehicle 116 
types varied among statistics, we established a mapping relationship of vehicle types between this study 117 
and other data sources (Table S2). 118 

Given that statistical data of vehicle was unavailable before 2000 for most countries, the Gompertz 119 
function, which was often applied to establish the relationship between vehicle ownership and an 120 
economic indicator (Dargay and Gately, 1999; Dargay et al., 2007; Huo and Wang, 2012), was 121 
subsequently used in this study to model the vehicle stock. In this study, per capita GDP was calculated 122 
with national GDP (NBS; UNdata; WB) and population (NBS; WPP) as the economic indicator. The 123 
saturated vehicle stock per 1000 people was first derived from previous studies (Huo and Wang, 2012) 124 
and then adjusted by the maximal vehicle stock per 1000 people calculated using statistical data. The 125 
combined vehicle statistical database was used to estimate parameters (𝛼𝛼 and 𝛽𝛽) of the Gompertz 126 
function at the country level. For countries whose R square (R2) of the country-level regression was less 127 
than 0.5, regional or global 𝛼𝛼 and 𝛽𝛽 regression parameters were used instead (Zheng et al., 2012). 128 

As the verification of the vehicle stock modeled by the Gompertz function, we compared them with 129 
the statistical vehicle stock for countries in years when statistics were available. The relative deviation 130 
ratios in countries that own top 85% of global vehicles stock were between -28% and 25.6%, ranges of 131 
the relative deviation in rest countries were a bit larger due to the limited availability of statistics. Figure 132 
2(a) and Figure S3 show the comparison in 2015, a year with more statistical data. The deviation of the 133 
modeled vehicle stock from the statistics in most countries was less than ±25%, especially in the United 134 
States, countries in the European Union, China, and India. The relatively good consistency between the 135 
modeled and statistical vehicle stock indicates the relatively high reliability of this model. Therefore, a 136 
long-term integrated vehicle stock database (1970-2020) was constructed by constraining the modeled 137 
vehicle stock by the combined vehicle statistical database. 138 

 139 
Fig. 2. Verification of the modeled vehicle stock in United States, the European Union, China, and India 140 
(a) and the age distribution for PLDVs (b) in 2015. 141 

2.3 Modeling the age distribution of vehicle stock 142 

Then, the age distribution of the stock was modeled using the dynamic balanced function with the 143 
integrated vehicle stock database set up in the first step and a combined vehicle sale statistical database. 144 
Similar to the combination of vehicle stock statistics, OICA data were used as the default vehicle sale 145 
database with WRS data as a supplement after comparison, and local statistics (ACEA; CEIC; EC; JAMA; 146 
MEIC; NBS; TEDB) were also involved to correct the default database. Limited by the temporal 147 
coverage of the statistical data, vehicle sales were not available for most countries before 2005. Therefore, 148 
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the newly registered vehicles for missing years was back-calculated with the dynamic balanced function, 149 
in which the vehicle stock from the previous step and survival rates derived from available studies and 150 
reports (Huo and Wang 2012; Yan et al., 2011; Yan et al., 2014; Zheng et al., 2014) were inputs. Here we 151 
marked 231 countries into two types: focus countries and broader regions (Table S1). 20 countries 152 
owning the top 75% of global vehicles were marked as focus countries, for which the dynamic balanced 153 
function was built at country level. The remaining 211 countries were marked as broader regions and 154 
further combined into 8 regions according to the roadmap region definition (ICCT 2012). In each broader 155 
region, data in a reprehensive country, which has most abundant statistics with region, was used to build 156 
the dynamic balanced function and the age distribution in this country was assumed to be able to represent 157 
that in other countries belonging to the same region. The age distribution in this study was not simulated 158 
for MCs due to the limitation of data availability, and we assumed that they shared the same age 159 
distribution of PLDVs. 160 

To verify the age distribution modeled by the dynamic balanced function, relative deviation between 161 
the simulated vehicle stock based on newly registered vehicles and survival rates and the vehicle stock 162 
in the first step was used as the validation indicator. Except for several years in Argentina and Thailand, 163 
the relative deviation ratios of light-duty vehicles during 1970-2020 ranges from -30.9% to 30.8%, 164 
heavy-duty vehicles had larger relative deviation ratios which were between -36.5% and 34.9%. Taking 165 
2015 as an example, the relative deviation ratios in most countries were less than ±30% (Figure 2(b) 166 
and Figure S4). The relatively good consistency between the vehicle stock and simulation indicated that 167 
the dynamic balance function set up in this study could well model the entry of newly registered vehicles 168 
and the retirement of existing vehicles and the estimated age distribution was reliable. 169 

2.4 Estimates of fuel consumption 170 

In the third step, we estimated the initial vehicular fuel consumption based on outputs from the first two 171 
steps and parameters including the annual average kilometers traveled (VKT), fuel structure, and fuel 172 
economy. Then the initial vehicular fuel consumption was constrained with energy statistics from World 173 
Energy Statistics (IEA1) at country level, which was finally used in CO2 estimation. VKT, fuel structure, 174 
and fuel economy are rarely available in global statistics annually, this study used fleet-average data, 175 
which were estimated based on vehicle-kilometers, the vehicle stock, vehicle-kilometer energy intensity, 176 
and fuel consumption by category in energy efficiency statistics (IEA2). These indexes for 39 countries 177 
(accounting for 43%-73% of the global vehicle stock) during the 2000-2018 period can be found in 178 
energy efficiency statistics. For countries that were not covered in energy efficiency statistics, the 179 
regional or global mean VKT, fuel structure, and fuel economy were used. For missing years, we assumed 180 
that the values of these three parameters were similar to those of the adjacent year. There are few local 181 
statistics or studies that evaluate the VKT, fuel structure, and fuel economy; therefore, these parameters 182 
were supplemented and revised only for the United States, Europe, China, and Japan using local statistics 183 
or studies (AECA; IEA3; JAMA; MEIC; TEDB; TRACCS). 184 

As the validation of fuel consumption, the initial vehicular fuel consumption was compared to 185 
energy statistics by fuel type (Figure S5). The range of relative deviation ratios of gasoline, diesel, NG, 186 
and LPG was -23% to 3%, -19% to 9%, -22% to 34%, and -39% to 14%, respectively. As CO2 is not 187 
directly emitted as exhaust by electrical vehicles whether they were running, starting or parking, 188 
electricity was not considered in the estimation of vehicular fuel consumption in this study. The 189 
consistency of the simulation with statistics ensured the feasibility of constraining the modeled fuel 190 
consumption by statistics. 191 

https://doi.org/10.5194/essd-2024-101
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



7 
 

2.5 Estimates of CO2 emissions and uncertainty assessment 192 

Finally, vehicular CO2 emissions were estimated using the constrained vehicular fuel consumption from 193 
previous step and a combined CO2 emission factor database in which emission factors from the 194 
Intergovernmental Panel on Climate Change (IPCC) were used as the default emission factors, and local 195 
studies (EEA; Shan et al., 2018) were used as supplements and amendments. As the CO2 emission factor 196 
is influenced mainly by the fuel type and country, the estimation of CO2 emissions would not be interfered 197 
with by the simplified assumption for MCs in modelling the age distribution.  198 

Following the method in Crippa et al. (2018) and Crippa et al. (2019), the corresponding uncertainty 199 
(𝜎𝜎) of CO2 emissions from on-road vehicles in year 𝑦𝑦 for a given country 𝑐𝑐 is calculated as following: 200 

𝜎𝜎𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝑐𝑐,𝑦𝑦 = �∑ �𝜎𝜎𝐴𝐴𝐴𝐴𝑐𝑐,𝑦𝑦,𝑓𝑓
2 + 𝜎𝜎𝐸𝐸𝐸𝐸𝑐𝑐,𝑓𝑓

2 � × �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦⁄ �2𝑓𝑓           (6) 201 

where 𝜎𝜎𝐴𝐴𝐴𝐴 and 𝜎𝜎𝐸𝐸𝐸𝐸 are the uncertainties (%) of the activity data (the constrained fuel consumption of 202 
on-road vehicles) and CO2 emission factors. Based on assumption of lognormal distribution of the 203 
calculated uncertainties (Bond et al., 2004), we evaluated the upper and lower range of CO2 estimate by 204 
multiplying and dividing the base emissions in this study by (1 + 𝜎𝜎), respectively (Crippa et al., 2018). 205 

As CO2 uncertainty can vary significantly among countries (Marland et al., 1999; Olivier et al., 206 
2014) and the primary source of uncertainty of the CO2 estimate from on-road vehicles is the activity 207 
data rather than emission factors (GPG 2000), the main step in CO2 uncertainty assessment is to evaluate 208 
the uncertainty of national activity data. In this study, 231 countries were divided into several groups 209 
(Table S1) in the uncertainty assessment in accordance with IPCC tiered approach and EDGAR 210 
(Janssens-Maenhout et al., 2019). Here we assume that countries belonging to the OECD in 1990 211 
(OECD90) have the lowest uncertainties in their fuel consumption data because they were economically 212 
stable and would have a good statistical infrastructure. On the same line, fuel consumption data in 213 
countries with Economies in Transition of 1990 (EIT90) is more uncertain than that of OECD90 but less 214 
than that from the other remaining non-Annex I countries. Exceptions to the country grouping are made 215 
for Australia, Canada, China, India, Japan, Russia, Ukraine, United States, and countries belonging to 216 
the 15 member countries of European Union (EU15) whose uncertainty values of fuel consumption data 217 
were obtained from Olivier et al. (2016) and Hong et al. (2017). Uncertainty values for CO2 emission 218 
factors were retrieved from EEA.  219 

Table S4 shows the corresponding uncertainty of CO2 emissions at both global and regional level 220 
during 1970-2020 on basis of Eq. 6. The uncertainty in the global on-road CO2 emissions is estimated to 221 
range from -7.2% to 8.1%, which is close to the expert judgement suggested value (approximately ±5%) 222 
in GPG (2000). Because sufficient local data was used in the CO2 estimation, United States and European 223 
Union have the lowest uncertainty in the range of -3.8% to 4.0% and -2.9% to 3.0%, respectively. India 224 
also has relatively low uncertainty that varies between -4.7% and 5.0% because of the low uncertainty 225 
derived from Janssens-Maenhout et al. (2019) in which India is classified as countries with well-226 
developed statistical systems. Due to the less-developed statistical systems, Latin Am. + Canada and 227 
Middle East + Africa have the largest uncertainty, which range from -12.3% to 14.6% and -15.4% to 228 
18.3%, respectively. Hong et al. (2017) found that the apparent uncertainties in oil consumption during 229 
1996-2003 were relatively large with an average apparent uncertainty ratio of 15.8%, which led to the 230 
relatively larger uncertainty in China's on-road CO2 emissions with the range of -12.6% to 14.4%. It 231 
could also be found that uncertainties at regional level decreased over time with the development of 232 
statistical systems in more countries. But uncertainty in global on-road CO2 emissions slightly increased 233 
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during 1970-2020 due to the growing contribution of regions with larger uncertainty to the global total 234 
CO2 emissions. 235 

3 Results 236 

3.1 Evolution of the global vehicle stock, 1970-2020 237 

The global vehicle stock continuously increased from 0.3 billion in 1970 to 2.3 billion in 2020, and there 238 
is both consistency and variety between countries in terms of the distributions of vehicles and fuel types 239 
(Figures 3 and S7). In 1970, PLDVs were the major vehicle type in United States (83%) and the European 240 
Union (88%) but had relatively low proportions in China (23%) and India (5%). The high proportion of 241 
PLDVs in the United States and the European Union, as well as the dominant position of these two 242 
regions in terms of the global vehicle stock (Figure S6), led to more than 70% of global vehicles being 243 
PLDVs in 1970. The proportion of PDLVs in China significantly increased and reached 68% in 2020 and 244 
have replaced MCs to become the dominant vehicle type. Although the stock of PLDVs in India also 245 
increased substantially during the 1970-2020 period, MCs were still the most frequently used vehicles, 246 
accounting for 78% of the vehicle stock in India in 2020. In 2020, the majority of vehicles in the European 247 
Union were still PLDVs, for which the proportion was 79%, but the dominant vehicle type in United 248 
States has changed from PLDVs to CLDVs, which accounted for 50% of the local vehicle stock. With 249 
the replacement of developed countries by developing countries in terms of the global vehicle stock 250 
during the 1970-2020 period (Figure S6), the share of MCs in the global vehicle stock increased 251 
accordingly to 32%, and the proportion of PLDVs decreased to 50% in 2020. 252 
 Unlike the changes in the vehicle-type distribution during the 1970-2020 period, the fuel structure 253 
of the vehicle stock was consistent in most regions. Currently, the majority of the vehicle stock worldwide 254 
still consists of gasoline and diesel vehicles, which together accounted for 98% of the global vehicle 255 
stock in 2020. Gasoline was the major fuel type for vehicles in most countries from 1970 to 2020, but 256 
the dieselization of PLDVs in regions such as the European Union (Figure S10) led to a larger proportion 257 
of diesel vehicles in the local vehicle stock. For example, the share of diesel vehicles in the European 258 
Union increased from 29% in 1970 to 43% in 2020. Although the share of electrical vehicles in the 259 
vehicle stock was still much lower than that of gasoline and diesel vehicles, the stock of global electrical 260 
PLDVs has reached 10.2 million, and in this regard, the growth has been the fastest in the last eight years. 261 

https://doi.org/10.5194/essd-2024-101
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



9 
 

 262 
Fig. 3. Trends in vehicle ownership from 1970 to 2020. 263 

3.2 CO2 emissions from global on-road vehicles 264 

Global CO2 emissions from on-road vehicles continued to increase overall from 1.7 Gt in 1970 to 5.4 Gt 265 
in 2020 (Figure 4). Profiting from the integrated global vehicle database developed in this study, we 266 
further analyzed the vehicle- and fuel type-specific characteristics of CO2 emissions from global on-road 267 
vehicles. On-road CO2 emissions were concentrated in specific vehicle and fuel types throughout the 268 
period. From 1970 to 2020, almost all of global CO2 emissions from on-road vehicles came from gasoline 269 
and diesel vehicles due to their dominant proportion in the vehicle stock (Figure S10). In 1970, 78% and 270 
21.5% of global on-road CO2 emissions were exhausted from gasoline and diesel vehicles, respectively, 271 
and in 2020, these emissions together accounted for 96% of global on-road CO2 emissions; only the 272 
ranking of the contributions changed. With continuous dieselization during the 1970-2020 period (Figure 273 
S10), the contribution of diesel vehicles to global on-road CO2 emissions increased to 47% in 2020. 274 
Although CO2 emissions from vehicles using other fuels (here, NG and LPG) continued to grow during 275 
the 1970-2020 period, their proportions were still quite slight compared to those of gasoline and diesel 276 
vehicles. 277 
 PLDVs, accounting for the largest share in the global vehicle stock, were also the main source of 278 
global on-road CO2 emissions and contributed more than 47% of global CO2 emissions from on-road 279 
vehicles during the 1970-2020 period. Although MCs accounted for the second largest share in the global 280 
vehicle stock, CO2 emissions from MCs were not comparable to those from PLDVs. In 2020, proportion 281 
of PLDVs and MCs in the global vehicle stock was 50% and 32%, respectively, and their CO2 emissions 282 
were 2.6 Gt and 0.3 Gt, respectively, which accounted for 48% and 5% of global on-road CO2 emissions, 283 
respectively. In contrast, trucks with a fairly low share in the global vehicle stock contributed the second 284 
largest share of global on-road CO2 emissions. During the 1970-2020 period, trucks accounted for less 285 
than 5% of the global vehicle stock but exhausted 17% of global on-road CO2 emissions in 1970, and 286 
their contribution increased to 22% in 2020. As most PLDVs are gasoline vehicles and the majority of 287 
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trucks are powered by diesel, gasoline PLDVs and diesel trucks are among the top 2 vehicle- and fuel 288 
type-specific contributors to global on-road CO2 emissions. In 2020, the CO2 emissions from gasoline 289 
PLDVs and diesel trucks were 1.8 Gt and 1.1 Gt, respectively, accounting for 33% and 20% of global 290 
on-road CO2 emissions, respectively. 291 

 292 
Fig. 4. Global CO2 emissions from 1970 to 2020 by vehicle and fuel type. The panels are organized by 293 
fuel type (rows) and vehicle type (columns) 294 

Figure 5 shows the geographical distribution of the two largest contributors to global on-road CO2 295 
emissions in 2020, namely, gasoline PLDVs and diesel trucks. Global on-road CO2 emissions were highly 296 
concentrated in several countries. In 2020, the top 10 countries contributed 69% and 71% of global CO2 297 
emissions exhausted from gasoline PLDVs and diesel trucks, respectively. The United States was still 298 
the largest contributor to global CO2 emissions from both gasoline PLDVs and diesel trucks, whose 299 
contributions were up to 25% and 28%, respectively. With the continuous improvement in China's 300 
economic development, China became the leading market for global vehicles in 2020 (Figure S6) and 301 
accounted for 18% and 19% of CO2 emissions from global gasoline PLDVs and diesel trucks, 302 
respectively. Although growth in on-road CO2 emissions in developed countries slowed down after 2000 303 
(Figure S8), the contributions of gasoline PLDVs and diesel trucks in developed countries were still 304 
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greater than those in developing countries, especially for gasoline PLDVs. For example, the ownership 305 
of gasoline PLDVs in Canada and India was relatively close in 2020, at 22.5 and 21.2 million, 306 
respectively, but the CO2 emissions from gasoline PLDVs in Canada were 83.5 Mt, which is three times 307 
greater than that in India. 308 

 309 
Fig. 5. Maps of on-road CO2 emissions from the top 2 contributors worldwide: (a) gasoline PLDVs and 310 
(b) diesel trucks. 311 

We further analyzed the influence of shifts in the fuel-type distribution of vehicle ownership (Figure 312 
S10) on the fuel structure of on-road CO2 emissions (Figure 6 and Figure S11). In 1970, CO2 emissions 313 
from PLDVs were mainly exhausted from gasoline vehicles, as the majority of PLDVs in most regions 314 
were powered by gasoline, and diesel vehicles exhausted only 7% of CO2 emissions from PLDVs 315 
worldwide. In 2020, gasoline vehicles were still the dominant contributor to CO2 emissions from PLDVs 316 
in the United States and China, but the contribution of diesel vehicles increased significantly in the 317 
European Union and India, which accounted for 61% and 50% of local CO2 emissions from PLDVs, 318 
respectively. Influenced by the dieselization of PLDVs in regions such as the European Union and India, 319 
the contribution of diesel vehicles to CO2 emissions from PLDVs in 2020 also increased to 28%. For 320 
CLDVs, the contribution of diesel vehicles was more than 50% in the European Union, China, and India, 321 
but in the remaining regions, CO2 emissions were still mainly from gasoline vehicles. Buses and trucks 322 
were also dieselized during the 1970-2020 period, and diesel vehicles have become the dominant 323 
contributor to CO2 emissions from buses and trucks both regionally and globally. Therefore, controlling 324 
emissions from diesel vehicles, especially buses and trucks, holds great significance for reducing global 325 
on-road CO2 emissions. 326 
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 327 
Fig. 6. Transition of diesel vehicles' contribution to CO2 emissions. 328 

3.3 Age distribution of CO2 emissions 329 

On the basis of the fleet turnover emission model built in this study, the age distribution of global on-330 
road CO2 emissions was estimated and analyzed (Figure 7). The contribution of old vehicles (those that 331 
survived more than 15 years) to CO2 emissions was relatively low, regardless of whether they were light-332 
duty or heavy-duty vehicles. In 1970, old vehicles contributed 4% and 6% of CO2 emissions from light-333 
duty and heavy-duty vehicles, respectively. Although the contribution of old vehicles to CO2 emissions 334 
increased, they still contributed only approximately 10% of CO2 emissions from both light-duty and 335 
heavy-duty vehicles in 2020. As emissions of air pollutants such as particulate matter (PM) may increase 336 
with age because of degradation in engine performance and air pollution control equipment (Yan et al., 337 
2011), the contributions of old vehicles to emissions of air pollutants could be much greater than those 338 
of CO2. Therefore, controlling old vehicles may not be significant in mitigating CO2 emissions but could 339 
lead to effective air pollutant emission coreductions. 340 

Global CO2 emissions from vehicles of all ages were mainly contributed by developed countries, 341 
such as the United States and countries in the European Union before 2000, as these countries owned the 342 
majority of global vehicles during that period. After 2000, the contributions of vehicles in developing 343 
countries such as China and India to global on-road CO2 emissions increased significantly, especially for 344 
CO2 emissions from vehicles younger than ten years. Taking CO2 emissions from light-duty vehicles 345 
aged 0-1 as an example, the proportion of these vehicles in China increased from 1% in 1970 to 16% in 346 
2020, while the proportion of these vehicles in the United States decreased from 44% in 1970 to 23% in 347 
2020. CO2 emissions from old vehicles in 2020 were still mainly exhausted by vehicles in developed 348 
countries such as the United States and countries in the European Union, which is related to the longer 349 
lifetimes and earlier development of vehicles in these countries. For example, old vehicles in the United 350 
States contributed nearly half of the CO2 emissions exhausted from old light-duty vehicles worldwide in 351 
2020. 352 
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 353 

Fig 7. Shares of CO2 emissions by vehicle age. In each panel, the bars from left to right show the 354 
proportions of the world, the United States (US), the European Union (EU), China, and India accounted 355 
for by vehicles in the vehicle age categories. The panels are organized by year (rows) and vehicle type 356 
(columns). 357 

4 Data availability 358 

The fuel-, vehicle type-, and age-specific CO2 emission data presented herein cover the period from 1970 359 
to 2020 at the country level. The data are available as open data at 360 
https://doi.org/10.6084/m9.figshare.24548008.v5 (Yan et al., 2023). 361 

5 Conclusions 362 

Our study constructed a fuel-, vehicle type-, and age-specific CO2 emission inventory from 1970 to 2020 363 
of global on-road vehicles covering 231 countries, five types of fuel, and five types of vehicles. In this 364 
model, the best available statistics on the vehicle stock and sales were used to model the vehicle stock 365 
via the Gompertz function as well as the age distribution based on the dynamic balanced relationship 366 
between the vehicle stock and vehicle sales. Statistical fuel consumption was used to constrain the 367 
estimated vehicular fuel consumption at the country level, and emission factors from both the IPCC and 368 
local studies were used to estimate CO2 emissions. On the basis of our CO2 emission inventory with 369 
detailed information, the evolution of the global vehicle stock over 50 years was analyzed, the dominant 370 
emission contributors by vehicle and fuel type were identified, and the age distribution of on-road CO2 371 
emissions was also characterized. We found that trucks accounted for less than 5% of global vehicle 372 
ownership but represented more than 20% of on-road CO2 emissions in 2020. The contribution of diesel 373 
vehicles to global on-road CO2 emissions doubled during the 1970-2020 period, driven by the shift in 374 
the fuel-type distribution of vehicle ownership. The proportion of CO2 emissions from vehicles in 375 
developing countries such as China and India in terms of global emissions from newly registered vehicles 376 
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significantly increased after 2000, but global CO2 emissions from vehicles that survived more than 15 377 
years in 2020 still originated mainly from developed countries such as the United States and countries in 378 
the European Union. 379 

The fleet turnover model built in this study could also be used for estimating global on-road 380 
emissions of air pollutants, which are more significantly influenced by the vehicle-type distribution, fuel 381 
structure, and age distribution of the fleet. However, these fuel-, vehicle type-, and age-specific 382 
characteristics have not yet been discussed in existing studies. In the future, our model could help 383 
improve the global emission inventory of air pollutants from on-road vehicles and further support 384 
analyses of coreductions in CO2 and air pollutant emissions from global on-road vehicles as well as the 385 
potential air quality and climate cobenefits. In addition to the uncertainty quantification for our CO2 386 
emission data, we further verified the reliability of CO2 emissions in this study by comparing them to 387 
those of other widely used global, regional, and national emission inventories in which long-term CO2 388 
emissions are available (Figure S12). The CO2 emissions in this study not only exhibited good 389 
consistency with other global emission inventories at the global scale but also were more similar to local 390 
emissions than those in other global or regional emission inventories at the country and regional levels. 391 
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