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Abstract. Vehicles are among the most important contributors to global anthropogenic CO2 emissions. 11 

However, the lack of fuel-, vehicle type-, and age-specific information about global on-road CO2 12 

emissions in existing datasets, which are available only at the sector level, makes these datasets 13 

insufficient to support the establishment of emission mitigation strategies. Thus, a fleet turnover model 14 

is developed in this study, and CO2 emissions from global on-road vehicles from 1970 to 2020 are 15 

estimated for each country. Here, we analyze the evolution of the global vehicle stock over 50 years, 16 

identify the dominant emission contributors by vehicle and fuel type, and further characterize the age 17 

distribution of on-road CO2 emissions. We find that trucks accounted for less than 5% of global vehicle 18 

ownership but represented more than 20% of on-road CO2 emissions in 2020. The contribution of diesel 19 

vehicles to global on-road CO2 emissions doubled during the 1970-2020 period, driven by the shift in 20 

the fuel-type distribution of vehicle ownership. The proportion of CO2 emissions from vehicles in 21 

developing countries such as China and India in terms of global emissions from newly registered vehicles 22 

significantly increased after 2000, but global CO2 emissions from vehicles that survived more than 15 23 

years in 2020 still originated mainly from developed countries such as the United States and countries in 24 

the European Union. 25 
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1 Introduction 26 

To meet the Paris Agreement's 1.5℃ long-term temperature goal, many efforts have been made to 27 

determine pathways for reducing the emissions of greenhouse gases such as CO2 (Matthews & Caldeira, 28 

2008; Meinshausen et al., 2009; Rogelj et al., 2018; Davis et al., 2018). Historical emission data and 29 

consistent emission series of on-road vehicles, which are key sources of CO2 emissions, are important 30 

inputs for Earth system models, atmospheric chemistry and transport models, and integrated assessment 31 

models to support studies on both climate change and global climate governance (Bhalla et al., 2014; 32 

Janssens-Maenhout et al., 2019; Lelieveld et al., 2015; Niklas et al., 2020; Shindell et al., 2011; Silva et 33 

al., 2016; Unger et al., 2010). Thus, estimating long-term CO2 emissions from global on-road vehicles 34 

with detailed source information is necessary as deep greenhouse gas emission reductions are pursued. 35 

Several global emission inventories that cover emissions from on-road vehicles have been 36 

developed and are widely used in global research and modeling. CO2 emissions from on-road vehicles 37 

can be derived from global anthropogenic emission inventories, including the Emissions Database for 38 

Global Atmospheric Research (EDGAR), the Open-source Data Inventory for Atmospheric CO2 39 

(ODIAC), the Carbon Emission and Accounts Datasets (CEADs), and the Peking University (PKU)-CO2 40 

inventory. On-road CO2 emissions are estimated with the total fuel consumption of the road sector at the 41 

country level and fleet average emission factors in EDGAR (Amstel et al., 1999; Crippa et al., 2016; 42 

Crippa et al., 2018; Janssens-Maenhout et al., 2019). Following the method in EDGAR, local data sources 43 

are introduced more often in ODIAC (Boden et al., 2016; Boden et al., 2017; Od et al., 2018), CEDS 44 

(Hoesly et al., 2018) and PKU-CO2 (Wang et al., 2013) when estimating on-road CO2 emissions. Global 45 

CO2 emissions from on-road vehicles in these widely used emission inventories are estimated as a whole 46 

at the sector level in each country using the fuel-based method, and fleet structure information (e.g., fuel-, 47 

vehicle type-, and age-specific characteristics) on on-road CO2 emissions is omitted. Technology-based 48 

models such as the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) (Klimont et 49 

al., 2017) and Speciated Pollutant Emissions Wizard (SPEW)-Trend (Tami et al., 2004 and 2007; Yan et 50 

al., 2011 and 2014) models can be used to describe fleet structure information on emissions from global 51 

on-road vehicles, but emission inventories built on these models include only emissions of air pollutants. 52 

Here, a new global inventory of fuel-, vehicle type-, and age-specific CO2 emissions from on-road 53 

vehicles for each country from 1970 to 2020 is developed with the global fleet turnover model, in which 54 
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six types of fuel, five types of vehicles, and 231 countries are considered. Based on this inventory, we 55 

analyze the evolution of the global vehicle stock over 50 years; identify the dominant emission 56 

contributors by vehicle and fuel type; and further characterize the age distribution of on-road CO2 57 

emissions. Compared to the publicly available on-road CO2 emissions from previous studies, CO2 58 

emissions in this study have more detailed source categories which are refined into vehicle and fuel type. 59 

And with the age distribution simulated by our fleet turnover model, CO2 emissions offered in this study 60 

would better support the policy-making of emission mitigation. 61 

2 Materials and methods 62 

2.1 Methodological framework 63 

For a given country 𝑐, the annual CO2 emissions from on-road vehicles in year 𝑦 are estimated as 64 

follows: 65 

𝐸𝑚𝑖𝑠𝑐,𝑦,𝑣,𝑓 = ∑ 𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣 × 𝑋𝑐,𝑦,𝑣,𝑖 × 𝐹𝑢𝑒𝑙𝑅𝑐,𝑦,𝑣,𝑓 × 𝑉𝐾𝑇𝑐,𝑦,𝑣,𝑓 × 𝐹𝐸𝑐,𝑦,𝑣,𝑓 × 𝐸𝐹𝑐,𝑓
𝑖=𝑇
𝑖=0 ,   (1) 66 

𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣 = 𝑉𝑐,𝑦,𝑣
∗ × 𝑒𝛼𝑐,𝑣𝑒𝛽𝑐,𝑣𝐸𝑐,𝑦

× 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐,𝑦,          (2) 67 

𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣 = ∑ 𝑆𝑎𝑙𝑒𝑐,𝑦−𝑖,𝑣 × 𝑆𝑢𝑟𝑣𝑐,𝑣,𝑖
𝑖=𝑇
𝑖=0 ,            (3) 68 

𝑋𝑐,𝑦,𝑣,𝑖 = 𝑆𝑎𝑙𝑒𝑐,𝑦−𝑖,𝑣 × 𝑆𝑢𝑟𝑣𝑐,𝑣,𝑖 ∑ 𝑆𝑎𝑙𝑒𝑐,𝑦−𝑖,𝑣 × 𝑆𝑢𝑟𝑣𝑐,𝑣,𝑖
𝑖=𝑇
𝑖=0⁄ ,        (4) 69 

𝐹𝑢𝑒𝑙𝑐,𝑦,𝑓 = ∑ 𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣𝑣 × 𝐹𝑢𝑒𝑙𝑅𝑐,𝑦,𝑣,𝑓 × 𝑉𝐾𝑇𝑐,𝑦,𝑣,𝑓 × 𝐹𝐸𝑐,𝑦,𝑣,𝑓 ,       (5) 70 

where 𝑦 is the target year, which ranges from 1970 to 2020; 𝑖 is the age of the vehicles registered in 71 

year (𝑦 − 𝑖); 𝑇 is the lifetime of vehicles; 𝑣 is the vehicle type, which includes two types of light-72 

duty vehicles, namely, passenger cars (PLDVs) and light commercial vehicles (CLDVs), two types of 73 

heavy-duty vehicles, namely, buses and trucks, and motorcycles (MCs); and 𝑓 is the fuel type, which 74 

includes gasoline, diesel, natural gas (NG), liquefied petroleum gas (LPG), electricity, and other fuels. 75 

As shown in EquationEq. 1, annual CO2 emissions (𝐸𝑚𝑖𝑠𝑐,𝑦,𝑣,𝑓 ) are estimated by the vehicle stock 76 

(𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣 ), the fleet-average fuel structure (𝐹𝑢𝑒𝑙𝑅𝑐,𝑦,𝑣,𝑓 ), the annual average kilometers traveled 77 

(𝑉𝐾𝑇𝑐,𝑦,𝑣,𝑓), the fleet-average fuel economy (𝐹𝐸𝑐,𝑦,𝑣,𝑓), the age distribution of the vehicle stock (𝑋𝑐,𝑦,𝑣,𝑖), 78 

and the CO2 emission factor ( 𝐸𝐹𝑐,𝑓 ). 𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣  can be modeled using the Gompertz function 79 

(EquationEq. 2), which is an S-shaped curve determined by two negative parameters (𝛼 and 𝛽), with 80 
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the saturated vehicle stock per 1000 people (𝑉∗), per capita GDP (𝐸), and population (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐,𝑦) 81 

as inputs. The age distribution of the vehicle stock (𝑋𝑐,𝑦,𝑣,𝑖), which represents the proportion of surviving 82 

vehicles registered in year (𝑦 − 𝑖) in target year 𝑦, is modeled on the basis of the dynamic balance 83 

function (EquationEqs. 3 and 4) using the number of newly registered vehicles (𝑆𝑎𝑙𝑒𝑐,𝑦−𝑖,𝑣) and survival 84 

rates (𝑆𝑢𝑟𝑣𝑐,𝑣,𝑖 ). Fuel consumption by vehicle type, which is calculated using 𝑆𝑡𝑜𝑐𝑘𝑐,𝑦,𝑣 , 𝑋𝑐,𝑦,𝑣,𝑖 , 85 

𝐹𝑢𝑒𝑙𝑅𝑐,𝑦,𝑣,𝑓, 𝑉𝐾𝑇𝑐,𝑦,𝑣,𝑓, and 𝐹𝐸𝑐,𝑦,𝑣,𝑓, is constrained by total on-road fuel consumption (𝐹𝑢𝑒𝑙𝑐,𝑦,𝑓) at 86 

the country level (EquationEq. 5). 87 

In this study, the fleet turnover emission model (Figure 1) is constructed based on equationfunctions 88 

1-5. SpecificallyIn summary, we first build an integrated vehicle stock database by combining and 89 

harmonizing the available vehicle stock data from a series of global, regional and national statistics and 90 

filling data gaps with the modeled stock based on the Gompertz function (EquationEq. 2). Second, the 91 

age distribution of the stock is simulated with a combined vehicle sale statistical database and an 92 

integrated vehicle stock database using the dynamic balance function (EquationEq. 3 and 4). ThirdThen, 93 

vehicular fuel consumption is estimated using outputs from the first two steps and other vehicle activity-94 

related data and is constrained by national fuel consumption statistics (EquationEq. 5). Finally, fuel- and 95 

vehicle type-specific CO2 emissions from global on-road vehicles from 1970 to 2020 are modeled on the 96 

basis of constrained vehicular fuel consumption and CO2 emission factors (Equation Eq. 1). 97 

 98 
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 99 

Figure. 1:. Schematic methodology for estimating vehicular CO2 emissions. 100 

2.2 Modeling the vehicle stock 101 

In the first step, an integrated vehicle stock database from 1970 to 2020 was constructed with both 102 

statistical and modeled data. The statistical data used in this study was collected from various available 103 

vehicle stock statistics, in which global statistics were used as the default vehicle stock and local statistics 104 

were used to supplement and amend the default data. When statistical data was unavailable for a country 105 

in a given year, vehicle stock modeled by the Gompertz function was used. 106 

To determine the default vehicle stock database, two widely used vehicle stock statistics from the 107 

Wold Road Statistics (WRS) 2021 Edition (IRF) and the International Organization of Motor Vehicle 108 

Manufacturers (OICA) were collected and compared. We found that the trends of vehicle stock in the 109 

WRS and OICA data were similar, but the absolute value of the vehicle stock in the OICA data was lower 110 

than that in the WRS data, especially for developing countries (Figure S2). Taking India as an example, 111 

the vehicle stock in the OICA data was 85% less than that in the WRS data. To further confirm the 112 

reliability of these two global databases, local statistics were used for comparison. The WRS data were 113 

more similar to the local vehicle statistics than were the OICA data (Figure S2). After comprehensive 114 

consideration of spatiotemporal coverage, updating frequency and stability, and data reliability, the WRS 115 

data were used as the default for global vehicle statistics, and the OICA data were used if there were no 116 
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data available from the WRS. 117 

We also collected a series of local statistics as supplements and amendments to the global vehicle 118 

statistics, in which 49 developing and developed countries were included (ACEA; CEIC; EC; JAMA; 119 

MEIC; MOSPI; NBS; TEDB). By coupling multiple global and local vehicle databases, a combined 120 

vehicle statistical database by vehicle category was established in this study. As the division of vehicle 121 

types varied among statistics, we established a mapping relationship of vehicle types between this study 122 

and other data sources (Table S2). 123 

Given that statistical data of vehicle was unavailable before 2000 for most countries, the Gompertz 124 

function, which was often applied to establish the relationship between vehicle ownership and an 125 

economic indicator (Dargay and Gately, 1999; Dargay et al., 2007; Huo and Wang, 2012), was 126 

subsequently used in this study to model the vehicle stock. In this study, per capita GDP was calculated 127 

with national GDP (NBS; UNdata; WB) and population (NBS; WPP) as the economic indicator. The 128 

saturated vehicle stock per 1000 people was first derived from previous studies (Huo and Wang, 2012) 129 

and then adjusted by the maximal vehicle stock per 1000 people calculated using statistical data. The 130 

combined vehicle statistical database was used to estimate parameters (𝛼  and 𝛽) of the Gompertz 131 

function at the country level. For countries whose R square (R2) of the country-level regression was less 132 

than 0.5, regional or global 𝛼 and 𝛽 regression parameters were used instead (Zheng et al., 2012). 133 

As the verification of the vehicle stock modeled by the Gompertz function, we compared them with 134 

the statistical vehicle stock for countries in years when statistics were available. The relative deviation 135 

ratios in countries that own top 85% of global vehicles stock were between -28% and 25.6%, ranges of 136 

the relative deviation in rest countries were a bit larger due to the limited availability of statistics. Figure 137 

2(a) and Figure S3 show the comparison in 2015, a year with more statistical data. The deviation of the 138 

modeled vehicle stock from the statistics in most countries was less than ±25%, especially in the United 139 

States, countries in the European Union, China, and India. The relatively good consistency between the 140 

modeled and statistical vehicle stock indicates the relatively high reliability of this model. Therefore, a 141 

long-term integrated vehicle stock database (1970-2020) was constructed by constraining the modeled 142 

vehicle stock by the combined vehicle statistical database. 143 
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 144 
Figure 2:Fig. 2. Verification of the modeled vehicle stock in United States, the European Union, China, 145 

and India (a) and the age distribution for PLDVs (b) in 2015. 146 

2.3 Modeling the age distribution of vehicle stock 147 

Then, the age distribution of the stock was modeled using the dynamic balanced function with the 148 

integrated vehicle stock database set up in the first step and a combined vehicle sale statistical database. 149 

Similar to the combination of vehicle stock statistics, OICA data were used as the default vehicle sale 150 

database with WRS data as a supplement after comparison, and local statistics (ACEA; CEIC; EC; JAMA; 151 

MEIC; NBS; TEDB) were also involved to correct the default database. Limited by the temporal 152 

coverage of the statistical data, vehicle sales were not available for most countries before 2005. Therefore, 153 

the newly registered vehicles for missing years was back-calculated with the dynamic balanced function, 154 

in which the vehicle stock from the previous step and survival rates derived from available studies and 155 

reports (Huo and Wang 2012; Yan et al., 2011; Yan et al., 2014; Zheng et al., 2014) were inputs. Here we 156 

marked 231 countries into two types: focus countries and broader regions (Table S1). 20 countries 157 

owning the top 75% of global vehicles were marked as focus countries, for which the dynamic balanced 158 

function was built at country level. The remaining 211 countries were marked as broader regions and 159 

further combined into 8 regions according to the roadmap region definition (ICCT 2012). In each broader 160 

region, data in a reprehensive country, which has most abundant statistics with region, was used to build 161 

the dynamic balanced function and the age distribution in this country was assumed to be able to represent 162 

that in other countries belonging to the same region. The age distribution in this study was not simulated 163 

for MCs due to the limitation of data availability, and we assumed that they shared the same age 164 

distribution of PLDVs. 165 

To verify the age distribution modeled by the dynamic balanced function, relative deviation between 166 

the simulated vehicle stock based on newly registered vehicles and survival rates and the vehicle stock 167 

in the first step was used as the validation indicator. Except for several years in Argentina and Thailand, 168 

带格式的: 行距: 1.5 倍行距



8 
 

the relative deviation ratios of light-duty vehicles during 1970-2020 ranges from -30.9% to 30.8%, 169 

heavy-duty vehicles had larger relative deviation ratios which were between -36.5% and 34.9%. Taking 170 

2015 as an example, the relative deviation ratios in most countries were less than ±30% (Figure 2(b) 171 

and Figure S4). The relatively good consistency between the vehicle stock and simulation indicated that 172 

the dynamic balance function set up in this study could well model the entry of newly registered vehicles 173 

and the retirement of existing vehicles and the estimated age distribution was reliable. 174 

2.4 Estimates of fuel consumption 175 

In the third step, we estimated the initial vehicular fuel consumption based on outputs from the first two 176 

steps and parameters including the annual average kilometers traveled (VKT), fuel structure, and fuel 177 

economy. Then the initial vehicular fuel consumption was constrained with energy statistics from World 178 

Energy Statistics (IEA1) at country level, which was finally used in CO2 estimation. VKT, fuel structure, 179 

and fuel economy are rarely available in global statistics annually, this study used fleet-average data, 180 

which were estimated based on vehicle-kilometers, the vehicle stock, vehicle-kilometer energy intensity, 181 

and fuel consumption by category in energy efficiency statistics (IEA2). These indexes for 39 countries 182 

(accounting for 43%-73% of the global vehicle stock) during the 2000-2018 period can be found in 183 

energy efficiency statistics. For countries that were not covered in energy efficiency statistics, the 184 

regional or global mean VKT, fuel structure, and fuel economy were used. For missing years, we assumed 185 

that the values of these three parameters were similar to those of the adjacent year. There are few local 186 

statistics or studies that evaluate the VKT, fuel structure, and fuel economy; therefore, these parameters 187 

were supplemented and revised only for the United States, Europe, China, and Japan using local statistics 188 

or studies (AECA; IEA3; JAMA; MEIC; TEDB; TRACCS). 189 

As the validation of fuel consumption, the initial vehicular fuel consumption was compared to 190 

energy statistics by fuel type (Figure S5). The range of relative deviation ratios of gasoline, diesel, NG, 191 

and LPG was -23% to 3%, -19% to 9%, -22% to 34%, and -39% to 14%, respectively. As CO2 is not 192 

directly emitted as exhaust by electrical vehicles whether they were running, starting or parking, 193 

electricity was not considered in the estimation of vehicular fuel consumption in this study. The 194 

consistency of the simulation with statistics ensured the feasibility of constraining the modeled fuel 195 

consumption by statistics. 196 
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2.5 Estimates of CO2 emissions and uncertainty assessment 197 

Finally, vehicular CO2 emissions were estimated using the constrained vehicular fuel consumption from 198 

previous step and a combined CO2 emission factor database in which emission factors from the 199 

Intergovernmental Panel on Climate Change (IPCC) were used as the default emission factors, and local 200 

studies (EEA; Shan et al., 2018) were used as supplements and amendments. As the CO2 emission factor 201 

is influenced mainly by the fuel type and country, the estimation of CO2 emissions would not be interfered 202 

with by the simplified assumption for MCs in modelling the age distribution.  203 

Following the method in Crippa et al. (2018) and Crippa et al. (2019), the corresponding uncertainty 204 

(𝜎) of CO2 emissions from on-road vehicles in year 𝑦 for a given country 𝑐 is calculated as following: 205 

𝜎𝐸𝑚𝑖𝑠𝑐,𝑦
= √∑ (𝜎𝐴𝐷𝑐,𝑦,𝑓

2 + 𝜎𝐸𝐹𝑐,𝑓

2 ) × (𝐸𝑚𝑖𝑠𝑐,𝑦,𝑓 𝐸𝑚𝑖𝑠𝑐,𝑦⁄ )
2

𝑓           (6) 206 

where 𝜎𝐴𝐷 and 𝜎𝐸𝐹 are the uncertainties (%) of the activity data (the constrained fuel consumption of 207 

on-road vehicles) and CO2 emission factors. Based on assumption of lognormal distribution of the 208 

calculated uncertainties (Bond et al., 2004), we evaluated the upper and lower range of CO2 estimate by 209 

multiplying and dividing the base emissions in this study by (1 + 𝜎), respectively (Crippa et al., 2018). 210 

As CO2 uncertainty can vary significantly among countries (Marland et al., 1999; Olivier et al., 211 

2014) and the primary source of uncertainty of the CO2 estimate from on-road vehicles is the activity 212 

data rather than emission factors (GPG 2000), the main step in CO2 uncertainty assessment is to evaluate 213 

the uncertainty of national activity data. In this study, 231 countries were divided into several groups 214 

(Table S1) in the uncertainty assessment in accordance with IPCC tiered approach and EDGAR 215 

(Janssens-Maenhout et al., 2019). Here we assume that countries belonging to the OECD in 1990 216 

(OECD90) have the lowest uncertainties in their fuel consumption data because they were economically 217 

stable and would have a good statistical infrastructure. On the same line, fuel consumption data in 218 

countries with Economies in Transition of 1990 (EIT90) is more uncertain than that of OECD90 but less 219 

than that from the other remaining non-Annex I countries. Exceptions to the country grouping are made 220 

for Australia, Canada, China, India, Japan, Russia, Ukraine, United States, and countries belonging to 221 

the 15 member countries of European Union (EU15) whose uncertainty values of fuel consumption data 222 

were obtained from Olivier et al. (2016) and Hong et al. (2017). Uncertainty values for CO2 emission 223 

factors were retrieved from EEA.  224 

Table S4 shows the corresponding uncertainty of CO2 emissions at both global and regional level 225 
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during 1970-2020 on basis of EquationEq. 6. The uncertainty in the global on-road CO2 emissions is 226 

estimated to range from -7.2% to 8.1%, which is close to the expert judgement suggested value 227 

(approximately ±5%) in GPG (2000). Because sufficient local data was used in the CO2 estimation, 228 

United States and European Union have the lowest uncertainty in the range of -3.8% to 4.0% and -2.9% 229 

to 3.0%, respectively. India also has relatively low uncertainty that varies between -4.7% and 5.0% 230 

because of the low uncertainty derived from Janssens-Maenhout et al. (2019) in which India is classified 231 

as countries with well-developed statistical systems. Due to the less-developed statistical systems, Latin 232 

Am. + Canada and Middle East + Africa have the largest uncertainty, which range from -12.3% to 14.6% 233 

and -15.4% to 18.3%, respectively. Hong et al. (2017) found that the apparent uncertainties in oil 234 

consumption statistics in China during 1996-2003 were relatively large with an average apparent 235 

uncertainty ratio of 15.8%, which led to the relatively larger uncertainty in China's on-road CO2 236 

emissions with the range of -12.6% to 14.4%. It could also be found that uncertainties at regional level 237 

decreased over time with the development of statistical systems in more countries. But uncertainty in 238 

global on-road CO2 emissions slightly increased during 1970-2020 due to the growing contribution of 239 

regions with larger uncertainty to the global total CO2 emissions. 240 

3 Results 241 

3.1 Evolution of the global vehicle stock, 1970-2020 242 

The global vehicle stock continuously increased from 0.3 billion in 1970 to 2.3 billion in 2020, and there 243 

is both consistency and variety between countries in terms of the distributions of vehicles and fuel types 244 

(Figures 3 and S7). In 1970, PLDVs were the major vehicle type in United States (83%) and the European 245 

Union (88%) but had relatively low proportions in China (23%) and India (5%). The high proportion of 246 

PLDVs in the United States and the European Union, as well as the dominant position of these two 247 

regions in terms of the global vehicle stock (Figure S6), led to more than 70% of global vehicles being 248 

PLDVs in 1970. The proportion of PDLVs in China significantly increased and reached 68% in 2020 and 249 

have replaced MCs to become the dominant vehicle type. Although the stock of PLDVs in India also 250 

increased substantially during the 1970-2020 period, MCs with the proportion of 78% the vehicle stock 251 

in 2020 were still the most frequently used vehicles in India, benefiting by the local warm climateMCs 252 

were still the most frequently used vehicles, accounting for 78% of the vehicle stock in India in 2020. In 253 
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2020, tThe majority of vehicles in the European Union in 2020 were still PLDVs, for which the 254 

proportion was 79%, but the dominant vehicle type in United States has changed from PLDVs to CLDVs 255 

and CLDVs, which accounted for 50% of the local vehicle stock. As the dominant position of developed 256 

countries in global vehicle stock replaced by developing countries during the 1970-2020 period 257 

With the replacement of developed countries by developing countries in terms of the global vehicle stock 258 

during the 1970-2020 period (Figure S6), the share of MCs in the global vehicle stock increased 259 

accordingly to 32%, and the proportion of PLDVs decreased to 50% in 2020. 260 

 Unlike the changes in the vehicle-type distribution during the 1970-2020 period, the fuel structure 261 

of the vehicle stock was consistent in most regions. Currently, the majority of the vehicle stock worldwide 262 

still consists of gasoline and diesel vehicles, which together accounted for 98% of the global vehicle 263 

stock in 2020. Gasoline was the major fuel type for vehicles in most countries from 1970 to 2020, but 264 

the dieselization of PLDVs in regions such as the European Union (Figure S10) led to a larger proportion 265 

of diesel vehicles in the local vehicle stock. For example, the share of diesel vehicles in the European 266 

Union increased from 29% in 1970 to 43% in 2020. Although the share of electrical vehicles in the 267 

vehicle stock was still much lower than that of gasoline and diesel vehicles, the stock of global electrical 268 

PLDVs has reached 10.2 million, and in this regard, the growth has been the fastest in the last eight years. 269 

 270 

Figure 3:Fig. 3. Trends in vehicle ownership from 1970 to 2020. 271 
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3.2 CO2 emissions from global on-road vehicles 272 

Global CO2 emissions from on-road vehicles continued to increase overall from 1.7 Gt in 1970 to 5.4 Gt 273 

in 2020 (Figure 4). Profiting from the integrated global vehicle database developed in this study, we 274 

further analyzed the vehicle- and fuel type-specific characteristics of CO2 emissions from global on-road 275 

vehicles. On-road CO2 emissions were concentrated in specific vehicle and fuel types throughout the 276 

period. From 1970 to 2020, almost all of global CO2 emissions from on-road vehicles came from gasoline 277 

and diesel vehicles due to their dominant proportion in the vehicle stock (Figure S10). In 1970, 78% and 278 

21.5% of global on-road CO2 emissions were exhausted from gasoline and diesel vehicles, respectively, 279 

and in 2020, these emissions together accounted for 96% of global on-road CO2 emissions; only the 280 

ranking of the contributions changed. With continuous dieselization during the 1970-2020 period (Figure 281 

S10), the contribution of diesel vehicles to global on-road CO2 emissions increased to 47% in 2020. 282 

Although CO2 emissions from vehicles using other fuels (here, NG and LPG) continued to grow during 283 

the 1970-2020 period, their proportions were still quite slight compared to those of gasoline and diesel 284 

vehicles. 285 

 PLDVs, accounting for the largest share in the global vehicle stock, were also the main source of 286 

global on-road CO2 emissions and contributed more than 47% of global CO2 emissions from on-road 287 

vehicles during the 1970-2020 period. Although MCs accounted for the second largest share in the global 288 

vehicle stock, CO2 emissions from MCs were not comparable to those from PLDVs. In 2020, proportion 289 

of PLDVs and MCs in the global vehicle stock was 50% and 32%, respectively, and their CO2 emissions 290 

were 2.6 Gt and 0.3 Gt, respectively, which accounted for 48% and 5% of global on-road CO2 emissions, 291 

respectively. In contrast, trucks with a fairly low share in the global vehicle stock contributed the second 292 

largest share of global on-road CO2 emissions. During the 1970-2020 period, trucks accounted for less 293 

than 5% of the global vehicle stock but exhausted 17% of global on-road CO2 emissions in 1970, and 294 

their contribution increased to 22% in 2020. As most PLDVs are gasoline vehicles and the majority of 295 

trucks are powered by diesel, gasoline PLDVs and diesel trucks are among the top 2 vehicle- and fuel 296 

type-specific contributors to global on-road CO2 emissions. In 2020, the CO2 emissions from gasoline 297 

PLDVs and diesel trucks were 1.8 Gt and 1.1 Gt, respectively, accounting for 33% and 20% of global 298 

on-road CO2 emissions, respectively. 299 
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 300 

Figure 4:Fig 4. Global CO2 emissions from 1970 to 2020 by vehicle and fuel type. The panels are 301 

organized by fuel type (rows) and vehicle type (columns). 302 

Figure 5 shows the geographical distribution of the two largest contributors to global on-road CO2 303 

emissions in 2020, namely, gasoline PLDVs and diesel trucks. Global on-road CO2 emissions were highly 304 

concentrated in several countries. In 2020, the top 10 countries contributed 69% and 71% of global CO2 305 

emissions exhausted from gasoline PLDVs and diesel trucks, respectively. The United States was still 306 

the largest contributor to global CO2 emissions from both gasoline PLDVs and diesel trucks, whose 307 

contributions were up to 25% and 28%, respectively. With the continuous improvement in China's 308 

economic development, China became the leading market for global vehicles in 2020 (Figure S6) and 309 

accounted for 18% and 19% of CO2 emissions from global gasoline PLDVs and diesel trucks, 310 

respectively. Although growth in on-road CO2 emissions in developed countries slowed down after 2000 311 
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(Figure S8), the contributions of gasoline PLDVs and diesel trucks in developed countries were still 312 

greater than those in developing countries, especially for gasoline PLDVs. For example, the ownership 313 

of gasoline PLDVs in Canada and India was relatively close in 2020, at 22.5 and 21.2 million, 314 

respectively, but the CO2 emissions from gasoline PLDVs in Canada were 83.5 Mt, which is three times 315 

greater than that in India. 316 

 317 

Figure 5:Fig. 5. Maps of on-road CO2 emissions from the top 2 contributors worldwide: (a) gasoline 318 

PLDVs and (b) diesel trucks. 319 

We further analyzed the influence of shifts in the fuel-type distribution of vehicle ownership (Figure 320 

S10) on the fuel structure of on-road CO2 emissions (Figure 6 and Figure S11). In 1970, CO2 emissions 321 

from PLDVs were mainly exhausted from gasoline vehicles, as the majority of PLDVs in most regions 322 

were powered by gasoline, and diesel vehicles exhausted only 7% of CO2 emissions from PLDVs 323 

worldwide. In 2020, gasoline vehicles were still the dominant contributor to CO2 emissions from PLDVs 324 

in the United States and China, but the contribution of diesel vehicles increased significantly in the 325 

European Union and India, which accounted for 61% and 50% of local CO2 emissions from PLDVs, 326 

respectively. Influenced by the dieselization of PLDVs in regions such as the European Union and India, 327 

the contribution of diesel vehicles to CO2 emissions from PLDVs in 2020 also increased to 28%. For 328 
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CLDVs, the contribution of diesel vehicles was more than 50% in the European Union, China, and India, 329 

but in the remaining regions, CO2 emissions were still mainly from gasoline vehicles. Buses and trucks 330 

were also dieselized during the 1970-2020 period, and diesel vehicles have become the dominant 331 

contributor to CO2 emissions from buses and trucks both regionally and globally. Therefore, controlling 332 

emissions from diesel vehicles, especially buses and trucks, holds great significance for reducing global 333 

on-road CO2 emissions. 334 

 335 

Figure 6:Fig. 6. Transition of diesel vehicles' contribution to CO2 emissions. 336 

3.3 Age distribution of CO2 emissions 337 

On the basis of the fleet turnover emission model built in this study, the age distribution of global on-338 

road CO2 emissions was estimated and analyzed (Figure 7). The contribution of old vehicles (those that 339 

survived more than 15 years) to CO2 emissions was relatively low, regardless of whether they were light-340 

duty or heavy-duty vehicles. In 1970, old vehicles contributed 4% and 6% of CO2 emissions from light-341 

duty and heavy-duty vehicles, respectively. Although the contribution of old vehicles to CO2 emissions 342 

increased, they still contributed only approximately 10% of CO2 emissions from both light-duty and 343 

heavy-duty vehicles in 2020. As emissions of air pollutants such as particulate matter (PM) may increase 344 

with age because of degradation in engine performance and air pollution control equipment (Yan et al., 345 

2011), the contributions of old vehicles to emissions of air pollutants could be much greater than those 346 
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of CO2. Therefore, controlling old vehicles may not be significant in mitigating CO2 emissions but could 347 

lead to effective air pollutant emission coreductions. 348 

Global CO2 emissions from vehicles of all ages were mainly contributed by developed countries, 349 

such as the United States and countries in the European Union before 2000, as these countries owned the 350 

majority of global vehicles during that period. After 2000, the contributions of vehicles in developing 351 

countries such as China and India to global on-road CO2 emissions increased significantly, especially for 352 

CO2 emissions from vehicles younger than ten years. Taking CO2 emissions from light-duty vehicles 353 

aged 0-1 as an example, the proportion of these vehicles in China increased from 1% in 1970 to 16% in 354 

2020, while the proportion of these vehicles in the United States decreased from 44% in 1970 to 23% in 355 

2020. CO2 emissions from old vehicles in 2020 were still mainly exhausted by vehicles in developed 356 

countries such as the United States and countries in the European Union, which is related to the longer 357 

lifetimes and earlier development of vehicles in these countries. For example, old vehicles in the United 358 

States contributed nearly half of the CO2 emissions exhausted from old light-duty vehicles worldwide in 359 

2020. 360 

 361 

Figure 7:Fig. 7. Shares of CO2 emissions by vehicle age. In each panel, the bars from left to right show 362 

the proportions of the world, the United States (US), the European Union (EU), China, and India 363 

accounted for by vehicles in the vehicle age categories. The panels are organized by year (rows) and 364 

vehicle type (columns). 365 
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4 Data availability 366 

The fuel-, vehicle type-, and age-specific CO2 emission data presented herein cover the period from 1970 367 

to 2020 at the country level. The data are available as open data at 368 

https://doi.org/10.6084/m9.figshare.24548008.v5 (Yan et al., 2023). 369 

5 Conclusions 370 

Our study constructed a fuel-, vehicle type-, and age-specific CO2 emission inventory from 1970 to 2020 371 

of global on-road vehicles covering 231 countries, five types of fuel, and five types of vehicles. In this 372 

model, the best available statistics on the vehicle stock and sales were used to model the vehicle stock 373 

via the Gompertz function as well as the age distribution based on the dynamic balanced relationship 374 

between the vehicle stock and vehicle sales. Statistical fuel consumption was used to constrain the 375 

estimated vehicular fuel consumption at the country level, and emission factors from both the IPCC and 376 

local studies were used to estimate CO2 emissions. On the basis of our CO2 emission inventory with 377 

detailed information, the evolution of the global vehicle stock over 50 years was analyzed, the dominant 378 

emission contributors by vehicle and fuel type were identified, and the age distribution of on-road CO2 379 

emissions was also characterized. We found that trucks accounted for less than 5% of global vehicle 380 

ownership but represented more than 20% of on-road CO2 emissions in 2020. The contribution of diesel 381 

vehicles to global on-road CO2 emissions doubled during the 1970-2020 period, driven by the shift in 382 

the fuel-type distribution of vehicle ownership. The proportion of CO2 emissions from vehicles in 383 

developing countries such as China and India in terms of global emissions from newly registered vehicles 384 

significantly increased after 2000, but global CO2 emissions from vehicles that survived more than 15 385 

years in 2020 still originated mainly from developed countries such as the United States and countries in 386 

the European Union. 387 

The fleet turnover model built in this study could also be used for estimating global on-road 388 

emissions of air pollutants, which are more significantly influenced by the vehicle-type distribution, fuel 389 

structure, and age distribution of the fleet. However, these fuel-, vehicle type-, and age-specific 390 

characteristics have not yet been discussed in existing studies. In the future, our model could help 391 

improve the global emission inventory of air pollutants from on-road vehicles and further support 392 

analyses of coreductions in CO2 and air pollutant emissions from global on-road vehicles as well as the 393 
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potential air quality and climate cobenefits. In addition to the uncertainty quantification for our CO2 394 

emission data, we further verified the reliability of CO2 emissions in this study by comparing them to 395 

those of other widely used global, regional, and national emission inventories in which long-term CO2 396 

emissions are available (Figure S12). The CO2 emissions in this study not only exhibited good 397 

consistency with other global emission inventories at the global scale but also were more similar to local 398 

emissions than those in other global or regional emission inventories at the country and regional levels. 399 

 400 

Supplement. The data related to figures in this article is available in the supplementary file Figures.zip. 401 
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