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Abstract 14 

Determining the dynamics of organic carbon in subsoil (SOC, depth of 20–100 cm) is 15 

important with respect to the global C cycle and warming mitigation. However, there 16 

is still a huge knowledge gap in the dynamics of spatiotemporal changes in SOC in 17 

this layer. Combining traditional depth functions and machine-learning methods, we 18 

achieved soil β values and SOC dynamics at high resolution for global ecosystems 19 

(cropland, grassland, and forestland). First, quantified the spatial variability 20 

characteristics of soil β values and driving factors by analyzing 1221 soil profiles (0–21 

100 cm) of globally distributed field observations. Then, based on multiple 22 

environmental variables and soil profile data, we mapped the grid-level soil β values 23 

with machine-learning approaches. Lastly, we evaluated the SOC density spatial 24 

distribution in different soil layers to determine the subsoil SOC stocks of various 25 

ecosystems. The subsoil SOC density values of cropland, grassland, and forestland 26 

were 63.8, 83.3, and 100.4 Mg ha–1, respectively. SOC density decreased with 27 

increasing depth, ranging from 5.6 to 30.8 Mg ha–1 for cropland, 7.5 to 40.0 Mg ha–1 28 

for grassland, and 9.6 to 47.0 Mg ha–1 for forestland. The global subsoil SOC stock 29 

was 912 Pg C (cropland, grassland, and forestland were 67, 200, and 644 Pg C), in 30 

which an average of 54% resided in the top 0–100 cm of the soil profile. This study 31 

provides information on the vertical distribution and spatial patterns of SOC density at 32 

a 10 km resolution for areas of Global ecosystems, which providing a scientific basis 33 

for future studies pertaining to Earth system models. The dataset is open-access and 34 

available at https://doi.org/10.5281/zenodo.10846543 (Wang et al., 2024). 35 

Keyword: Subsoil SOC dynamics; Soil profiles; Random forest; Driving factors; 36 

Global ecosystems  37 
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1. Introduction 39 

Organic carbon in soil (SOC) plays a critical role in global C cycling, climate change 40 

mitigation, reducing greenhouse gas(GHG) emissions, and the health of ecosystems 41 

(Bradford et al., 2016; Lal et al., 2021; Griscom et al., 2017) Subsoil, defined here as 42 

soil residing below 20 cm in depth, contains more than half of the global SOC stock 43 

(Esteban G. Jobbágy. and Jackson., 2000; Poffenbarger et al., 2020; Batjes, 1996). 44 

Worldwide, high SOC loss due to crop production and grazing, which contributes 45 

significantly to increasing atmospheric CO2 levels (Beillouin et al., 2023; Lal, 2020; 46 

Qin et al., 2023). Complex polymeric carbon in subsoil is vulnerable to decomposition 47 

under future warming; specifically, ecological or trophic limitations of SOC 48 

biodegradation in deep soil layers can lead to sharp declines in the nutrient supply and 49 

biodiversity (Chen et al., 2023). Subsoil is more suited to long-term C sequestration 50 

than topsoil. The ‘4 per 1000’ initiative aims to boost SOC storage in agricultural 51 

soils by 0.4% each year to help mitigate climate change and increase food security 52 

(Chabbi et al., 2017). However, subsoil SOC dynamics, especially across a large 53 

scale, remain poorly understood (Padarian et al., 2022), as the measurements are 54 

difficult, time-consuming, and labor intensive particularly at deeper depths. 55 

Recent studies have focused on SOC allocation and dynamics at varied depths and the 56 

subsoil SOC–climate feedback cycle of terrestrial ecosystems (Luo et al., 2019; Jia et 57 

al., 2019; Li et al., 2020). The complexity, uncertainty, and large spatial heterogeneity 58 

of SOC stock estimation have limited the ability to accurately quantify the SOC stock 59 

distribution (Mishra et al., 2021; Wang et al., 2022a) To date, three main methods are 60 

commonly used to estimate large-scale SOC stocks: area-weighted averaging based 61 

on vegetation inventories and soil survey data (Tang et al., 2018), machine-learning 62 

based on remote-sensing, land-use, and edaphic data and climatic factors as covariates 63 

(Ding et al., 2016), and depth distribution function-based empirical analysis (Wang et 64 

al., 2023). The first approach provides the most accurate measurement of the SOC 65 

stock but is time-consuming and labor intensive and is not practical at the global 66 

scale. The latter two do not fully consider the vertical distribution of the soil profile or 67 

the soil properties of various ecosystems. The extrapolation to large soil depths, for 68 

example, using 0–40 cm or 0–50 cm of surface SOC to predict 0–100 cm or 0–200 cm 69 

of subsoil SOC (Wang et al., 2023; Ding et al., 2016), may lead to high uncertainty, 70 

thus preventing an accurate assessment of the global subsoil SOC stock. 71 
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Studies of whole-soil profiles have recorded greater changes in the SOC dynamics of 72 

the subsoil under warming (Zosso et al., 2023; Luo et al., 2020; Soong et al., 2021). 73 

The amount and quality of C in input soil, such as aboveground litter and root 74 

biomass input, could profoundly alter the vertical SOC distribution (Lange et al., 75 

2023; Feng et al., 2022). The β model, in particular, uses simple and flexible functions 76 

that capture the relative slope of depth profiles with a single parameter, with the 77 

advantage of being able to integrate SOC values from the surface down to a given 78 

depth (Esteban G. Jobbágy. and Jackson., 2000). The β model was originally applied 79 

to vertical root distributions and has been used to fit the steepest reductions with depth 80 

(Gale and Grigal, 1987; Jackson et al., 1997). Some researchers have used the global 81 

average β of 0.9786 to calculate deep soil SOC stocks (Yang et al., 2011; Deng et al., 82 

2014), however, the different hydrological conditions, soil type, and 83 

ground/underground organic matter have limited the ability to resolve the SOC depth 84 

distribution with confidence.  85 

In this study, we produced spatially resolved global estimates of the depth distribution 86 

and stocks of subsoil SOC using the β model as a depth distribution function-based 87 

empirical approach for evaluating cropland, grassland, and forestland ecosystems on a 88 

global scale. First, we collected and analyzed 1221 soil profiles (0–1 m) of globally 89 

distributed observations from 478 sites to estimate the SOC vertical distribution (soil 90 

β values). Then we developed a random forest (RF) model to estimate the spatial 91 

variation in grid-level soil β values in the associated ecosystems to resolve the 92 

dynamics of the SOC density in different soil layers and subsoil stocks of the global 93 

ecosystems.  94 

 95 

2．Methods 96 

2.1. Data collection 97 

We conducted peer-reviewed literatures review of studies previously published on 98 

SOC stock or SOC content of soil profile between 1980 and 2022 to obtain a 99 

database. The Web of Science and China National Knowledge Infrastructure (CNKI) 100 

database were searched (article abstracts and key words) using the terms “Soil organic 101 

carbon” AND “subsoil” AND “Soil profile” AND “Deep soil” The criteria were as 102 

follows: (1) The research scope is worldwide, (2) the study was conducted in the field, 103 

(3) the profiles of multiple sites are reported in the same literature, and the profile of 104 
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each site is considered as an independent study, (4) profiles with more than three 105 

suitable measurements of organic carbon in the first meter were collected from the 106 

analysis for there was sufficient detail to characterize the vertical distribution of SOC, 107 

(5) the data extracted from included basic site information including location latitude 108 

and longitude, soil organic carbon (SOC), total nitrogen (TN), soil bulk density (BD), 109 

soil pH and C:N, Microbial biomass carbon and nitrogen (MC), Microbial biomass 110 

nitrogen (MN), and MC: MN, soil clay content, climate conditions [mean annual 111 

precipitation (MAP) and mean annual temperature (MAT)]. If the SOM rather than 112 

SOC was reported, the value was converted to SOC by multiplication with a 113 

conversion factor of 0.58 (Don et al., 2011). To extract data presented graphically, the 114 

digital software GetData Graph Digitizer 2.25 (getdata-graph-digitizer.com) was used. 115 

A total of 161 peer reviewed papers comprising 1221 soil profiles were included in 116 

this dataset, with the distribution of locations shown in Figure1. Missing soil and 117 

climate factor data from a few sites were either provided by the study authors through 118 

direct correspondence, or obtained from the spatial datasets (section 2.2), based on 119 

latitude and longitude. These data were analyzed to determine the impact of the 120 

environment on soil β values and develop a model to predict global grid-level β 121 

values, subsequently, soil profiles SOC density, and calculate SOC stocks. 122 

 123 

2.2 Global soil attributes calculation 124 

Since the 0-1 m soil profile has different layers in the row data, mass-preserving 125 

spline method (R Package ‘mpspline2’) was used to divide the soil profiles into 5 126 

layers with 20 cm interval. This function implements for continuous down-profile 127 

estimates of soil attributes measured over discrete, often discontinuous depth 128 

intervals. In some studies, there was a lack of bulk density data below 20 cm soil 129 

layer. Notable differences in global SOC stocks estimations were attributed to the 130 

values used for soil bulk density. Therefore, we use the database issued by 131 

predecessors to generate bulk density data with 0-1m profile at 20 cm interval 132 

(Shangguan et al., 2014). For SOC density, it is necessary to supplement the bulk 133 

density data to calculate the SOC content. In order to reveal the variation of SOC 134 

dynamic with depth, we first have to calculate the SOC density (see Equation 1). The 135 

SOC stocks of each land use is equal to SOC density multiplied by its square (see 136 

Equation 2). 137 

𝑆𝑂𝐶 density = 𝑆𝑂𝐶 ∗ 𝐵𝐷 ∗ 𝐷/10       [1] 138 

𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘𝑠 = 𝑆𝑂𝐶 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑆𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 [2] 139 

where SOC is the SOC concentration (g kg-1), BD is the soil bulk density (g cm-3), 140 

and D is the thickness of the soil layer (at intervals of 20 cm in the first meter), SOC 141 
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density (Mg C ha-1). Secosystem is the areas of cropland, grassland or forestland (ha), 142 

SOC stocks (Pg C). 143 

2.3 Global soil β values calculation 144 

We obtained soil β data from 160 published studies representing 1221 observations. 145 

The original SOC density data the original soil depth available in individual study was 146 

converted to SOC density in the top 100 cm soil using the depth functions developed 147 

by Yang et al. (2011) according to the following equations: 148 

𝑌 = 1 − 𝛽𝑑            [3] 149 

𝑋100 =
1−𝛽100

1−𝛽𝑑0
∗ 𝑋𝑑0 [4] 150 

where Y represents the cumulative proportion of the SOC density from the soil 151 

surface to depth d (cm); β is the relative rate of decrease in the SOC density with soil 152 

depth; X100 denotes the SOC density in the upper 100 cm; d0 denotes in the 0-20 cm 153 

soil (cm); and Xd0 is the SOC density of the top 20 cm soil depth.  154 

 155 

2.4 Spatial gridded datasets 156 

The gridded datasets included forestland, grassland, and cropland areas, climate 157 

factors and soil properties. Areas of cropland, forestland, and grassland were obtained 158 

from Global Agro-Ecological Zones (GAEZ, https://gaez.fao.org/) at a resolution at 159 

0.083° × 0.083°. The MAP and MAT were acquired from the Climatic Research Unit 160 

Time Series (CRU TS ver. 4.05; 161 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/).The 162 

spatial SOC, total N, soil clay contents, and soil pH were acquired from the 163 

Harmonized World Soil Database ver. 1.2 (https://www.fao.org/soils-portal/data-164 

hub/soil-lassification/worldreference-base/en/). MC and MN data were obtained from 165 

this study (Xu et al., 2013). The BD dataset of the whole soil profile was acquired 166 

from gridded Global Soil Dataset for use in Earth System Models (GSDE) 167 

(http://globalchange.bnu.edu.cn/research/soilw), whose resolution is 30 arc-seconds. 168 

All data were resampled at 0.083° resolution using the “raster” R package 169 

(https://rspatial.org/raster).  170 

 171 

2.5 Application of RF modeling to predict global soil β values 172 

We reconstruct the relationships among multiple factors, cropland, grassland and 173 

forestland soil β values by RF algorithm. The developed RF models were used to 174 

predict grid-level soil β values for each ecosystem. Prior to constructing the RF 175 
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model, the optimal parameter values of mtry and ntrees were determined through the 176 

bootstrap sampling method, which was performed with the “e1071” R package. 177 

Predictions of soil β values derived by RF and random-effects regression models were 178 

evaluated by 10-fold cross-validation. The dataset was divided into 10 subsets of 179 

equal size, of which 70% were used for model fitting and RF procedures, then 180 

predicted with the fitted models using the remaining 30% of the data. The 181 

performance of RF models was evaluated based on the coefficient of determination 182 

(R2) and root mean square error (RMSE) according to those following equations: 183 

R2 = 1 −
∑ (yp−ŷp)2q

p=1

∑ (yp−ȳ)2q
p=1

        [5]             184 

     185 

RMSE = √
∑ (yp−ŷp)2q

p=1

q
      [6]      186 

where 𝑦𝑝 represents an observed value (p = 1, 2, 3, …), ŷ𝑝 represents the 187 

corresponding predicted value (p = 1, 2, 3, …), ȳ represents the mean value of 188 

observed values , and q represents the total number of observed values. 189 

 190 

2.6 Data management and analyses 191 

One-way analysis of variance at p < 0.05 was applied to identify significant 192 

differences in soil β values using SPSS ver. 20.0 (SPSS, Inc., Chicago, IL, USA) 193 

software. we made a database of peer-reviewed publications with Excel 2010 software 194 

(Microsoft Corp., Redmond, WA, USA). Weather data analyses were performed using 195 

MATLAB R2017a software (MathWorks Inc., Natick, MA, USA). Weather data were 196 

analyzed using MATLAB R2017a (MathWorks, Natick, MA, USA). Excel 2010, R 197 

software (ver. 3.5.1; R Development Core Team, Vienna, Austria) and SigmaPlot (ver. 198 

12.5; Systat Software Inc., San Jose, CA, USA) software were used to generate 199 

graphs. A publicly available map of China was obtained from the Resource and 200 

Environment Data Cloud Platform (http://www.resdc.cn). All map-related operations 201 

were implemented using ArcGIS 10.2 software (http:/www.esri.com/en-us/arcgis). All 202 

algorithms implemented using the random Forest R package in the R software 203 

environment (ver. 3.5.1; R Development Core Team, Vienna, Austria). 204 

 205 

3. Results 206 
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3.1 Soil β values of the three global ecosystems based on field measurements 207 

We analyzed 1221 observations (soil profile: 0–1 m): 758 for cropland, 219 for 208 

forestland, and 244 for grassland (Figure 1), we also quantified the magnitudes of β 209 

(see Methods). Across all observations, the soil β values ranged from 0.9645 to 0.9831 210 

(5th–95th percentile), with a mean of 0.9756 and median of 0.9766. The average value 211 

was 0.9761, 0.9750, and 0.9743 for cropland, forestland, and grassland, respectively. 212 

The coefficients of variation (CVs) for the three ecosystems were as follows: forestland 213 

(CV: 0.72%) > grassland (CV: 0.71%) > cropland (CV: 0.54%). The significant 214 

differences in soil β values among the ecosystems were attributed to the different 215 

biological vegetation types (Figure S1).  216 

 217 

 218 

Figure 1. Geographic location of the study sites included in the meta-analysis of the 219 

0–1 m soil profiles. The dot sizes reflect the sample sizes. Red, yellow, and blue dots 220 

represent cropland, grassland, and forestland, respectively. 221 

 222 

3.2 Impact of soil and climate variables on soil β values 223 

Nonparametric smooth regression was used to determine the direct and indirect 224 

relationships between the continuous explanatory variables and soil β values. Among 225 

the 13 explanatory variables, SOC, the ratio of SOC to soil total nitrogen (i.e., the C/N 226 

ratio), and the mean annual temperature (MAT) had the greatest influence on β values 227 

with relative contributions of 35%, 34%, and 28%. A higher MAT corresponded to 228 
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higher β values, particularly for MAT values greater than 20℃ (Figure 2). The β 229 

values decreased with an increase in mean annual precipitation (MAP) up to 1500 mm 230 

and increased when the MAP exceeded 1500 mm. These results indicate that higher 231 

temperatures and more precipitation promote the rapid decomposition of SOC into 232 

CO2 from its sequestered state. 233 

The effects of SOC, microbial biomass carbon (MC), and microbial biomass nitrogen 234 

(MN) on soil β values were strongly significant; the regression fittings of these 235 

variables were open downward parabolic, with peaks at about 40 g kg–1, 200 mg kg–1, 236 

and 30 mg kg–1, respectively. With increases in the topsoil SOC, MC, and MN, the β 237 

values first decreased and then increased. The MC:MN ratio indicated a relatively 238 

weak but significant positive effect on β values. The β values decreased with 239 

increases in soil total nitrogen (TN) and the C/N ratio, indicating that C in the soil is 240 

more likely to be sequestered under high N or a high C/N ratio; the relative rate of 241 

decline of the SOC density decreased with increasing depth. A sharp increase was 242 

observed at pH < 6 or >8, whereas the β value remained stable for pH levels between 243 

6 and 8. Thus, within a reasonable soil pH range, the relative rate of decline in the 244 

SOC density with depth tended to be stable. The clay content of the soil had no 245 

significant influence on the soil β value.  246 

 247 
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 248 

Figure 2. Plots A–K show the variables affecting soil β values. MAT, mean annual 249 

temperature; MAP, mean annual precipitation; SOC, soil organic carbon; BD, bulk 250 

density; TN, soil total nitrogen; MC, microbial biomass carbon; MN, microbial 251 

biomass nitrogen; C/N, soil organic carbon/soil total nitrogen; Clay, soil clay content. 252 

Shaded bands indicate 95% confidence intervals, and the dashed lines represent the 253 

average soil β values. Relative contributions of the factors to soil β values (L). 254 

 255 

3.3 Performance of the random forest regression model 256 

We developed an RF regression model using machine learning techniques to 257 

determine grid-level soil β values on a global scale. The model included 11 significant 258 

factors (SOC, C/N, MAT, MN, MAP, BD, MC, Clay, TN, pH, MC:MN), as well as 259 

the corresponding high-spatial-resolution raster datasets (Figures S2–S4). The model 260 

performed well, with an adjusted coefficient of determination (R2) of 0.80, 0.78, and 261 

0.86 for cropland, grassland, and forestland, respectively (Figure 3). The predictions 262 
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and measurements of all samples were also distributed close to the 1:1 line. These 263 

validations suggest that the trained RF model is capable of capturing and predicting 264 

the spatial pattern of the soil β value on a global scale. 265 

 266 

 267 

Figure 3. Grid-level maps showing the predicted global soil β values. Plots A–C 268 

reflect the performance of the random forest model as evaluated by the correlation 269 

between the observed and predicted responses of soil β values. Plots D–F represent 270 

the spatial variability of soil β values in cropland, grassland, and forestland, 271 

respectively.  272 

 273 

3.4 Mapping the global grid-level soil β value 274 

We predicted the global soil β value using the RF model for 4,057,524 integrated 275 
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grid-level, high-spatial-resolution soil and climate raster datasets (cropland, n = 276 

832,827; forestland, n = 1,695,053; and grassland, n = 1,529,644). The average value 277 

was 0.9727, 0.9739, and 0.9751 for cropland, grassland, and forestland, respectively, 278 

with CVs of 0.2%, 4.4%, and 3.8%. More than 95% of the grids were less than that (β 279 

= 0.9786) reported by the reference (Esteban G. Jobbágy. and Jackson., 2000). The 280 

results of the predicted soil β indicate that the relative rate of decline of SOC stocks 281 

was highest for forestland, followed by grassland and cropland.  282 

There was extensive geographic variability in soil β values according to land use. In 283 

central North America, cropland, grassland and forestland all had high β values 284 

(Figure 3). The large β values for cropland were distributed in Sub-Saharan Africa, 285 

central North America, and southern Oceania. The large β values for grassland were 286 

distributed mainly in eastern and southern South America and Oceania. For 287 

forestland, the large β values were mainly distributed in northern South America, 288 

central and southern Africa, Oceania (except for the central region), and northeastern 289 

Africa. The low values exhibited similar spatial patterns among land uses and were 290 

found mainly in northern and western regions of Europe and in northern and eastern 291 

regions of North America.  292 

 293 

3.5 Spatial variability of the soil organic carbon (SOC) density in subsoil (20–100 294 

cm soil layer) 295 

The estimated values for the global average SOC density of cropland, grassland, and 296 

forestland were 63.8, 83.3, and 100.4 Mg ha–1, respectively, for the 20–100 cm layer 297 

(Table S1), with considerable spatial variation on the global scale (Figure 4). The 298 

larger the soil β value, the more rapidly the SOC density decreased with an increase in 299 

soil depth. Spatially, there was geographic variability in the density depending on 300 

ecosystems. The higher values exhibited similar spatial patterns in each ecosystems 301 

type and were distributed mainly in northern and western Europe and northern and 302 

eastern North America. The highest SOC density and microbial C/N ratios were found 303 

at high latitudes in tundra and boreal forests, probably due to the higher levels of 304 

organic matter in soils, greater fungal abundance, and lower nutrient availability in 305 

cold biomes (Gao et al., 2022).  306 

For cropland, the lower values were distributed in eastern and southwestern Asia, 307 
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Sub-Saharan Africa, southern Africa, central North America, and southern Oceania. 308 

For grassland, the lower values were mainly distributed in eastern and southwestern 309 

Asia, eastern, and southern South America, and Oceania. For forestland, the lower 310 

values were mainly distributed in northern South America, central, and southern 311 

Africa, the central most region of Oceania, and northeastern Africa. The spatial 312 

variation in SOC density at multiple standardized depths (20–40, 40–60, 60–80, and 313 

80–100 cm) was also estimated (Figures S5–S7), which exhibited a decreasing trend 314 

with increasing depth. The global subsoil SOC stock was estimated to be 912 Pg C, 315 

being 67, 200, and 644 Pg C in cropland, grassland, and forestland (Table 1). Subsoil 316 

contains more SOC stock; the subsoils of cropland, grassland, and forestland stored 9, 317 

30, and 125 Pg (Table 1) more than the topsoil, respectively. In addition, soil at 318 

depths of 20–100 cm beneath the surface contained on average 54% of the topsoil at 319 

0–100 cm.   320 

 321 

 322 

Figure 4. Grid-level maps showing the predicted global subsoil SOC density for the 323 

20–100 cm soil layer. A–C represents cropland, grassland, and forestland, 324 

respectively. D shows the SOC density in soil profiles of cropland, grassland, and 325 

forestland. 326 

 327 

4. Discussion 328 
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4.1 Comparison of high-resolution SOC dynamics 329 

Global SOC stock estimations reported in the literature vary considerably. For SOC 330 

stock, the estimated cropland, grassland and forestland (Table 1) were very close to 331 

the previous studies (Liu et al., 2021; Conant, 2010; Dixon et al., 1994). It indicated 332 

that our method is feasible and the estimation is relatively correct. The subsoil SOC 333 

stock of all land for the 0–100 cm soil layer (Table 1), which was slightly lower than 334 

the result of that (Sanderman et al., 2017) but higher compared to the commonly used 335 

range of 1462–1548 Pg C (Batjes, 1996) and other research results (Scharlemann et 336 

al., 2014; Roland Hiederer. and Köchy., 2011; Georgiou et al., 2022). The result of 337 

that (Sanderman et al., 2017) may be overestimated, mainly because of the training 338 

dataset used to build spatial predictions models was not ideal (R2=0.54) for testing the 339 

hypotheses. Overall, we believe that our value is not an overestimate, as previous 340 

estimates (Batjes, 1996) used a database containing very few soil profiles from North 341 

America, Oceania, or the north temperate regions (Scharlemann et al., 2014) 342 

We found that the subsoil contains an average of 54% of the top 0–100 cm soil’s SOC 343 

stock, which is consistent with the percentages cited in previous works (47–55%) 344 

(Lal, 2018; Balesdent et al., 2018). Subsoil contains more SOC stock, which has 345 

greater potential for C sequestration. Our estimated SOC density (Table S1) for 346 

cropland was slightly higher than that reported in other study (Liu et al., 2021) , and 347 

lower than that of tropical cropland (Reichenbach et al., 2023). For forestland, it was 348 

180.6 Mg ha–1 overall, consistent with that (Dixon et al., 1994) but much lower than 349 

that of mangroves and tropical forestland (Atwood et al., 2017; Reichenbach et al., 350 

2023). For grassland, it was 153.7 Mg ha–1 overall, much higher than that of (Conant 351 

et al., 2017). Finally, globally, it was 150.9 Mg ha–1 overall, much higher than that of 352 

the research (Roland Hiederer. and Köchy., 2011) 353 

 354 

  355 
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 356 

Table 1. Comparisons of the estimated SOC density with other studies  357 

    Topsoil (Pg) Subsoil (Pg) Total (Pg) References 

 
Global area  

(109 ha) 
0–30 (0–20) 30–100 (20–100) 0–100  

    (cm) (cm) (cm)   

Cropland  58 69 127  (Liu et al., 2021) 

Cropland 1.20  58 67 125 This study 

Forestland 4.1 359 787 1146  (Dixon et al., 1994) 

Forestland 5.64 519 644 1164 This study 

Grassland    343  (Conant, 2010) 

Grassland 2.59 170 200 370 This study 

All land  684–724 778–824 1462–1548  (Batjes, 1996) 

All land  699 718 1417 
 (Roland Hiederer. and 

Köchy., 2011) 

All land  699 716 1416  (Scharlemann et al., 2014) 

All land  863 961 1824  (Sanderman et al., 2017) 

All land   748 912 1659 This study 

SOC: soil organic carbon. 358 

 359 

4.2 Factors affecting soil β 360 

Climatic factors and soil properties had significant effects on soil β values. MAT was 361 

significantly positively correlated with soil β; specifically, the higher the MAT, the 362 

faster the SOC density decreased with depth. In agreement with our result, SOC 363 

stocks declines strongly with MAT by analyzing >9,000 soil profiles (Hartley et al., 364 

2021). The change in SOC stock was nonlinear and negative with respect to MAT, 365 

high rates of SOC decomposition occur with high temperatures when MAT exceeded 366 

19°C (Zhao et al., 2013). In the current study, MAP had a significant effect on the 367 

SOC density, with a threshold of 1,500 mm. Above the threshold, SOC may 368 

decompose; below the threshold, it tended to remain sequestered. In wetter climates 369 

where the precipitation exceeds evapotranspiration, there is a strong relationship 370 

between mineral-associated SOC concentration and persistence, due to the humid soil 371 

environments that favor greater root growth and abundance (Heckman et al., 2023). 372 

Our results highlight the important role of edaphic properties in explaining variation 373 

in mean soil β values, as opposed to climate alone (Figure 2). When the C/N ratio is 374 

high, more SOC migrates downward; however, the SOC content decreases rapidly 375 
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with depth. Under a soil C/N ratio > 15, warming significantly enhances the 376 

development of root biomass (Bai et al., 2023), this could induce a corresponding 377 

SOC accumulation, such that the soil β values would trend downward. Our results 378 

showed that for near-neutral pH soils, the β values did not significantly change; thus, 379 

in this case, there is a greater potential for soil C storage through increased microbial 380 

growth efficiency and greater channeling of substrates into biomass synthesis. By 381 

contrast, in acidic soils, microbial growth is a bigger constraint on the decomposition 382 

rate, leading to large losses of carbon (Malik et al., 2018). Soil pH had non-linear 383 

relationships with microorganisms, tends to be neutral, and the abundance of 384 

microorganisms is higher (Patoine et al., 2022). Microbial necromass was a major 385 

source for SOC formation in global ecosystems (Wang et al., 2021a). 386 

The effects of MC, MN, and SOC on soil β values exhibited the same trend. MC had 387 

positive relationships with the SOC content across the large spatial scale, because of 388 

microbes should be considered not only as a controlling factor of the consumption of 389 

SOC, but also as an influencing factor of the production of SOC (Tao et al., 2023). In 390 

the current study, MC and MN concentrations were most closely linked to SOC, 391 

whereas climatic factors were most important for stoichiometry in microbial biomass 392 

ratios. Evidence from China shows that microbial residues contribute a larger 393 

proportion of SOC in subsoils than in topsoil (Wen et al., 2023). TN content, labile 394 

and recalcitrant C components, and soil water content contributed the most to SOC 395 

sequestration, which was attributed to differences in plant litter, root biomass input, 396 

and hydrological conditions (Xia et al., 2021)  397 

 398 

4.3 Challenges and opportunities: Deep soil SOC sequestration  399 

More and more studies have shown about the necessity to better understand subsoil 400 

SOC dynamics. Biotic controls on SOC cycling become weaker as mineral controls 401 

predominate with depth (Hicks Pries et al., 2023). The topsoil is rich in carbohydrates 402 

and lignin, while the subsoil is rich in protein and lipids, the decrease rate of the ratio 403 

of the microbially derived C to plant-derived C with SOM content was 23%–30% 404 

slower in the subsoil than in the topsoil (Huang et al., 2023). Warming stimulates 405 

microbes metabolic activities for structurally complex organic carbon, resulting Large 406 

loss of subsoil polymeric SOC than topsoil (Zosso et al., 2023). However, long-term 407 

experiments may not be long enough to quantify SOC dynamics in subsoil, large-408 
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scale research methods and machine learning are particularly important and 409 

necessary. Based on measured soil profile data and environmental variables, Wang et 410 

al. combined with machine learning methods to assess SOC storage and spatial 411 

distribution of subsoil in frozen soil areas in the third pole region (Wang et al., 412 

2021b). The process of studying deep soil organic carbon is complex, the experiments 413 

manipulate are difficult and time-consuming, which leads to a small amount of 414 

research data, which lead model-derived predictions contain large uncertainties. To 415 

avoid under- or overestimation of the SOC stocks of an ecosystem, it is important to 416 

consider the subsoil when formulating sequestration policies for the whole soil profile 417 

(Button et al., 2022), as the “4 per 1000” approach for the top 30 to 40 cm soil layer 418 

provides an incomplete representation of the soil profile (Rumpel et al., 2018). It may 419 

be essential to sample the soil deeper (e.g. 0–100cm) and incorporate deep soils into 420 

future manipulations, measurements and models. 421 

In addition, researchers had quantified the contribution of optimizing crop 422 

redistribution and improved management, and topsoil carbon sequestration in 423 

offsetting anthropogenic GHG emissions and climate change (Wang et al., 2022b; 424 

Rodrigues et al., 2021; Yulong Yin et al., 2023), the ability and consequence of 425 

subsoil SOC sequestration of crop management remains to be further studied. 426 

Conducting global-scale subsoil SOC dynamics studies will fill the knowledge gap to 427 

develop appropriate soil C sequestration strategies and policies to help the world cope 428 

with climate change and food security (Amelung et al., 2020; Bossio et al., 2020). As 429 

such, it is crucial that future research efforts focus on SOC sequestration efficiency 430 

with climate change, considering the entire soil profile. 431 

 432 

4.4 Strengths and limitations 433 

Our research provides a scientific foundation for further study of SOC dynamics, 434 

sequestration, and emissions reduction across soil profiles, and have some 435 

implications for meeting Sustainable Development Goals (SDGs), especially SDG2 436 

Zero hunger, SDG13 Climate action, and SDG15 Life on land 437 

(https://www.undp.org/sustainable-development-goals). To the best of our knowledge, 438 

this study presents the first global high-resolution maps of the spatial pattern of soil 439 

profile SOC density derived from soil β values driven by soil properties and climate. 440 

We found that there were great differences in the dynamics of SOC density among 441 
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different land types, in which forestland showed the highest density followed by 442 

grassland and cropland. However, differences in SOC dynamics between the 443 

investigated soils was mainly due to the dominant biogeochemical properties of the 444 

soil, rather than land use (Reichenbach et al., 2023). Our study considered the effects 445 

of multiple environmental variables (climatic factors, soil physicochemical 446 

properties), and different ecosystems on subsoil SOC dynamics. The decline in SOC 447 

density across the profiles varies greatly with depth in most areas, suggesting that 448 

action should be taken to improve soil management in these areas. Our results 449 

emphasize the importance of implementing policies that improve the carbon 450 

sequestration potential of deep soil, as this may also lead to improved soil fertility and 451 

reduced greenhouse gas emissions. In the future, it is necessary to explore the carbon 452 

sequestration mechanism and carbon turnover time below the surface layer, so as to 453 

better understand and estimate deep SOC stocks. 454 

Some important aspects of SOC stocks were not included in this study. For instance, 455 

microbial necromass is an essential factor in SOC accrual (Zhou et al.,2023), 456 

however, to date, although included to some extent in meta-analysis studies, reliable 457 

global-scale estimations are lacking. Due to difficulties in obtaining management data 458 

for grasslands and forestlands, we did not consider possible specific management 459 

factors on soil β value estimations. For example, N fertilizer application, irrigation 460 

amount, soil tillage practices, and organic carbon inputs (straw retuning, crop 461 

residues, and litterfall) may affect SOC vertical movement. Moreover, organic carbon 462 

inputs can modify SOC decomposition rates, particularly at deep soil depths 463 

(Cardinael et al., 2018). These shortcomings can only be overcome by obtaining and 464 

analyzing more detailed data on soil and climate characteristics, and developing more 465 

sophisticated modeling methods. 466 

 467 

5. Data availability  468 

The data of “global patterns of soil organic carbon dynamics in the 20–100 cm soil 469 

profile for different ecosystems: a global meta-analysis” are available at 470 

https://doi.org/10.5281/zenodo.10846543 (Wang et al., 2024). The file name is 471 

“GE_β.tif”, GE represents global ecosystems, which including cropland(CL), 472 

grassland(GL), and forestland(FL). “FL_β.tif” represents the spatial distribution of β 473 
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for forestland at 20-100 cm depth. The file name is “GE_d_SOCD.tif”, where SOCD 474 

represents soil organic carbon density, d represents soil depth, for example, “FL_20-475 

100_SOCD.tif” represents the spatial distribution of SOCD for forestland at 20-100 476 

cm depth. 477 

 478 

6. Conclusion  479 

Accurately quantifying the distribution of soil profile SOC stocks is crucial for C 480 

sequestration and mitigation. Herein, machine learning was applied to the β model to 481 

estimate SOC stocks in 20–100 cm depth soil profiles. The subsoil SOC density 482 

values of cropland, grassland, and forestland were estimated to be 63.8, 83.3, and 483 

100.4 Mg ha–1, respectively, and there was extensive geographic variability under 484 

different ecosystems. Moreover, the global subsoil SOC stocks of cropland, grassland, 485 

and forestland were 67, 200, and 644 Pg C. In summary, the dataset can be used to 486 

modify existing Earth system models and improve prediction accuracy, as well as also 487 

elucidate global SOC dynamics and variability in spatial patterns in whole soil 488 

profiles and provides a reference for decision makers to develop more effective 489 

carbon budget management strategies. 490 
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