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Abstract 14 

Determining the distribution of soil organic carbon (SOC) in subsoil (depth of 20–100 15 

cm) is important with respect to the global C cycle and warming mitigation. However, 16 

there is still a huge knowledge gap in the dynamics of spatiotemporal changes in SOC 17 

in this layer. Combining traditional depth functions and machine-learning methods, we 18 

achieved soil β values (the relative rate of decrease in the SOC density with soil depth), 19 

and SOC dynamics at high resolution for global ecosystems (cropland, grassland, and 20 

forestland). First, we quantified the spatial variability characteristics of soil β values, 21 

which indicated the rate at which SOC density decreases with soil depth, and driving 22 

factors by analyzing 17984 soil profiles (0–100 cm) of globally distributed field 23 

observations. Then, based on multiple environmental variables and soil profile data, we 24 

mapped the grid-level soil β values with machine-learning approaches. Lastly, we 25 

evaluated the SOC density spatial distribution in different soil layers to determine the 26 

subsoil SOC stocks of various ecosystems. The subsoil SOC density values of cropland, 27 

grassland, and forestland were 62 Mg ha–1 (95% CI: 52-73), 70 Mg ha–1 (95% CI: 57-28 

83), and 97 Mg ha–1 (95% CI: 80-117), respectively. SOC density decreases with 29 

increasing depth, ranging from 30 Mg ha⁻¹ (95% CI: 26-35) to 5 Mg ha⁻¹ (95% CI: 4-30 

7) (at depth intervals of 20-100 cm, in 20 cm increments) for cropland, from 32 Mg ha⁻¹ 31 

(95% CI: 27-37) to 7 Mg ha⁻¹ (95% CI: 5-9) for grassland, and from 40 Mg ha⁻¹ (95% 32 

CI: 34-46) to 13 Mg ha⁻¹ (95% CI: 9-17) for forestland. The global subsoil SOC stock 33 

was 803 Pg C (95% CI:661-962) (cropland, grassland, and forestland were 74 Pg C (95% 34 

CI:62-88), 181 Pg C (95% CI:148-215), and 547 Pg C (95% CI:451-660)), in which an 35 

average of 57% resided in the top 0–100 cm of the soil profile. This study provides 36 

information on the vertical distribution and spatial patterns of SOC density at a 10 km 37 

resolution across global ecosystems, providing a scientific basis for future studies 38 

pertaining to Earth system models. The dataset is open-access and available at 39 

https://doi.org/10.5281/zenodo.14787023 (Wang et al., 2025). 40 

Keyword: Subsoil SOC distribution; Soil profiles; Random Forest; Driving factors; 41 

Global ecosystems   42 
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1. Introduction 43 

Soil organic carbon (SOC) plays a pivotal role in global C cycling, climate change 44 

mitigation, reducing greenhouse gas (GHG) emissions, while simultaneously 45 

supporting ecosystem health (Bradford et al., 2016; Lal et al., 2021; Griscom et al., 46 

2017). Subsoil, defined here as the soil layer below 20 cm, contains over half of the 47 

global SOC stock (Jobbágy & Jackson, 2000; Poffenbarger et al., 2020; Batjes, 1996). 48 

Worldwide, the extensive loss of SOC through agricultural practices such as crop 49 

production and grazing has substantially contributed to rising atmospheric CO2 levels 50 

(Beillouin et al., 2023; Lal, 2020; Qin et al., 2023). Complex polymeric carbon in 51 

subsoil is vulnerable to decomposition under future warming. Specifically, ecological 52 

or trophic limitations of SOC biodegradation in deep soil layers can lead to sharp 53 

declines in the nutrient supply and biodiversity (Chen et al., 2023). Subsoil is better 54 

suited to long-term C sequestration than topsoil. The ‘4 per 1000’ initiative aims to 55 

boost SOC storage in agricultural soils by 0.4% annually, offering a potential pathway 56 

for mitigate climate change and increase food security (Chabbi et al., 2017). Therefore, 57 

we think that soils could act as a large sink for fossil-fuel-derived carbon if subsoil 58 

carbon sequestration is promoted, particularly in agricultural and managed lands 59 

(Button et al., 2022). Despite the importance of subsoil organic carbon dynamics, we 60 

were still poorly understood, especially at large scale (Padarian et al., 2022). This is 61 

primarily due to the challenges associated with measuring SOC at greater depths, which 62 

is difficult, time-consuming and labor-intensive.  63 

Recent studies have focused on SOC allocation and dynamics at varied depths and the 64 

subsoil SOC–Climate feedback cycle of terrestrial ecosystems (Luo et al., 2019; Jia et 65 

al., 2019; Li et al., 2020). The complexity, uncertainty, and large spatial heterogeneity 66 

of SOC stock estimation have limited the ability to accurately quantify the SOC stock 67 

distribution (Mishra et al., 2021; Wang et al., 2022a). To date, three primary methods 68 

are commonly used to estimate large-scale SOC stocks: 1) area-weighted averaging 69 

based on vegetation inventories and soil survey data (Tang et al., 2018). 2) machine-70 

learning based on remote-sensing, land-use, and edaphic data and climatic factors as 71 

covariates (Ding et al., 2016). 3) depth distribution function-based empirical analysis 72 

(Wang et al., 2023). The first approach provides the most accurate measurement of the 73 

SOC stock, but is time-consuming and labor intensive and is not practical at the global 74 

scale. The latter two do not fully consider the vertical distribution of the soil profile or 75 
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the soil properties of various ecosystems. Extrapolating surface SOC measurements 76 

from 0–40 cm or 0–50 cm to predict subsoil SOC at greater depths, such as 0–100 77 

cm or 0–200 cm, introduces significant uncertainty, hindering precise estimation of 78 

the global subsoil SOC stock (Wang et al., 2023; Ding et al., 2016). 79 

Studies of whole-soil profiles have recorded greater changes in the SOC dynamics of 80 

the subsoil under warming (Zosso et al., 2023; Luo et al., 2020; Soong et al., 2021). 81 

The amount and quality of C in input soil, such as aboveground litter and root biomass 82 

input, could profoundly alter the vertical SOC distribution (Lange et al., 2023; Feng et 83 

al., 2022). The β model, in particular, uses simple and flexible functions that capture 84 

the relative slope of depth profiles with a single parameter, with the advantage of being 85 

able to integrate SOC values from the surface down to a given depth (Jobbágy and 86 

Jackson., 2000). The β model was originally applied to vertical root distributions and 87 

has been used to fit the steepest reductions with depth (Gale and Grigal, 1987; Jackson 88 

et al., 1997). Some researchers have used the global average β of 0.9786 to calculate 89 

deep soil SOC stocks (Yang et al., 2011; Deng et al., 2014). However, the different 90 

hydrological conditions, soil type, and ground/underground organic matter have limited 91 

the ability to resolve the SOC depth distribution with confidence.  92 

In this study, we produced spatially resolved global estimates of the depth distribution 93 

and stocks of subsoil SOC using the β model as a depth distribution function-based 94 

empirical approach for evaluating cropland, grassland, and forestland ecosystems on a 95 

global scale. First, we collected and analyzed 17984 soil profiles (0–100 cm) of 96 

globally distributed observations from 14535 sites to estimate the SOC vertical 97 

distribution (soil β values). Then we developed a random forest (RF) model to estimate 98 

the spatial variation in grid-level soil β values in the associated ecosystems to resolve 99 

the dynamics of the SOC density in different soil layers and subsoil stocks of the global 100 

ecosystems.  101 

2．Methods 102 

2.1. Data collection 103 

We conducted peer-reviewed literatures review of studies previously published on SOC 104 

stock or SOC content of soil profile between 1980 and 2022 to obtain a database. The 105 

Web of Science and China National Knowledge Infrastructure (CNKI) database were 106 

searched (article abstracts and key words) using the terms “Soil organic carbon” AND 107 

https://cn.bing.com/dict/search?q=value&FORM=BDVSP6&cc=cn
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“subsoil” AND “Soil profile” AND “Deep soil” The criteria were as follows: (1) The 108 

research scope is worldwide. (2) The study was conducted in the field. (3) The profiles 109 

of multiple sites are reported in the same literature, and the profile of each site is 110 

considered as an independent study. (4) Profiles with more than three suitable 111 

measurements of organic carbon in the first meter were collected from the analysis for 112 

there was sufficient detail to characterize the vertical distribution of SOC. (5) The data 113 

extracted from included basic site information including location latitude and longitude, 114 

soil organic carbon (SOC), total nitrogen (TN), soil bulk density (BD), soil pH and CN 115 

ratio, Microbial biomass carbon and nitrogen (MC), Microbial biomass nitrogen (MN), 116 

and MC: MN, soil clay content, climate conditions (mean annual precipitation (MAP) 117 

and mean annual temperature (MAT)). If the soil organic matter (SOM) rather than SOC 118 

was reported, the value was converted to SOC by multiplication with a conversion 119 

factor of 0.58 (Don et al., 2011). To extract data presented graphically, the digital 120 

software GetData Graph Digitizer 2.25 (getdata-graph-digitizer.com) was used. A total 121 

of 161 peer-reviewed papers comprising 1,221 soil profiles were included in this dataset, 122 

including 758 for cropland, 219 for forestland, and 244 for grassland. Additionally, an 123 

expanded dataset was sourced from the WoSIS Soil Profile Database, contributing 124 

7,636 profiles for cropland, 4,534 for forestland, and 4,593 for grassland. The spatial 125 

distribution of these profiles is shown in Figure 1. Missing soil and climate factor data 126 

from a few sites were either provided by the study authors through direct 127 

correspondence, or obtained from the spatial datasets (section 2.2), based on latitude 128 

and longitude. These data were analyzed to determine the impact of the environment 129 

on soil β values and develop a model to predict global grid-level β values, subsequently, 130 

soil profiles SOC density, and calculate SOC stocks. 131 

2.2 Calculation of soil attributes from literature-derived database 132 

Since the 0-1 m soil profile has different layers in the row data, mass-preserving spline 133 

method (R Package ‘mpspline2’) was used to divide the soil profiles into 5 layers with 134 

20 cm interval. This function implements for continuous down-profile estimates of soil 135 

attributes (SOC, TN, Clay, MC, MN, etc.) measured over discrete, often discontinuous 136 

depth intervals. In some studies, bulk density data below the 20 cm soil layer were 137 

lacking. Notable differences in global SOC stocks estimations were attributed to the 138 

values used for soil bulk density. Therefore, we use the database issued by predecessors 139 

to generate bulk density data with 0-1m profile at 20 cm interval (Shangguan et al., 140 
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2014). To calculate SOC content, it is necessary to supplement SOC density with bulk 141 

density data. The equations used to calculate SOC at each research site was the 142 

following: 143 

  𝑆𝑂𝐶 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑆𝑂𝐶 ∗ 𝐵𝐷 ∗ 𝐷 ∗ (1 − 𝐺𝐶/100)/10 [1] 144 

where SOC is the SOC concentration (g kg-1), BD is the soil bulk density (g cm-3), and 145 

D is the thickness of the soil layer (at intervals of 20 cm in the first meter), SOC density 146 

(Mg C ha-1). GC (>2 mm) is the gravel content (%). 147 

2.3 Calculation of soil β values from literature-derived database 148 

To enhance the comparability of data from different studies, the corresponding soil β 149 

values were calculated using Equation 2, which follows the methodology adopted by 150 

Yang et al. (2011). The SOC density in the top 0-100 cm was calculated from the initial 151 

depth SOC density using Equation 3, which was developed by Jobbágy & Jackson 152 

(2000). The equations are as follows: 153 

 𝑌 = 1 − 𝛽𝑑  [2] 154 

 𝑋100 =
1−𝛽100

1−𝛽𝑑0
∗ 𝑋𝑑0  [3] 155 

where Y represents the cumulative proportion of the SOC density from the soil surface 156 

to depth d (cm); β is the relative rate of decrease in the SOC density with soil depth; A 157 

lower β indicates a steeper decline with depth. X100 denotes the SOC density within the 158 

upper 100 cm; d0 represents the depth of the 0-20 cm soil layer; (cm); and Xd0 is the 159 

SOC density of the top 20 cm soil depth.  160 

2.4 Spatial gridded datasets 161 

The gridded datasets included forestland, grassland, and cropland areas, climate factors 162 

and soil properties. Areas of cropland, forestland, and grassland were obtained from 163 

Global Agro-Ecological Zones (GAEZ, https://gaez.fao.org/) at a resolution at 0.083° 164 

× 0.083°. The MAP and MAT were acquired from the Climatic Research Unit Time 165 

Series (CRU TS ver. 4.05; 166 

(https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/). The 167 

spatial SOC, total N, soil clay contents, and soil pH and gravel content were acquired 168 

from the Harmonized World Soil Database ver. 1.2 (https://www.fao.org/soils-169 

portal/data-hub/soil-lassification/worldreference-base/en/). MC and MN data were 170 

https://gaez.fao.org/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/
https://www.fao.org/soils-portal/data-hub/soil-lassification/worldreference-
https://www.fao.org/soils-portal/data-hub/soil-lassification/worldreference-
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obtained from this study (Xu et al., 2013). The BD and gravel content (GC) datasets of 171 

the whole soil profile was acquired from Harmonized World Soils Database version 2.0 172 

(HWSD v2.0) (https://gaez.fao.org/pages/hwsd), whose resolution is 1 km. The 173 

belowground net primary productivity (BNPP) data were sourced from Xiao et al. 174 

(2023). All data were resampled at 0.083° resolution using the “raster” R package 175 

(https://rspatial.org/raster).  176 

2.5 Application of RF modeling to predict spatial β values 177 

We reconstruct the relationships among multiple factors, cropland, grassland and 178 

forestland soil β values by RF algorithm. The developed RF models were used to predict 179 

grid-level soil β values for each ecosystem. Prior to constructing the RF model, the 180 

optimal parameter values of mtry and ntrees were determined through the bootstrap 181 

sampling method, which was performed with the “e1071” R package. Predictions of 182 

soil β values derived by RF and random-effects regression models were evaluated by 183 

10-fold cross-validation. The dataset was divided into 10 subsets of equal size, of which 184 

70% were used for model fitting and RF procedures, then predicted with the fitted 185 

models using the remaining 30% of the data. The performance of RF models was 186 

evaluated based on the coefficient of determination (R2) and root mean square error 187 

(RMSE) according to those following equations: 188 

 𝑅2 = 1 −
∑ (𝑦𝑝−ŷ𝑝)2𝑞

𝑝=1

∑ (𝑦𝑝−ȳ)2𝑞
𝑝=1

  [4]  189 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑝−ŷ𝑝)2𝑞

𝑝=1

𝑞
  [5] 190 

where 𝑦𝑝  represents an observed value (p = 1, 2, 3, …), ŷ𝑝  represents the 191 

corresponding predicted value (p = 1, 2, 3, …), ȳ  represents the mean value of 192 

observed values, and q represents the total number of observed values. 193 

2.6 Estimating global SOC density and SOC stocks ecosystems across different 194 

ecosystems 195 

To reveal the dynamics of SOC with depth, we used the globally predicted β values for 196 

cropland, grassland, and forestland ecosystems in Equation 3 to calculate cumulative 197 

SOC density at specific depths (e.g., 40, 60, 80, and 100 cm). Based on these cumulative 198 

values, the SOC density for each 20 cm interval as calculated by subtracting the 199 

cumulative SOC density of the shallower depth from the deeper depth. Subsequently, 200 

https://gaez.fao.org/pages/hwsd
https://rspatial.org/raster
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the total carbon stocks for different ecosystems worldwide were calculated by 201 

multiplying the SOC density by the corresponding land area (see Equation 6). 202 

 𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘𝑠 = 𝑆𝑂𝐶 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑆𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚  [6] 203 

 Where Secosystem is the areas of cropland, grassland or forestland (ha), SOC stocks (Pg 204 

C). 205 

2.7 Uncertainty analysis  206 

A Monte Carlo simulation was used to estimate the overall uncertainty in the estimated 207 

spatial SOC density. The uncertainty mainly came from be soil β estimation-related 208 

parameters and the RF model. Input parameters in the RF model prediction followed 209 

independent normal distributions by assuming the grid value as the mean value and its 210 

10 % as the standard deviation. Then, 1,000 random samplings were used to obtain the 211 

interval of each grid via Monte Carlo simulations. The sampling value was then used 212 

to run the RF model to predict the grid-level soil β with 100 bootstraps to run the RF 213 

model. Then we used predicted grid-level soil β to recalculated the distribution of SOC 214 

density (SOCD) across different ecosystem. Finally, we calculated the mean along with 215 

the 2.5% and 97.5% percentiles to establish the 95% confidence interval of SOC density 216 

and SOC stocks. 217 

 𝑈𝑖 =
𝐶𝐼𝑖  

𝑥𝑖
 [7] 218 

Where 𝑥𝑖 is the mean of prediction, 𝐶𝐼𝑖 is the confidence interval of 𝑥𝑖, 𝑈𝑖 is the 219 

uncertainty 220 

2.8 Data management and analyses 221 

One-way analysis of variance at P < 0.05 was applied to identify significant differences 222 

in soil β values using SPSS ver. 20.0 (SPSS, Inc., Chicago, IL, USA) software. We 223 

made a database of peer-reviewed publications with Excel 2010 software (Microsoft 224 

Corp., Redmond, WA, USA). Weather data analyses were performed using MATLAB 225 

R2017a software (MathWorks Inc., Natick, MA, USA). Weather data were analyzed 226 

using MATLAB R2017a (MathWorks, Natick, MA, USA). R software (ver. 3.5.1; R 227 

Development Core Team, Vienna, Austria) was used to generate graphs. A publicly 228 

available map of China was obtained from the Resource and Environment Data Cloud 229 

Platform (http://www.resdc.cn). All map-related operations were implemented using 230 

ArcGIS 10.2 software (http:/www.esri.com/en-us/arcgis). All algorithms implemented 231 
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using the random Forest R package in the R software environment (ver. 3.5.1; R 232 

Development Core Team, Vienna, Austria). 233 

3. Results 234 

3.1 Soil β values of the three global ecosystems based on field measurements 235 

We analyzed 17,984 globally distributed soil profiles (0–100 cm) from 14,535 sites, 236 

including 5,931 cropland, 4,206 grassland, and 4,398 forestland sites (Figure 1) to 237 

estimate soil β values, which represent the relative rate of decrease in SOC density with 238 

soil depth. This included an additional 8,394 profiles for cropland, 4,753 for forestland, 239 

and 4,837 for grassland, obtained from the literature and the WoSIS Soil Profile 240 

Database. The average soil β values across all observations were 0.9731 for cropland, 241 

0.9772 for grassland, and 0.9790 for forestland (Figure S1), with significant differences 242 

observed among the ecosystems. 243 

 244 

Figure 1. Geographic location of the study sites included in the meta-analysis of the 245 

0–100 cm soil profiles. Red, yellow, and blue dots represent cropland, grassland, and 246 

forestland, respectively. 247 

3.2 Impact of soil and climate variables on soil β values 248 

The soil β value is significantly influenced by the combined effects of various climatic, 249 

biological, and soil factors. MAT, MAP and BNPP were the most influential driver of 250 

β values (Figure S2). Higher MAT promoted increases in soil β values and higher MAP 251 

promoted decreases; however, when the MAT was about 20°C and MAP was about 252 
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1000 mm, the soil β values growth and decline rate was substantially reduced (Figures 253 

2A and B). BNPP demonstrated a nonlinear relationship: β values decreased with 254 

increasing BNPP levels, when BNPP was below 1.5 Mg ha-1 yr-1 and exceed 2 Mg ha-255 

1 yr-1, the soil β values decreased sharply (Figure 2C). The regression between CN, MC, 256 

MN, TN, pH and soil β values was parabolic. When CN >10, MC >100 mg/kg, MN >20 257 

mg/kg, TN >3 g/kg and pH <6, the soil β value promoted decreased (Figures D, E, F, 258 

G and H). β values remained relatively stable across most clay percentages but showed 259 

a decrease when clay content exceeded 30% (Figure 2I). Through comparison and 260 

analysis, we ultimately selected 9 significant factors (BNPP, pH, Clay, MAT, MAP, 261 

TN, MN, MC, CN) for modeling based on their importance and explanatory power 262 

(Figure S2).  263 

 264 

Figure 2. Plots A–I show the variables affecting soil β values. MAT, mean annual 265 

temperature; MAP, mean annual precipitation; BNPP, belowground net primary 266 

productivity; CN, the ratio of SOC to TN; MC, microbial biomass carbon; MN, 267 

microbial biomass nitrogen; TN, soil total nitrogen; pH, soil pH; Clay, clay content. 268 
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Shaded bands indicate 95% confidence intervals, and the dashed lines represent the 269 

average soil β values. 270 

3.3 Performance of the random forest regression model 271 

We developed an RF regression model using machine learning techniques to determine 272 

grid-level soil β values on a global scale. The model included 9 significant factors 273 

(BNPP, pH, Clay, MAT, MAP, TN, MN, MC, CN), as well as the corresponding high-274 

spatial-resolution raster datasets (Figures S3–S5). The model performed well, with an 275 

adjusted coefficient of determination (R2) of 0.85, 0.86, and 0.90 for cropland, 276 

grassland, and forestland, respectively, and the RMSE values are all less than 0.01 277 

(Figure 3A, B and C). The predictions and measurements of all samples were also 278 

distributed close to the 1:1 line. These validations suggest that the trained RF model is 279 

capable of capturing and predicting the spatial pattern of the soil β value on a global 280 

scale. 281 

 282 
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Figure 3. Grid-level maps showing the predicted global soil β values. Plots A–C reflect 283 

the performance of the random forest model as evaluated by the correlation between 284 

the observed and predicted responses of soil β values. Plots D–F illustrate the predicted 285 

spatial variability of predicted soil β values in cropland, grassland, and forestland, 286 

respectively.  287 

3.4 Mapping the global grid-level soil β value 288 

We predicted the global soil β value using the RF model for 4,057,524 integrated grid-289 

level, high-spatial-resolution soil and climate raster datasets (cropland, n = 832,827; 290 

forestland, n = 1,695,053; and grassland, n = 1,529,644). The average values were 291 

0.9716 (95% CI: 0.9692-0.9738), 0.9762 (95% CI: 0.9656-0.9831), and 0.9792 (95% 292 

CI: 0.9687-0.9877) for cropland, grassland, and forestland, respectively, with CVs of 293 

4.73%, 1.79%, and 1.94% (Figure 3D, E and F). The (β = 0.9786) reported by Jobbágy 294 

& Jackson (2000) falls within the 95% confidence intervals of grassland and forestland, 295 

but not cropland. The results of the predicted soil β indicate that the steeper decline in 296 

SOC stocks with increasing depth was greatest for cropland, followed by grassland and 297 

forestland.  298 

The spatial distribution of soil β values across cropland, grassland, and forest 299 

ecosystems reveals both commonalities and notable differences. High β values are 300 

predominantly distributed in tropical and subtropical regions, including parts of South 301 

America, Oceania, and sub-Saharan Africa, whereas low β values are mainly 302 

concentrated in temperate regions, particularly in northern and western Europe and 303 

eastern and northern North America. Notably, the distribution of high β values varies 304 

across ecosystems. High β values are primarily observed in sub-Saharan Africa, central 305 

North America, and southern Oceania in cropland (Figure 3D). For grassland, mainly 306 

concentrated in southeastern South America, southern Africa, and Oceania (Figure 3E). 307 

Forestland exhibited the most extensive distribution of high β values, spanning southern 308 

South America, central and southern Africa, and Oceania (excluding the central region) 309 

(Figure 3F).  310 

Low β values show slight variation: cropland exhibits a more confined range of low 311 

values, mainly in northwestern Europe, while grassland and forestland display broader 312 

areas of low values, particularly across eastern and northern North America. These 313 

patterns underscore the geographic variability of soil β values, reflecting the complex 314 
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interplay between environmental and ecological factors shaping these spatial 315 

distributions. 316 

3.5 Spatial variability of the SOC density in subsoil 317 

The estimated values for the global average SOC density of cropland, grassland, and 318 

forestland 62 Mg ha–1 (95% CI:52-73), 70 Mg ha–1 (95% CI:57-83), and 97 Mg ha–1 319 

(95% CI:80-117), respectively, for the 20–100 cm layer (Table S1), with considerable 320 

spatial variation on the global scale (Figure 4). The larger the soil β value, the more 321 

rapidly the SOC density decreased with an increase in soil depth. Spatially, there was 322 

geographic variability in the SOC density depending on ecosystems. The higher values 323 

exhibited similar spatial patterns in each ecosystems type and were distributed mainly 324 

in northern and western Europe and northern and eastern North America.  325 

For cropland, lower SOC density values were predominantly distributed in Eastern and 326 

Southwestern Asia, Sub-Saharan Africa, Southern Africa, Central North America, and 327 

Southern Oceania. In contrast, higher SOC density values were mainly concentrated in 328 

temperate regions, such as parts of Europe, Northern North America, and some regions 329 

in South America (Figure 4A). For grassland, SOC density showed significant spatial 330 

variation, with lower values primarily distributed in Eastern and Southwestern Asia, 331 

Eastern and Southern South America, and Oceania. In contrast, higher values were 332 

concentrated in temperate regions, such as Northern and Western Europe, Northern 333 

North America (Figure 4B). For forestland, SOC density displayed clear spatial 334 

heterogeneity. Lower values were primarily distributed in Northern South America, 335 

Central and Southern Africa, Northeastern Africa, and the Central region of Oceania, 336 

areas often characterized by tropical or subtropical climates with rapid organic matter 337 

decomposition rates (Figure 4C). In contrast, higher values were predominantly found 338 

in temperate and boreal forest regions, including northern and Western Europe, 339 

Northern North America, and parts of Eastern Asia. The spatial variation in SOC 340 

density at multiple depths (20–40, 40–60, 60–80, and 80–100 cm) was also estimated 341 

(Figures S6–S8), which exhibited a decreasing trend with increasing depth.  342 
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 343 

Figure 4. Grid-level maps showing the predicted global subsoil SOC density for the 344 

20–100 cm soil layer. A–C represents cropland, grassland, and forestland, respectively. 345 

D shows the SOC density in soil profiles of cropland, grassland, and forestland. 346 

3.6 Uncertainty analysis of subsoil SOC density across ecosystems 347 

Overall, regions with high uncertainty are concentrated in tropical and subtropical areas, 348 

such as sub-Saharan Africa, Southeast Asia, the Amazon region of South America, and 349 

parts of Oceania. In contrast, regions with low uncertainty are primarily located in 350 

temperate and boreal areas, including northern Europe, Northern North America, and 351 

Northern Asia. Among them, forestland exhibits slightly higher SOC density prediction 352 

uncertainty (38%) compared to grassland (37%) and cropland (34%) (Figure 5). 353 

 354 

Figure 5. Grid-level maps illustrating the uncertainty of predicted global subsoil SOC 355 

density. A–C represents cropland, grassland, and forestland, respectively.  356 

4. Discussion 357 

4.1 Comparison of high-resolution SOC dynamics 358 
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Global estimations of SOC stock reported in the literature exhibit considerable variation. 359 

The estimated SOC stocks for cropland, grassland, and forestland (Table 1) in our study 360 

align closely with previous studies (Liu et al., 2021; Conant, 2010; Dixon et al., 1994). 361 

The SOC stock of all land in the 0–100 cm soil layer was 1418 Pg (95% CI:1276-362 

1577), which was slightly lower than the estimate reported by Sanderman et al. (2017) 363 

and Batjes. (1996). However, we believe that our estimation was not underestimated. 364 

This discrepancy may be due to the overestimation in (Sanderman et al., 2017), which 365 

could be attributed to the suboptimal quality of the training dataset used in their spatial 366 

prediction models (R2=0.54). Earlier assessments (Batjes, 1996) relied on databases 367 

that included very few soil profiles from regions such as North America, Oceania, or 368 

the northern temperate zones. The subsoil SOC stock of all land was 803 Pg (95% 369 

CI:661-962), which was consistent with other research results (Scharlemann et al., 2014; 370 

Roland Hiederer. and Köchy., 2011; Zhou et al, 2024). We found that the subsoil 371 

contains 57% of total SOC stock in the top 0-1 m soil layer, which is consistent with 372 

the percentages cited in previous works (47–55%) (Lal, 2018; Balesdent et al., 2018). 373 

Overall, this demonstrates the feasibility and accuracy of our methodology, with the 374 

estimations proving to be relatively accurate 375 

Similar to the findings of Tao et al. (2023) our study reveals a global SOC density 376 

pattern with lower values at low latitudes and higher values at high latitudes. The 377 

vertical migration of organic matter is notably more pronounced in northern permafrost 378 

regions compared to other areas. For cropland, consistent with the estimates by Wu et 379 

al. (2024) the spatial variation in relative SOC density across China shows higher 380 

carbon densities in the Northeast Plain, the Yangtze River Basin, and the southeastern 381 

hills, while lower values are observed in the arid regions of Northwest China (e.g., the 382 

Taklamakan Desert) and the North China Plain. This pattern aligns well with the trends 383 

identified in our study. The FAO report "Global Assessment of Grassland Soil Carbon: 384 

Current Stocks and Sequestration Potential" aligns with our findings, highlighting high 385 

grassland carbon stocks in central China, Northern Russia, Northern Asia, Southeastern 386 

South America, and Central North America. However, our study also identifies Europe 387 

as having significant carbon stocks. This is mainly because temperate climate, 388 

particularly in Northern and Western Europe, is humid and mild, providing favorable 389 

conditions for the formation and accumulation of soil organic matter. Unlike croplands 390 

and grasslands, forestlands are long-lasting vegetation types, with SOC strongly shaped 391 
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by local environmental conditions. Zhang et al. (2024) predicted forest SOC stocks 392 

across climatic zones and soil types, showing higher stocks in Europe, Russia, and 393 

Canada. Mediterranean and temperate regions also have higher SOC than 394 

tropical/subtropical regions, consistent with our findings, though their study only 395 

considers surface soil.  396 

Additionally, we observed higher SOC density in boreal forests and tundra regions, 397 

showing spatial variability consistent with the spatial variation in carbon turnover times 398 

reported in other study (Li et al., 2023), particularly in northern high-latitude permafrost 399 

and tundra areas. This suggests that in low-temperature environments, longer soil 400 

carbon turnover times, and lower microbial activity reduce the decomposition rate of 401 

soil organic matter, allowing more SOC to accumulate. The highest SOC density and 402 

microbial C/N ratios were found at high latitudes in tundra and boreal forests, probably 403 

due to the higher levels of organic matter in soils, greater fungal abundance, and lower 404 

nutrient availability in cold biomes (Gao et al., 2022). 405 

Our estimated SOC density at 111 Mg ha⁻¹ (95% CI:101-122) for cropland (Table S1) 406 

was higher than that reported in other study (Liu et al., 2021), and lower than that of 407 

tropical cropland (Reichenbach et al., 2023). For forestland, the SOC stock was 408 

estimated at 177 Mg ha⁻¹ (95% CI: 150–187) for the 0–100 cm soil layer (overall), 409 

consistent with the estimate reported by Dixon et al. (1994), but significantly lower than 410 

those observed in mangroves and tropical forestland (Atwood et al., 2017; Reichenbach 411 

et al., 2023). For grassland, it was 132 Mg ha–1 (95% CI:119-145) overall, much higher 412 

than that of (Conant et al., 2017). Finally, on a global scale, the SOC density of all land 413 

for the 0–100 cm soil layer was estimated at 136 Mg ha⁻¹ (95% CI: 123–151), which is 414 

significantly higher than the estimate reported by Hiederer & Köchy (2011).   415 
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Table 1. Comparisons of the estimated SOC stocks with other studies  416 

    Topsoil (Pg) Subsoil (Pg) Total (Pg) References 

 
Global area  

(109 ha) 
0–20/30 20/30–100 0–100  

    (cm) (cm) (cm)   

Cropland  58 69 127 Liu et al., 2021 

Cropland 1.20  59 74 (95% CI:62-88) 133 (95% CI:121-146) This study 

Forestland 4.10 359 787 1146 Dixon et al., 1994 

Forestland 5.64 395 547(95% CI:451-660) 942 (95% CI:846-1055) This study 

Grassland    343 Conant, 2010 

Grassland 2.59 161 181 (95% CI:148-215) 342 (95% CI:308-376) This study 

All land  684–724 778–824 1462–1548 Batjes, 1996 

All land  699 718 1417 
Roland Hiederer. 

and Köchy., 2011 

All land  699 716 1416 
Scharlemann et al., 

2014 

All land  863 961 1824 
Sanderman et al., 

2017 

All    1360 
Zhou et al, et al., 

2024 

All land   615 803 (95% CI:661-962)   1418 (95% CI:1276-1577) This study 

SOC: soil organic carbon, 95% CI: refers to the confidence interval 417 

4.2 Factors affecting soil β values and spatial variation 418 

MAT was the primary drivers of soil β values, exhibiting a significant positive 419 

correlation. Specifically, with the increase of MAT, the β value increases, and the 420 

decrease of SOC density with depth becomes smaller (Figure 2A). This shows that the 421 

higher the β value, the relatively lower the proportion of the SOC storage in the soil 422 

surface (consistent with previous research Hartley et al., 2021; Melillo et al., 2017). It 423 

is generally accepted that in cold and wet regions, low soil temperatures and/or 424 

anaerobic conditions promote the formation of thick organic horizons and peats, 425 

resulting in the storage of large amounts of SOC (Garcia-Palacios et al., 2021). Tropical 426 

soils have the lowest SOC persistence, while polar/tundra soils and soils dominated by 427 

amorphous minerals exhibit the highest SOC abundance and persistence (von Fromm 428 

et al., 2024). These differences indicate that soil β values are high in low-latitude 429 

regions, such as tropical rainforest areas, and low in high-latitude regions, such as the 430 

tundra, showing a spatial distribution pattern. Climate warming may lead to greater 431 

SOC losses in surface soils compared to deeper layers, especially in high-latitude SOC-432 
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rich systems (Wang et al., 2022). Experimental results of long-term warming show that 433 

soil respiration is sensitive to temperature rise (Xu et al., 2015). It could be driven by 434 

the changes in the temperature dependence for microbial process rates (Karhu et al., 435 

2014). As field experiments have shown that warming can modify microbial physiology 436 

and resource availability (Poeplau et al., 2017).  437 

We found a significant negative relationship between soil β values and MAP. This 438 

suggests that higher precipitation rates are associated with a steeper decrease in SOC 439 

density with increasing depth. This is primarily due to the pronounced positive 440 

correlation between MAP and the surface SOC density (Liu et al., 2023). In wetter 441 

climates where the precipitation exceeds evapotranspiration, there is a strong 442 

relationship between mineral-associated SOC concentration and persistence, due to the 443 

humid soil environments that favor greater root growth and abundance (Heckman et al., 444 

2023). And, the higher the intensity of precipitation, the more susceptible deep soil 445 

carbon is to loss (Sun et al., 2024). 446 

Additionally, BNPP plays a crucial role in the global land carbon cycle and carbon 447 

balance, as it is a major source of SOC. The increase in BNPP, along with greater root 448 

exudates and changes in microbial activity, may lead to new carbon accumulation 449 

(Zheng et al., 2024), which resulted in a decreasing trend of soil β values.  450 

Our results highlight the important role of edaphic properties in explaining variation in 451 

soil β values, not just climate and biological factors (Figure S2). The soil CN ratio and 452 

soil clay content both exhibited a similar negative correlation with the β value. A higher 453 

soil CN ratio may decelerate the decomposition rate of organic matter, thereby 454 

facilitating an increase in SOC content in warm and arid regions (Spohn et al., 2023), 455 

such that the soil β values would trend downward. Under soil CN ratio > 15, warming 456 

significantly enhances the development of root biomass (Bai et al., 2023), this could 457 

induce a corresponding SOC accumulation. Clay fraction of the soil can absorb litter-458 

derived C and microbial-derived C, promoting the accumulation of organic carbon 459 

(Hicks Pries et al., 2023). 460 

Our results showed that for near-neutral pH soils, the β values tend to be stable. In 461 

acidic soils, significant losses of SOC occur because microbial growth is more severely 462 

constrained, leading to a reduced efficiency in the decomposition and utilization of 463 

organic matter by microorganisms (Malik et al., 2018). Salinization and alkalization 464 
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impede plant growth, leading to reduced biomass and lower organic matter input into 465 

the soil, causing the soil organic carbon content and organic carbon pool to remain very 466 

low (Li et al., 2023). The harsh conditions of saline-alkaline soils hinder microbial 467 

survival and activity, reducing their efficiency in decomposing and utilizing organic 468 

matter. Soil pH had non-linear relationships with microorganisms, tends to be neutral, 469 

and the abundance of microorganisms is higher (Patoine et al., 2022). The combination 470 

of these factors explains the higher β values observed under extreme acidic or alkaline 471 

conditions. Thus, near-neutral pH soils, may enhance its carbon storage potential by 472 

improving microbial growth efficiency and facilitating the channeling of matrix 473 

components into biomass synthesis.  474 

The effects of TN, MC, MN on soil β values exhibited the same trend, which initially 475 

increased and then decreased. The TN stock in the soil exhibits a significant positive 476 

correlation with the SOC stock (Feng et al.,2018), leading to a reduction in the β value 477 

in nitrogen-enriched soils. MC had positive relationships with the SOC content across 478 

the large spatial scale, because of microbes should be considered not only as a 479 

controlling factor of the consumption of SOC, but also as an influencing factor of the 480 

production of SOC (Tao et al., 2023). Microbial necromass has been identified as a 481 

major contributor to SOC formation across global ecosystems (Wang et al., 2021a). 482 

Evidence from China shows that microbial residues contribute a larger proportion of 483 

SOC in subsoils than in topsoil (Wen et al., 2023). Therefore, in soil profiles with a 484 

high microbial carbon and nitrogen, the soil β value is smaller, indicating a steeper 485 

decrease in SOC density with increasing depth. 486 

4.3 Challenges and opportunities: Deep soil SOC sequestration  487 

More and more studies have shown about the necessity to better understand subsoil 488 

SOC dynamics. Biotic controls on SOC cycling become weaker as mineral controls 489 

predominate with depth (Hicks Pries et al., 2023). The topsoil is rich in carbohydrates 490 

and lignin, while the subsoil is rich in protein and lipids, the decrease rate of the ratio 491 

of the microbially derived carbon to plant-derived carbon with SOM content was 23%–492 

30% slower in the subsoil than in the topsoil (Huang et al., 2023). Warming stimulates 493 

microbial metabolic activity on structurally complex organic carbon, resulting in a 494 

larger loss of subsoil polymeric SOC compared to topsoil (Zosso et al., 2023). However, 495 

long-term experiments may not be long enough to quantify SOC dynamics in subsoil, 496 
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large-scale research methods and machine learning are particularly important and 497 

necessary. Based on measured soil profile data and environmental variables, Wang et 498 

al.(2021b) employed machine learning methods to assess SOC stocks and spatial 499 

distribution of subsoil in frozen soil areas in the third pole region. The investigation of 500 

deep soil organic carbon is inherently complex and involves intricate and time-intensive 501 

methodologies. This complexity results in a paucity of research data, which 502 

consequently introduces considerable uncertainties into model-derived predictions. To 503 

avoid under- or overestimation of the SOC stocks of an ecosystem, it is important to 504 

consider the subsoil when formulating sequestration policies for the whole soil profile 505 

(Button et al., 2022), as the “4 per 1000” approach for the top 30 to 40 cm soil layer 506 

provides an incomplete representation of the soil profile (Rumpel et al., 2018). It may 507 

be essential to sample the soil deeper (e.g. 0–100 cm) and incorporate deep soils into 508 

future manipulations, measurements and models. 509 

In addition, researchers had quantified the contribution of optimizing crop 510 

redistribution and improved management, and topsoil carbon sequestration in offsetting 511 

anthropogenic GHG emissions and climate change (Wang et al., 2022b; Rodrigues et 512 

al., 2021; Yin et al., 2023), the ability and consequence of subsoil SOC sequestration 513 

of crop management remains to be further studied. Conducting global-scale subsoil 514 

SOC dynamics studies will fill the knowledge gap to develop appropriate soil C 515 

sequestration strategies and policies to help the world cope with climate change and 516 

food security (Amelung et al., 2020; Bossio et al., 2020). As such, it is crucial that 517 

future research efforts focus on SOC sequestration efficiency with climate change, 518 

considering the entire soil profile. 519 

4.4 Strengths and limitations 520 

Our research establishes a scientific foundation for further study of SOC dynamics, 521 

sequestration, and emissions reduction across soil profiles, offering significant insights 522 

for achieving Sustainable Development Goals (SDGs), notably SDG2 (Zero Hunger), 523 

SDG13 (Climate Action), and SDG15 (Life on Land) 524 

(https://www.undp.org/sustainable-development-goals). To our knowledge, this is the 525 

first study to present global high-resolution maps illustrating the spatial distribution of 526 

SOC density within soil profiles, derived from soil β values informed by soil properties 527 

and climatic conditions. We observed pronounced variations in SOC density across 528 
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ecosystems, with forestland demonstrating the highest densities, followed by grassland 529 

and cropland. However, the observed differences in SOC dynamics across these 530 

ecosystems were primarily attributed to the dominant biogeochemical properties of the 531 

soils (Reichenbach et al., 2023).  532 

In our analysis, we incorporated a broad spectrum of environmental variables, including 533 

climatic factors and soil physicochemical properties, to examine subsoil SOC dynamics 534 

across different ecosystems. The variability in SOC density decline across soil profiles 535 

with depth in most areas underscores the imperative for refined soil management 536 

practices. Enhancing carbon sequestration in deeper soil horizons constitutes a 537 

promising avenue for future research. For example, increasing plant diversity and crop 538 

diversification has reinforced SOC stocks in subsoil, with this benefit amplifying over 539 

time (Lange et al., 2023, Xu et al., 2023). Current research has shed light on certain 540 

aspects of subsoil SOC sequestration mechanisms and turnover dynamics (Luo et al., 541 

2019; Li et al., 2023). However, implementing targeted policies—such as incorporating 542 

organic materials and biochar—remains essential for augmenting the SOC 543 

sequestration potential of deeper soils (Button et al., 2022). These strategies could play 544 

a critical role in synergistically enhancing soil fertility and mitigating greenhouse gas 545 

emissions.  546 

Some important aspects of SOC stocks were not included in this study. For instance, 547 

microbial necromass is a key contributor to SOC accumulation (Zhou et al., 2023). Due 548 

to difficulties in obtaining management data for grasslands and forestlands, we did not 549 

account for potential management-specific factors on soil β value estimations. For 550 

example, N fertilizer application, irrigation amount, soil tillage practices, and organic 551 

carbon inputs (straw return, crop residues, and litterfall) may influence the vertical 552 

movement of SOC. Moreover, organic carbon inputs can alter SOC decomposition rates, 553 

particularly in deeper soil layers (Cardinael et al., 2018).     554 

We also acknowledge that soil layers may not always reach 1 meter, especially in 555 

mountainous areas. Due to the lack of global soil thickness data, this limitation may 556 

lead to overestimation or underestimation of soil carbon storage in some regions. 557 

Focusing on 1-meter profiles provides a reasonable approximation of SOC storage 558 

across different ecosystems. Although this approach may not fully capture the variation 559 

in soil thickness in high mountain areas, it enables us to gain valuable insights into SOC 560 
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dynamics within the global carbon cycle. Future studies will incorporate more detailed 561 

soil thickness data to improve our understanding of SOC distribution.  562 

5. Data availability  563 

The data of “global patterns of soil organic carbon distribution in the 20–100 cm soil 564 

profile for different ecosystems: a global meta-analysis” are available at 565 

https://doi.org/10.5281/zenodo.14787023 (Wang et al., 2025). The file named 566 

“Rawdata.xlsx” contains data sourced from the literature. The file name is “GE_β.tif”, 567 

GE represents global ecosystems, which including cropland (CL), grassland (GL), and 568 

forestland (FL). “FL_β.tif” represents the spatial distribution of β for forestland at 20-569 

100 cm depth. The file name is “GE_d_SOCD.tif”, where SOCD represents soil organic 570 

carbon density, d represents soil depth, for example, “FL_20-100_SOCD.tif” represents 571 

the spatial distribution of SOCD for forestland at 20-100 cm depth. 572 

6. Conclusion  573 

Accurately quantifying the distribution of soil profile SOC stocks is crucial for C 574 

sequestration and mitigation. Herein, machine learning was applied to the β model to 575 

estimate SOC stocks in soil profiles at depths of 20–100 cm. The subsoil SOC density 576 

values of cropland, grassland, and forestland were estimated to be 62 Mg ha–1 (95% 577 

CI:52-73), 70 Mg ha–1 (95% CI:57-83), and 97 Mg ha–1 (95% CI:80-117), respectively, 578 

with significant geographic variability across different ecosystems. Additionally, The 579 

global subsoil SOC stock was 803 Pg C (95% CI:661-962) (cropland, grassland, and 580 

forestland were 74 Pg C (95% CI:62-88), 181 Pg C (95% CI:148-215), and 547 Pg C 581 

(95% CI:451-660), in which an average of 57% resided in the top 0–100 cm of the soil 582 

profile. This dataset provides a valuable resource for refining existing Earth system 583 

models and enhancing prediction accuracy. Furthermore, it offers critical insights into 584 

global SOC dynamics and the spatial variability of SOC within entire soil profiles. Our 585 

findings also serve as a valuable reference for decision-makers in developing more 586 

effective carbon budget management strategies. 587 
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