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 22 

Abstract. Methane (CH4) is a significant greenhouse gas in exacerbating climate 23 

change. Approximately 25% of CH4 is emitted from storage tanks. It is crucial to 24 

spatially explore the CH4 emission patterns from storage tanks for efficient strategy 25 

proposals to mitigate climate change. However, due to the lack of publicly accessible 26 

storage tank locations and distributions, it is difficult to ascertain the CH4 emission 27 

spatial pattern over a large-scale area. To address this problem, we generated a storage 28 

tank dataset (STD) by implementing a deep learning model with manual refinement 29 

based on 4,403 high spatial resolution images (1-2m) from the GaoFen-1, GaoFen-2, 30 

GaoFen-6, and Ziyuan-3 satellites over city regions in China with officially reported 31 

numerous storage tanks in 2021. STD is the first storage tank dataset over 92 typical 32 

city regions in China. The dataset can be accessed at 33 

https://zenodo.org/records/10514151 (Chen et al., 2024). It provides a detailed 34 

georeferenced inventory of 14,461 storage tanks, wherein each storage tank is validated 35 

and assigned the construction year (2000-2021) by visual interpretation referring to the 36 

collected high spatial resolution images, historical high spatial resolution images of 37 

Google Earth, and field survey. The inventory comprises storage tanks having various 38 

distribution patterns in different city regions. Spatial consistency analysis with CH4 39 

emission product shows good agreement with storage tank distributions. The intensive 40 

construction of storage tanks significantly induces CH4 emissions from 2005 to 2020, 41 

https://zenodo.org/records/10514151
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underscoring the need for more robust measures to curb CH4 release and aid in climate 42 

change mitigation efforts. Our proposed dataset STD will foster the accurate estimation 43 

of CH4 released from storage tanks for CH4 control and reduction and ensure more 44 

efficient treatment strategies are proposed to better understand the impact of storage 45 

tanks on the environment, ecology, and human settlements. 46 

 47 

1. Introduction 48 

The Industrial Revolution witnessed a continuous increase in greenhouse gases, 49 

resulting in global climate warming (Zhang et al., 2021). Methane (CH4) is the second 50 

dominant anthropogenic greenhouse gas to global climate warming with a contribution 51 

of 20% (Kirschke et al., 2013) after carbon dioxide (CO2). Meanwhile, CH4 is more 52 

effective in trapping heat, with 85 times more climate warming potency than CO2 for a 53 

decade or two (Stocker, 2014). The atmospheric lifetime of CH4 is approximately 10 54 

years, which is shorter than most other greenhouse gases; thus, reducing CH4 emissions 55 

is more cost-effective in lowering the climate warming potential impact (Lin et al., 2021; 56 

Montzka et al., 2011). CH4 is emitted mainly from energy-related activities and 57 

petrochemical processes (Ding et al., 2017; Fan et al., 2023). Storage tanks,  defined 58 

as large containers of crude oil or other petroleum, and industrial materials, such as 59 

alcohols, gases, or liquids, are among the most significant sources of emitting CH4 (Im 60 

et al., 2022; Johnson et al., 2022). Without an adequate control or management strategy, 61 

large amounts of CH4 will escape into the atmosphere (Im et al., 2022). From a 62 

greenhouse gas control standpoint, it is of great interest to examine the distribution 63 

patterns of the storage tanks. With a detailed and comprehensive storage tank inventory, 64 

we can effectively estimate the spatial pattern of CH4 emissions and reduce the risk of 65 

CH4 emission by installing recovery units (Johnson et al., 2022) to promote sustainable 66 

development goals. However, it is challenging to access detailed distribution records 67 

for storage tanks from the public records in China.  68 

Given the advances in remotely sensed technology (Chen et al., 2023; Yu et al., 69 

2023a; Yu et al., 2023b), the ready availability of high spatial resolution remote sensing 70 

images via the GaoFen series satellites and the Ziyuan-3 satellite provides means to 71 

extract remote sensing data for large-scale storage tanks. Numerous studies on the use 72 

of automatic methods to extract storage tanks from high spatial resolution remote 73 

sensing images have been performed (Fan et al., 2023; Wu et al., 2022; Yu et al., 2021), 74 

including the Hough transform (Yuen et al., 1990), image saliency enhancement (Zhang 75 

and Liu, 2019), support vector machines (Xia et al., 2018), and Res2-Unet+ deep 76 

convolution networks (Yu et al., 2021). The focus of the works above is primarily 77 

spatially limited, and the images collected for extraction are mostly pre-subtracted from 78 

regions known to contain storage tanks. The transferability and the practical 79 

applicability of the proposed methods remain to be clarified. To our knowledge, there 80 

are limited publicly available datasets on storage tanks. Northeast Petroleum 81 

University–Oil Well Object Detection Version 1.0 (NEPU–OWOD V1.0) covers 1,192 82 

oil storage tanks within Daqing City (Wang et al., 2021). This dataset covers the 83 

boundary boxes for each storage tank but lacks details on the storage tank inventory. 84 

Another two datasets, the Oil and Gas Tank Dataset (Rabbi et al., 2020) and the Oil 85 
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Storage Tank Dataset (Airbusgeo, 2019) acquired via the Kaggle platform, have been 86 

released without georeferenced information and lack detail regarding the contour 87 

shapes. The datasets are generally proposed to improve the performance of algorithms 88 

in storage tank extraction. Currently, most studies are concentrated on algorithm 89 

development for storage tank extraction rather than exploring the spatial distribution of 90 

storage tanks in large-scale areas and the impact of storage tank construction on CH4 91 

emission in different areas over the years. The spatial distributions of storage tanks in 92 

China have not yet been investigated and recorded. The lack of storage tank datasets 93 

makes it impossible to estimate the impact of anthropogenic energy-related activities 94 

on CH4 emission and air pollution. 95 

To foster the control and reduction of CH4 emissions to mitigate climate change 96 

and provide researchers with free access to detailed and georeferenced storage tank 97 

inventory to monitor the corresponding potential impact on the atmosphere and 98 

residential environment over typical city regions in China, we compiled a storage tank 99 

inventory based on high spatial resolution images of the GaoFen-1, GaoFen-2, GaoFen-100 

6, and Ziyuan-3 satellites for city regions with intensive storage tanks over China. The 101 

city regions are listed by the Ministry of Ecology and Environment of China with 102 

intensive storage tanks and prominent fugitive emissions, inadequate monitoring and 103 

control of treatment measures (Wang et al., 2022). There are 92 city regions in total, 104 

mainly located in mid-eastern China. Given that large storage tanks may emit 105 

significant levels of CH4, storage tanks with footprint  500 m2 were selected as the 106 

main target to control the reduction of CH4 in the proposed inventory. To this end, we 107 

generated a complete inventory of storage tanks with footprint  500 m2 for the 92 city 108 

regions in China with intensive storage tanks, which were subject to the implementation 109 

of CH4 reduction measures.  110 

In this study, firstly, we collected high spatial resolution images to cover the entire 111 

study area. We pre-processed them to synchronize the pixel intensities of ground objects 112 

in different images from different imaging sensors and study areas. Secondly, we 113 

proposed a semantic segmentation framework to construct the storage tank extraction 114 

model based on the training samples of Ningbo, Tangshan, and Dongying city regions. 115 

Thirdly, the constructed model is applied to extract storage tanks in all the other city 116 

regions to generate extraction results. Fourthly, the extracted storage tank result images 117 

are converted to vectors, revised and assigned the corresponding construction year by 118 

visual interpretation with reference to the historical high spatial resolution images of 119 

Google Earth, high spatial resolution images collected, and field survey. Fifthly, we 120 

explored the spatial distribution pattern of storage tanks in typical city regions in China. 121 

Sixthly, we further explored the consistency of storage tank spatial patterns and CH4 122 

emission in the atmosphere and the impact of storage tank construction on time-series 123 

CH4 emission change from 2005 to 2020. Finally, the uncertainties, limitations, and 124 

implications of our proposed STD dataset are discussed for studying climate change 125 

and air pollution. This new database represents the first inventory to provide a detailed 126 

distribution of the locations, boundaries of the storage tanks, and the corresponding 127 

construction year of each storage tank. The inventory documents the spatial and 128 

temporal distribution of storage tanks with different footprints, and it is hoped that this 129 
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work will facilitate the development of environment-friendly regulatory proposals for 130 

more effective CH4 emission control and energy resource management. 131 

2. Related works in mapping storage tanks 132 

Storage tank extraction from high spatial resolution images has been of interest for 133 

many years for its significant role in storage and greenhouse gas emission. Generally, 134 

the methods for extracting storage tanks are grouped into three categories. Circle 135 

detection by Hough transformation (O'duda, 1972) and template matching (Hou et al., 136 

2019); machine learning model construction by morphological, spectral, and textual 137 

feature engineering (Xia et al., 2018); deep learning model construction by continuous 138 

convolution operations (Fan et al., 2023). Deep learning methods have been extensively 139 

used to map storage tanks due to their strong feature learning capability and higher 140 

model transferability. 141 

Semantic segmentation is a widely employed deep learning framework in object 142 

extraction by assigning each pixel a semantic label in the image (Chen et al., 2022; Yu 143 

et al., 2022b). Fully convolution network (FCN) (Long et al., 2015) is a basic 144 

framework of semantic segmentation with three components: backbone feature learning, 145 

convolution feature learning with skip architecture, and up-sampling layer to resample 146 

the learned feature map to the same size of the input image. Based on FCN, numerous 147 

frameworks have been inspired, such as SegNet (Badrinarayanan et al., 2017), PSPNet 148 

(Zhao et al., 2017), Unet (Ronneberger et al., 2015), DeepLabv2 (Chen et al., 2017b), 149 

and DeepLabv3 (Chen et al., 2017a). Unet has a widespread use for its easy 150 

implementation and high efficiency. The proposal of Res2-Unet+ framework for 151 

storage tank extraction (Yu et al., 2021; Zalpour et al., 2020) integrates Res2Net module 152 

(Gao et al., 2019) to Unet. Res2Net module is proposed to learn multi-scale features by 153 

learning at a more granular level. It has shown strong applicability in extracting storage 154 

tanks from images of different imaging sensors (Yu et al., 2022a). However, many 155 

storage tank pixels are still omitted due to their similar spectral characteristics with 156 

neighboring ground objects. To resist the shortage, we have proposed a new semantic 157 

segmentation framework based on Res2-Unet+ and enlarged the variability of storage 158 

tank training samples to build a more robust and accurate extraction model. 159 

 160 

3. Data sources 161 

3.1 Study area 162 

The study area covers 92 typical city regions (as shown in Figure 1) with intensive 163 

storage tanks over China, assigned by the Ministry of Ecology and Environment of 164 

China (Wang et al., 2022). The typical city regions lack detailed monitoring and control 165 

of prominent fugitive emissions, whose effective measurements in CH4 reduction 166 

emission are urgently demanding and requiring. The 92 city regions tended to be located 167 

in mid-eastern China. Many of the city regions are coastal cities. Synthesized with a 168 

digital elevation model (DEM) from the product of the Shuttle Radar Topography 169 

Mission (SRTM) (Yang et al., 2011), we can recognize that most city regions are plains. 170 

As is acknowledged, plains are densely populated. The large population numbers will 171 

bring more frequent human activities, triggering more pollutant and greenhouse gas 172 
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emissions. The lack of efficient measurements in CH4 emissions will result in a more 173 

direct impact on the populations in the residential area. Therefore, exploring the spatial 174 

distribution pattern of storage tanks relative to CH4 emission is significant to seek more 175 

effective solutions for CH4 reduction. 176 

 177 

Figure 1. Study area demonstration with digital elevation (in the unit of meter) from 178 

the Shuttle Radar Topography Mission (SRTM) product. 179 

 180 

3.2 High spatial resolution images 181 

The high spatial resolution images used for extracting storage tanks in the 92 city 182 

regions were collected from four satellites: the GaoFen-1, GaoFen-2, GaoFen-6, and 183 

Ziyuan-3 satellites in 2021. The images are collected between June and August with 184 

the least cloud coverage (<10%) from the four satellites, when different ground objects 185 

have more pronounced spectral differences, which makes it easier to distinguish storage 186 

tanks from background objects. As listed in Table 1, the images for the GaoFen-1, 187 

GaoFen-6, and Ziyuan-3 satellites have a spatial resolution of 2 m, and those for the 188 

GaoFen-2 have a spatial resolution of 1 m after fusion of the multispectral image and 189 

the panchromatic image. Referring to Table 1, we can recognize that 4,403 images were 190 

collected. The places covered with multiple images are manually screened to one image 191 

with the best imaging quality and least cloud proportion. Based on the screened high 192 
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spatial resolution images, multiple image pre-processing steps are performed to 193 

synchronize the ground objects in different images of different sensors for different 194 

study areas, comprising atmospheric correction, radiation correction, geometric 195 

precision correction, image fusion, image projection, uniform color processing, and 196 

image mosaicking. 197 

 198 

Table I. Imaging characteristics of each high spatial resolution satellite and the 199 

number of collected images of different satellites covering 92 typical city regions in 200 

China between June and August 2021. The notation Pan is short for Panchromatic 201 

band, and Multi represents multi-spectral band 202 

 GaoFen-1 GaoFen-2 GaoFen-6 Ziyuan-3 Total 

Spatial 

resolution 

2m(Pan)/ 

8m(Multi) 

1m(Pan)/ 

4m(Multi) 

2m(Pan)/ 

8m(Multi) 

2m(Pan)/ 

6m(Multi) 

 

Multi-

spectral 

Band 

Red/Green/ 

Blue/Near- 

Infrared 

Red/Green/ 

Blue/Near- 

Infrared 

Red/Green/ 

Blue/Near- 

Infrared 

Red/Green/ 

Blue/Near- 

Infrared 

 

Number 1,289 1,330 139 1,645 4,403 

 203 

3.3 Land use land cover product 204 

Given that storage tanks are constructed mainly in urban area due to the high 205 

expense of transportation of pipelines, a 10 m land use land cover (LULC) product of 206 

the Esri Land Cover in 2021 (Karra et al., 2021) is used for subtracting the study area 207 

to minimize the impact of complex background objects in the high spatial resolution 208 

images following the workflow as shown in Figure 2. The land use product of the Esri 209 

Land Cover is generated based on the Sentinel-2 images from the European Space 210 

Agency (ESA) with an overall accuracy of 75% (Venter et al., 2022), which has been 211 

updated every year since 2017. It comprises nine ground object categories: water, trees, 212 

flooded vegetation, bare ground, crops, snow/ice, clouds, rangeland, and built area. 213 

Since storage tanks are mostly constructed in urban areas, the categories of built area 214 

and bare ground are recognized as potential areas for constructing storage tanks. 215 

Consequently, the corresponding ground object category products of built area and bare 216 

ground are subtracted from the LULC product 2021 and used to mask the high spatial 217 

resolution images of the 92 city regions, as demonstrated in Figure 2. Pixels locating 218 

outside the mask area in the high spatial resolution images, whose intensities are 219 

assigned zero. The masked high spatial resolution images of the 92 city regions are 220 

further used for storage tank extraction. 221 
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 222 

Figure 2. Subtraction of potential area with storage tanks from high spatial resolution 223 

images. 224 

 225 

3.4 CH4 product image 226 

As storage tanks are a dominant source of CH4 emission, we have collected CH4 227 

emission products to explore the spatial consistency of CH4 with the density of storage 228 

tanks and the impact of storage tank construction over time on CH4 emission. There 229 

have been many CH4 emission product images proposed, including the Community 230 

Emission Data System (CEDS) (Hoesly et al., 2018), the product from Peking 231 

University (Peng et al., 2016), the Emissions Database for Global Atmospheric 232 

Research (EDGAR) (Crippa et al., 2019), the Regional Emission Inventory in Asia 233 

(REAS) (Kurokawa et al., 2013), and Greenhouse Gas and Air Pollution Interactions 234 

and Synergies (GAINS and ECLIPSE) (Amann et al., 2011). Since our collected high 235 

spatial resolution remote sensing images were taken in the year 2021, the spatial 236 

consistency and the impact of storage tank construction on CH4 emission are explored 237 

using the CH4 emission product of GAINS, which offers a comprehensive series of data 238 

accessible to the public (Lin et al., 2021). The dataset of GAINS was selected over the 239 

other four products because the four products lacked continuous updates with limited 240 

temporal coverage until 2015. 241 

We adopted the estimated CH4 emission from energetic activities product of the 242 

ECLIPSE V6b Baseline scenario from GAINS. It is a global annual product with a 243 

spatial resolution of 0.5° and a temporal coverage of 1990-2050 at an interval of 5 years. 244 

For the estimated CH4 emission from GAINS in the years 1990-2018, the product is 245 

generated from statistics of the International Energy Agency (IEA), and the years 2019-246 

2050 are from the outlook of the IEA World Energy Outlook (Lane, 2018). To 247 

synchronize with the temporal scope of storage tank construction from 2000 to 2021, 248 

the CH4 emission products of 2005, 2010, 2015, and 2020 are collected.  249 

As demonstrated in Figure 3, the emission of CH4 in 2020 varies remarkably in 250 

different areas. There are many clusters of CH4 emission in the study area, with the 251 
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highest of 5,160.62 Tg  CH4 yr−1. CH4 in the atmosphere of city regions located in 252 

southeastern China is generally higher than that of city regions in northwestern China 253 

in 2020.  254 

 255 
Figure 3. Demonstration of CH4 distribution from energetic activities over the study 256 

area in the year 2020. 257 

 258 

4. Methodology 259 

As depicted in Figure 4, the workflow of generating a storage tank dataset consists 260 

of three sections: harmonizing the pixel intensities of different ground objects across 261 

high spatial resolution images captured by different sensors in different study areas; 262 

producing a storage tank dataset by constructing a storage tank extraction model based 263 

on the harmonized high spatial resolution images; assigning the construction year of 264 

each storage tank by multiple experts through visual interpretation referring to the 265 

historical high spatial resolution images from Google Earth, high spatial resolution 266 

images collected, and filed survey. 267 



9 

 

 268 

Figure 4. Flow chart for storage tank inventory production. 269 

 270 

4.1 Image harmonizing 271 

Pixel intensities for ground objects are standardized to ensure consistency across 272 

the high spatial resolution images collected. This harmonization process mitigates the 273 

effects of atmospheric variations and discrepancies between imaging sensors captured 274 

at different times. The standardization includes atmospheric correction, radiometric 275 

calibration, geometric alignment, image fusion, reprojection, and color normalization. 276 

In terms of atmospheric correction, the widely used radiation transfer model of the 277 

second simulation of the satellite signal in the solar spectrum (6S) (Vermote et al., 1997) 278 

is adopted to determine the atmospheric correction coefficient and eliminate the 279 

absorption and scattering impact of atmospheric molecules and aerosols for all the 280 

collected high spatial resolution images. The strategy of local histogram matching 281 
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(Shen, 2007) is used to correct radiation differences of the same ground object category 282 

in different high spatial resolution images. To improve the geometric precision of the 283 

high spatial resolution images collected, we automatically generated 1000 ground 284 

control points by a widely used key point detector of scale-invariant feature transform 285 

(SIFT) for each city. We calculated the parameters for affine transformation with 286 

reference to the world imagery of Environmental Systems Research Institute (ESRI) 287 

(Hou et al., 2021). Pixel-wise image fusion is conducted on images collected from each 288 

high spatial resolution satellite since they consist of multispectral images with a coarser 289 

spatial resolution than the panchromatic image, as demonstrated in Table 1. To optimize 290 

the utilization of the gathered images, we leveraged the wavelet transform (Sahu and 291 

Sahu, 2014) for the automatic fusion of multispectral and panchromatic images. To 292 

address discrepancies in the projections of the varied high-resolution images we 293 

collected, we standardized all the images to the Universal Transverse Mercator (UTM) 294 

projection using bilinear interpolation for consistency. To maintain visual consistency 295 

across images from different sensors or regions, it is crucial to standardize the color 296 

representation of identical ground objects. In this study, we implemented a nonlinear 297 

stretching technique to modify pixel intensity distribution. This was accomplished by 298 

constructing a color look-up table (Majumder et al., 2000) to ensure uniformity in 299 

spectral intensities across the various images. 300 

The harmonized high spatial resolution images were further mosaicked to large 301 

image patches to integrate overlapping areas from adjacent high-resolution images, 302 

ensuring comprehensive coverage and continuity of the observed regions. Referring to 303 

the LULC product of the Esri Land Cover product in 2021, the mosaicked image 304 

patches were subtracted with the ground object category of built area and bare ground, 305 

identified as potential areas with storage tank constructions. Finally, for storage tank 306 

extraction, the subtracted images were cropped to a size of 512×512 pixels, a size 307 

compatible with the computational limits of our GPU hardware.  308 

4.2 Production of storage tank dataset 309 

4.2.1 Proposed framework for storage tank extraction 310 

Stemming from the recently developed semantic segmentation framework for 311 

storage tank extraction, Res2-Unet+ (Yu et al., 2021), we proposed a new network 312 

structure Res2-UnetA to build storage tank extraction model. As shown in Figure 5A, 313 

our proposed framework integrates the Res2Net module (Figure 5B) and channel-314 

spatial attention module (Figure 5C) to enhance the significant features for multi-scale 315 

storage tank extraction. During the process of feature map down-scaling, the Res2Net 316 

module can learn the multi-scale features from multiple sub-networks and concatenate 317 

the multi-scale features to enlarge the visual perception capability. In the stage of 318 

feature map up-sampling, our proposed channel-spatial attention module adopted after 319 

each feature map concatenation operation can increase the feature learning efficiency 320 

and enlarge the feature learning scale by synthesizing channel-wise and spatial attention 321 

feature learning modules. Detailed calculation of channel-wise and spatial attention 322 

modules can be referred to Equations (1)-(7).  323 
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 324 
Figure 5. Network structure of our proposed Res2-UnetA: (A) network general 325 

demonstration; (B) structure of Res2Net module; (C) structure of channel-spatial 326 

attention module. 327 

 328 

𝑠𝑎𝑓 =
∑ ∑ 𝑓𝑖,𝑗

𝑛
𝑗=0

𝑚
𝑖=0

𝑚×𝑛
                         (1) 329 

𝑠𝑚f = max⁡(𝑓𝑖=0,⋯,𝑚,𝑗=0,⋯,𝑛)                   (2) 330 

𝑐𝑎𝑓 =
∑ 𝑓𝑐=𝑘
ℎ
𝑐=0

ℎ
                          (3) 331 

𝑐𝑚f = max⁡(𝑓𝑐=0,⋯,ℎ)                      (4) 332 

𝑆𝐴(𝑓) = 𝑐𝑜𝑛𝑣(𝑐𝑜𝑛𝑣(𝑠𝑎𝑓) + 𝑐𝑜𝑛𝑣(𝑠𝑚f))              (5) 333 

𝐶𝐴(𝑓) = 𝑐𝑜𝑛𝑣(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑐𝑎𝑓 , 𝑐𝑚f))             (6) 334 

𝐶𝑆𝐴(𝑓) = 𝑓 × 𝐶𝐴(𝑓) × 𝑆𝐴(𝑓)                 (7) 335 

 336 

Spatial average pooling (sa) and spatial maximum pooling (sm) operations are 337 

calculated as the average value and maximum value of input feature map f with size of 338 

m×n, as described in Equations (1)-(2). Correspondingly, the channel-wise average (ca) 339 

and maximum pooling (cm) operations are the average feature values of all the h 340 

channels and the maximum feature values of all the channels in Equations (3)-(4). The 341 

output feature map of the spatial attention module (SA) and channel attention module 342 

(CA) are calculated according to Equations (5)-(6), respectively, and the synthesis of 343 

the feature maps from the channel and spatial attention modules is organized by 344 
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multiplication, as illustrated in Equation (7). Through multi-scale feature enhancement 345 

by our proposed Res2-UnetA framework, it can learn the multi-scale storage tank 346 

features hierarchically and comprehensively from the high spatial resolution images of 347 

the different imaging sensors. 348 

4.2.2 Storage tank model construction and dataset generation 349 

Based on our proposed framework Res2-UnetA, the pre-processed high spatial 350 

resolution images for the city regions of Ningbo, Tangshan, and Dongying are used to 351 

train the storage tank extraction model. Ningbo, Tangshan, and Dongying are three 352 

typical city regions in China with large densities of storage tanks so that they can 353 

provide large quantities of training samples with high spectral and textual feature 354 

variety in different sizes. The storage tanks for the training dataset are interpreted 355 

visually by three experts in a relative field referring to the collected high spatial 356 

resolution images. The model is finetuned based on the optimized model from Res2-357 

Unet+ (Yu et al., 2021) with a learning rate of 0.01. It converges to the optimum at the 358 

iteration of 69.   359 

With the optimized model, the storage tanks for the remaining city regions are 360 

extracted accordingly and vectorized to the shapefile. While the enhanced model for 361 

extracting storage tanks generally performs well, it's not infallible. Some tanks are 362 

inadvertently missed, and other objects with similar spectral or textural characteristics 363 

are occasionally mistakenly identified as tanks. Therefore, each vectorized shapefile is 364 

further refined manually by visual interpretation with referral to the high spatial 365 

resolution images. Due to the inconsistent spectral intensities for the storage tanks in 366 

the images, triggered by shadows and different viewing angles, the vectorized storage 367 

tanks in the inventory take different shapes. To synchronize the storage tanks in the 368 

inventory taking on a round shape, we re-construct a circle for each extracted storage 369 

tank according to the radius calculated in the inventory, and the inventory is updated 370 

with the re-constructed circle. To facilitate the dating of each storage tank's construction 371 

year, the reconstructed circle for each extracted storage tank has been manually 372 

validated and refined by six experienced experts through visual interpretation based on 373 

our collected high spatial resolution images and field survey.  374 

4.3 Construction year assignment 375 

In the STD dataset we developed, a team of six experts determines the construction 376 

year for each storage tank by conducting visual assessments using high-resolution 377 

historical images available on Google Earth, with the cutoff date for this process being 378 

January 1st, 2024. The intermittent availability of historical high-resolution images on 379 

Google Earth poses a challenge in determining the precise construction years for many 380 

storage tanks, especially when images from successive years are missing. We 381 

documented the most recent year when a storage tank was absent (last year image 382 

without storage tank) and the earliest year when it was first observed (first year image 383 

with storage tank) in the historical imagery, as illustrated in Figure 4. The actual 384 

construction year lies within this timeframe. For analysis simplicity, we've designated 385 

each tank's initial observed year as the construction year.  386 

Since the high-resolution images used to compile the storage tank dataset were 387 

captured in 2021, it is presumed that all tanks were constructed no later than this year. 388 
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However, due to the absence of updated high-resolution imagery on Google Earth, 488 389 

tanks remain undetected in the historical records. For these, the year of construction has 390 

been inferred as 2021, following thorough visual confirmation using the high-resolution 391 

images we have acquired. The considerable lapses in historical high-resolution imagery 392 

on Google Earth necessitate assigning a provisional construction year 2021 to 630 393 

storage tanks. The year of 2021 marks the earliest documented evidence of these tanks' 394 

existence in the high-resolution images we collected, beyond which no prior images are 395 

available. For the storage tanks built before 2000, they are recorded with the first year 396 

image with storage tank in the shapefile, but lacking the last year image without storage 397 

tank in our proposed dataset STD due to the limited accessibility of high spatial 398 

resolution images before 2000 from Google Earth. 399 

 400 

5. Results 401 

5.1 Spatial distribution of storage tanks  402 

Following the workflow in Figure 4, the storage tanks in the 92 typical city regions 403 

of China are extracted based on the high spatial resolution images using the trained 404 

semantic segmentation model. Given that large capacity storage tanks are known to 405 

release significant levels of CH4, resulting in climate warming, the proposed inventory 406 

focuses on storage tanks with an area of no less than 500 m2. 14,461 storage tanks are 407 

extracted from the 92 city regions with areas ranging from 500 m2 to 18,583.15 m2. As 408 

shown in Figure 6, the storage tanks are distributed unevenly in different city regions 409 

and reflect different footprints and spatial distribution patterns. To explore the different 410 

distribution patterns, the storage tanks are categorized into three groups according to 411 

the area: 500-1,000 m2, 1,000-10,000 m2, and 10,000 m2. The accumulated number of 412 

storage tanks of different footprints for all the city regions is compiled as shown in 413 

Figure 7. It may be seen that storage tanks of 500-1000 m2 are more than those with 414 

larger footprints. The relatively smaller storage tanks are more widely used in industry. 415 

Due to the high cost of construction, considering all the city regions, the maximum 416 

number of large storage tanks with footprint 10,000 m2 is found to be seven for the 417 

city of Tangshan. Notably, there are few city regions with storage tanks of 10,000 m2 in 418 

footprint. 419 
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 420 

Figure 6. Inventory for storage tanks of the 92 typical city regions. 421 

 422 

Figure 7. Box plot of storage tank distribution for the different footprint categories 423 

(m2) for the 92 city regions. 424 

 425 

About the 92 city regions examined, 38 city regions have storage tanks with an 426 

accumulated 100, as shown in Figure 8A. Dongying has the largest accumulated 427 
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number of 1719, about twice that of Ningbo, the second highest ranked city with 981 428 

storage tanks. Weifang and Panjin are next in rank with storage tanks more than 500. 429 

The number of storage tanks with footprint 500-1000 m2 is greater than that for 1,000-430 

10,000 m2 and 10,000 m2 for most city regions. This finding indicates the widespread 431 

use of smaller storage tanks in different industries. Furthermore, there are 36 city 432 

regions with an accumulated number of < 50 (Figure 8B). Among the 36 city regions, 433 

Hebi is the only city with four storage tanks of 10,000 m2 in footprint. The other city 434 

regions, except Tangshan, do not have that large storage tanks. No storage tanks with 435 

footprint 500 m2 are observed for the city regions of Taian, Weihai, and Zigong. 436 

 437 

Figure 8. Number of storage tanks of different footprint categories (m2) in the various 438 

city regions: (A) city regions with an accumulated storage tank number 100; (B) city 439 

regions with accumulated storage tank number of <50. 440 

 441 

5.2 Spatial consistency with CH4 emission 442 

To explore whether the distribution patterns of storage tanks influence CH4 443 

emissions significantly, we explored the spatial consistency between estimated CH4 444 

from energy emission products in year of 2020 and the density of storage tanks in our 445 

proposed dataset STD over the study area. Given the coarser spatial resolution of the 446 

CH4 emission product at 0.5°, which is less detailed than that of the high spatial 447 

resolution images used for generating our storage tank dataset, we've calculated storage 448 

tank density to align with each pixel grid of the CH4 data. The density is defined by the 449 

total storage tank area ratio within each corresponding 3025 km² pixel grid area (55km 450 

× 55km), where 55 km is an approximation of 0.5° latitude or longitude at the equator. 451 

The storage tank density is calculated for each grid pixel of the CH4 emission 452 

product and is demonstrated in Figure 9. We can recognize that large-scale areas with 453 

high CH4 emission in the atmosphere generally cluster large densities of storage tanks 454 

(clustered cases of A, B, C, and D). The sparsely distributed storage tanks with high 455 

density are mostly accompanied by a higher CH4 emission than the neighborhood (as 456 
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shown in cases of E). There are also some city regions with a high density of storage 457 

tanks and low CH4 emission estimation, especially coastal cities, as in the cases of F. 458 

That could be attributed to the coastal air currents, which will likely disperse CH4 459 

emissions more effectively. It also needs to be pointed out that for the city regions 460 

marked as G in Figure 9, the estimated CH4 emission is relatively high, but the density 461 

of storage tanks is low. One possible reason is the unrestrained leakage of CH4 from the 462 

storage tanks, highlighting the urgent need for effective control measures. Alternatively, 463 

other high-energy activities within these regions might be significant CH4 contributors, 464 

suggesting a need for comprehensive investigation into broader mitigation strategies. 465 

 466 
Figure 9. Spatial distribution pattern of different densities of storage tank area with 467 

different CH4 emissions in the atmosphere. 468 

To objectively explore the spatial consistency of storage tank distribution and CH4 469 

emission from energetic activities, we randomly selected 4000 storage tank pixels and 470 

4000 background object pixels to evaluate the significance of the impact of storage 471 

tanks on CH4 emission. Referring to Figure 3, the value of CH4 emission varies by a 472 

large margin between 0.000055 and 5160.32 Tg CH4yr-1. The large value gap of CH4 473 

emission will cause bias in the differential significance test. We generated the quantity 474 

distribution of pixels with different CH4 emission value gaps (as shown in Figure 10A) 475 

and found that 99.83% of pixels have a CH4 emission value of <100 Tg CH4 yr-1. 476 

Therefore, the 4000 storage tank pixels and 4000 background object pixels are 477 

randomly selected from pixels with a CH4 emission value of <100 Tg CH4yr-1. As 478 

shown in Figure 10B, the CH4 emission values of storage tank pixels are statistically 479 

significantly larger than that of background object pixels at a confidence level of p=0.05. 480 
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It indicates storage tanks are significant energetic sources of CH4 emission. With our 481 

proposed dataset STD, it is possible to monitor the greenhouse gas emissions from 482 

storage tanks to take effective measurements for potential climate warming reduction 483 

in time. 484 

 485 
Figure 10. Distribution pattern of storage tank pixels with different CH4 emission 486 

estimations: (A) Proportion of pixels with different CH4 emission estimations; (B) box 487 

plot of CH4 emission (Tg CH4yr-1) of storage tank points and background object 488 

points. 489 

 490 

5.3 Temporal impact on CH4 emission  491 

Given the constraints of historical high-resolution imagery on Google Earth, the 492 

earliest ascertainable construction year for storage tanks is set to 2000, with the latest 493 

capped at 2021, as depicted in Figure 11. Therefore, our dataset STD includes storage 494 

tanks constructed in years of 2000-2021. It is noted that storage tanks were largely 495 

constructed in 2009, 2010, 2012, 2013, and 2014, while those in 2000 and 2001 were 496 

less constructed, with quantities of approximately twenty. To align with the construction 497 

temporal range of storage tanks in the dataset, CH4 emission products of 2005, 2010, 498 

2015, and 2020 are utilized, as these emission products are updated every five years. 499 

To explore the impact of storage tank construction on CH4 emission, the storage tanks 500 

are grouped by the product year of CH4, as listed in Table II. Storage tanks built in the 501 

years 2000 and 2021 are excluded from the impact analysis due to the exceed of the 502 

corresponding impact temporal range of CH4 emission.  503 

Table II. Correspondence between the year of CH4 emission product and group of 504 

construction years of storage tanks. 505 

Year of CH4 emission product Year group of storage tanks constructed 

2005 2001-2005 

2010 2006-2010 

2015 2011-2015 

2020 2016-2020 
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 506 

 507 

Figure 11. Number of storage tanks constructed in different years. 508 

 509 

It is noted that the spatial resolution of the CH4 emission product is coarser than 510 

the images we used to generate our proposed STD dataset; similar to the works in spatial 511 

consistency exploration, the storage tanks constructed in different groups of years are 512 

gridded by the CH4 emission product, and the density of storage tanks is calculated for 513 

each grid. We conducted a correlation analysis to explore the statistical significance of 514 

the impact of storage tank construction on CH4 emission over 2005-2020 at levels of 515 

p=0.05 and p=0.1, respectively. Moreover, the rate of CH4 emission change and storage 516 

tank density newly constructed every five years are calculated according to Equation 517 

(8) and demonstrated accordingly in Figure 12.  518 

R=(I2020-I2005)/4                           (8) 519 

 520 

 521 
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Figure 12. Significance of correlation between change rate of storage tank density 522 

and CH4 emission change. 523 

 524 

Both CH4 emission and newly constructed storage tank density increased from 525 

2005 to 2020, with positive rates in Figure 12. Over the 92 city regions in this study, 526 

storage tanks are constantly being constructed to meet the industrial demand, but CH4 527 

emission is continuously increasing too. The storage tanks of city regions such as 528 

Yingkou, Panjin, Dongying, Binzhou, Yantai, Weifang, Tangshan, Linyi, Rizhao, 529 

Puyang, Xi’an, Pingdingshan, Huainan, Nanjing, Maanshan, Changzhou, Wuxi, 530 

Chengdu, Foshan, Dongguan, and Guangzhou are constructed with higher rates than 531 

the other city regions. CH4 from energetic activities is emitted at a highly increasing 532 

rate in multiple city regions, such as Beijing, Yingkou, Zhenjiang, Nanjing, Maanshan, 533 

Changzhou, Wuxi, Shijiazhuang, Huainan, and Dongguan. Grids showing a statistically 534 

significant correlation (p<0.1) between storage tank density and CH4 emissions 535 

typically display a notable rise in the rate of storage tank density, particularly in grids 536 

with at a confidence level of p=0.05. This trend suggests that areas with active storage 537 

tank construction may contribute significantly to increased CH4 emissions. Some grids 538 

exhibit high CH4 emission increasing rates but low storage tank density increasing rates. 539 

This pattern suggests that while storage tank construction significantly contributes to 540 

CH4 emissions, other sources related to energy production, such as the extraction and 541 

transport of coal, oil, and natural gas, are also major contributors to CH4 release. 542 

However, regarding the 92 typical city regions with intensive storage tank distribution 543 

and construction, the impact of storage tank construction on CH4 emission from 544 

energetic activities is largely statistically significant, especially in areas with a high rate 545 

of new storage tank construction. Therefore, it is necessary to propose effective 546 

measurements to mitigate CH4 emissions from the continuously constructed storage 547 

tanks. 548 

 549 

6. Discussion 550 

6.1 Comparison with published Datasets 551 

To the best of our knowledge, limited research has been published concerning 552 

remote sensing datasets on storage tanks. The dataset, NEPU–OWOD V1.0, is a 553 

recently proposed oil storage tank dataset featuring 1,192 oil storage tanks from 432 554 

images of Google Earth. It covers the city of Daqing on a limited scale. However, the 555 

dataset lacks georeferenced information, hence the difficulty in supporting further 556 

research by governmental agencies and academic groups on various subjects such as 557 

air pollution control and energy consumption balance studies (Wang et al., 2021). 558 

Similar to the NEPU–OWOD V1.0 dataset, the Oil and Gas Tank Dataset is 559 

proposed (Rabbi et al., 2020), which comprises 760 image patches of size 512×512. 560 

The images are taken at a spatial resolution of 30 cm, and the annotations are boundary 561 

boxes rather than details on the exact shape. To assess the national energy demand, an 562 

oil storage tank dataset is released on the platform Kaggle (Airbusgeo, 2019). However, 563 

the images are collected from Google Earth without georeferenced information. Only 564 
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100 image patches of size 512×512 pixels are included in the dataset.  565 

Publication of datasets on oil storage tanks is generally developed to improve 566 

automatic methods for the detection of storage tanks rather than further environmental 567 

analysis based on the combination and synthesis with datasets of other domains, such 568 

as air pollution products. Therefore, the proposed STD dataset is the first storage tank 569 

inventory that provides a detailed distribution of storage tanks of diverse footprints in 570 

92 city regions in China. Each storage tank in the dataset has undergone rigorous 571 

verification by six experts. Additionally, the dataset meticulously logs the construction 572 

year for each tank. This allows for an analysis of the temporal evolution of storage tank 573 

distribution and its combined effects with CH4 emissions on the climate. Such insights 574 

pave the way for developing more effective energy management and climate change 575 

mitigation strategies, serving as a valuable resource for research in atmospheric science, 576 

environmental studies, and sustainable development. 577 

 578 

6.2 Uncertainties, limitations, and implications 579 

The Storage Tank Dataset (STD) we've compiled for 92 city regions in China 580 

serves as a valuable tool for climate change research, despite certain limitations. The 581 

extraction process from high-resolution images is subject to inaccuracies due to 582 

shadows and the inherent limitations of representing three-dimensional tanks as two-583 

dimensional circles, potentially leading to slight positional errors (Figure 13A). 584 

Additionally, the variance in perspective between our collected high spatial resolution 585 

images and Google Earth historical images can cause deviations in visual refinement in 586 

the tanks' vectorized outlines (as shown in Figure 13B). To mitigate these issues, expert 587 

analysis is employed to ensure tank identification and location precision, referring to 588 

the collected high spatial resolution images. 589 

 590 

 591 

Figure 13. Example cases of our proposed STD dataset: (A) cases with shifted circles 592 
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due to cast by shadow; (B) cases with largely deviated circles in different images due 593 

to different viewing angles. 594 

 595 

The pioneering STD dataset encompasses georeferenced storage tank shapes for 596 

92 key Chinese city regions crafted from high-resolution images. For each storage tank, 597 

the corresponding construction year is assigned, referring to the high-resolution 598 

historical images of Google Earth. It's a versatile resource with spatial and temporal 599 

distribution patterns, not just for mapping CH4 and other emissions but also for aiding 600 

the development of infrastructural strategies across various industries. However, the 601 

dataset currently lacks volumetric data due to the absence of height measurements for 602 

the tanks. Future enhancements aim to incorporate height data through advanced remote 603 

sensing technologies like SAR imagery, enriching the dataset with three-dimensional 604 

accuracy and providing a more comprehensive understanding of storage tank capacities. 605 

 606 

7. Dataset availability 607 

The STD dataset is publicly available as a repository at 608 

https://zenodo.org/records/10514151 (Chen et al., 2024). The dataset is provided in a 609 

shapefile, wherein a polygon with an area attribute in units of m2 represents each storage 610 

tank, and two attributes of years, year_1 indicating the most recent year when a storage 611 

tank was absent (last year image without storage tank) and year_2 indicating the earliest 612 

year when it was first observed (first year image with storage tank). The inventory is 613 

intended to be used to further analyze the impact on CH4 emissions, devise and 614 

implement more efficient energy management strategies. Moreover, our approach 615 

represents a powerful new source to improve automatic methods for storage tank 616 

extraction from high spatial resolution images, given that it represents a comprehensive 617 

and state-of-the-art inventory with tens of thousands of storage tanks georeferenced of 618 

92 typical city regions over China. 619 

8. Conclusions 620 

In support of CH4 emission control to mitigate climate warming, the STD dataset 621 

is proposed by providing a meticulously georeferenced inventory of storage tanks larger 622 

than 500 m2 across 92 key city regions of China in years of 2000-2021. Leveraging a 623 

novel semantic segmentation framework, Res2-UnetA, and rigorous visual 624 

interpretation based on the collected high spatial resolution images, historical high 625 

spatial resolution images from Google Earth, and field survey, the dataset not only 626 

details the spatial distribution of large storage tanks but also includes their construction 627 

years. Based on the STD dataset, the spatial distribution pattern of the storage tanks of 628 

different footprints was analyzed in 92 city regions. We also explored the impact of 629 

storage tank construction on CH4 emission from energetic activities through 2005-2020. 630 

Compared with the published datasets for storage tanks, the STD dataset is the first 631 

inventory that compiles georeferenced storage tanks in 92 city regions with detailed 632 

shape boundaries and construction years. In general, publicly available datasets on 633 

storage tanks typically cover only part of a city without georeferenced information and 634 

detailed shape boundaries. It is, therefore, difficult to objectively explore the extent and 635 
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patterns of environmental impact and the energy management of the storage tanks at 636 

large scale. The STD dataset enables large-scale environmental impact analysis of 637 

storage tanks and their correlation with CH4 emissions. It demonstrates strong spatial 638 

consistency with CH4 emissions in 92 typical Chinese city regions, highlighting the 639 

substantial increase in CH4 emissions due to storage tank construction. The storage tank 640 

dataset STD can contribute significantly to supporting energy management strategies 641 

and sustainability development studies while giving direct support to academic research 642 

and government agencies. 643 
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