
1 

 

High-resolution distribution maps of single-season rice in China from 

2017 to 2022 

Ruoque Shen1,2, Baihong Pan3, Qiongyan Peng1,2, Jie Dong4, Xuebing Chen1,2, Xi Zhang1,2, Tao Ye5, 

Jianxi Huang6, and Wenping Yuan1,2 

1International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China 5 
2School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen 

University, Zhuhai 519082, Guangdong, China 

3Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA. 

4College of Geomatics & Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 

310018, Zhejiang, China 10 
5Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 

100875, China 

6College of Land Science and Technology, China Agricultural University, Beijing 100083, China 

Correspondence to: Wenping Yuan (yuanwp3@mail.sysu.edu.cn) 

Abstract. Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. 15 

However, there is no high-resolution map of rice covering all of China. This study developed a new rice mapping method by 

combining optical and synthetic aperture radar (SAR) images in cloudy areas based on the time-weighted dynamic time 

warping (TWDTW) method and produced distribution maps of single-season rice in 21 provincial administrative regions of 

China from 2017 to 2022 at 10 or 20-m resolution. The accuracy was examined by using 108195 survey samples and county-

level statistical data. On average, the user’s, producer’s, and overall accuracy over all investigated provincial administrative 20 

regions were 73.08 %, 82.81 %, and 85.23 %, respectively. Compared with the statistical data from 2017 to 2019, the 

distribution map explained 83 % of the spatial variation of county-level planting areas on average. The distribution maps can 

be obtained at https://doi.org/10.57760/sciencedb.06963 (Shen et al., 2023).  
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1. Introduction 25 

As the fourth-largest grain crop in the world, rice contributed 8 % to world food production in 2019 (FAO, 2021). Rice 

is a staple food for more than half of the world’s population and plays an important role in ensuring global food security (Elert, 

2014; Kuenzer and Knauer, 2013). The flooding of rice paddy fields constitutes a major source of methane emissions (IPCC, 

2022; Mohammadi et al., 2020). Therefore, quickly and accurately identifying the planting location of rice over a large area is 

very important.  30 
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Most commonly, large-scale crop mapping takes advantage of satellite data (Dong et al., 2020; Huang et al., 2022; Xiao 

et al., 2006, 2005). Popular crop-mapping methods are various machine learning methods, such as random forest (Boryan et 

al., 2011; Fiorillo et al., 2020; You et al., 2021), support vector machine (Zheng et al., 2015), and deep learning (Thorp and 

Drajat, 2021; Zhao et al., 2019; Zhong et al., 2019). Machine learning methods provide several advantages in crop mapping 

but require training samples (Belgiu and Csillik, 2018), commonly in the order of hundreds or even thousands to obtain a 35 

satisfactory accuracy (Millard and Richardson, 2015; Valero et al., 2016). For example, the Cropland Data Layer (CDL) 

products produced by the U.S. Department of Agriculture (USDA) use tens of thousands of training samples to map the crops 

of a single state (Boryan et al., 2011). Therefore, such large-scale investigations are very time-consuming and labor-intensive.  

Another crop mapping approach is based on the detection of specific phenological signals. Xiao et al. (2005, 2006) 

produced a 500-m resolution rice map of Southern China, Southeast Asia, and South Asia using MODIS data by comparing 40 

the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) with the Land Surface Water 

Index (LSWI). In addition, Dong et al. (2016) also used the flood-detection method, producing a rice map with 30-m spatial 

resolution in Northeast Asia based on Landsat-8 data. Because of the short flooding period, the influence of clouds and rain in 

a few images will lead to missing the flooding signal and decreased accuracy, placing high requirements for image quality and 

time resolution (Dong et al., 2016). 45 

Additional crop mapping approaches are the dynamic time warping (DTW) and the time-weighted dynamic time warping 

(TWDTW) methods, which do not consider the crop characteristics within a certain time period but compare the signals over 

an extended period (Belgiu and Csillik, 2018; Qiu et al., 2017; Skakun et al., 2017; Zheng et al., 2022b). Guan et al. (2016) 

mapped rice in Vietnam using the DTW method based on MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI 

data, reaching an R2 of 0.809. The TWDTW method, which is an improvement of the DTW method, adds a time weight to the 50 

calculation to characterize the temporal difference, improving identification accuracy (Maus et al., 2016). The TWDTW 

method has been used in several studies to produce high-resolution crop maps of many kinds of crops, including winter wheat, 

sugar cane, and maize (Dong et al., 2020; Huang et al., 2022; Zheng et al., 2022a; Shen et al., 2022). A previous study also 

used the TWDTW method to produce a map of double-season paddy rice in China by using the vertical-horizontal (VH) band 

signal from the Sentinel-1 satellite (Pan et al., 2021).  55 

Because of the flooding during rice planting, the traditional rice mapping methods use water indexes derived from optical 

images, such as LSWI (Xiao et al., 2002, 2005). However, optical images are greatly impacted by clouds, heavily limiting 

their availability in cloudy regions (Li and Chen, 2020; Sudmanns et al., 2020; Zhou et al., 2019). An alternative is the use of 

synthetic aperture radar (SAR) images. Compared with the optical signal, the SAR signal can penetrate through clouds, 

completely avoiding their influence (Oguro et al., 2001; Phan et al., 2018). Several studies have demonstrated the capability 60 
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of SAR in rice identification and obtained good mapping results at the regional scale (Nguyen et al., 2016; Han et al., 2021; 

Pan et al., 2021). However, compared with optical data, SAR data also has more significant salt-and-pepper noises, which may 

affect the accuracy of the distribution map (Oliver and Quegan, 2004).  

China is the world’s largest rice producer, producing 209.61 million tons of rice in 2019 (China Statistical Yearbook, 

2020). Except for a few provinces in Southeastern China, most of the rice-planting provinces are dominated by single-season 65 

rice. Although there are many previous studies on mapping rice in China, a high-resolution single-season rice map is still not 

available for the entire country. This study attempts to fill this gap and aims to: (1) develop a new phenology-based method 

for rice mapping; (2) produce high-resolution distribution maps of single-season rice in China from 2017 to 2022; (3) evaluate 

the accuracy of the identified areas using county-level statistical data and survey samples. 

2. Data and methods 70 

2.1 Study area 

This study was conducted in 21 provincial administrative regions in mainland China, where the total planting area of 

single-season rice was 19.92 million hectares, accounting for approximately 99.01 % of the total planting area of single-

season rice in mainland China according to the statistical data in 2018 (https://data.stats.gov.cn). The total production of the 

single-season rice in the study area was 150.46 million tons, accounting for approximately 98.91 % of the total production in 75 

mainland China in 2018. As single-season rice is wildly planted in China, this study further divided the study area into four 

subregions (Fig. 1). Subregion Ⅰ is the northern rice planting area, including Heilongjiang, Jilin, Liaoning, Inner Mongolia, 

and Ningxia. Because of temperature limitations, only single-season rice is planted in this subregion, with the transplanting 

period generally between late May and mid-June. Subregion Ⅱ is the middle southern single-season rice planting area, 

including provinces that only or mainly plant single-season rice (Jiangsu, Anhui, Hubei, Henan, Shandong, Shaanxi, and 80 

Shanghai) and provinces where single-season and double-season rice are both planted (Hunan and Jiangxi). The single-

season rice in this subregion is generally transplanted between mid-late May and late June. Subregion Ⅲ is the southeastern 

coastal single-season rice planting area, including Zhejiang, Fujian, and Guangxi. Here, single-season rice may be 

transplanted later than in Subregion Ⅱ, generally between mid-late May and early July. Subregion Ⅳ is the southwestern rice 

planting area, including Sichuan, Yunnan, Guizhou, and Chongqing. Single-season rice in this subregion is transplanted 85 

much earlier than in other subregions, generally between late April and mid-May.  
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2.2 Data 

2.2.1 Satellite data and landcover data 

The satellite data used in this study were from the Sentinel series launched by the European Space Agency (ESA). The 90 

SAR data were obtained from the Ground Range Detected (GRD, Level-1) product of Sentinel-1A, and the optical data were 

obtained from the Level-1C product of Sentinel-2. The SAR data used in this study were the VH band (dual-band cross-

polarization, vertical transmit/horizontal receive) at a spatial resolution of 10-m, and was composited into a 12-day temporal 

resolution by median. Optical data included ten bands (blue, green, red, and near infrared (NIR) at a 10-m spatial resolution, 

and red edge1 (RE1), red edge2 (RE2), red edge3 (RE3), red edge4 (RE4), shortwave infrared1 (SWIR1), and shortwave 95 

infrared2 (SWIR2) at a 20-m spatial resolution). Additionally, two indexes, NDVI and LSWI at a 10-m spatial resolution, were 

calculated with the following equations: 

NDVI =
𝜌𝑁𝐼𝑅  −   𝜌𝑟𝑒𝑑  

𝜌𝑁𝐼𝑅  +   𝜌𝑟𝑒𝑑

(1) 

LSWI =
𝜌𝑁𝐼𝑅  −   𝜌𝑆𝑊𝐼𝑅1 

𝜌𝑁𝐼𝑅  +   𝜌𝑆𝑊𝐼𝑅1

(2) 

where ρNIR, ρred, ρSWIR1 are the reflectances of the NIR, red, and SWIR1 bands of Sentinel-2, respectively. 100 

The Sentinel-2 Cloud Probability (S2C) product (https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY) was used to eliminate the influence of clouds. The 

product provides a cloud probability from 0 to 100 at a 10-m resolution, which has a higher resolution than the original QA60 

band of the Sentinel-2 dataset and is more flexible and accurate. In this study, the threshold of cloud probability was set to 50; 

pixels with a higher probability were regarded as clouds and removed. Considering the length of the transplanting period and 105 

the number of cloud-free images of each subregion, the optical data were composited to 12-day (Subregion Ⅰ) or 6-day 

(Subregion Ⅱ, Ⅲ, and Ⅳ) temporal resolution by median. Figure 2 shows the percentage of good optical observations during 

the study period of each pixel in the study area. A linear interpolation was applied to fill the gaps in the time series. To further 

eliminate the noise in the time series, a Savitzky-Golay (SG) filter with the order set to two and the window size set to five 

was applied to smooth the time series (Chen et al., 2004). All the preprocessing was completed on the Google Earth Engine 110 

(GEE) platform (Gorelick et al., 2017). Besides, this study used the Finer Resolution Observation and Monitoring of Global 

Land Cover (FROM-GLC) product as a mask to exclude non-cultivated areas (Gong et al., 2019). 

2.2.2 Field data and agricultural statistical data 

The field data were obtained through several field surveys we conducted across China during 2017–2021, including 37036 

samples of single-season rice and 71159 samples of other crops (double-season rice, maize, soybean, peanuts, etc.), forests, 115 
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built-up areas, water bodies, etc. An unmanned aerial vehicle (UAV; eBee, senseFly Ltd., Switzerland) was used in some of 

our surveys to take very-high-resolution images covering on average 0.1 km2. The images were visually interpreted to obtain 

sample points at a spatial resolution of 20 m. The province-level agricultural statistical data are published in the statistical 

yearbook of each province, and the county-level statistical data are published sporadically in the statistical yearbook of each 

province or city. Since the release of data usually lagged by two years or more, and the single-season rice planting areas were 120 

not published in many counties, this study only collected a total of 2748 county-level statistical single-season rice planting 

area data from 2017 to 2019 (Table 1). No available county-level statistical data were collected for Heilongjiang and Inner 

Mongolia due to the discrepancies between the administrative division and statistical caliber.  

2.3 Method 

2.3.1 Time-weighted dynamic time warping method 125 

This study generated the single-season rice distribution map by comparing the dissimilarity of the time series of each 

pixel with the standard time series of rice. The TWDTW method was used to calculate the dissimilarity (Petitjean et al., 2012; 

Dong et al., 2020). In this method, the unknown time series is non-linearly stretched or compressed to align with the standard 

single-season rice time series, and an accumulated distance is calculated by cumulating the distance of the alignment path. The 

accumulated distance of all possible alignments is calculated, and the minimum accumulated distance is used to represent the 130 

dissimilarity of two time series. Considering the phenophases of crops, a penalty called time weight is added to the calculation 

(Maus et al., 2016). When the time series is stretched or compressed, the difference caused by the dislocation of time axes is 

calculated, and a function (e.g., logistic function) is used to convert the time difference into a time weight. As a result, the 

TWDTW measures the difference between two time series by considering both shape and phenological information. 

Parameters of the TWDTW used in this study were suggested by Belgiu and Csillik (2018), by using a logistic function with 135 

α and β set to 0.1 and 50, respectively. Finally, the single-season rice was identified through a threshold of dissimilarity 

determined by the province-level statistical area. The total area of pixels with dissimilarity lower than the threshold was equal 

to the statistical area.  

2.3.2 Optical bands selection  

The most significant feature that distinguishes rice from other crops is the flooding during its transplanting period. 140 

Figure 3 shows the time series of all 10 optical bands or indexes of four main crops in Jilin Province in 2019. It can be seen 

that the time series of rice of three moisture-related bands or indexes, including SWIR1, SWIR2, and LSWI are significantly 

different from those of other crops during the transplanting period (DOY 133–181). LSWI is designed to characterize land 
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surface moisture, and its value positively correlates with land surface moisture, showing a high value during the 

transplanting period. In contrast, the two SWIR bands show the opposite, first decreasing and then increasing during the 145 

transplanting period, following a “V” shape. As the aim of this study was to map the distribution of single-season rice, the 

time series did not necessarily need to be able to characterize a certain land surface parameter like LSWI. The priority was 

whether a band or index could distinguish rice from other crops. As LSWI is calculated as the normalized difference of the 

NIR and SWIR1, and the NIR of rice also decreases slightly during the transplanting period, offsetting the LSWI increase 

caused by the decrease of SWIR1, erasing some differences and information. The change of SWIR2 was less pronounced 150 

than that of SWIR1, so SWIR1 was selected in this study to calculate the dissimilarity.  

The standard time series were generated using survey samples. Fifty single-season rice survey samples were randomly 

selected from all single-season rice points in each province. The SWIR1 time series of these samples were extracted, aligned 

according to the time when the minimum value appears, and averaged to obtain the standard time series of each province. 

The standard time series of 21 provincial administrative regions in four subregions all showed a “V” shape (Fig. 4). The time 155 

period of the standard time series was limited to the transplanting period, and the length of the standard time series were five 

in Subregion Ⅰ and seven in other subregions. Because the method is transferable between years, the standard time series 

retrieved from one year was used in all six years.  

2.3.3 TWDTW with translation and stretching 

Although the transplanting period of rice is short, farmers may transplant single-season rice over a longer period. 160 

Therefore, the “V” shape may appear earlier or later. In this study, the standard time series was translated and stretched along 

the time axis to match any possible period in which transplant might have occurred. To reduce the computational effort as 

well as to prevent overstretching, the standard time series was allowed to stretch for at most one time. Taking Subregion Ⅰ as 

an example, where rice is generally transplanted from late May to mid-June, the study period was set to day of year (DOY) 

121–193, with a total of seven observations to take decreasing and increasing phases of the “V” curve into consideration. 165 

The length of the standard time series was five, and time series within the study period with a length of five or six were 

selected to calculate the distance with the standard time series using the TWDTW method (Fig. 5). The minimum of all 

distance was selected to represent the dissimilarity of the pixel. Study periods of Subregion Ⅱ, Ⅲ, and Ⅳ were set to DOY 

121–199, 121–211, and 97–163, respectively. 

2.3.4 Combine SAR images in Southern China 170 

Compared with northern China, southern China is more heavily affected by clouds and rain, resulting in a worse quality 
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of optical observation (Fig. 2). This study introduced SAR observations as an auxiliary in Subregion Ⅱ, Ⅲ, and Ⅳ, as it can 

pass through clouds. Specifically, the VH band was used because studies have shown that VH polarization is more sensitive 

than VV in detecting field flooding (Nguyen et al., 2016; Wakabayashi et al., 2019). The VH time series of rice in the 

transplanting period also shows a “V” shape (Fig. 6). Although the shape of the rice curve differs from that of the other 175 

crops, their values partly overlap. As a coherent radar system, SAR images will inevitably carry salt-and-pepper noises 

(Veloso et al., 2017). Therefore, VH was only used when the quality of optical observation was extremely poor.  

First, the dissimilarity of an unknown VH time series and the standard VH time series were calculated at each pixel 

using the TWDTW method. The standard VH time series was generated using the same procedure as for SWIR1 (section 

2.3.2). The study periods of VH of Subregions Ⅱ, Ⅲ, and Ⅳ were set to DOY 121–193, 121–205, and 97–169, respectively 180 

(Fig. 7). Second, the distance of the pixel was replaced by the ranking of the pixel by sorting the distance as the distances 

were not comparable between different bands (i.e., SWIR1 and VH). In addition, a 20-m SWIR1 pixel covers four 10-m VH 

pixels, so the rankings of the SWIR1 pixels were multiplied by four and resampled to 10-m resolution to ensure that the 

dissimilarities of SWIR1 and VH were comparable. Third, the combined dissimilarity of each pixel was calculated by a 

weighted sum of the rankings of two bands, while the weight was determined by the times of good observations of the 185 

optical images. The weight w was calculated using a logistic function as: 

𝑤 =
1

1 + e−𝛼(𝑥−𝛽)
(3) 

where x is the times of good observations and α and β are parameters. Through a small range of tests, α and β were set to 2 

and 2.5, respectively. By setting the parameters, w was close to 1 when x was greater than 3, and close to 0 when x was less 

than 2.  190 

The combined dissimilarity d was calculated as: 

𝑑 = 𝑟𝑆𝑊𝐼𝑅1 × 𝑤 + 𝑟𝑉𝐻 × (1 − 𝑤) (4) 

where rSWIR1 and rVH are the ranking of SWIR1 and VH, respectively. 

The distribution map was generated from the combined dissimilarity using the threshold mentioned in section 2.3.1. 

2.3.5 Accuracy assessment 195 

The study assessed the accuracy of the distribution map by using field data and county-level statistical areas. In this 

study, the confusion matrix was used to show the classification of the distribution map on the survey samples, and three 

accuracies were calculated, including the producer’s accuracy (PA), user’s accuracy, and overall accuracy (OA), calculated 

as: 

PA =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 % (5) 200 
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UA =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 % (6) 

OA =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 % (7) 

where TP is the number of correctly classified single-season rice samples. TN is the number of correctly classified non-

single-season rice samples. FP is the number of non-single-season rice samples classified as single-season rice. FN is the 

number of single-season rice samples classified as non-single-season rice. 205 

The county-level statistical planting areas from statistical year books were also used to verify the accuracy of the 

distribution map by comparing with the identified planting area at the county level. The relationships between the identified 

areas and the statistical areas were evaluated by linear regression. The coefficient of determination (R2) and a relative error 

(RMAE) are calculated. The calculation equations of RMAE is as follows: 

RMAE =
∑ |𝑆𝐴𝑖 − 𝐼𝐴𝑖|

n
i=1

∑ 𝑆𝐴𝑖
n
i=1

(8) 210 

where SAi and IAi are the statistical area and identified area of the ith county, and n indicates the number of counties. 

3. Results 

This study generated the distribution maps of single-season rice from 2017 to 2022 in 21 provincial administrative regions 

in China, which well reproduced the distribution of single-season rice in China (Fig. 8). Northeast China Plain, Yangtze Plain, 

and Sichuan Basin are three major single-season rice production areas in China, and single-season rice is planted most 215 

frequently in Northeast China Plain (Fig. 8). To show the ability of the distribution map of representing the details of rice fields, 

we chose three UAV sites and compared the distribution map with very-high-resolution UAV images (Fig. 8). Figures 8a and 

8c were taken in July and show single-season rice fields in dark green (light green areas represent other planted vegetation). 

Figure 8b was taken in October, when single-season rice was about to be harvested, showing single-season rice fields in yellow-

green. Despite some noise, the single-season rice fields were well classified in our distribution map (Fig. 8d–f).  220 

The distribution map shows good performance in most of the provincial administrative regions. On average, the user’s, 

producer’s, and overall accuracy over all 21 provincial administrative regions were 73.08 %, 82.81 %, and 85.23 %, 

respectively (Table 2). The average overall accuracies in the four subregions were 95.69 %, 81.15 %, 86.75 %, and 80.18 %, 

respectively (Table 2). Subregion Ⅰ (i.e., the northern provinces), had higher accuracy, while the southern provinces, especially 

the provinces in subregion Ⅳ (southwest) had poor accuracy. User’s and producer's accuracies varied more between provinces 225 

than overall accuracy. The best user’s and producer’s accuracy all appeared in the northern provinces; the best user’s accuracy 

was obtained for Inner Mongolia (97.67 %), and the best producer’s accuracy for Liaoning (99.75 %) (Table 2). The lowest 

user’s accuracy appeared in Guangxi (46.96 %), and the lowest producer’s accuracy appeared in Jiangxi (49.22 %) (Table 2).  
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The county-level comparison with the statistical data showed a good performance. The identified area and statistical area 

had a very strong correlation, and the regression line was very close to the 1:1 line over all three years (Fig. 10). The slope 230 

ranged from 0.86 to 0.90, and R2 ranged from 0.78 to 0.86. 

Comparing on each province, the R2 of the distribution map compared with the statistical data ranged from 0.15 to 0.94; 

the slope ranged from 0.24 to 1.44, and the relative error ranged from 0.24 to 0.56. Subregion Ⅰ had the highest accuracy with 

an average R2 of 0.92, followed by Subregion Ⅱ with an average R2 of 0.70, and subregions Ⅲ and Ⅳ had poorer precision, 

both with an average R2 of 0.55. Several provinces with more mountainous areas (Fujian, Guangxi, and Guizhou) had lower 235 

accuracies, while plain and main production provinces (Jilin, Liaoning, Jiangsu, Anhui, and Hubei) had higher accuracies.  

4. Discussion 

Paddy rice is the second most widely planted crop in China. Its planting area has been relatively stable for many years 

(China Statistical Yearbook, 2020). From 1978 to 2005, the planting area of paddy rice decreased slowly, from 34.4 million 

hectares to 28.9 million hectares, and the planting area has been maintained at about 30 million hectares after 2005 (China 240 

Statistical Yearbook, 2020). The planting area of single-season rice accounted for two-thirds of all rice in China, and the 

production accounted for three-quarters of all rice (https://data.stats.gov.cn). Despite the importance of the single-season rice, 

rice mapping on a regional scale is still difficult. Many efforts have been made to map rice with a moderate or high spatial 

resolution at the provincial and regional scale, using machine learning methods and phenology-based methods (Pan et al., 2021; 

Xiao et al., 2006, 2005; You et al., 2021). However, these mapping methods have some limitations.  245 

Compared to machine learning methods, the TWDTW method has the advantage of requiring fewer training samples. In 

this study, the number of samples used in obtaining the standard time series was only 50. Many studies have reported that 

using machine learning methods to achieve high accuracy requires a large volume of training samples while obtaining samples 

is time-consuming and labor-intensive (Millard and Richardson, 2015; Valero et al., 2016). Therefore, the TWDTW method 

can be easily extended to regions or years with limited survey data compared to the machine learning methods. For example, 250 

You et al. (2021) mapped three crops, including rice in Northeast China from 2017 to 2020 by using a machine learning method 

(Random Forest), and achieved producer’s and user’s accuracy of rice greater than 90 %, except for the user’s accuracy in 

2017 (87 %). However, their study used more than 8000 training samples per year that needed to be updated every year. In 

contrast, this study achieved a similar accuracy with only 50 sample points per province in Northeast China.  

Compared with the flood-detection method developed by Xiao et al. (2005), the TWDTW method uses signals in a certain 255 

period before and after rice flooding, including more phenological information. Flood-detection methods are deeply affected 

by clouds and rain. The accuracy of a moderate-resolution rice map based on the MODIS data can be relatively high due to 

https://doi.org/10.5194/essd-2023-9
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



10 

 

the high temporal resolution and less cloudy pixels of the MODIS data (Xiao et al., 2006, 2005). However, when based on 

Landsat data, the accuracy of such high-resolution product was not satisfactory due to the influence of cloudy images (Dong 

et al., 2016). Furthermore, good observations in the southern areas of China are extremely scarce, especially in Subregion Ⅳ 260 

(southwestern), where the six-year average of the frequency of good observations is only between 25 % and 40 % during the 

transplanting period, making it impossible to map rice in these provinces using only optical images (Fig. 2). SAR images were 

introduced in this study in cloudy areas, making it possible to map rice in these areas.  

The introduction of SAR has made rice identification possible in these areas. However, the quality of SAR images is 

somewhat worse than that of optical images, which makes the accuracy of the distribution map in these areas still lower than 265 

that in less cloudy areas. The optical data for 2017 have the poorest observation quality, with the number of observations 

corresponding to the minimum distance only 1.16 (Fig. 12). This number of observations determines the high weight of the 

distances calculated from the SAR images, which explains the lowest R2 in 2017 (Fig. 10). Comparing the R2 of the county-

level comparison with the statistical data with the frequencies of optical observations during the study period, shows a positive 

correlation with R2 range from 0.35 to 0.57 (Fig. 13). That is, in areas where the optical observations are heavily affected by 270 

clouds, the accuracy remains low to some extent, even if SAR images are used as auxiliaries.  

Another important factor that affects identification accuracy is the fragmentation of planted areas. In mountainous 

provinces such as Guizhou, Chongqing, and Yunnan, there are many terraced rice fields, which are very narrow and fragmented 

(Cao et al., 2021; Yan et al., 2016). In these mountainous areas, rice fields may be less than 10 m wide, resulting in mixed 

pixels at 10-m resolution. In addition, as a side-looking radar system, SAR has a terrain effect, which produces more errors in 275 

mountainous areas (Beaudoin et al., 1995). To quantify the fragmentation of the distribution map, we regarded adjacent single-

season rice pixels as a patch, and counted the size of each patch. The fragmentation of the distribution maps in the same 

province varied little from year to year (Fig. 14). Guangxi, Guizhou, Shaanxi, Yunnan, and Fujian were the most fragmented 

provinces, with more than half of the pixels belonging to patches smaller than 100 pixels (about 1 hectare). The most 

fragmented province was Guangxi, where, each year, an average of 85.45 % of the pixels belonged to patches smaller than 280 

100 pixels (Fig. 14). Although there are plains in Guangxi, the plains are mostly planted with double-season rice, while single-

season rice is mostly planted in mountainous areas, resulting in extremely fragmented single-season rice cultivation. Using the 

percentage of pixels belonging to patches smaller than 100 pixels as an indicator of fragmentation, and comparing it with the 

identification accuracy, a significant negative correlation can be found (Fig. 15). The R2 of the fragmentation and identification 

accuracy ranged from 0.51 to 0.72, confirming that the fragmentation of single-season rice fields has a strong negative effect 285 

on the identification accuracy and is an important source of identification error (Fig. 15).  

Rice mapping strongly depends on the distinctive spectral characteristics of the flooding period. Its spectral characteristics 
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in the growing and harvesting periods are very similar to those of other summer crops. Therefore, previous studies all chose to 

capture the characteristics of the flooding period. However, optical and SAR images have their own limits during this short 

period. In this study, we combined two sources of satellite images together to overcome the limitations of each source of 290 

satellite data. However, this combination was still relatively simple. Some recent data fusion studies use machine learning 

methods to reconstruct high-quality optical data with both high spatial and temporal resolutions. We hope that these kinds of 

reconstructed datasets will help solve the limitations of optical images and help to produce more accurate single-season rice 

maps.  

5. Data availability 295 

The distribution map of single-season rice of 21 provincial administrative regions in China from 2017 to 2022 is available 

at https://doi.org/10.57760/sciencedb.06963 (Shen et al., 2023). The file format of the product is GeoTIFF with the spatial 

reference of WGS84 (EPSG:4326).  

6. Conclusions 

This study proposed a new rice mapping method based on the time-weighted dynamic time warping (TWDTW) method. 300 

The TWDTW distances of the shortwave infrared1 (SWIR1) band from optical images and of the VH band from synthetic 

aperture radar (SAR) images were combined according to a weight, and the number of good optical observations was used to 

determine the weight. By using this method, this study produced distribution maps of single-season rice in China from 2017 

to 2022 at 10-m or 20-m resolution. The overall accuracy over 21 provincial administrative regions averaged 85.23 % based 

on 108195 samples; the average R2 was 0.83 over three years compared with county-level statistical planting areas. However, 305 

the method did not fully resolve the limitations of optical and SAR images as clouds and the fragmentation of the rice fields 

still affected the accuracy of the distribution map. In general, this study produced high-resolution single-season rice maps of 

China, and the method can be easily applied to other regions and the maps can be updated annually.  

Author contributions 

WY and RS designed the research. BP, RS, QP, JD, XC, XZ, TY, and JH performed the investigation. RS, BP, JD, and 310 

WY developed the method. RS implemented the computer code, performed the formal analysis, visualized the results, and 

wrote the manuscript. WY and QP edited and revised the manuscript.  

https://doi.org/10.5194/essd-2023-9
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



12 

 

Competing interests 

The authors declare that they have no conflict of interest.  

Financial support 315 

This study was supported by the Open Research Program of the International Research Center of Big Data for Sustainable 

Development Goals (Grant No. CBAS2023ORP02).  

References 

Beaudoin, A., Stussi, N., Troufleau, D., Desbois, N., Piet, L., and Deshayes, M.: On the use of ERS-1 SAR data over hilly 

terrain: necessity of radiometric corrections for thematic applications, in: 1995 International Geoscience and Remote Sensing 320 

Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, 1995 International Geoscience and 

Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 2179–

2182, https://doi.org/10.1109/IGARSS.1995.524141, 1995. 

Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time 

warping analysis, Remote Sensing of Environment, 204, 509–523, https://doi.org/10.1016/j.rse.2017.10.005, 2018. 325 

Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture: the US Department of Agriculture, National 

Agricultural Statistics Service, Cropland Data Layer Program, Geocarto International, 26, 341–358, 

https://doi.org/10.1080/10106049.2011.562309, 2011. 

Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in 

China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine, Earth Syst. Sci. Data, 13, 2437–330 

2456, https://doi.org/10.5194/essd-13-2437-2021, 2021. 

Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar, C., and Moore, B.: Mapping paddy rice planting 

area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine, Remote Sensing of 

Environment, 185, 142–154, https://doi.org/10.1016/j.rse.2016.02.016, 2016. 

Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of 335 

winter wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081–3095, 

https://doi.org/10.5194/essd-12-3081-2020, 2020. 

Elert, E.: Rice by the numbers: A good grain, Nature, 514, S50–S51, https://doi.org/10.1038/514S50a, 2014. 

FAO: World Food and Agriculture – Statistical Yearbook 2021, FAO, https://doi.org/10.4060/cb4477en, 2021. 

Fiorillo, E., Di Giuseppe, E., Fontanelli, G., and Maselli, F.: Lowland Rice Mapping in Sédhiou Region (Senegal) Using 340 

Sentinel 1 and Sentinel 2 Data and Random Forest, Remote Sensing, 12, 3403, https://doi.org/10.3390/rs12203403, 2020. 

Guan, X., Huang, C., Liu, G., Meng, X., and Liu, Q.: Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based 

Time-Series Similarity Measurement Based on DTW Distance, Remote Sensing, 8, 19, https://doi.org/10.3390/rs8010019, 

https://doi.org/10.5194/essd-2023-9
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

2016. 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F., Zhuang, H., Zhang, J., and Tao, F.: NESEA-Rice10: high-resolution 345 

annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019, Earth Syst. Sci. Data, 13, 5969–5986, 

https://doi.org/10.5194/essd-13-5969-2021, 2021. 

Huang, X., Fu, Y., Wang, J., Dong, J., Zheng, Y., Pan, B., Skakun, S., and Yuan, W.: High-Resolution Mapping of Winter 

Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020, Remote Sensing, 14, 2120, 

https://doi.org/10.3390/rs14092120, 2022. 350 

IPCC: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment 

Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, 

USA, 2022. 

Kuenzer, C. and Knauer, K.: Remote sensing of rice crop areas, International Journal of Remote Sensing, 34, 2101–2139, 

https://doi.org/10.1080/01431161.2012.738946, 2013. 355 

Li, J. and Chen, B.: Global Revisit Interval Analysis of Landsat-8 -9 and Sentinel-2A -2B Data for Terrestrial Monitoring, 

Sensors, 20, 6631, https://doi.org/10.3390/s20226631, 2020. 

Maus, V., Camara, G., Cartaxo, R., Sanchez, A., Ramos, F. M., and de Queiroz, G. R.: A Time-Weighted Dynamic Time 

Warping Method for Land-Use and Land-Cover Mapping, IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 9, 3729–3739, https://doi.org/10.1109/JSTARS.2016.2517118, 2016. 360 

Millard, K. and Richardson, M.: On the Importance of Training Data Sample Selection in Random Forest Image Classification: 

A Case Study in Peatland Ecosystem Mapping, Remote Sensing, 7, 8489–8515, https://doi.org/10.3390/rs70708489, 2015. 

Mohammadi, A., Khoshnevisan, B., Venkatesh, G., and Eskandari, S.: A Critical Review on Advancement and Challenges of 

Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis, Processes, 8, 1275, 

https://doi.org/10.3390/pr8101275, 2020. 365 

National Bureau of Statistics of China: China Statistical Yearbook, MARY MARTIN, 2020. 

Nguyen, D. B., Gruber, A., and Wagner, W.: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-

1A data, Remote Sensing Letters, 7, 1209–1218, https://doi.org/10.1080/2150704X.2016.1225172, 2016. 

Oguro, Y., Suga, Y., Takeuchi, S., Ogawa, M., Konishi, T., and Tsuchiya, K.: Comparison of SAR and optical sensor data for 

monitoring of rice plant around Hiroshima, Advances in Space Research, 28, 195–200, https://doi.org/10.1016/S0273-370 

1177(01)00345-3, 2001. 

Oliver, C. and Quegan, S. (Eds.): Understanding synthetic aperture radar images, SciTech Publishing, Raleigh, NC, 479 pp., 

2004. 

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-

Season Paddy Rice in China, Remote Sensing, 13, 4609, https://doi.org/10.3390/rs13224609, 2021. 375 

Petitjean, F., Inglada, J., and Gancarski, P.: Satellite Image Time Series Analysis Under Time Warping, IEEE Trans. Geosci. 

Remote Sensing, 50, 3081–3095, https://doi.org/10.1109/TGRS.2011.2179050, 2012. 

https://doi.org/10.5194/essd-2023-9
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



14 

 

Phan, H., Le Toan, T., Bouvet, A., Nguyen, L., Pham Duy, T., and Zribi, M.: Mapping of Rice Varieties and Sowing Date Using 

X-Band SAR Data, Sensors, 18, 316, https://doi.org/10.3390/s18010316, 2018. 

Qiu, B., Luo, Y., Tang, Z., Chen, C., Lu, D., Huang, H., Chen, Y., Chen, N., and Xu, W.: Winter wheat mapping combining 380 

variations before and after estimated heading dates, ISPRS Journal of Photogrammetry and Remote Sensing, 123, 35–46, 

https://doi.org/10.1016/j.isprsjprs.2016.09.016, 2017. 

Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., and Zhao, W.: A 30 m Resolution Distribution Map of Maize for China Based 

on Landsat and Sentinel Images, Journal of Remote Sensing, 2022, 9846712, https://doi.org/10.34133/2022/9846712, 2022. 

Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps 385 

of single-season rice in China from 2017 to 2022, Science Data Bank [dataset], https://doi.org/10.57760/sciencedb.06963, 

2023. 

Skakun, S., Vermote, E., Roger, J.-C., Franch, B., 1 Department of Geographical Sciences, University of Maryland, College 

Park, MD 20742, USA, and 2 NASA Goddard Space Flight Center Code 619, 8800 Greenbelt Road, Greenbelt, MD 20771, 

USA: Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at 390 

Regional Scale, AIMS Geosciences, 3, 163–186, https://doi.org/10.3934/geosci.2017.2.163, 2017. 

Sudmanns, M., Tiede, D., Augustin, H., and Lang, S.: Assessing global Sentinel-2 coverage dynamics and data availability for 

operational Earth observation (EO) applications using the EO-Compass, International Journal of Digital Earth, 13, 768–784, 

https://doi.org/10.1080/17538947.2019.1572799, 2020. 

Thorp, K. R. and Drajat, D.: Deep machine learning with Sentinel satellite data to map paddy rice production stages across 395 

West Java, Indonesia, Remote Sensing of Environment, 265, 112679, https://doi.org/10.1016/j.rse.2021.112679, 2021. 

Valero, S., Morin, D., Inglada, J., Sepulcre, G., Arias, M., Hagolle, O., Dedieu, G., Bontemps, S., Defourny, P., and Koetz, B.: 

Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial 

Resolutions, Remote Sensing, 8, 55, https://doi.org/10.3390/rs8010055, 2016. 

Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., and Ceschia, E.: Understanding the temporal 400 

behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications, Remote Sensing of Environment, 199, 

415–426, https://doi.org/10.1016/j.rse.2017.07.015, 2017. 

Wakabayashi, H., Motohashi, K., Kitagami, T., Tjahjono, B., Dewayani, S., Hidayat, D., and Hongo, C.: FLOODED AREA 

EXTRACTION OF RICE PADDY FIELD IN INDONESIA USING SENTINEL-1 SAR DATA, Int. Arch. Photogramm. 

Remote Sens. Spatial Inf. Sci., XLII-3/W7, 73–76, https://doi.org/10.5194/isprs-archives-XLII-3-W7-73-2019, 2019. 405 

Xiao, X., He, L., Salas, W., Li, C., Moore, B., Zhao, R., Frolking, S., and Boles, S.: Quantitative relationships between field-

measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields, International Journal 

of Remote Sensing, 23, 3595–3604, https://doi.org/10.1080/01431160110115799, 2002. 

Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., and Moore, B.: Mapping paddy rice agriculture in 

southern China using multi-temporal MODIS images, Remote Sensing of Environment, 95, 480–492, 410 

https://doi.org/10.1016/j.rse.2004.12.009, 2005. 

Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., and Moore, B.: Mapping paddy rice agriculture in South and 

Southeast Asia using multi-temporal MODIS images, Remote Sensing of Environment, 100, 95–113, 

https://doi.org/10.1016/j.rse.2005.10.004, 2006. 

https://doi.org/10.5194/essd-2023-9
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

Yan, J., Yang, Z., Li, Z., Li, X., Xin, L., and Sun, L.: Drivers of cropland abandonment in mountainous areas: A household 415 

decision model on farming scale in Southwest China, Land Use Policy, 57, 459–469, 

https://doi.org/10.1016/j.landusepol.2016.06.014, 2016. 

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in Northeast 

China during 2017–2019, Sci Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021. 

Zhao, H., Chen, Z., Jiang, H., Jing, W., Sun, L., and Feng, M.: Evaluation of Three Deep Learning Models for Early Crop 420 

Classification Using Sentinel-1A Imagery Time Series—A Case Study in Zhanjiang, China, Remote Sensing, 11, 2673, 

https://doi.org/10.3390/rs11222673, 2019. 

Zheng, B., Myint, S. W., Thenkabail, P. S., and Aggarwal, R. M.: A support vector machine to identify irrigated crop types 

using time-series Landsat NDVI data, International Journal of Applied Earth Observation and Geoinformation, 34, 103–112, 

https://doi.org/10.1016/j.jag.2014.07.002, 2015. 425 

Zheng, Y., Li, Z., Pan, B., Lin, S., Dong, J., Li, X., and Yuan, W.: Development of a Phenology-Based Method for Identifying 

Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets, Remote Sensing, 14, 1274, 

https://doi.org/10.3390/rs14051274, 2022a. 

Zheng, Y., dos Santos Luciano, A. C., Dong, J., and Yuan, W.: High-resolution map of sugarcane cultivation in Brazil using a 

phenology-based method, Earth Syst. Sci. Data, 14, 2065–2080, https://doi.org/10.5194/essd-14-2065-2022, 2022b. 430 

Zhong, L., Hu, L., Zhou, H., and Tao, X.: Deep learning based winter wheat mapping using statistical data as ground references 

in Kansas and northern Texas, US, Remote Sensing of Environment, 233, 111411, https://doi.org/10.1016/j.rse.2019.111411, 

2019. 

Zhou, Y., Dong, J., Liu, J., Metternicht, G., Shen, W., You, N., Zhao, G., and Xiao, X.: Are There Sufficient Landsat 

Observations for Retrospective and Continuous Monitoring of Land Cover Changes in China?, Remote Sensing, 11, 1808, 435 

https://doi.org/10.3390/rs11151808, 2019. 

 

https://doi.org/10.5194/essd-2023-9
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



16 

 

 

Figure 1: The study area includes 21 provincial administrative regions in China and is divided into four subregions (colored 

areas). The black dots indicate the samples obtained from the survey, and the green triangles indicate the unmanned aerial 440 

vehicle (UAV) survey sites. 
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Figure 2: Percentage of good observations of Sentinel-2 during the study period of 2017–2022 (a). The bottom row (b–g) 

shows the frequencies of percentages of good observations in each province during the study period of each year. 445 
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Figure 3: Time series of 10 optical bands or indexes over four main crop types in Jilin province in 2019. Solid lines indicate 

the average time series, and the shaded error bands represent the standard deviations. 

 450 
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Figure 4: Standard SWIR1 time series of single-season rice in 21 provincial administrative regions in four subregions. 

 

 

Figure 5: A time series of SWIR1 in Jilin Province. The period between dashed lines (DOY 121–193) is the study period. 455 

Five green curves are the time series selected to calculate the distance with the standard time series using the TWDTW 

method. 
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Figure 6: Time series of the VH band over four main crop types in Henan Province in 2019. Solid lines indicate the average 460 

time series; the shaded error bands represent the standard deviations. 

 

 

Figure 7: Standard VH time series of single-season rice in 16 provincial administrative regions in Subregions Ⅱ, Ⅲ, and Ⅳ. 

 465 
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Figure 8: Planting frequency of single-season rice in China from 2017 to 2022. 
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Figure 9: Distribution map in three UAV sites of Hubei (114°47′49″ E, 31°1′11″ N), Zhejiang (120°32′33″ E, 29°57′14″ N), 470 

and Sichuan (106°44′15″ E, 30°19′5″ N). (a)–(c) are very-high-resolution UAV images taken at three sites on July 8, 2018, 

October 12, 2018, and July 13, 2018, respectively. (d)–(f) are distribution maps with identified single-season rice pixels 

indicated in red. 

 

  475 

Figure 10: County-level comparison of identified and statistical planting areas of 2017–2019. Solid lines are 1:1 lines; dashed 
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lines are regression lines. The confidence intervals are shaded in gray.  

 

 

Figure 11: Comparison between identified and statistical planting areas at the county-level of 2017–2020 in 19 provincial 480 

administrative regions. 
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Figure 12: Times of good observations of Sentinel-2 during the time period corresponding to the minimum TWDTW 

distance in identified single-season rice pixels in 19 provincial administrative regions in Subregion Ⅱ, Ⅲ, and Ⅳ in 2019. 485 

The bottom row (b–g) shows the times of good observations in each province during the time period corresponding to the 

minimum TWDTW distance of each year. 

 

 

Figure 13: Relationship between identification accuracies (R2 of county-level comparison with the statistical planting area) 490 

and provincial mean of good observation frequencies in 19 provincial administrative regions from 2017 to 2020. Dashed lines 
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are regression lines; the confidence intervals are shaded in gray.  

 

 

Figure 14: Distribution of the number of single patches. 495 

 

 

Figure 15: Relationship between identification accuracies (R2 of county-level comparison with the statistical planting area) 

and percentage of patches with a size less than or equal to 100 in 19 provincial administrative regions from 2017 to 2020. 

Dashed lines are regression lines; the confidence intervals are shaded in gray. 500 

 

Table 1: Number of available county-level statistical data 

Province Total number of 

counties 

2017 2018 2019 

Heilongjiang 128 0 0 0 

Jilin 60 49 50 50 

Liaoning 100 20 21 21 

Inner Mongolia 102 0 0 0 

Ningxia 22 10 10 10 

Jiangsu 99 66 71 60 

Anhui 104 57 90 68 

Hubei 103 78 78 77 

Hunan 122 111 119 117 
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Jiangxi 100 23 22 22 

Henan 158 39 50 38 

Shandong 137 18 18 18 

Shaanxi 107 21 21 21 

Shanghai 17 9 9 9 

Zhejiang 90 22 17 22 

Fujian 85 24 19 20 

Guangxi 110 44 29 27 

Sichuan 183 95 102 102 

Yunnan 129 125 125 125 

Guizhou 88 56 56 56 

Chongqing 38 37 37 37 

 

Table 2: Confusion matrices of the distribution map in 21 provincial administrative regions. 

Province Class SR1 Other UA (%) PA (%) OA (%) 

Heilongjiang 
SR2 164 5 89.13 97.04 

95.70 
Other 20 393 98.74 95.16 

Jilin 
SR 5598 16 90.32 99.71 

96.77 
Other 600 12840 99.88 95.54 

Liaoning 
SR 5890 15 92.41 99.75 

96.87 
Other 484 9541 99.84 95.17 

Inner Mongolia 
SR 84 10 97.67 89.36 

98.09 
Other 2 531 98.15 99.62 

Ningxia 
SR 47 5 69.12 90.38 

91.03 
Other 21 217 97.75 91.18 

Jiangsu 
SR 2249 58 62.42 97.49 

67.14 
Other 1354 636 91.64 31.96 

Anhui 
SR 1133 168 54.55 87.09 

63.88 
Other 944 834 83.23 46.91 

Hubei 
SR 2034 206 87.18 90.8 

87.31 
Other 299 1441 87.49 82.82 

Hunan 
SR 397 62 62.92 86.49 

83.77 
Other 234 1131 94.80 82.86 

Jiangxi 
SR 603 622 70.2 49.22 

67.18 
Other 256 1194 65.75 82.34 

Henan 
SR 2694 57 95.80 97.93 

99.13 
Other 118 17315 99.67 99.32 

Shandong 
SR 1977 241 72.47 89.13 

89.60 
Other 751 6566 96.46 89.74 

Shaanxi 
SR 454 43 71.50 91.35 

84.18 
Other 181 738 94.49 80.30 

Shanghai SR 128 7 83.12 94.81 88.13 
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Other 26 117 94.35 81.82 

Zhejiang 
SR 900 200 85.88 81.82 

90.67 
Other 148 2480 92.54 94.37 

Fujian 
SR 530 108 94.81 83.07 

90.36 
Other 29 754 87.47 96.30 

Guangxi 
SR 108 25 46.96 81.2 

79.21 
Other 122 452 94.76 78.75 

Sichuan 
SR 2031 353 62.51 85.19 

77.16 
Other 1218 3275 90.27 72.89 

Yunnan 
SR 78 72 69.64 52.00 

88.87 
Other 34 768 91.43 95.76 

Guizhou 
SR 1836 477 83.42 79.38 

89.39 
Other 365 5257 91.68 93.51 

Chongqing 
SR 486 408 54.30 54.36 

71.07 
Other 409 1521 78.85 78.81 

1number of field surveyed samples. 2number of identified samples. SR is single-season rice. 505 
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