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Abstract. In China, the demand for a more precise perception of the national land surface has become most urgent given the 10 

pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national 

coverage, however, is a non-trivial task and thus, an active area of research impeded by the challenges of image acquisition, 

manual annotation, and computational complexity. To fill this gap, the first 1-meter resolution national-scale land-cover map 

of China, SinoLC-1, was established using a deep learning-based framework and open-access data including global land-cover 

(GLC) products, open street map (OSM), and Google Earth imagery. Reliable training labels were generated by combining 15 

three 10-meter GLC products and OSM data. These training labels and 1-meter resolution images derived from Google Earth 

were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch 

between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised 

loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large 

storage and computing servers, processing the 73.25 TB dataset to obtain a final SinoLC-1 land-cover product covering the 20 

entire land surface of China, ~9,600,000 km2, took about 10 months. The SinoLC-1 product was validated using a visually 

interpreted validation set including 106,852 random samples and a statistical validation set collected from the official land 

survey report provided by the Chinese government. The validation results showed SinoLC-1 achieved an overall accuracy of 

73.61% and a kappa coefficient of 0.6595. Validations for every provincial region further indicated the accuracy of this dataset 

across whole China. Furthermore, the statistical validation results indicated SinoLC-1 conformed closely to the official survey 25 

reports. In addition, SinoLC-1 was qualitatively compared with five other widely used GLC products. These results indicated 

SinoLC-1 had the highest spatial resolution, the most accurate land-cover edges, and the finest landscape details. In conclusion, 

as the first 1-meter resolution national-scale land-cover map of China, SinoLC-1 delivered accuracy and provided primal 

support for related research and applications throughout China. The SinoLC-1 land-cover product is freely accessible at 

https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023). 30 
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1 Introduction 

As a basic earth observation application, land-cover mapping enables investigating human and nonhuman activities that 

shape the national landscape (Lin & Ho, 2003). Researchers and decision makers use the insights from the land-cover maps to 

assist communities and governments achieve Sustainable Development Goals (Wang et al., 2022). The past few decades have 

witnessed tremendous advancements in the spatial resolution of land-cover mapping products because remote-sensing images 35 

with finer spatial resolution can be acquired more easily (Roy et al., 2021). Very-high-resolution (VHR) imagery in particular, 

typically finer than 3 m/pixel, reveals land-cover objects at an ever finer granularity providing a clearer, more detailed picture 

of the situation on the ground (Feng & Li, 2020). These VHR land-cover datasets are becoming increasingly ubiquitous in 

numerous large-scale research and application domains, such as agriculture (Griffiths et al., 2019), urbanization (Luo & Ji, 

2022), and ecology (Yang et al., 2020). As the largest agricultural country and the second-largest economy in the world, China 40 

experienced rapid development and urbanization in the past decades (Chang & Brada, 2006; Guan et al., 2018), and much 

land-cover research about China has been conducted. However, the VHR land-cover map with national coverage is still 

unavailable in China, hindering effective policy formulation and efficient resource allocation. In this context, the investigation 

into the fine-grained national-scale land-cover map for China is a necessary guiding principle for comprehensively 

understanding the environment, development, and future trend of the country.  45 

Over the past 40 years, numerous satellite missions have been launched to improve the knowledge of Earth’s resources 

and monitor natural phenomena. With the continuous updating of airborne and space-borne platforms, the spatial resolution of 

the available remote-sensing images has undergone rapid increments of change (Tong et al., 2020; Li et al., 2022). Moreover, 

the studies for the land-cover mapping methods have achieved great progress. Based on the context, the quality and resolutions 

of the published land-cover products have been through the trends of coarse to fine (Cao & Huang, 2022). Nevertheless, due 50 

to the low orbit of the VHR image-captured platforms, the corresponding VHR land-cover products generally have a smaller 

coverage that is insufficient to cover entire China (Wang et al., 2021). Furthermore, even if the national-scale VHR imagery 

can be obtained by combining different image sources, the immense data volumes, laborious annotations, and onerous 

processes are still the main obstacles for the national-scale VHR land-cover mapping. Thus, current available land-cover 

datasets for China lack either a fine spatial resolution or nationwide coverage. In terms of coverage scale and spatial resolution, 55 

the existing land-cover datasets, which fully or partially cover China, can be grouped in the three general types: global-scale 

low-resolution, global-scale moderate-/high-resolution, and region-scale VHR land-cover products.  

(1) Global-scale low-resolution land-cover products: 

From the 1980s to the 2000s, global remote-sensing imagery with low resolution (LR, finer than 1000 m/px) can be 

captured by satellites including Satellite pour l'Observation de la Terre 4 (SPOT 4), Advanced Very High-Resolution 60 

Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Environmental Satellite. 

Subsequently, many representative LR global products have emerged, for example, the European Commission’s Joint 

Research Centre (JRC) published a 1 kilometer-resolution global land-cover (GLC) product in 2007, which was classified 
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based on the imagery from SPOT 4 (Bartholomé & Belward, 2007). The JRC and the United States Geological Survey 

(USGS) produced a 1 kilometer-resolution GLC product based on the monthly AVHRR normalized difference vegetation 65 

index composites (Loveland et al., 2010). Moreover, the USGS and the National Aeronautics and Space Administration 

produced a 500-meter-resolution GLC product in 2009, called MOD12Q1, which was based on MODIS imagery and 

classified through the decision tree (DT) algorithm (Friedl et al., 2010). 

(2) Global-scale moderate-/high-resolution land-cover products: 

From the 2010s to the 2020s, owing to the open-access imagery of Landsat and Sentinel missions with moderate (~30 70 

m) and high (~10 m) resolution, the research of the global-scale moderate-/high-resolution (MR/HR) land-cover mapping 

has blossomed. For the MR land-cover products, Gong et al. (2013) proposed the first 30-meter GLC product based on 

Landsat data, called FROM_GLC, with an overall accuracy of 65%. Soon afterward, based on the Landsat data and the 

imagery of the Huanjing-1 satellite, Chen et al. (2015) produced a 30-meter GLC product, called GlobeLand30, with an 

accuracy of 80%. Lately, based on Landsat time series imagery, Zhang et al. (2021) proposed GLC_FCS30, which is a 75 

30-meter GLC product with an accuracy of 83%. Numerous GLC products with high resolution were also published 

recently. Based on Sentinel-2A imagery, Gong et al. (2019) produced the first 10-meter GLC map with an accuracy of 

73%. Based on Sentinel-1 and 2 data, ESA provided an annually updated 10-meter GLC map since 2020, with a reported 

accuracy of 74% (Van De Kerchove et al., 2021). Similarly, based on Sentinel-2 imagery, Environmental Systems 

Research Institute (ESRI), Inc. and Impact Observatory, Inc. proposed a 10-meter GLC product in 2021, which reported 80 

an accuracy of 85% (Karra et al., 2021). 

(3) Region-scale very-high-resolution land-cover products: 

In the 2020s, with the easily available VHR imagery, establishing VHR land-cover datasets for fine object 

interpretation and deep learning-based research became a research hotspot (Xia et al., 2023). The current VHR land-cover 

datasets are generally regional scale (typically covering a few cities/provinces and smaller than a national scale) because 85 

of the limitation of the coverage and temporal resolutions of VHR imagery. For example, Wang et al. (2021) utilized 

imagery from airborne cameras and Google Earth to create a 0.3-meter-resolution regional-scale dataset, covering 536.15 

km2 areas (including Nanjing, Changzhou, and Wuhan in China). Huang et al. (2020) proposed a 2.1-meter-resolution 

regional-scale land-cover dataset, called Hi-ULCM, covering 42 major cities in China. Hi-ULCM was produced based on 

Ziyuan-3 (ZY-3) satellite imagery and reported an overall accuracy of 86%. Moreover, Du et al. (2020) produced a 2.4-90 

meter-resolution land-cover product, called PKU-USED, covering 81 China major cities. PKU-USED was based on the 

VHR imagery of ZY-3, Gaofen-6 (GF-6), and Google Earth, and reported an overall accuracy of 86% in Beijing. 

Different production schemes are used for these three types of land-cover products. For global-scale LR, MR, and HR 

land-cover products, the image sources (i.e., MODIS, Landsat, and Sentinel) are commonly free access and contain massive 

spectral information but relatively low spatial context than VHR imagery. Therefore, pixel-based machine learning algorithms, 95 

for example, support vector machine, decision tree, and random forest (RF), are usually adopted to produce acceptable results 

https://doi.org/10.5194/essd-2023-87
Preprint. Discussion started: 27 March 2023
c© Author(s) 2023. CC BY 4.0 License.



4 
 

(Defourny et al., 2007; Friedl et al., 2010; Gong et al., 2019). Nevertheless, the production of VHR land-cover products usually 

faces two main problems. First, VHR imagery is commonly captured from commercial and military satellites with high 

acquisition costs (Coltri et al., 2013; Pengra et al., 2015). Second, VHR imagery commonly contains a few bands, for example, 

the spaceborne 2.1-meter ZY-3 and 2-meter GF-6 imagery only contain four bands of red, green, blue, and near infrared. With 100 

limited spectral information and massive spatial details, pixel-based methods generally report low accuracy in the VHR land-

cover mapping task (Zhang et al., 2018). Based on the issue, the Object-Based Image Analysis (OBIA) technique is widely 

taken to produce VHR land-cover products. The OBIA-based methods depend on handcraft features to classify land objects 

and improve product accuracy (Jalan, 2012; Du et al., 2020). However, the feature selection of OBAI-based methods requires 

manual intervention, which inevitably limits their application in large-scale product productions (Pilant et al., 2020; Huang et 105 

al., 2020).  

Recently, with the blossoming of deep learning techniques, many studies have conducted deep learning-based models for 

producing VHR land-cover datasets. For example, in our previous work, the 1-meter National Agriculture Imagery Program 

imagery was taken to train a deep learning framework and produced the 15-class land-cover map for the entire state of 

Maryland, United States (Li et al., 2022). Moreover, by using limited spectral information from optical imagery, numerous 110 

studies have shown that deep learning methods are suitable and capable of obtaining satisfactory results in a variety of regional-

scale VHR applications such as land-use mapping (Srivastava et al., 2019), construction site mapping (Cao & Huang, 2022), 

greenhouse mapping (Ma et al., 2021), and change detection (Zhang et al., 2020; Li et al., 2021). However, existing deep 

learning methods rely on well-labeled data, which are time consuming and laborious to annotate. This limitation has created a 

large obstacle preventing the production of a national-scale land-cover map (Cao & Huang, 2022; Li et al., 2022).  115 

 
Figure 1. Demonstration of using the fine edge and texture information from VHR images to renew and refine the current ample 
coarse-resolution GLC products. The VHR remote sensing images in the figure are from © Google Earth 2021. 
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To overcome these limitations, in this paper, a deep learning-based low-cost framework is presented to create the first 1-

meter land-cover map for entire China, called SinoLC-1, by using freely available 1-meter Google Earth imagery, open-access 

10-meter GLC products, and Open Street Map (OSM) as input data. Figure 1 shows by combining the amply available GLC 

products containing adequate land-cover information and the VHR images containing fine edge and texture information, the 

VHR land-cover map is automatically refined through the proposed framework. In detail, the multisource 10-meter land-cover 120 

products and the OSM are first integrated to generate coarse training labels. About 30% of the land surface in China is selected 

to generate training pairs containing aligned VHR images and coarse labels. Training pairs are used to train the proposed low-

to-high network (L2HNet), which is a large-scale VHR land-cover mapping network inspired by our previous work (Li et al., 

2022). Considering the label noise caused by the mismatched resolution between the VHR images and the coarse labels, the 

L2HNet integrates a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss function to 125 

excavate the texture information from images and utilize the supervision information from labels. In practice, three large 

computing servers are used to conduct the network training and the mapping of SinoLC-1 parallelly. Finally, processing the 

whole 73.25TB data to produce the 1-meter land-cover map covering ~9,600,000 km2 area of China takes about 10 months. 

Moreover, SinoLC-1 is produced without using any commercial data and without any requirement for manual annotations, 

which means the production maintains low capital expenditure and low labor cost. To the best of our knowledge, the produced 130 

SinoLC1- is the first 1-meter-resolution and currently the highest resolution land-cover product that covers all of China.  

The remainder of this paper is arranged as follows. The dataset used is introduced in Sect. 2. The proposed framework 

including the processes of training data collection, land-cover classification, and assessment is illustrated in Sect. 3. The 

produced land-cover product is demonstrated, the validation results are analyzed, and the product limitations are discussed in 

Sect. 4. Access to the data is provided in Sect. 5. Finally, conclusions are given in Sect. 6. 135 

2 Datasets 

2.1 Open-access remote-sensing images at 1-meter resolution 

The VHR optical imagery was collected from the open-access Google Earth images at level 18, which approximately 

corresponds to a 1.07-meter resolution. Google Earth, a well-known tool widely used in many popular image processing and 

GIS software, provides freely available VHR images with large-scale coverage. By integrating the images captured from 140 

different satellites (e.g., Worldview, Quickbird, IKONOS, GeoEye1, Pleiades, SuperView-1, and Kompsat3A), Google Earth 

imagery enables covering a very large range including entire China (Zhao et al., 2014). This paper has two main reasons for 

adopting Google Earth as the image source of VHR national-scale land-cover mapping. First, most of the VHR imagery is 

commonly captured from commercial and military satellites, and purchasing the imagery covering entire China is 

extraordinarily expensive (Rahman et al., 2010; Coltri et al., 2013; Pengra et al., 2015). Second, Google Earth generally has 145 

mature sifting and preprocessing procedures to obtain cloudless, high-quality imagery (Pulighe et al., 2016). Based on this 

image source, the misclassification of land objects caused by the image quality, cloud, and cloud shadow can be minimized. 
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Many researchers have also reported the feasibility and possibility of using Google Earth imagery to conduct VHR large-scale 

land-cover mapping (Malarvizhi et al., 2016; Guo et al., 2016; Li et al., 2020). 

To construct the image database for producing SinoLC-1, the imagery of the “December 2021” version was collected 150 

according to every provincial administrative region border of China and cropped into the size of 6000 × 6000 pixels as the 

basic storage tile. The total storage size of imagery with the band of red, green, and blue was about 73.25 TB, covering 

~9,600,000 km2 land surface area of China. The use of Google Earth imagery and the country boundary are demonstrated in 

Figure 2 (a).  

2.2 Global land-cover data at 10-meter resolution 155 

Annotating the VHR labeled samples for national-scale VHR land-cover mapping is a challenging, laborious process. In 

general land-cover mapping studies, most of the published land-cover products rely on well-labeled training samples, which 

inevitably hinders their productivity and application coverage (Cao & Huang, 2022). In this paper, multiple open-access GLC 

products at 10-meter resolution were integrated to obtain reliable labeled samples and combined weakly and self-supervised 

strategies during the training to utilize them as a reasonable supervision source. Two considerations were made in generating 160 

training samples from public land-cover products. First, the time and labor costs of generating massive training samples for 

national-scale land-cover mapping are greatly reduced. Second, by integrating numerous public land-cover products whose 

accuracy and credibility have been validated, more stable and reliable training samples for the land-cover mapping can be 

generated.  

Concretely, the land-cover labeled data were collected from three open-access 10-meter GLC products, namely, 165 

FROM_GLC10 (Gong et al., 2019), ESRI world cover (Karra et al., 2021), and ESA_WorldCover v100 (Van De Kerchove et 

al., 2021). FROM_GLC10 was produced by using Sentinel-2A imagery, which reported an overall accuracy of 73% on a global 

scale. ESRI world cover (abbreviated as ESRI_GLC10) was produced based on Sentinel-2 imagery and reported an overall 

accuracy of 85%. ESA_WorldCover v100 (abbreviated as ESA_GLC10) was produced by using Sentinel-1 and Sentinel-2 

data, and reported an overall accuracy of 74%. Table 1 shows the land-cover types of these products and their corresponding 170 

relationship in the first to third columns. The land-cover types of the proposed SinoLC-1 are demonstrated in the fourth column. 

SinoLC-1 contains 11 land-cover classes and includes the unique class of “traffic route” compared with other products. 

Subfigure (1–3) of Figure 2(c) shows the demonstration samples of the three 10-meter GLC products located in Wuhan City. 
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 175 

  
(a) © Google Earth 2021 imagery of China (b) Seven geographical regions of China 

 
(c) Left: Distribution and volume of training sample. Right: Demonstration of the using GLC products, OSM data, and 1.07-

meter imagery from © Google Earth 2021 
Figure 2. Demonstration of the region division, training sample selection, and use of five datasets. 
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Table 1. Category relations between the FROM_GLC10, ESA_GLC10, ESRI_GLC10, and the proposed SinoLC-1. 

 FROM_GLC10 Esri_GLC10 ESA_GLC10 SinoLC-1 

Affiliation THU, China Esri & IO, USA ESA, Europe WHU, China 

Resolution ~10 meters ~10 meters ~10 meters 1.07 meter 

Coverage Global Global Global National (China) 

Land-cover type 
& Color 

 Forest  Trees  Trees  Tree cover 

 Shrubland  Scrub  Shrubland  Shrubland 

 Grassland  Grass  Grassland  Grassland 

 Cropland  Crops  Cropland  Cropland 

 Impervious area  Built area  Built-up 
 Building 

 Traffic route 

 Bare land  Bare  Barren/sparse veg.  Barren and sparse veg. 

 
Snow and ice 

 Snow and ice  Snow and ice  Snow and ice 
 Tundra 

 Water body  Water  Open water  Water 

 Wetland  
Flooded 

vegetation 
 Herbaceous wetland 

 Wetland 

 Mangroves 

   Moss and lichen  Moss and lichen 

Notes: THU=Tsinghua University; Esri=Esri, Inc.; IO=IO, Inc.; WHU=Wuhan University;  
 

2.3 Open Street Map data 

Traffic routes or transportation networks provide important information for understanding the development, urbanization, 

and population of a country (Osses et al., 2022). In VHR land-cover mapping research, traffic route is a fundamental land-

cover type in the classification hierarchy to reveal the urban pattern and reflect regional traffic (Boguszewski et al., 2020; Xia 

et al., 2023; Hu et al., 2023). Given that the traffic route can be clearly identified from the 1-meter resolution imagery, the 180 

land-cover type of “traffic route” was also considered in the proposed SinoLC-1 land-cover product. To obtain reliable traffic 

route labeled information, the road pattern labeled data were collected from the OSM database in vector format. As one of the 

most popular volunteered geographic information data sources, the road pattern labeled information provided by the OSM is 

stable and reliable, which is often used as a supplement data in the land-cover or land-use mapping task (Zhu et al., 2022; 

Zhong et al., 2020; Audebert et al., 2017). To utilize the OSM data as a labeled supervision source better, the vector OSM data 185 

were transformed into raster format at the same resolution as the GLC products used. Thus, they can be utilized as the pixel-

level labels to guide the training. Subfigure (4) of Figure 2(c) shows the samples of traffic route labels obtained from the OSM 

located in Wuhan City, Hubei Province. 
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Figure 3. Overall workflow of the L2H-Frame. The framework includes three main parts: (a) Collecting training pairs, (b) Land-
cover classification using the L2HNet, and (c) Accuracy assessment. The VHR remote sensing images in the figure are from © 
Google Earth 2021. 

3 Methods 

In this section, the proposed L2H-Frame, which is an efficient deep learning-based framework for national-scale VHR 190 

land-cover mapping, is introduced. Based on a series of weaky- and self-supervised strategies, the L2H-Frame only takes open-

access data sources (including VHR images and 10-meter resolution GLC products) as training data to produce the 1-meter 

resolution land-cover map of China, which allows the framework to maintain low capital expenditure cost in image acquisition 

and low labor cost in training label annotation. As the overall framework depicted in Figure 3, the L2H-Frame consists of three 

main steps: (a) Collecting nationwide training pairs, (b) Land-cover classification using the L2HNet, and (c) Accuracy 195 

assessments. In the following subsection, these main steps are introduced sequentially.  

3.1 Collecting nationwide training pairs 

To collect reliable training pairs for the national-scale VHR land-cover mapping process, 98 municipal-level areas were 

selected from the 34 provincial administrative regions of China. In every selected municipal-level area, the data were cropped 

into numerous non-overlapped tiles with the size of 6000 ×6000 pixels. In each tile, the training pairs were constructed by 200 

five types of data, which included three 10-meter GLC products, the OSM, and the 1.07-meter-resolution Google Earth imagery. 

Figure 2 (c) demonstrates the sample of the using data, location, and contained volume of tiles for all the selected training 

areas. Moreover, by considering the immense span of China’s territory and the variable landforms, according to the geographic 
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location, climate, economic development, and land-cover pattern (Lin, 2002; Ning et al., 2022), the land surface of China was 

divided into seven geographical regions for separate training. Figure 2 (b) shows the locations and borders of the seven 205 

geographical regions: east, northeast, north, northwest, central, southern, and southwest. 

The stable, reliable training labels are essential to the accuracy of the national-scale land-cover mapping results, so all the 

available 10-m GLC products were comprehensively synthesized to generate the basic land-cover prelabels, as shown in Figure 

3 (c). According to the classification system of mainstream large-scale land-cover products and the landscape style of China, 

the classification hierarchy of SinoLC-1 was defined as the following 11 land-cover classes: tree cover, shrubland, grassland, 210 

cropland, building, traffic route, barren and sparse vegetation, snow and ice, water, wetland, and moss and lichen. Specifically, 

to obtain reliable land-cover information and generate the training labels from these products, the classification hierarchy of 

three GLC products (i.e., ESA_GLC10, ESRI_GLC10, and FROM_GLC10) were unified according to Table 1, and then the 

unified results were intersected to generate the prelabels. In the prelabels, the pixels/areas, where their land-cover types were 

the same in the three GLC products, would be preserved as the stable labeled areas; otherwise, the pixels/areas would be set 215 

as unlabeled type and maintained void value. In particular, because the land-cover type of “moss and lichen” is a unique type 

of the ESA_GLC10 product, in the generation of prelabels, the areas covered by the “moss and lichen” type were directly 

inherited from the ESA_GLC10 product. Moreover, to generate stable labeled samples for the traffic route, the vector road 

pattern information collected from the OSM was transformed into raster format with the same resolution as the prelabels, and 

then the transferred samples of road pattern were overlayed to the prelabels to generate the final training labels. Figure 4 (a) 220 

shows the proportion of the selected training area in each geographical region, and Figure 4 (b) shows the land-cover 

distribution of the training labels in each geographical region. 

 

  
(a) Proportion of training area (b) Class distribution of training labels 

Figure 4. Statistical information of the selected training labels in seven geographical regions. 
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3.2 Land-cover classification using low-to-high network 

3.2.1 Training of low-to-high network 225 

To process the resolution-mismatched training pairs and realize automatic national-scale VHR land-cover mapping for 

China jointly, an low-to-high network (L2HNet) was applied, which has been proposed in our previous work (Li et al., 2022) 

and has reported state-of-the-art performance compared with the mainstream methods in the low-to-high land-cover mapping 

task. Aiming at robustly extracting multiscale features and taking the coarse labels as a more reasonable supervision source 

during the training, as shown in Figure 3 (b), the L2HNet was designed by combining a resolution-preserving (RP) backbone, 230 

a weakly supervised-based confident area selection (CAS) model, and an unsupervised-based low-to-high (L2H) loss.  

To extract features robustly from the VHR images, the images first passed through an input layer (i.e., a 64-channel 3×3 

convolutional layer) to obtain dense feature maps. Then, the RP backbone consisting of five blocks, where each block contained 

multiscale (i.e., 1×1, 3×3, and 5×5) convolution layers with the channel setting of “64:32:16,” extracted the multiscale 

information from the dense feature maps by highly preserving their spatial resolution. Unlike the vanilla deep learning-based 235 

networks that deeply down-sample the features with encoder–decoder structures (e.g., UNet [Ronneberger et al., 2015] and 

DeepLabv3+ [Liang-Chieh et al., 2018]), in each block of the L2HNet, the channel number of different scale convolutional 

layers were inversely proportional to their receptive fields, which meant the convolutional layers with larger scale were set 

with smaller channel numbers. Therefore, the multiscale layers can scan the feature maps with properly receptive fields to 

preserve the feature resolution rather than over down sampling them in case of losing feature details. Lastly, based on a 240 

classifier constructed by a SoftMax function and a 1×1 convolutional layer, the extracted features were classified into the 

prediction results and the corresponding confidence probability (CP) map. 

To take the coarse training label as a more reasonable supervision source, the L2H loss was designed as a two-part 

composition with weakly and self-supervised strategies. For the first part, a weakly supervised-based CAS module was 

designed to select the trustworthy parts from the coarse labels and ignore the noisy samples according to the CP map of the 245 

predictions. Then, the confident area set (represented as 𝐂𝐀), which had high CP in the predictions, was selected to calculate 

the cross entropy (CE) loss with the coarse labels, and the vague area set (represented as 𝐕𝐀), which had low confidence, was 

ignored during the CE loss calculation. Formally, for a training patch with the size of 𝑊 ×𝐻, 𝐘!,	𝐘̂, and 𝐆̂ represent the coarse 

training labels, the prediction results, and the selected mask generated by the CAS module, respectively. The modified CE loss 

can be written as follows: 250 

ℒ!""𝐘#, 𝐘̂, 𝐆̂' =
−∑$%&'  ∑(%&)   ,𝑔̂$(∑*%+,  𝑦#	$(

(*) log 3𝑦̂$(
(*)4	5

card	(𝐂𝐀) ,	
(1) 

where 𝑦!	"#
(%) and 𝑦̂"#

(%) denote class 𝑙 of the 10-meter label 𝐘′ and the prediction 𝐘! in coordinates (𝑖, 𝑗), respectively. Element 

𝑔̂"# of the selected mask 𝐆̂ is a binary scalar to represent if the coordinate (𝑖, 𝑗) is selected into the 𝐂𝐀 set. 
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For the second part, by considering the feature similarity of the same land-cover classes, the unsupervised dynamic vague 

area (DVA) loss was designed to constrain the within-class variance dynamically (Otsu, 1979) between the well-predicted 𝐂𝐀 

set and unsupervised 𝐕𝐀 set in the feature space. Formally, the 2-norm of the inter-area mean difference was used, represented 255 

as 𝜎%,() , to describe the land-cover class 𝑙 ∈ [1, 𝐿] variance in the 𝑏 ∈ [1, 𝐵] feature layer. Moreover, the DVA loss is the 

accumulation of 𝜎%,()  in every land-cover class and feature layer, whose specific form is as follows: 

ℒ/01 = 𝛾 ??𝜎*,34
,

*%+

5

3%+ 	

	

,	
(2) 

where 𝛾 is a scale factor and set as 0.05 according to our previous work (Li, et al., 2022). By combining Eqs. (1) and (2), the 

L2H loss can be described as follows: 

ℒ,4) = ℒ!""𝐘#, 𝐘̂, 𝐆̂' + ℒ/01,	 (3) 

Furthermore, according to the location of seven geographical regions and the training sample distributions shown in 260 

Figure 2 (b) and (c), seven L2HNets were trained separately for every region to adapt the variable landforms and different 

land-cover patterns in the immense span of China’s territory better. During the training of L2HNet, each training tile (the 

aligned VHR image and training label with the size of 6000 × 6000 pixels) was randomly cropped into 500 patches, where 

each patch had a size of 256 × 256 pixels, to utilize the training data fully while ensuring training efficiency. 

3.2.2 Seamless mapping and merging  265 

To acquire the seamless national-scale land-cover map, during the inference of the well-trained networks, a seamless 

mapping and merging strategy was employed to process the massive data covering China successively. Specifically, as shown 

in Figure 5, the whole process included four steps. First, the nationwide 1-meter resolution imagery was sorted out according 

to the borders of each provincial administrative region. In each region, the regionwide coverage image was sequentially 

cropped into numerous non-overlapped image tiles with each size of 6000 × 6000 pixels. Second, to obtain the image batches 270 

that can be sent to the networks, each image tile was sequentially cropped into numerous 256 × 256 patches with 128 

overlapped pixels. Based on the training process introduced in Sect. 3.2.1, seven L2HNets were separately trained with the 

training pairs collected from seven geographical regions of China. Third, according to the geographical region of the input 

image source, the image batches were sent to the corresponding well-trained L2HNet, and the predicted batches of the land-

cover mapping results were obtained. The input batches had 128 overlapped pixels, so the predicted batches were seamlessly 275 

merged into the land-cover tiles by taking the average predicted values of the overlapped areas, which can reduce the influence 

of edge cracks between the cropped predicted batches. Finally, for each provincial administrative region, every merged land-

cover tile was sequentially spliced into the intact land-cover map.  
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Based on the procedure, three large computing servers including 8 NVIDIA GeForce RTX 3090 GPUs and a large storage 

server were employed to conduct the mapping and merging of the SinoLC-1 in parallel. Processing the whole imagery with a 280 

total storage size of about 73.25 TB to obtain the final results of the SinoLC-1 land-cover product covering ~9,600,000 km2 

area of China took about 10 months.  

 
Figure 5. Demonstration of the mapping and merging for producing SinoLC-1. The VHR remote sensing images in the figure are 
from © Google Earth 2021. 

3.3 Accuracy assessment 

Assessing the accuracy of land-cover products is an essential step in describing their quality before they are used in related 

applications (Olofsson et al., 2013). To validate the accuracy of the proposed SinoLC-1 at the pixel and statistical levels 285 

comprehensively, and to analyze the omission and commission error during the mapping in detail, a nationwide pixel-level 

validation set was built by randomly sampling and visually interpreting over 100,000 points for entire China, and a statistical-

level validation set for every provincial administrative region in China was derived by collecting the official third national 

land resource survey data from the Natural Resources and Planning Bureau of the Chinese government.  

3.3.1 Generating pixel-level validation sample set across China 290 

As a widely used assessment method for land-cover products, many studies including the 30-meter annual land-cover 

dataset of China (Yang & Huang 2021) and the impervious surface map of China (Gong, et al., 2019) divided the entire China 

https://doi.org/10.5194/essd-2023-87
Preprint. Discussion started: 27 March 2023
c© Author(s) 2023. CC BY 4.0 License.



14 
 

into numerous grids with the same size and randomly sampled the points in each grid for generating the validation sets. Based 

on these previous research, similarly, China was divided into 171 grids with each size of 3°	 × 	3°, and 800 points in each grid 

were randomly sampled to generate the national validation sample set for assessing the accuracy of SinoLC-1 across China. 295 

After removing the sample points located in the far ocean and outside the nation’s borders, 106,852 points remained, and then 

these sample points were manually annotated by combining the visual interpretation results of VHR imagery captured from 

Google Earth and HR imagery captured from Sentinel-2 mission to identify their land-cover types. Figure 6 shows the sample 

grids, distribution, and legend of the national validation sample set, and Figure 7 shows the class proportion of the sample set. 

Based on the national validation sample set, the overall results and calculating the quantitative metrics including the user’s 300 

accuracy (U.A.) (measuring the commission error), producer’s accuracy (P.A.) (measuring the omission error), overall 

accuracy (O.A.), and kappa coefficient for assessing the performance of SinoLC-1 can be comprehensively analyzed. 

 
Figure 6. Demonstration of the sample grid and the national validation sample set.	
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Figure 7. Class proportion of the national validation sample set. 

3.3.2 Collecting statistical-level validation set from government survey reports 

To assess the statistical-level performance of SinoLC-1 throughout entire China and every provincial administrative 305 

region, the statistical validation set was collected from the Third National Land Resource Survey Project (abbreviated as 3rd 

NLRS) from the Ministry of Natural Resources of the People’s Republic of China and the Natural Resources and Planning 

Bureau of every provincial administrative region in China. The NLRS projects were launched since 1984 to monitor urban 

expansion and land resources comprehensively through remote sensing technology (Zhang & Zhang, 2007; Liu et al., 2015). 

From Oct. 2017 to Dec. 2020, the 3rd NLRS project adopted remote-sensing images with a resolution better than 1 m to 310 

accumulate survey data for the entire China. Advanced technologies such as mobile Internet, cloud computing, and unmanned 

aerial vehicle were also widely used during the survey. Overall, 295 million survey spot data were collected, and the state of 

national land use and land cover had been thoroughly investigated. Therefore, the survey report collocated from the government 

institutes can be used as a reliable, authoritative reference source to validate the performance and quality of the produced 

SinoLC-1 at the statistical level. 315 

By considering the classification standard of the 3rd NLRS, the land-cover type relationship between the SinoLC-1 and 

the 3rd NLRS was built, as shown in Table 2. In the corresponding relationship, the 3rd NLRS data commonly have finer 

hierarchical land-cover types, e.g., for the general type “cropland,” six sub types are in the 3rd NLRS data. However, some of 

the land-cover types in the 3rd NLRS data were still described in a more generalized way. For example, the 3rd NLRS only 

contains three sub types (natural, artificial, and other grasslands) to describe the landscapes that are covered by spare and low 320 

vegetation, which correspond to the type of “grassland” and “barren and spare vegetation” in SinoLC-1. As shown in Table 3, 

the statistical validation set was collected from 31 provincial administrative regions, where three special administrative zones 

(Hongkong, Marco, and Taiwan) are not available in the 3rd NLRS project. In general, the statistical validation set enabled 
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comparing the statistical results of SinoLC-1 with the official survey data collected from the 3rd NLRS projects, and thus, 

assessing the overall performance of SinoLC-1.  325 

Table 2. Corresponding land-cover type relationship between the SinoLC-1 products and the 3rd national land survey. 
SinoLC-1 category 3rd NLRS land-cover type SinoLC-1 category 3rd NLRS land-cover type 

Tree cover 

Arbor woodland 

Building 

Urban land 

Bamboo groves Administrative towns 

Other woodland Village land 

Shrubland Shrubland Airport land 

Grassland 
Barren and  

sparse vegetation 

Natural grassland Wharf land 

Artificial grassland Pipeline transportation 

Other grassland Scenic Spot 

Cropland 

Paddy field Mining land 

Irrigated land 

Wetland 

Forest swamp 

Dry cropland Shrub swamp 

Orchard  Swampy grassland 

Tea plantation Coastal tidal flat 

Rubber plantation Inland tidal flat 

Other plantations Marshland 

Traffic route 

Railway 

Water 

River 

Rail transit Lake 

Highway Reservoir 

Rural road Pond 

Snow and ice Glaciers and snow Ditch 

Moss and lichen Tundra Hydraulic construction 
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Table 3. Statistical validation set collecting from the third national land resource survey projects. 

Geo. 

region 

Province/ 

City 

Statistical results of different land-cover types (km2) 

TR TC SL GL+BL&SV CL BD S&I WT WL M&L Total 

South 

Hainan 524 10ty799 943 172 17047 2469 0 1831 1157 57 34999 

Guangxi 3272 124831 36122 2762 49779 9862 0 7490 1178 94 235390 

Guangdong 3000 106522 1404 2386 32267 17761 0 13423 1683 106 178552 

East 

Fujian 2000 87427 686 750 18503 7112 0 3731 1874 12 122095 

Anhui 2824 40055 860 479 59196 17592 0 17285 477 0 138768 

Zhejiang 2268 58616 2319 0 20507 11562 0 7025 1655 1 103953 

Shanghai 275 818 1 0 1772 2944 0 1913 727 0 8450 

Jiangsu 3362 7787 84 936 43293 21109 0 25426 4264 0 106261 

Shandong 3997 25383 670 2352 77242 28233 0 13254 2463 0 153594 

Central 

Hubei 3047 83936 8865 894 53243 14176 0 19837 615 0 184613 

Hunan 3425 121363 5804 18515 45150 16341 0 12585 2362 0 225545 

Henan 3560 37362 6601 2572 79419 24502 0 14445 393 0 168854 

North 

Shanxi 2420 43611 17346 31051 45105 10198 0 1731 546 0 152008 

Hebei 3666 44371 19883 19473 70400 21113 0 5711 1428 0 186045 

Beijing 401 5977 3701 146 2509 3176 0 618 32 0 16560 

Inner 

Mongolia 
21228 167115 76564 543742 115508 15005 0 10645 38094 0 987901 

Tianjin 453 1852 0 150 3296 3322 0 2373 327 0 11773 

Northeast 

Liaoning 2654 52080 8077 4872 57100 13316 0 6916 2864 0 147879 

Jilin 272 15733 53 85 9303 1125 0 1001 82 0 27654 

Heilongjiang 5043 214459 1773 11857 172578 11678 0 16864 35010 0 469262 

Northwest 

Shaanxi 2804 106245 18515 22103 41483 9210 0 2733 487 0 203580 

Gansu 1320 11968 4488 149072 93632 15840 0 5984 10736 0 293040 

Xinjiang 5172 40832 81293 519860 81087 14188 22242 30842 15245 0 810761 

Ningxia 942 9537 0 20310 11984 2975 0 1688 249 0 47685 

Qinghai 3125 9096 36940 394708 6265 4928 4233 20233 51012 0 530540 

Southwest 

Guizhou 3174 79346 32755 1883 34726 7756 0 2554 71 0 162265 

Chongqing 1433 38067 8823 236 21508 6427 0 2717 150 0 79361 

Xizang 1596 98180 80782 800650 4540 1645 20715 38589 43025 0 1089722 

Yunnan 5219 220773 28917 13229 79676 10782 431 5654 398 0 365939 

Sichuan 4492 183471 70724 96879 64302 18501 459 10073 12309 0 461210 

Note:   
TR=Traffic route; TC=Tree cover; SL=Shrubland; GL+BL&SV=the total of ‘Grassland’ and ‘Barren and sparse vegetation’; 

CL=Cropland; BD=Building; S&I=Snow and ice; WT=Water; WL=Wetland; M&L=Moss and lichen. 
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4 Results and discussions 

4.1 SinoLC-1: a 1-meter resolution national-scale land-cover map for China 

First, the 1-meter resolution national-scale land-cover map for China (SinoLC-1) and the legend for the containing 11 330 

land-cover types are illustrated in Figure 8 and Table 4. The tree canopies and dense vegetation are mainly in the southern part 

and the northeast border of China; the croplands are mainly distributed in the north and northeast China plains; the northwest 

and southwest parts of China are mainly covered by large-scale grassland, barren, and sparse vegetations. In general, based on 

previous research and land-cover survey reports of China (Yue et al., 2007; Song & Deng, 2017), the overall visual result of 

SinoLC-1 accurately reflects the geospatial distribution of multiple land-cover categories and highly conforms to the actual 335 

land-cover pattern of China.  

 
Figure 8. Demonstration of SinoLC-1: a 1-meter-resolution national-scale land-cover map of China. 
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Second, to visualize the results of SinoLC-1 in detail, the 30-meter digital elevation model (DEM) data collected from 

the Shuttle Radar Topography Mission (SRTM) were illustrated, and three typical regions were selected to demonstrate the 

performance of the SinoLC-1 product. As shown in Figure 9, the three typical regions contain the main land-cover patterns in 340 

China and include the following: (1) northeastern China, where the northeastern plain (an important grain production base of 

China) and the Greater Khingan Range, known as the largest virgin forest in China, are located; (2) eastern China, where the 

northern plain (another important grain production bases of China) and the Yangtze River delta (an important economic zone 

in China) are located; and (3) southern China, where the Pearl River Delta, known as the largest urban agglomeration with the 

largest population in the world, is located. In detail, as shown in Figure 10, the sample areas of Heilongjiang, Jilin, and Liaoning 345 

Province in northeastern China shows the boundaries between forest, grassland, and cropland are clearly predicted. As shown 

in Figure 11 and Figure 12, the sample areas of Eastern China including Shandong, Jiangsu, and Jiangxi Province and Southern 

China including Guangxi, Guangdong, and Hainan Province show that villages of rural areas and city patterns of urban areas 

are accurately reflected in the SinLC-1 products. Overall, by combining all the visual results and analysis, the SinoLC-1 land-

cover product performs well in various landscapes (e.g., forest landform, rural, and urban) and shows acceptable results at the 350 

national and regional scales. 

 

Table 4. The classification system and legend of the SinoLC-1. 

Value Land-cover type Color 

2 Tree cover (0, 100, 0)  

3 Shrubland (255, 190, 35)  

4 Grassland (233, 255, 190)  

5 Cropland (255, 235, 175)  

6 Building (255, 170, 0)  

1 Road (255, 0, 0)  

7 Barren and sparse vegetation (180, 180, 180)  

8 Snow and ice (240, 240, 240)  

9 Water (0, 100, 200)  

10 Wetland (0, 150, 160)  

12 Moss and lichen (250, 230, 160)  
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Figure 10. Demonstration of northeastern China including the sample areas of Heilongjiang, Jilin, and Liaoning. The VHR remote 

sensing images in the figure are from © Google Earth 2021. 

 
Figure 9. Illustration of the 30-meter DEM data (from SRTM) and the locations of three demonstration areas. 
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Figure 12. Demonstration of Southern China including the sample areas of Guangxi, Guangdong, and Hainan. The VHR remote 
sensing images in the figure are from © Google Earth 2021. 

 
Figure 11. Demonstration of Eastern China including the sample areas of Shandong, Jiangsu, and Jiangxi. The VHR remote 
sensing images in the figure are from © Google Earth 2021. 
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4.2 Qualitative comparison with other land-cover products 355 

To assess the SinoLC-1 land-cover product qualitatively, the produced SinoLC-1 and five widely used large-scale land-

cover products were visually compared. The comparison land-cover products included ESA_GLC10 (Van De Kerchove et al., 

2021), FROM_GLC10 (Gong et al., 2019), ESRI_GLC10 (Karra et al., 2021), GLC_FCS30 (Zhang et al., 2021), and 

GlobeLand30 (Chen et al., 2015). The information for these comparison products is listed in Table 5. Figure 13 and Figure 14 

show five typical regions covering various landscapes and different land-cover patterns were selected to demonstrate the 360 

superiority of SinoLC-1 in the spatial-resolution aspect more directly. 

Table 5. Information for the comparative land-cover products. 

Name Resolution Version & Timeline 
Number of land-

cover type 
Overall accuracy 

ESA_GLC10 10m v2020 11 73% 

FROM_GLC10 10m v2017 10 74% 

ESRI_GLC10 10m v2020 10 85% 

GLC_FCS30 30m v2020 16 83% 

GlobeLand30 30m v2020 10 86% 
 

 

First, Figure 13 illustrates a large-scale comparison in Changzhou City, Jiangsu Province, where the region contains 

balance and various land-cover types. From the qualitative comparison, ESRI_GLC10 in Figure 13 (e) and GlobeLand30 in 

Figure 13 (g) have the blurriest land-cover results according to the VHR image in Figure 13 (a), where the detailed land object 365 

located in the urban areas (i.e., the tree canopy, building, and cropland) are seriously confused. Moreover, SinoLC-1, 

ESA_GLC10, FROM_GLC10, and GLC_FCS30 show relatively accurate spatial distributions of the land-cover types. Among 

them, GLC_FCS30 shows the worst performance in tree cover and slender land objects (i.e., traffic routes, rivers, and runoff). 

FROM_GLC10 shows accurate performance for water bodies (e.g., the pools, canals, and rivers) but performs unsatisfactorily 

in the type of tree cover. ESA_GLC10 shows relatively better results among other comparison products, but it still shows 370 

insufficient performance in water bodies. Compared with these GLC products, SinoLC-1 comprehensively shows the best 

performance, and the fine land-cover details including slender rivers, runoff, small pools, vegetation, and building are well 

predicted. Furthermore, because the land-cover type of traffic route is also included in the SinoLC-1 products, the roads across 

the city are well-predicted, which can better reflect the traffic pattern and city layout of the region. 

Second, Figure 14 illustrates four other typical regions, which were sampled from four provincial administrative regions 375 

including Shanghai, Jiangxi, Guangdong, and Hainan. Similarly, ESRI_GLC10 and GlobeLand30 have the worst 

performances and seriously lose the land-cover details. By comparing the urban areas shown in Figure 14 (a) and (b) (i.e., the 

demonstration areas of Shanghai and Jiangxi), SinoLC-1 indicates more accurate land-cover details, where some of the slender 

roads that cannot be observed in the 10-meter-resolution land-cover products are well predicted in the 1-meter-resolution 
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SinoLC-1 products. The comparison suggests 1-meter SinoLC-1 can be a better land-cover product in indicating the finer 380 

urban pattern and providing more accurate information to the users. By comparing the agricultural areas (e.g., fish ponds and 

paddy fields) in Figure 14 (c) and (d) (i.e., the demonstration areas of Guangdong and Hainan), ESRI_GLC10 and 

GlobeLand30 overestimate the water bodies and misguide the real land-cover situation, where many independent fish ponds 

and paddy fields are incorrectly mapped as a large water-cover area. On the contrary, ESA_GLC10 and GLC_FCS30 

underestimate the water bodies, where most of the ponds are not indicated in their mapping results. SinoLC-1 and 385 

FROM_GLC10 indicate the most accurate land-cover situations, where all single ponds are mapped. However, due to the 

limitation of the spatial resolution, FROM_GLC10 still loses partial land-cover details located around ponds and field (e.g., 

traffic route and tree canopy).  

Overall, by comparing the SinoLC-1 product with five widely used large-scale HR land-cover products in five typical 

regions, the produced SinoLC-1 shows three main advantages: (1) With higher spatial resolution, SinoLC-1 can reflect finer 390 

land objects and indicates more precise land details. (2) With more diverse and reliable training sample, SinoLC-1 shows more 

accurate spatial distributions in land-cover types. (3) With the additional land-cover type “traffic route,” SinoLC-1 can better 

outline the traffic network and city layout in dense urban areas. 
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Figure 13. Demonstration of the visual comparison for Changzhou City, Jiangsu Province. The VHR remote sensing image in the 

figure is from © Google Earth 2021. 
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Figure 14. Demonstrations of the visual comparison for four typical regions. The VHR remote sensing images in the figure are 
from © Google Earth 2021. 
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4.3 Quantitative analysis and accuracy assessment 395 

4.3.1 Pixel-level sample validation 

Based on the national validation sample set introduced in Sect. 3.3.1, over 100,000 sample points were visually interpreted 

to validate the accuracy of the SinoLC-1 land-cover product quantitatively. First, as a widely used method of assessing the 

accuracy of land-cover maps (Foody & Mathur, 2004; Gómez et al., 2016; Olofsson et al., 2014), the overall confusion matrix 

is shown in Table 6, and the confusion proportions for each land-cover type is demonstrated in Figure 15. With the confusion 400 

matrix, the O.A. and kappa coefficients were calculated to measure the overall performance of the SinoLC-1 product. Then, 

the U.A. and P.A. were calculated to measure the commission and omission errors of the product. Furthermore, the number of 

samples, coverage area, O.A., and kappa coefficient of every provincial administration region were listed in to demonstrate 

the accuracy of SinoLC-1 in different regions, as shown in Table 7. The spatial distribution of the O.A. of every provincial 

administration region and the statistical accuracy of every geographical region are shown in Figure 16. 405 

The confusion matrix in Table 6 shows the SinoLC-1 land-cover product achieves an O.A. of 73.61% and a kappa 

coefficient of 0.6595. In terms of P.A., the land-cover type of water has the highest accuracy (86.1%), followed by tree cover, 

barren and spare vegetation, grassland, cropland, and building; however, the land-cover type of shrubland, wetland, moss and 

lichen, snow and ice, and traffic route have relative low accuracies. By combining the class proportion of the validation sample 

set shown in Figure 7, the quantitative results of the basic land-cover types, which have easily distinguishable features and 410 

occupy a large area in China, report higher accuracies. By contrast, the land-cover types, which occupy a small area and have 

more complex features, obtain relatively low accuracies. 

The confusion proportion in Figure 15 shows three points. First, partial traffic routes are incorrectly classified into a few 

common land-cover types (e.g., tree cover, cropland, and grassland) because the models incorrectly predict the road width; 

thus, other land objects distributed on both sides of the roads cause commission errors. Second, most of the land-cover types 415 

including tree cover, shrubland, grassland, cropland, built-up, barren and spare vegetation, wetland, and water are well 

predicted and only contain a small proportion of the commission errors. Third, the land-cover types of snow and ice and moss 

and lichen are commonly distributed in the northwest region of China, so the confusing land-cover types are mainly the 

grassland and barren and spare vegetation, which are the most confusable types and occupy a large proportion of northwest 

China. 420 

The O.A. and kappa coefficient of every provincial administrative region in Table 7 and Figure 16 show the following 

findings. First, by comparing the spatial distribution of O.A in China, most of the provinces have an O.A. of over 70%, where 

eight provinces (Hainan, Taiwan, Jiangxi, Fujian, Yunnan, Chongqing, Xinjiang, and Heilongjiang) achieve over 80%, 

whereas Hebei and Beijing have relatively low O.A. (in the range of 50%–60%). Second, by comparing every geographical 

region shown in Figure 16 (b), southern and northeastern China have the highest O.A. among other regions (about 78%) 425 

because the land-cover type of tree cover occupies a very large proportion and the landscapes in southern and northeastern 

China are relatively simple. Northern China including Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia have the lowest 
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O.A. (lower than 70%) because the longitude span of the region is very wide, and the landscapes are diverse and various. 

Moreover, the rest of the geographical regions all have accuracies of over 70%. 

Table 6. Confusion matrix for the SinoLC-1 land-cover product according to the national validation sample sets. 

Classification TR TC SL GL CL BD BL&SV S&I WT WL M&L Total P.A. 
(%) 

Roads 447 173 5 209 184 228 240 0 28 0 0 1514 29.52 
Tree Cover 37 20708 14 2713 1899 124 134 0 352 5 52 26038 79.53 
Shrubland 0 25 270 74 27 2 102 0 1 0 0 501 53.89 
Grassland 9 1332 35 17256 1837 119 2848 0 75 11 401 23923 72.13 
Cropland 53 1310 45 1976 11424 275 857 0 119 16 0 16075 71.07 
Built-up 57 83 3 72 274 1128 122 0 8 0 0 1747 64.57 

Barren &Spare veg 50 209 23 5643 1031 418 24546 3 93 1 194 32211 76.20 
Snow and ice 0 2 0 94 7 0 51 135 2 0 92 383 35.25 

Water 2 21 0 39 105 12 59 0 1493 1 2 1734 86.10 
Wetland 0 37 11 46 28 3 7 0 14 135 0 281 48.04 

Moss & lichen 0 22 2 698 18 2 455 2 5 0 733 1937 37.84 

Total 655 23922 408 28820 16834 2311 29421 140 2190 169 1474 106344  

U.A. (%) 6824 86.56 66.00 59.88 67.86 48.81 83.43 96.43 68.17 79.88 49.73   

O.A. (%) 73.61 
Kappa 0.6595 

Note:   TR=Traffic route; TC=Tree cover; SL=Shrubland; GL=Grassland; CL=Cropland; BD=Building; BL&SV=Barren and sparse vegetation; 
S&I=Snow and ice; WT=Water; WL=Wetland; M&L=Moss and lichen. 

 

 430 

 
Figure 15. Confusion proportions for each land-cover type in the SinoLC-1 validation scheme. 
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Table 7. Number of samples, coverage area, O.A., and Kappa coefficient of provincial administrative regions in China. 

Geographical 
region Province/City Number of 

samples Coverage area (km2) O.A. (%) Kappa 
coefficient 

South 
Hainan 314 34999 82.41 0.6404 

Guangxi 2260 235390 81.83 0.6346 

Guangdong 1737 178552 73.60 0.5923 

East 

Fujian 1222 122095 83.39 0.5202 

Anhui 1548 138768 72.64 0.6827 
Zhejiang 1091 103953 76.59 0.7022 
Shanghai 81 8450 60.78 0.6541 

Jiangsu 1068 106261 66.41 0.5904 
Taiwan 380 36013 85.28 0.6382 

Jiangxi 1713 166900 80.04 0.6555 
Shandong 1767 153594 74.19 0.6366 

Central 

Hubei 1989 184613 73.92 0.6538 

Hunan 2162 225545 76.03 0.6444 
Henan 1755 168854 72.75 0.6573 

North 

Shanxi 1700 152008 65.81 0.6318 
Hebei 2227 186045 58.10 0.5463 

Beijing 211 16560 55.55 0.5431 

Inner Mongolia 14297 987901 73.00 0.7457 
Tianjin 111 11773 63.68 0.5961 

Northeast 

Liaoning 1723 147879 65.94 0.6267 
Jilin 2357 27654 65.98 0.5771 

Heilongjiang 6117 469262 86.04 0.8921 

Northwest 

Shaanxi 2282 203580 62.08 0.5927 
Gansu 4879 293040 77.58 0.7878 

Xinjiang 19448 810761 79.64 0.5799 
Ningxia 587 47685 61.15 0.5688 
Qinghai 7728 530540 75.36 0.6817 

Southwest 

Guizhou 1780 162265 67.25 0.5969 
Chongqing 869 79361 79.54 0.5016 

Xizang 12681 1089722 61.06 0.5487 
Yunnan 3787 365939 72.53 0.6191 
Sichuan 4981 461210 80.24 0.8290 
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(a) Spatial distribution of O.A. for every province (b) Statistical O.A. for every geographical region of China 
Figure 16. Spatial distribution and the statistical results of overall accuracy all around China. 

4.3.2 Statistical-level validation 

Based on the statistical validation set described in Sect. 3.3.2, the official land resource survey data of 31 provincial 

administrative regions were collected to validate the statistical-level performance of SinoLC-1, as shown in Table 2 and Table 

3. Figure 17 compares the statistical results of all considered land-cover types between the SinoLC-1 and 3rd NLRS data in 435 

every considered provincial administrative region. Furthermore, the statistical analysis among the provincial- and 

geographical-level regions are shown in Figure 18. 

The statistical comparisons in Figure 17 reveal the statistical results of most regions are relatively consistent with the 3rd 

NLRS data. Overall, in southern and central China, the misestimation of land-cover types is mainly distributed in tree cover 

and cropland. In eastern China, the over forecast of the cropland is the main confusion for the SinoLC-1 product, which is 440 

evident in Shandong, Anhui, and Jiangsu provinces. In northern China, the statistical comparisons indicate similar conclusions 

to the pixel-level validation discussed in Sect. 4.3.1. The landscapes vary and easily lead to incorrect predictions due to the 

wide longitude span of the regions. The misestimation of land-cover types in northern China is mainly the underestimation of 

shrubland and the over forecast of grassland, barren and sparse vegetation, and cropland. In northeastern China, the results of 

all provincial administrative regions show acceptable performance, which is highly consistent with the survey data, because 445 

the landscapes of northeastern China are relatively similar (mainly composed of tree cover and cropland) and not easily 

confused. In northwestern and southwestern China, as the main distribute land-cover types, the misestimation of “grassland” 

and “barren and sparse vegetation” still exists in some provinces. 
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To evaluate and analyze the overall misestimation area of every land-cover type, first, a box plot was used to describe the 

error distribution of every land-cover type in 31 provincial administrative regions. Figure 18 (a) shows the misestimation area 450 

of most land-cover types remains low, which indicates SinoLC-1 is a statistically acceptable land-cover product across the 

nation. Nevertheless, some outliers and large misestimation areas are observed in the type of “grassland” and “barren and 

sparse vegetation,” and this misestimation is mainly in the northwest and southwest parts of China where such land-cover 

types occupy a very large proportion of these regions and are easily overestimated. Second, a multicolumn chart was used to 

demonstrate the misestimation rate in the seven geographical regions, which was calculated by using the misestimation area 455 

for each land-cover type to divide the total area of the region. Figure 18 (b) shows based on the various main landscapes of 

seven geographical regions, these regions exhibit different dominant misestimation land-cover types, and the misestimation 

rates of seven regions are under 20% (most of them are under 15%). 

 
Figure 17. Statistical comparison between SinoLC-1 and 3rd NLRS data for 31 provinces in China. The provinces in different 

geographical region are represented by dissimilar wireframe colors. In every subplot, the abscissa axis represents the land-cover 

types, and the vertical axis represents the coverage area. 
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Overall, according to the official land resource survey data collected from the 3rd NLRS project, the reliability of the 

SinoLC-1 from the statistical aspect was further validated. The 3rd NLRS data were published by the provincial administrative 460 

governments, so the comparisons of every land-cover type in 31 provincial administrative regions first indicate the SinoLC-1 

product is highly consistent with the official survey data in most of the provinces. Second, the overall performance of the 

SinoLC-1 at 31 provincial administrative regions and seven geographical regions was examined. The results indicate the 

misestimation rate of the SinoLC-1 is acceptable in general, and the main misestimation land-cover types are “grassland” and 

“barren and sparse vegetation” in northwest and southwest China. 465 

 

  
(a) Overall misestimation area of every land-cover type 

through 31 provinces in China 

(b) Overall misestimation rate of every land-cover type 

through six geographical regions 

Figure 18. Overall misestimation distributions in every land-cover type across China. 

4.4 Uncertainty and limitations of the SinoLC-1 land-cover product  

SinoLC-1 enables VHR land-cover monitoring over China by using a deep learning-based mapping framework with 

multisource open-access data. During the production of SinoLC-1, no manual annotation to create VHR-labeled data was 

required, and no commercial VHR image source was used. The general process maintained low capital expenditure and low 470 

labor cost. However, as the trade-off situation between the spatial and temporal resolution of the remote-sensing images, one 

of the major limitations to the production of SinoLC-1 was the uneven temporal coverage of Google Earth images. The Google 

Earth images were collected from different platforms at different time points to generate seamless images with large-scale 

coverage. Although Google Earth is a low-cost source to acquire nationwide coverage VHR images, the uneven temporal 

coverage of the images can affect the uniformity of the land-cover products. 475 
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Figure 19 shows the spatial distribution of the image capture time and the number of image tiles captured in different 

years. Most of the images were acquired around the year 2021, and the early captured images were mainly distributed in the 

northern land frontier and the northwest part of China. According to the DEM data shown in Figure 9 and other published 

GLC products, the outdated images were generally in the west of China and are covered by plateau landform (typically 

grassland and barren land-cover types). Furthermore, based on the 30-meter annual land-cover datasets provided by Yang & 480 

Huang (2021), the annual land-cover change heatmaps from 2011 to 2021 (the main time-distributions of the using VHR image) 

were generated, as shown in Figure 20. The annual change heatmaps show the land-cover change from 2011 to 2021 was 

relatively sparse, and the change areas were mainly in the northeast, central, and southern parts of China where the outdated 

VHR images distributed less. This distribution indicates the areas containing mass outdated images generally had less land-

cover change over the years, which limited the uneven effect on the produced results. Furthermore, during the production of 485 

SinoLC-1, the land-cover information mostly came from the three 10-meter GLC products where two of them 

(ESA_WorldCover v100 and ESRI land cover) represented a more recent (i.e., the year of 2020) land-cover information, and 

the VHR optical images mainly provided the fine edge and texture information of the land surface. Therefore, although the 

uneven temporal of the VHR images can still cause uncertainty in the SinoLC-1 land-cover products, owning to the training 

strategy that reasonably utilized the texture information of images and land-cover information of the labels, the influence was 490 

minimized. 

 
Figure 19. Demonstration of the image capture time and the number of image tiles in different years. 
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Figure 20. Demonstration of the 30-meter resolution annual land-cover change from 2011 to 2021. 

5 Data availability 

The SinoLC-1 land-cover product generated in this paper and corresponding user guidelines are available at 

https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023). The product is grouped by 633 city tiles in the GeoTIFF format, 495 

which are packaged in 34 provincial administrative region folders and stored as “.zip” files. Each city tile is named as 

“G_P_C.tif,” where “G” explains the geographical region (south, central, east, north, northeast, northwest, and northeast of 

China) information, “P” explains the provincial administrative region information, and “C” explains the city name. For 

example, the 1-meter land-cover map for Wuhan City, Hubei Province is named as “Central_Hubei_Wuhan.tif”. Furthermore, 

each tile contains a land-cover label band ranging from 0 to 255, where the corresponding relationship between the value and 500 

the land-cover types are shown in Table 4 of Sect. 4.1. 
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6 Conclusions 

A VHR (i.e., 1.07-meter resolution) national-scale land-cover product for China, called SinoLC-1, was produced by using 

a low-cost deep learning-based L2H-Frame and multisource free access data derived from three 10-meter GLC products, OSM, 

and Google Earth imagery. In the L2H-Frame, the reliable land-cover and traffic route labeled information was collected to 505 

generate the training labels, and the VHR texture features were extracted from the 1-meter images by using the RP backbone. 

The resolution mismatch between the VHR prediction results and the coarse training labels was resolved using the CAS module 

and the L2H loss function with their weakly and self-supervised strategies.  

The produced SinoLC1 dataset is the first 1-meter resolution and currently the highest resolution land-cover product that 

covers all of China. Qualitative comparisons revealed the SinoLC-1 product with the highest spatial resolution yielded the 510 

most accurate land-cover edges, indicating the finest landscape details compared with five other widely used products. 

Moreover, with an additional “traffic route” land-cover type, the SinoLC-1 product portrayed the details of dense city and 

urban patterns more precisely compared with other products. Quantitative assessments found the validation results derived 

from over 100,000 samples indicate SinoLC-1 achieved an O.A. of 73.61% and a kappa coefficient of 0.6595 across China. 

The validation results of every geographical region indicated an acceptable accuracy distribution all around China. Furthermore, 515 

the statistical validation results indicated SinoLC-1 highly conforms to the official survey reports according to the government 

data. Overall, assessments and analysis in this paper suggested the SinoLC-1 land-cover product accurately provided clear 

land-cover information and could become a vital support for downstream applications.  
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