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Abstract. In China, the demand for a more precise perception of the national land surface has become most urgent given the 10 

pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national 

coverage, however, is a non-trivial task and thus, an active area of research impeded by the challenges of image acquisition, 

manual annotation, and computational complexity. To fill this gap, the first 1-meter resolution national-scale land-cover map 

of China, SinoLC-1, was established using a deep learning-based framework and open-access data including global land-cover 

(GLC) products, open street map (OSM), and Google Earth imagery. Reliable training labels were generated by combining 15 

three 10-meter GLC products and OSM data. These training labels and 1-meter resolution images derived from Google Earth 

were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch 

between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised 

loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large 

storage and computing servers, processing the 73.25 TB dataset to obtain the SinoLC-1 covering entire China, ~9,600,000 km2, 20 

took about 10 months. The SinoLC-1 product was validated using a visually interpreted validation set including over 100,000 

random samples and a statistical validation set collected from the official land survey report provided by the Chinese 

government. The validation results showed SinoLC-1 achieved an overall accuracy of 73.61% and a kappa coefficient of 

0.6595. Validations for every provincial region further indicated the accuracy of this dataset across whole China. Furthermore, 

the statistical validation results indicated the SinoLC-1 conformed to the official survey reports with an overall misestimation 25 

rate of 6.4%. In addition, SinoLC-1 was compared with five other widely used GLC products. These results indicated SinoLC-

1 had the highest spatial resolution and the finest landscape details. In conclusion, as the first 1-meter resolution national-scale 

land-cover map of China, SinoLC-1 delivered accuracy and provided primal support for related research and applications 

throughout China. The SinoLC-1 land-cover product is freely accessible at https://doi.org/10.5281/zenodo.7707461 (Li et al., 

2023). 30 
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1 Introduction 

As a basic earth observation application, land-cover mapping enables investigating human and nonhuman activities that 

shape the national landscape (Lin & Ho, 2003). Researchers and decision-makers use the insights from the land-cover maps 

to assist communities and governments achieve Sustainable Development Goals (Wang et al., 2022). The past few decades 

have witnessed tremendous advancements in the spatial resolution of land-cover mapping products because remote-sensing 35 

images with finer spatial resolution can be acquired more easily (Roy et al., 2021). Very-high-resolution (VHR) imagery in 

particular, typically finer than 3 m/pixel, reveals land-cover objects at an ever finer granularity providing a clearer, more 

detailed picture of the situation on the ground (Feng & Li, 2020). The VHR land-cover datasets are becoming increasingly 

ubiquitous in numerous large-scale research and application domains, such as agriculture (Griffiths et al., 2019), urbanization 

(Luo & Ji, 2022), and ecology (Y. Yang et al., 2020). As the largest agricultural country and the second-largest economy in 40 

the world, China experienced rapid development and urbanization in the past decades (Chang & Brada, 2006; Guan et al., 

2018), and much land-cover research about China has been conducted. However, the VHR land-cover map with national 

coverage is still unavailable in China, hindering effective policy formulation and efficient resource allocation. In this context, 

the investigation into the fine-grained national-scale land-cover map for China is a necessary guiding principle for 

comprehensively understanding the environment, development, and future trend of the country.  45 

Over the past 40 years, numerous satellite missions have been launched to improve the knowledge of Earth’s resources 

and monitor natural phenomena. With the continuous updating of airborne and space-borne platforms, the spatial resolution of 

the available remote-sensing images has undergone rapid increments of change (Tong et al., 2020; Li et al., 2022). Moreover, 

the studies for the land-cover mapping methods have achieved great progress. Based on the context, the spatial resolutions of 

the published land-cover products have been through the trends of coarse to fine (Cao & Huang, 2022). Nevertheless, due to 50 

the low orbit of the VHR image-captured platforms, the corresponding VHR land-cover products generally have a smaller 

coverage that is insufficient to cover entire China (Wang et al., 2021). Furthermore, even if the national-scale VHR imagery 

can be obtained by combining different image sources, the immense data volumes, laborious annotations, and computational 

costs are still the main obstacles for national-scale VHR land-cover mapping. Thus, currently, available land-cover datasets 

for China lack either a fine spatial resolution or nationwide coverage. In terms of coverage scale and spatial resolution, the 55 

relational existing land-cover datasets can be grouped into four general types: global-scale low-resolution (LR), global-scale 

moderate-/high-resolution (MR/HR), national-scale MR/HR, and region-scale VHR land-cover products.  

(1) Global-scale LR land-cover products: 

From the 1980s to the 2010s, global remote-sensing imagery with LR (finer than 1000 m/px) can be captured by 

satellites including Satellite pour l'Observation de la Terre 4 (SPOT 4), Advanced Very High Resolution Radiometer 60 

(AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Environmental Satellite. Subsequently, many 

representative LR global products have emerged, for example, the European Commission’s Joint Research Centre (JRC) 

published a 1-kilometer-resolution global land-cover (GLC) product in 2007, which was classified based on the imagery 
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from SPOT 4 (Bartholomé & Belward, 2007). The JRC and the United States Geological Survey (USGS) produced a 1-

kilometer-resolution GLC product based on the monthly AVHRR normalized difference vegetation index composites 65 

(Loveland et al., 2010). Moreover, the USGS and the National Aeronautics and Space Administration produced a 500-

meter-resolution GLC product in 2009, called MOD12Q1, which was based on MODIS imagery and classified through 

the decision tree algorithm (Friedl et al., 2010). 

(2) Global-scale MR/HR land-cover products: 

From the 2010s to the 2020s, owing to the open-access imagery of Landsat and Sentinel missions with moderate (~30 70 

m) and high (~10 m) resolution, the research of the global-scale MR/HR land-cover mapping has blossomed. For the MR 

land-cover products, Gong et al. (2013) proposed the first 30-meter GLC product based on Landsat data, called 

FROM_GLC, with an overall accuracy of 65%. Soon afterward, based on the Landsat data and the imagery of the 

Huanjing-1 satellite, Chen et al. (2015) produced a 30-meter GLC product, called GlobeLand30, with an accuracy of 80%. 

Lately, based on Landsat time series imagery, Zhang et al. (2021) proposed GLC_FCS30, which is a 30-meter GLC 75 

product with an accuracy of 83%. Numerous GLC products with high resolution were also published recently. Based on 

Sentinel-2A imagery, Gong et al. (2019) produced the first 10-meter GLC map with an accuracy of 73%. Based on 

Sentinel-1 and 2 data, ESA provided an annually updated 10-meter GLC map since 2020, with a reported accuracy of 74% 

(Van De Kerchove et al., 2021). Similarly, based on Sentinel-2 imagery, Environmental Systems Research Institute (ESRI), 

Inc. and Impact Observatory, Inc. proposed a 10-meter GLC product in 2021, which reported an accuracy of 85% (Karra 80 

et al., 2021). 

(3) National-scale MR/HR land-cover products: 

Similarly, based on the open-access MR/HR imagery, numerous national-scale land-cover products are continuously 

produced. For example, with the Landsat imagery, the USGS cyclically updates the 30-m National Land Cover Database 

(NLCD) covering the United States (Wickham et al., 2021). With the Sentinel imagery, the United Kingdom Centre for 85 

Ecology & Hydrology (UKCEH) periodically publishes the national-scale 10-m land-cover map of the United Kingdom 

(Morton et al., 2021). For China, researchers adopted diverse methods to produce high-quality national-scale land-cover 

maps. By manually interpreting the Landsat images, Liu et al. (2014) produced a national-scale 30-m resolution land-

cover product covering entire China, which revealed the land-cover patterns of China from the 1980s to 2015 at an interval 

of 5 years. Furthermore, based on the more frequent Landsat images and Google Earth Engine, Yang & Huang (2021)  90 

produced the first 30-m annual land-cover dataset in China and analyzes the national-scale long-term land-cover change 

from 1990 to 2019, which provided important support for multi-temporal land-cover research in China. Recently, Liu et 

al. (2023) took the training pairs with the mismatched resolution, which includes the 30-m GLC product (noisy labels) 

and the 10-m Sentinel images at the year of 2020, to train a deep learning-based method and produced a national-scale 

10-m land-cover map of China. 95 

(4) Region-scale VHR land-cover products: 
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In the 2020s, with the easily available VHR imagery, establishing VHR land-cover datasets for fine object 

interpretation and deep learning-based research became a research hotspot (Xia et al., 2023). The current VHR land-cover 

datasets are generally regional scale (typically covering a few cities/provinces and smaller than a national scale) because 

of the limitation of the coverage and temporal resolutions of VHR imagery. For example, Wang et al. (2021) utilized 100 

imagery from airborne cameras and Google Earth to create a 0.3-meter-resolution regional-scale dataset, covering 536.15 

km2 areas (including Nanjing, Changzhou, and Wuhan in China). Huang et al. (2020) proposed a 2.1-meter-resolution 

regional-scale land-cover dataset, called Hi-ULCM, covering 42 major cities in China. Hi-ULCM was produced based on 

Ziyuan-3 (ZY-3) satellite imagery and reported an overall accuracy of 86%. Moreover, Du et al. (2020) produced a 2.4-

meter-resolution land-cover product, called PKU-USED, covering 81 China major cities. PKU-USED was based on the 105 

VHR imagery of ZY-3, Gaofen-6 (GF-6), and Google Earth. 

Different production schemes are used for these four types of land-cover products. For the LR, MR, and HR land-cover 

products, the image sources (i.e., MODIS, Landsat, and Sentinel) are commonly free access and contain massive spectral 

information but relatively low spatial context than VHR imagery. Therefore, pixel-based machine learning algorithms, for 

example, support vector machine, decision tree, and random forest (RF), are usually adopted to produce acceptable results 110 

(Defourny et al., 2007; Friedl et al., 2010; Gong et al., 2019). Nevertheless, the production of VHR land-cover products usually 

faces two main problems. First, VHR imagery is commonly captured from commercial and military satellites with high 

acquisition costs (Coltri et al., 2013; Pengra et al., 2015). Second, VHR imagery commonly contains a few bands, for example, 

the spaceborne 2.1-meter ZY-3 and 2-meter GF-6 imagery only contain four bands of red, green, blue, and near-infrared. With 

limited spectral information and massive spatial details, pixel-based methods generally report low accuracy in the VHR land-115 

cover mapping task (Ce Zhang et al., 2018). Based on the second problem, the Object-Based Image Analysis (OBIA) technique 

is widely taken to produce VHR land-cover products. The OBIA-based methods depend on handcraft features to classify land 

objects and improve product accuracy (Jalan, 2012; Du et al., 2020). However, the feature selection of OBIA-based methods 

requires human intervention, which inevitably limits their application in large-scale product productions (Pilant et al., 2020; 

Huang et al., 2020).  120 

Recently, with the blossoming of deep learning techniques, many studies have conducted deep learning-based models for 

VHR land-cover mapping. For example, the 1-meter National Agriculture Imagery Program imagery was taken to train a deep 

learning framework and produced the 15-class land-cover map for the entire state of Maryland, United States (Li et al., 2022). 

Moreover, by using limited spectral information from optical imagery, numerous studies have shown that deep learning 

methods are suitable and capable of obtaining satisfactory results in a variety of regional-scale VHR applications such as land-125 

use mapping (Srivastava et al., 2019), construction site mapping (Cao & Huang, 2022), greenhouse mapping (Ma et al., 2021), 

and change detection (Zhang et al., 2020; Li et al., 2021). However, existing deep learning methods rely on well-labeled data, 

which are time-consuming and laborious to annotate. This limitation has created a large obstacle preventing the production of 

a national-scale VHR land-cover map (Cao & Huang, 2022; Li et al., 2022).  
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Figure 1. Demonstration of using the fine edge and texture information from VHR images to renew and refine the current ample 
coarse-resolution GLC products. The VHR remote sensing images in the figure are from © Google Earth 2021. 

To overcome these limitations, in this paper, a deep learning-based framework is presented to create the first 1-meter 130 

land-cover map for entire China, called SinoLC-1, by using freely available 1-meter Google Earth imagery, open-access 10-

meter GLC products, and Open Street Map (OSM) as input data. Figure 1 shows by combining the amply available GLC 

products containing adequate land-cover information and the VHR images containing fine edge and texture information, the 

VHR land-cover map can be automatically refined through the proposed framework. In detail, the multisource 10-meter land-

cover products and the OSM are first integrated to generate coarse training labels. About 30% of the land surface in China is 135 

selected to generate training pairs containing aligned VHR images and coarse labels. Training pairs are used to train the 

proposed low-to-high network (L2HNet), which is a large-scale VHR land-cover mapping network proposed in our previous 

work (Li et al., 2022). Considering the label noise caused by the mismatched resolution between the VHR images and the 

coarse labels, the L2HNet integrates a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss 

function to excavate the texture information from the VHR images and utilize the supervision information from the coarse 140 

labels. In practice, three large computing servers are used to conduct the training and mapping process. Finally, processing the 

whole 73.25TB data to produce the 1-meter land-cover map covering ~9,600,000 km2 area of China takes about 10 months. 

Moreover, SinoLC-1 is produced without using any commercial data and without any requirement for manual annotations, 

which means the production maintains low capital expenditure and low labor cost. To the best of our knowledge, the produced 

SinoLC1- is the first 1-meter-resolution and currently the highest-resolution land-cover product that covers entire China.  145 

The remainder of this paper is arranged as follows. The dataset used is introduced in Sect. 2. The proposed framework 

including the processes of training data collection, land-cover classification, and assessment is illustrated in Sect. 3. The 

produced land-cover product is demonstrated, the validation results are analyzed, and the product limitations are discussed in 

Sect. 4. Access to the data is provided in Sect. 5. Finally, conclusions are given in Sect. 6. 
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2 Datasets 150 

2.1 Open-access remote-sensing images at 1-meter resolution 

The VHR optical images were collected from the open-access Google Earth imagery, which has a resolution of 1.07 

meters. Google Earth, a well-known tool widely used in many popular image processing and GIS software, provides freely 

available VHR images with large-scale coverage. By integrating the images captured from different satellites (e.g., Worldview, 

Quickbird, IKONOS, GeoEye1, Pleiades, SuperView-1, and Kompsat3A), Google Earth imagery enables covering a very large 155 

range including entire China (Zhao et al., 2014). We have two main reasons for adopting Google Earth as the image source of 

VHR national-scale land-cover mapping. First, most of the VHR imagery is commonly captured from commercial and military 

satellites, and purchasing the imagery covering entire China is extraordinarily expensive (Rahman et al., 2010; Coltri et al., 

2013; Pengra et al., 2015). Second, Google Earth imagery generally has mature sifting and preprocessing procedures to produce 

cloudless, high-quality imagery (Pulighe et al., 2016). Based on this image source, the misclassification of land objects caused 160 

by the image quality, cloud, and cloud shadow can be minimized. Many researchers have also reported the feasibility and 

possibility of using Google Earth imagery to conduct VHR large-scale land-cover mapping (Malarvizhi et al., 2016; Guo et 

al., 2016; Li et al., 2020). 

To construct the image database for producing SinoLC-1, the imagery of the “December 2021” version was collected 

according to every provincial administrative region border of China and cropped into the size of 6000 × 6000 pixels as the 165 

basic storage tile. The total storage size of imagery with the band of red, green, and blue was about 73.25 TB, covering 

~9,600,000 km2 land surface area of China. The use of Google Earth imagery and the country boundary are demonstrated in 

Figure 2 (a).  

2.2 Global land-cover data at 10-meter resolution 

Annotating the VHR labeled samples for national-scale VHR land-cover mapping is a challenging, laborious process. In 170 

general land-cover mapping studies, most of the published land-cover products were produced based on well-labeled training 

samples, which inevitably hinders their productivity and application coverage (Cao & Huang, 2022). In this paper, multiple 

open-access GLC products at 10-meter resolution were integrated to obtain reliable labeled samples, and we combined weakly 

and self-supervised strategies during the network training to utilize them as a reasonable supervision source.  

Concretely, the land-cover labeled data were collected from three open-access 10-meter GLC products, namely, 175 

FROM_GLC10 (Gong et al., 2019), ESRI world cover (Karra et al., 2021), and ESA_WorldCover v100 (Van De Kerchove et 

al., 2021). FROM_GLC10 was produced by using Sentinel-2A imagery, which reported an overall accuracy of 73% on a global 

scale. ESRI world cover (abbreviated as ESRI_GLC10) was produced based on Sentinel-2 imagery and reported an overall 

accuracy of 85%. ESA_WorldCover v100 (abbreviated as ESA_GLC10) was produced by using Sentinel-1 and Sentinel-2 

data and reported an overall accuracy of 74%. Table 1 shows the land-cover relationships between these products and the 180 

proposed SinoLC-1.  
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Table 2 shows the definition, value, and color of each land-cover type of the SinoLC-1. The SinoLC-1 contains 11 land-

cover classes and includes the unique class of “Traffic route” compared with other products. Subfigure (1–3) of Figure 2 (c) 

shows the demonstration samples of the three 10-meter GLC products located in Wuhan City. 

 185 

  
(a) © Google Earth 2021 imagery of China (b) Seven geographical regions of China 

 
(c) Left: Distribution and volume of the training sample. Right: Demonstration of the using GLC products, OSM data, and 1.07-

meter imagery from © Google Earth 2021 
Figure 2. Demonstration of the region division, training sample selection, and use of five datasets. 
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Table 1. Category relations between the FROM_GLC10, ESA_GLC10, ESRI_GLC10, and the proposed SinoLC-1. 
 FROM_GLC10 ESRI_GLC10 ESA_GLC10 SinoLC-1 

Affiliation THU, China ESRI & IO, USA ESA, Europe WHU, China 
Resolution ~10 meters ~10 meters ~10 meters 1.07 meter 
Coverage Global Global Global National (China) 

Land-cover 
type & Color 

Forest Trees Trees Tree cover 
Shrubland Scrub Shrubland Shrubland 
Grassland Grass Grassland Grassland 
Cropland Crops Cropland Cropland 

Impervious area Built area Built-up 
Building 

Traffic route 
Bare land Bare Barren/sparse veg. Barren and sparse veg. 

Snow and ice 
Snow and ice Snow and ice Snow and ice 

Tundra 
Water body Water Open water Water 

Wetland 
Flooded 

vegetation 
Herbaceous wetland 

Wetland 
Mangroves 

  Moss and lichen Moss and lichen 
Notes: THU=Tsinghua University; Esri=Esri, Inc.; IO=IO, Inc.; WHU=Wuhan University; 

 

 

Table 2. The definition, value, and color of each land-cover type of the SinoLC-1 

Land-cover type Definition Value Color 

Tree cover 
Areas covered by trees generally have larger crowns and are higher than 5 meters. 
It can be sparse arbors or clustered forests which include evergreen forests, mixed 
forests, artificial forests, bamboo groves, etc. 

2 (0, 100, 0)  

Shrubland Areas covered by clusters of shrubs with a height below 5 meters. 3 (255, 190, 35)  

Grassland 

Areas covered by low herbaceous plants. It generally includes natural grasslands 
with a fractional vegetation coverage greater than 5, rangeland with tree canopy 
density less than 0.3 or shrub canopy density less than 0.4, urban’s vacant land 
dominated by grass, and other artificial grasslands. 

4 (233, 255, 190)  

Cropland 
The arable land and human planted crops not at tree height including upland crops 
(e.g., wheat, corn, potatoes, and cotton) and irrigated crops (e.g., paddy filed, 
lotus root, and water spinach). 

5 (255, 235, 175)  

Building 
Human-made structures and homogenous impervious surfaces including 
industrial, residential, commercial areas, and construction sites.  It is generally 
located in urban and rural areas with high human activities. 

6 (255, 170, 0)  

Traffic route 
Areas constructed according to certain technical standards and equipped with 
necessary transportation facilities, including railways, highways, urban/rural 
roads, and pipelines. 

1 (255, 0, 0)  

Barren and sparse 
vegetation 

Areas covered by sparse vegetation or bare land covered by sand, gravel, or rocks, 
including mountains without dense vegetation and snow cover, deserts, 
grasslands degraded by drought, and wasteland in urban/rural areas with sparse 
or no vegetation. 

7 (180, 180, 180)  

Snow and ice 
Areas covered by large-scale permanent snow or ice, including glaciers and 
permanent snowpack in mountain areas or high latitudes. 

8 (240, 240, 240)  

Water 

Areas covered by water for a long period, including oceans, naturally formed 
water bodies (e.g., lakes, rivers, and runoff), and artificially formed water bodies 
(e.g., reservoirs, canals, water conservancy facilities, ponds, and aquaculture 
farms). 

9 (0, 100, 200)  
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Wetland 
Areas with perennial or seasonal water accumulation and vegetation growth. It 
includes forest/shrub/grass swamps, peatlands, mudflats, mangroves, and 
coastal/inland tidal flats. 

10 (0, 150, 160)  

Moss and lichen Surfaces or rocks attached by moss or tiny lichen plants. 12 (250, 230, 160)  
 

2.3 Open Street Map data 

Traffic routes and transportation networks provide important information for understanding the development, 190 

urbanization, and population of a country (Osses et al., 2022). In VHR land-cover mapping research, the traffic route is a 

fundamental land-cover type to reveal urban patterns and reflect regional traffic (Boguszewski et al., 2020; Xia et al., 2023; 

Hu et al., 2023). Given that the traffic route can be clearly identified from the 1-meter resolution imagery, the land-cover type 

of “Traffic route” was also considered in the proposed SinoLC-1 land-cover product. To obtain reliable traffic route labeled 

information, the labeled data were collected from the OSM database in vector format. As one of the most popular volunteered 195 

geographic information data sources, the road pattern labeled information provided by the OSM is stable and reliable, which 

is often used as a supplement data in the land-cover or land-use mapping task (Zhu et al., 2022; Zhong et al., 2020; Audebert 

et al., 2017). To take the OSM data as a supervision source during network training, the vector OSM data were transformed 

into the raster format at the same resolution as the GLC products. Thus, they can be utilized as pixel-level labels to guide the 

training process. Subfigure (4) of Figure 2 (c) shows the samples of traffic routes obtained from the OSM located in Wuhan 200 

City, Hubei Province. 

 
Figure 3. The overall workflow of the L2H-Frame. The framework includes three main parts: (a) Collecting training pairs, (b) 
Land-cover classification using the L2HNet, and (c) Accuracy assessment. The VHR remote sensing images in the figure are from 
© Google Earth 2021. 
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3 Methods 

In this section, the proposed L2H-Frame, which is an efficient deep learning-based framework for national-scale VHR 

land-cover mapping, is introduced. Based on a series of weaky and self-supervised strategies, the L2H-Frame only takes open-

access data sources as training data to produce the 1-meter resolution land-cover map of China, which allows the framework 205 

to maintain low capital expenditure cost in image acquisition and low labor cost in training label annotation. As the overall 

framework depicted in Figure 3, the L2H-Frame consists of three main steps: (a) Collecting nationwide training pairs, (b) 

Land-cover classification using the L2HNet, and (c) Accuracy assessments. In the following subsection, these main steps are 

introduced sequentially.  

3.1 Collecting nationwide training pairs 210 

To collect reliable training pairs for the national-scale VHR land-cover mapping process, 98 municipal-level areas were 

selected from the 34 provincial administrative regions of China. In every selected municipal-level area, the data were divided 

into numerous non-overlapped tiles with the size of 6000 ×6000 pixels. In each tile, the training pairs were constructed by 

five types of data, which included three 10-meter GLC products, the OSM data, and the 1.07-meter-resolution Google Earth 

images. Figure 2 (c) demonstrates the sample of the using data, location, and contained volume of tiles for all the selected 215 

training areas. Moreover, by considering the immense span of China’s territory and the variable landforms, according to the 

geographic location, climate, economic development, and land-cover pattern (Lin, 2002; Ning et al., 2022), the land surface 

of China was divided into seven geographical regions for separate training. Figure 2 (b) shows the locations and borders of the 

seven geographical regions: east, northeast, north, northwest, central, southern, and southwest. 

According to the classification system of mainstream large-scale land-cover products and the landscape style of China, 220 

the classification system of SinoLC-1 was defined as the following 11 land-cover classes: “Tree cover”, “Shrubland”, 

“Grassland”, “Cropland”, “Building”, “Traffic route”, “Barren and sparse vegetation”, “Snow and ice”, “Water”, “Wetland”, 

and “Moss and lichen”. The detailed definitions of each type are shown in 

Specifically, to obtain reliable land-cover information and generate the training labels from three GLC products, the 

classification systems of ESA_GLC10, ESRI_GLC10, and FROM_GLC10 were unified according to Table 1, and then the 225 

unified results were intersected to generate the pre-labels. In the pre-labels, the pixels/areas, where their land-cover types were 

the same in the three GLC products, would be preserved as the stable labeled areas; otherwise, the pixels/areas would be set 

as unlabeled type and maintained void value. In particular, because the land-cover type of “Moss and lichen” is a unique type 

of the ESA_GLC10 product, in the generation of pre-labels, the areas covered by the “Moss and lichen” type were directly 

inherited from the ESA_GLC10 product. Moreover, to generate stable labeled samples for the traffic route, the vector road 230 

pattern information collected from the OSM was transformed into raster format with the same resolution as the pre-labels, and 

then the transferred samples of road pattern were overlayed to the pre-labels to generate the final training labels. Figure 4 (a) 
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shows the proportion of the training area in each geographical region, and Figure 4 (b) shows the land-cover distribution of 

the training labels in each geographical region. 

 235 

  
(a) Proportion of training area (b) Class distribution of training labels 

Figure 4. Statistical information of the selected training labels in seven geographical regions. 

3.2 Land-cover classification using the low-to-high network 

3.2.1 Training of the low-to-high network 

To process the resolution-mismatched training pairs and realize automatic national-scale VHR land-cover mapping for 

China, the low-to-high network (L2HNet) was applied, which has been proposed in our previous work (Li et al., 2022). Aiming 

at robustly extracting multiscale features and taking the coarse labels as a more reasonable supervision source during the 240 

training, as shown in Figure 3 (b), the L2HNet combined a resolution-preserving (RP) backbone, a weakly supervised-based 

confident area selection (CAS) model, and an unsupervised-based low-to-high (L2H) loss.  

To extract features robustly from the VHR images, the images first passed through an input layer (i.e., a 64-channel 3×3 

convolutional layer) to obtain dense feature maps. Then, the RP backbone consisting of five blocks, where each block contained 

multiscale (i.e., 1×1, 3×3, and 5×5) convolution layers with the channel setting of “64:32:16,” extracted the multiscale 245 

information from the dense feature maps by highly preserving their spatial resolution. Unlike the common deep learning-based 

networks that deeply down-sample the features with encoder-decoder structures (e.g., UNet [Ronneberger et al., 2015] and 

DeepLabv3+ [Liang-Chieh et al., 2018]), in each block of the L2HNet, the channel number of different scale convolutional 

layers were inversely proportional to their receptive fields. Therefore, the multiscale layers can scan the feature maps with 

proper receptive fields to preserve the feature resolution rather than over down sampling them in case of losing feature details. 250 

Lastly, based on a classifier constructed by a SoftMax function and a 1×1 convolutional layer, the extracted features were 

classified into the prediction results and the corresponding confidence probability (CP) map. 
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To take the coarse training label as a more reasonable supervision source, the L2H loss was designed as a two-part 

composition with weakly and self-supervised strategies. For the first part, a weakly supervised-based CAS module was 

designed to select the trustworthy parts from the coarse labels and ignore the noisy samples according to the CP map of the 255 

predictions. Then, the confident area set (represented as 𝐂𝐀), which had high CP in the predictions, was selected to calculate 

the cross entropy (CE) loss with the coarse labels, and the vague area set (represented as 𝐕𝐀), which had low confidence, was 

ignored during the CE loss calculation. Formally, for a training patch with the size of 𝑊 ×𝐻, 𝐘!,	�̂�, and �̂� represent the coarse 

training labels, the prediction results, and the selected mask generated by the CAS module, respectively. The modified CE loss 

can be written as follows: 260 

ℒ!""𝐘#, �̂�, �̂�' =
−∑$%&'  ∑(%&)   ,�̂�$(∑*%+,  𝑦#	$(

(*) log 3�̂�$(
(*)4	5

card	(𝐂𝐀) ,	
(1) 

where 𝑦!	"#
(%) and �̂�"#

(%) denote class 𝑙 of the label 𝐘′ and the prediction 𝐘! in coordinates (𝑖, 𝑗), respectively. Element �̂�"# of the 

selected mask �̂� is a binary scalar to represent if the coordinate (𝑖, 𝑗) is selected into the 𝐂𝐀 set. 

For the second part, by considering the feature similarity of the same land-cover classes, the unsupervised dynamic vague 

area (DVA) loss was designed to constrain the within-class variance (Otsu, 1979) dynamically between the well-predicted 𝐂𝐀 

set and unsupervised 𝐕𝐀 set in the feature space. Formally, the 2-norm of the inter-area mean difference was used, represented 265 

as 𝜎%,() , to describe the land-cover class 𝑙 ∈ [1, 𝐿] variance in the 𝑏 ∈ [1, 𝐵] feature layer. Moreover, the DVA loss is the 

accumulation of 𝜎%,()  in every land-cover class and feature layer, whose specific form is as follows: 

ℒ/01 = 𝛾 ??𝜎*,34
,

*%+

5

3%+ 	

	

,	
(2) 

where 𝛾 is a scale factor and set as 0.05 according to our previous work (Li et al., 2022). By combining Eqs. (1) and (2), the 

L2H loss can be described as follows: 

ℒ,4) = ℒ!""𝐘#, �̂�, �̂�' + ℒ/01,	 (3) 

Furthermore, according to the location of seven geographical regions and the training sample distributions shown in 270 

Figure 2 (b) and (c), seven L2HNets were trained separately for every region to adapt the variable landforms and different 

land-cover patterns in the immense span of China’s territory. During the training of L2HNet, each training tile (the aligned 

VHR image and training label with the size of 6000 × 6000 pixels) was randomly cropped into 500 patches, where each patch 

had a size of 256 × 256 pixels, to utilize the training data fully while ensuring training efficiency. 
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Figure 5. Demonstration of the mapping and merging for producing SinoLC-1. The VHR remote sensing images in the figure are 
from © Google Earth 2021. 

3.2.2 Seamless mapping and merging process 275 

To acquire the seamless national-scale land-cover map, a seamless mapping and merging strategy was employed to 

process the massive data covering China successively. Specifically, as shown in Figure 5, the whole process included four 

steps. First, the nationwide 1-meter resolution imagery was sorted out according to the borders of each provincial 

administrative region. In each region, the regionwide coverage image was sequentially cropped into numerous non-overlapped 

image tiles with each size of 6000 × 6000 pixels. Second, to obtain the image batches that can be sent to the well-trained 280 

networks, each image tile was sequentially cropped into numerous 256 × 256 patches with 128 overlapped pixels. Based on 

the training process introduced in Sect. 3.2.1, seven L2HNets were separately trained with the training pairs collected from 

seven geographical regions of China. Third, according to the geographical region of the input image source, the image batches 

were sent to the corresponding well-trained L2HNet, and the predicted batches of the land-cover mapping results were obtained. 

The input batches had 128 overlapped pixels, so the adjacent predicted batches, which represent a predicted probability matrix 285 

with the sizes of 11 × 256 × 256 (Class × Height × Width), were seamlessly merged into the land-cover tiles by calculating 

average probabilities of the overlapped areas and taking the arguments of the maxima (argmax) among all the classes. By 

conducting the seamless mapping and merging process, the influence of edge cracks between the cropped predicted batches is 

reduced. Finally, for each provincial administrative region, every merged land-cover tile was sequentially spliced into the 

intact land-cover map.  290 
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Based on the procedure, three large computing servers including 8 NVIDIA GeForce RTX 3090 GPUs and a large storage 

server were employed to conduct the mapping and merging of the SinoLC-1 in parallel. Processing the whole imagery with a 

total storage size of about 73.25 TB to obtain the SinoLC-1 land-cover product covering ~9,600,000 km2 area of China took 

about 10 months.  

3.3 Accuracy assessment 295 

Assessing the accuracy of land-cover products is an essential step in describing their quality before they are used in related 

applications (Olofsson et al., 2013). To validate the accuracy of the proposed SinoLC-1 at pixel and statistical levels 

comprehensively, and to analyze the omission and commission errors in detail, a nationwide pixel-level validation set was 

built by randomly sampling and visually interpreting over 100,000 points for entire China, and a statistical-level validation set 

for every provincial administrative region in China was derived by collecting the official land resource survey data from the 300 

Natural Resources and Planning Bureau of the Chinese government.  

3.3.1 Generating pixel-level validation sample set across China 

As a widely used assessment method for land-cover products, many studies including the 30-meter annual land-cover 

dataset of China (Yang & Huang 2021) and the impervious surface map of China (Gong, et al., 2019) divided the entire China 

into numerous grids with the same size and randomly sampled the points in each grid for generating the validation sets. In this 305 

paper, China was divided into 171 grids with each size of 3°	 × 	3°, and 800 points in each grid were randomly sampled to 

generate the national validation sample set for assessing the accuracy of SinoLC-1. After removing the sample points located 

in the far ocean and outside the nation’s borders, 106,852 points remained, and then these sample points were manually 

annotated by combining the visual interpretation results of VHR imagery captured from Google Earth and HR imagery 

captured from Sentinel-2 mission to identify their land-cover types. Figure 6 shows the sample grids, legend, and VHR samples 310 

of the national validation set, and Figure 7 shows the class proportion comparison between the sample set and the SinoLC-1 

product. The land-cover proportion of selected sample points in the validation set is relatively similar to the SinoLC-1 dataset, 

further indicating that the ~100,000 sample points have reasonable class distribution. Based on the national validation sample 

set, the quantitative metrics including the user’s accuracy (U.A.) (measuring the commission error), producer’s accuracy (P.A.) 

(measuring the omission error), overall accuracy (O.A.), and kappa coefficient can be calculated for assessing the performance 315 

of SinoLC-1 comprehensively. 
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Figure 6. Demonstration of the sample grid, VHR samples, and the national validation sample set. Left: the spatial distributions 

of the sample set (the legend is written in shorter forms). Right: the VHR samples of different land-cover types collected from 

1.07-m resolution © Google Earth imagery all around China. 
 

  
(a) Class proportion of the national validation sample set. (b) Class proportion of the SinoLC-1 land-cover product 

Figure 7. The land-cover proportion of the national validation sample set and the produced SinoLC-1 land-cover product. 
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3.3.2 Collecting statistical-level validation set from government survey reports 

To assess the statistical-level performance of SinoLC-1 in every provincial administrative region of China, the statistical 

validation set was collected from the Third National Land Resource Survey Project (abbreviated as 3rd NLRS) from the 320 

Ministry of Natural Resources of the People’s Republic of China and the Natural Resources and Planning Bureau of every 

provincial administrative region in China. The NLRS projects were launched since 1984 to monitor urban expansion and land 

resources comprehensively through remote sensing technology (Zhang & Zhang, 2007; Liu et al., 2015). From Oct. 2017 to 

Dec. 2020, the 3rd NLRS project adopted remote-sensing images with a resolution better than 1 m to accumulate survey data 

for the entire China. Advanced technologies such as mobile Internet, cloud computing, and unmanned aerial vehicle were also 325 

widely used during the survey. Overall, 295 million survey spot data were collected, and the state of national land use and land 

cover had been thoroughly investigated. Therefore, the survey report collected from the government institutes can be used as 

an authoritative reference source to validate the quality of the produced SinoLC-1 at the statistical level. 

By considering the classification standard of the 3rd NLRS, the land-cover type relationship between the SinoLC-1 and 

the 3rd NLRS was built, as shown in Table 3. In the corresponding relationship, the 3rd NLRS data commonly have finer land-330 

cover types, e.g., for the general type “Cropland,” six sub-types are in the 3rd NLRS data. However, some of the land-cover 

types in the 3rd NLRS data were still described in a more generalized way. For example, the 3rd NLRS only contains three 

subtypes (natural, artificial, and other grasslands) to describe the landscapes that are covered by spare and low vegetation, 

which correspond to the type of “Grassland” and “Barren and spare vegetation” in SinoLC-1. As shown in Table 4, the 

statistical validation set was collected from 31 provincial administrative regions, where three special administrative zones 335 

(Hongkong, Marco, and Taiwan) are not available in the 3rd NLRS project. In general, the statistical validation set enabled 

comparing the statistical results of SinoLC-1 with the official survey data collected from the 3rd NLRS projects, and thus, 

assessing the overall performance of SinoLC-1.  
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Table 3. Corresponding land-cover type relationship between the SinoLC-1 products and the 3rd national land survey. 
SinoLC-1 category 3rd NLRS land-cover type SinoLC-1 category 3rd NLRS land-cover type 

Tree cover 

Arbor woodland 

Building 

Urban land 

Bamboo groves Administrative towns 

Other woodland Village land 

Shrubland Shrubland Airport land 

Grassland 
Barren and  

sparse vegetation 

Natural grassland Wharf land 

Artificial grassland Pipeline transportation 

Other grasslands Scenic Spot 

Mining land 

Wetland 

Forest swamp 

Cropland 

Paddy field Shrub swamp 

Irrigated land Swampy grassland 

Dry cropland Coastal tidal flat 

Orchard  Inland tidal flat 

Tea plantation Marshland 

Rubber plantation 

Water 

River 

Other plantations Lake 

Traffic route 

Railway Reservoir 

Rail transit Pond 

Highway Ditch 

Rural road Hydraulic construction 

Snow and ice Glaciers and snow Moss and lichen Tundra 
 

 340 
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Table 4. Statistical validation set collected from the third national land resource survey projects. 

Geo. 
region 

Province/ 
City 

Statistical results of different land-cover types (km2) 

TR TC SL GL+BL&SV CL BD S&I WT WL M&L 

South 

Hainan 524 10799 943 173 17047 2468 0 1831 1157 57 

Guangxi 3272 124831 36122 2767 49779 9857 0 7490 1178 94 

Guangdong 3000 106522 1404 2390 32267 17757 0 13423 1683 106 

East 

Fujian 2000 87427 686 753 18503 7109 0 3731 1874 12 

Anhui 2824 40055 860 483 59196 17588 0 17285 477 0 

Zhejiang 2268 58616 2319 3 20507 11559 0 7025 1655 1 

Shanghai 275 818 1 0 1772 2944 0 1913 727 0 

Jiangsu 3362 7787 84 942 43293 21103 0 25426 4264 0 

Shandong 3997 25383 670 2379 77242 28206 0 13254 2463 0 

Central 

Hubei 3047 83936 8865 898 53243 14172 0 19837 615 0 

Hunan 3425 121363 5804 18520 45150 16336 0 12585 2362 0 

Henan 3560 37362 6601 2579 79419 24495 0 14445 393 0 

North 

Shanxi 2420 43611 17346 31064 45105 10185 0 1731 546 0 

Hebei 3666 44371 19883 19492 70400 21094 0 5711 1428 0 

Beijing 401 5977 3701 146 2509 3176 0 618 32 0 

Inner 
Mongolia 

21228 167115 76564 543772 115508 14975 0 10645 38094 0 

Tianjin 453 1852 0 153 3296 3319 0 2373 327 0 

Northeast 

Liaoning 2654 52080 8077 4886 57100 13302 0 6916 2864 0 

Jilin 272 15733 53 86 9303 1125 0 1001 82 0 

Heilongjiang 5043 214459 1773 11864 172578 11671 0 16864 35010 0 

Northwest 

Shaanxi 2804 106245 18515 22109 41483 9204 0 2733 487 0 

Gansu 1320 11968 4488 149072 93632 15840 0 5984 10736 0 

Xinjiang 5172 40832 81293 519885 81087 14163 22242 30842 15245 0 

Ningxia 942 9537 0 20312 11984 2973 0 1688 249 0 

Qinghai 3125 9096 36940 394727 6265 4909 4233 20233 51012 0 

Southwest 

Guizhou 3174 79346 32755 1888 34726 7751 0 2554 71 0 

Chongqing 1433 38067 8823 237 21508 6426 0 2717 150 0 

Xizang 
(Tibet) 

1596 98180 80782 800653 4540 1642 20715 38589 43025 0 

Yunnan 5219 220773 28917 13238 79676 10773 431 5654 398 0 

Sichuan 4492 183471 70724 96884 64302 18496 459 10073 12309 0 

Note:   
TR=Traffic route; TC=Tree cover; SL=Shrubland; GL+BL&SV=the total of ‘Grassland’ and ‘Barren and sparse 
vegetation’; CL=Cropland; BD=Building; S&I=Snow and ice; WT=Water; WL=Wetland; M&L=Moss and lichen. 
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4 Results and discussions 

4.1 SinoLC-1: a 1-meter resolution national-scale land-cover map for China 

First, the 1-meter resolution national-scale land-cover map for China (SinoLC-1) and the legend for the containing 11 

land-cover types are illustrated in Figure 8. The type of “Tree cover” is mainly located in the southern part and the northeast 345 

border of China; the croplands are mainly distributed in the north and northeast China plains; the northwest and southwest 

parts of China are mainly covered by the types of “Grassland” and “Barren and sparse vegetation”. In general, based on 

previous research and land-cover survey reports of China (Yue et al., 2007; Song & Deng, 2017), the overall visual result of 

SinoLC-1 accurately reflects the land-cover distribution of China and conforms to the actual land-cover pattern of China.  

 
Figure 8. Demonstration of SinoLC-1: a 1-meter-resolution national-scale land-cover map of China. 

Second, to visualize the results of SinoLC-1 in detail, the 30-meter digital elevation model (DEM) data collected from 350 

the Shuttle Radar Topography Mission (SRTM) were illustrated, and three typical regions were selected to demonstrate the 

performance of the SinoLC-1 product. As shown in Figure 9, the three typical regions include the following: (1) northeastern 

China, where the northeastern plain (an important grain production base of China) and the Greater Khingan Range, known as 

the largest virgin forest in China, are located; (2) eastern China, where the northern plain (another important grain production 

bases of China) and the Yangtze River delta (an important economic zone in China) are located; and (3) southern China, where 355 

the Pearl River Delta, known as the largest urban agglomeration with the largest population in the world, is located. In detail, 

as shown in Figure 10, the sample areas of Heilongjiang, Jilin, and Liaoning Provinces in northeastern China show the 

boundaries between forest, grassland, and cropland are clearly predicted. As shown in Figure 11 and Figure 12, the sample 
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areas of eastern China including Shandong, Jiangsu, and Jiangxi Provinces and southern China including Guangxi, Guangdong, 

and Hainan Provinces show that the village and city patterns of rural and urban areas are accurately reflected in the SinoLC-1 360 

product. Overall, by combining all the visual results and analysis, the SinoLC-1 performs well in various landscapes (e.g., 

forest, cropland, rural, and urban) and shows acceptable results at the national and regional scales. 

 

 
Figure 10. Demonstration of northeastern China including the sample areas of Heilongjiang, Jilin, and Liaoning. The VHR remote 

sensing images in the figure are from © Google Earth 2021. 

 
Figure 9. Illustration of the 30-meter DEM data (from SRTM) and the locations of three demonstration areas. 
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Figure 12. Demonstration of Southern China including the sample areas of Guangxi, Guangdong, and Hainan. The VHR remote 
sensing images in the figure are from © Google Earth 2021. 

 
Figure 11. Demonstration of Eastern China including the sample areas of Shandong, Jiangsu, and Jiangxi. The VHR remote 
sensing images in the figure are from © Google Earth 2021. 
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4.2 Qualitative comparison with other land-cover products 365 

To assess the SinoLC-1 land-cover product qualitatively, the produced SinoLC-1 and five widely used large-scale land-

cover products were visually compared. The comparison land-cover products included ESA_GLC10 (Van De Kerchove et al., 

2021), FROM_GLC10 (Gong et al., 2019), ESRI_GLC10 (Karra et al., 2021), GLC_FCS30 (X Zhang et al., 2021), and 

GlobeLand30 (Chen et al., 2015). The information for these comparison products is listed in Table 5. As shown in Figure 13 

and Figure 14, five typical regions covering various landscapes and different land-cover patterns were selected to compare the 370 

performance of SinoLC-1 with the five land-cover products. 

Table 5. Information for the comparative land-cover products. 
Name Resolution Version & Timeline Number of land-cover type 

ESA_GLC10 10m v2020 11 

FROM_GLC10 10m v2017 10 

ESRI_GLC10 10m v2020 10 

GLC_FCS30 30m v2020 16 

GlobeLand30 30m v2020 10 
 

 

First, Figure 13 illustrates a large-scale comparison in Changzhou City, Jiangsu Province, where the region contains 

balance and various land-cover types. From the qualitative comparison, ESRI_GLC10 in Figure 13 (e) and GlobeLand30 in 

Figure 13 (g) have blurred land-cover results according to the VHR image in Figure 13 (a), where the detailed land object 375 

located in the urban areas (i.e., the tree cover, building, and cropland) are confused. Moreover, the SinoLC-1, ESA_GLC10, 

FROM_GLC10, and GLC_FCS30 show relatively accurate spatial distributions of the land-cover types. Among them, 

GLC_FCS30 shows limited performance in tree cover and slender land objects (i.e., traffic routes, rivers, and runoff). 

FROM_GLC10 shows accurate performance for water bodies (e.g., the pools, canals, and rivers) but has limited performance 

in the type of tree cover. ESA_GLC10 shows relatively better results among other comparative products, but it still shows 380 

insufficient visualization in water bodies. Compared with these GLC products, the SinoLC-1 comprehensively shows better 

performance where the fine land-cover details including slender rivers, runoff, small pools, vegetation, and building are well 

predicted. Furthermore, because the land-cover type of “Traffic route” is also included in the SinoLC-1 products, the road 

networks can better reflect the traffic pattern and city layout of the region. 

Second, Figure 14 illustrates four other typical regions, which were sampled from four provincial administrative regions 385 

including Shanghai, Jiangxi, Guangdong, and Hainan. Similarly, ESRI_GLC10 and GlobeLand30 show limited performances 

and lose the land-cover details. By comparing the urban areas shown in Figure 14 (a) and (b) (i.e., the demonstration areas of 

Shanghai and Jiangxi), the SinoLC-1 indicates more accurate land-cover details, where some of the slender roads that cannot 

be observed in the 10-meter-resolution land-cover products are well predicted in the 1-meter-resolution SinoLC-1 products. 
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The comparison suggests the 1-meter SinoLC-1 can be a better land-cover product in indicating the finer urban pattern and 390 

providing more accurate information to the users. By comparing the agricultural areas (e.g., fish ponds and paddy fields) in 

Figure 14 (c) and (d) (i.e., the demonstration areas of Guangdong and Hainan), ESRI_GLC10 and GlobeLand30 overestimate 

the water bodies and misguide the real land-cover situation, where many independent fish ponds and paddy fields are 

incorrectly mapped as a large water-cover area. On the contrary, ESA_GLC10 and GLC_FCS30 underestimate the water 

bodies, where most of the ponds are not indicated in their mapping results. SinoLC-1 and FROM_GLC10 indicate the most 395 

accurate land-cover situations, where all single ponds are mapped. However, due to the limitation of the spatial resolution, 

FROM_GLC10 still loses partial land-cover details located around ponds and fields (e.g., traffic route and tree cover).  

Third, Figure 15 demonstrates three special landscapes that are challenging to distinguish in VHR optical images and 

even HR multispectral images. The three landscapes include (a) Marshland (i.e., muddy areas with dense water and grass that 

have been soaked in stagnant water) captured from the Daqing Longfeng Wetland Nature Reserve, Heilongjiang Province, 400 

which is the largest urban wetland in China, (b) Forest swamp (i.e., the landscape dominated by trees or shrubs formed under 

humid soil, stagnant water, or shallow water layers) captured from Chongming island, Shanghai City, which is known as the 

world's largest estuarine alluvial island wetland, and (c) Watercourse (the route through which river water flows, usually 

referring to navigable waterways) captured from the Beijing-Hangzhou Grand Canal. As shown in Figure 15 (a), the SinoLC-

1 reveals most of the marshland in the area and distinguishes the surrounding water and grasslands. Among the three 10-m 405 

land-cover products generated from the Sentinel image, the ESA_GLC10 accurately reflects the marshland in the area, but the 

FROM_GLC10 and ESRI_GLC10 miss the majority of wetland type. As shown in Figure 15  (b), it is observed that the VHR 

optical image shows more clear spatial detail than the 10-meter Sentinel-2 image. From the perspective of the land-cover map, 

the SinoLC-1 shows the forest swamp (i.e., land cover type of wetland in the legend), rivers, and tree cover content in the area. 

The ESRI_GLC10 shows an accurate result on the forest swamp landscape. The ESA_GLC10 overestimates the tree cover 410 

type, and the FROM_GLC10 overestimates the cropland. As shown in Figure 15 (c), the SinoLC-1 accurately reflects the 

watercourse, and due to the fine spatial resolution, the bridges on the watercourse are also clearly displayed. Among the three 

10-m land-cover products generated from the Sentinel image, the ESRI_GLC10 and FROM_GLC10 have acceptable 

classification results on the watercourse. However, the FROM_GLC10 only shows the central part of the watercourse and 

underestimates the width. For ESA_GLC10, the watercourse was incorrectly classified into the land-cover type of “Barren and 415 

sparse vegetation”. 

Overall, by comparing the SinoLC-1 product with five widely used land-cover products in many typical regions, the 

produced SinoLC-1 shows three main advantages: (1) With higher spatial resolution, the SinoLC-1 can reflect finer land 

objects and indicates more precise land details. (2) With more diverse and reliable training samples, the SinoLC-1 shows more 

accurate spatial distributions in land-cover types. (3) With the additional land-cover type “Traffic route,” the SinoLC-1 can 420 

better outline the traffic network and city layout in dense urban areas. 
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Figure 13. Demonstration of the visual comparison for Changzhou City, Jiangsu Province. The VHR remote sensing image in the 

figure is from © Google Earth 2021. 
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Figure 14. Demonstrations of the visual comparison for four typical regions. The VHR remote sensing images in the figure are 
from © Google Earth 2021. 
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Figure 15. Demonstrations of the visual comparison for challenging land-cover types which include (a) Marshland, (b) Forest 
swamp, and (c) Watercourse. The VHR remote sensing images in the figure are from © Google Earth 2021. 
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4.3 Quantitative analysis and accuracy assessment 

4.3.1 Pixel-level validation 425 

Based on the national validation sample set introduced in Sect. 3.3.1, over 100,000 sample points were visually interpreted 

to validate the accuracy of the SinoLC-1 land-cover product quantitatively. First, as a widely used method of assessing the 

accuracy of land-cover maps (Foody & Mathur, 2004; Gómez et al., 2016; Olofsson et al., 2014), the overall confusion matrix 

is shown in Table 6, and the confusion proportions for each land-cover type is demonstrated in Figure 16. With the confusion 

matrix, the O.A. and kappa coefficients were calculated to measure the overall performance of the SinoLC-1 product. Then, 430 

the U.A. and P.A. were calculated to measure the commission and omission errors of the product. Furthermore, as shown in 

Table 7, the number of samples, coverage proportion, O.A., and kappa coefficients of every provincial administration region 

were listed to demonstrate the accuracy of SinoLC-1 in different regions. It is important to notice that the “Number of samples” 

of Table 7 represents the sample counts of the generated validation set where some points may locate in the void value of the 

VHR images and SinoLC-1 product. The spatial distribution of the O.A. of every provincial administration region and the 435 

statistical accuracy of every geographical region are shown in Figure 17. 

The confusion matrix in Table 6 shows the SinoLC-1 land-cover product achieves an O.A. of 73.61% and a kappa 

coefficient of 0.6595. Due to the void value of images and land-cover results in some regions, 106,344 validation sample points 

were ultimately counted in the confusion matrix. In terms of P.A., the land-cover type of “Water” has the highest accuracy 

(86.1%), followed by “Tree cover”, “Barren and spare vegetation”, “Grassland”, “Cropland”, and “Building”; however, the 440 

land-cover type of “Shrubland”, “Wetland”, “Moss and lichen”, “Snow and ice”, and “Traffic route” have relative low 

accuracies. By combining the class proportion of the validation sample set shown in Figure 7 and the confusion matrix shown 

in Table 6 and  Figure 16, the quantitative results of the basic land-cover types (i.e., the types of “Tree cover”, “Grassland”, 

“Cropland”, “Barren and sparse vegetation”, and “Water”), which have easily distinguishable features and occupy a large area 

in China, report higher accuracies and have a small proportion of misclassification. By contrast, the land-cover types (i.e., the 445 

types of “Traffic route”, “Moss and lichen”, and “Snow and ice”), which occupy a small area, obtain relatively low accuracies 

and have a large proportion of misclassification. 

The confusion proportion in Figure 16 shows three points. First, partial traffic routes are incorrectly classified into a few 

common land-cover types (e.g., “Tree cover”, “Cropland”, and “Grassland”) because the models incorrectly predict the road 

width; thus, other land objects distributed on both sides of the roads cause commission errors. Second, most of the types 450 

including “Tree cover”, “Shrubland”, “Grassland”, “Cropland”, “Building”, “Barren and spare vegetation”, “Wetland”, and 

“Water” are well predicted and only contain a small proportion of the commission errors. Third, the land-cover types of “Snow 

and ice” and “Moss and lichen” are commonly distributed in the northwest region of China, so the confusing land-cover types 

are mainly the types of “Grassland” and “Barren and sparse vegetation”, which are the most confusable and occupy a large 

proportion of northwestern China. 455 
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The O.A. and kappa coefficients of every provincial administrative region in Table 7 and Figure 17 show the following 

findings. First, by comparing the spatial distribution of O.A in China, most of the provinces have an O.A. of over 70%, where 

eight provinces (Hainan, Taiwan, Jiangxi, Fujian, Yunnan, Chongqing, Xinjiang, and Heilongjiang) achieve over 80%. Hebei 

and Beijing have relatively low O.A. (in the range of 50%–60%). Second, by comparing every geographical region shown in 

Figure 17 (b), southern and northeastern China have the highest O.A. among other regions (about 78%) because the land-cover 460 

type of “Tree cover” occupies a very large proportion and the land-cover patterns in southern and northeastern China are 

relatively simple. Northern China including Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia have the lowest O.A. (lower 

than 70%). For Inner Mongolia, the wide longitude span of the region and the diverse landscapes caused the misclassification 

of the region. For Beijing, most of the misclassified samples are (1) the confusion between “Tree cover” and “Grassland”; (2) 

the confusion between “Building” and “Traffic route”. For Tianjin, most of the misclassification is the confusion among 465 

“Cropland”, “Building”, and “Traffic route”. For Hebei, most of the misclassified samples are (1) the confusion between “Tree 

cover” and “Grassland”; (2) the confusion between “Cropland” and “Grassland”. For Shanxi, most of the misclassified samples 

are (1) the confusion among “Tree cover”, “Grassland”, and “Cropland”; (2) the confusion between “Building” and “Traffic 

route”; (3) the confusion between “Cropland” and “Barren & sparse vegetation”. Moreover, except for Northern China, the 

rest of the geographical regions have accuracies of over 70%. 470 

Table 6. Confusion matrix for the SinoLC-1 land-cover product according to the national validation sample sets.  

Classification TR TC SL GL CL BD BL&SV S&I WT WL M&L Total P.A. (%) 

Traffic route 447 173 5 209 184 228 240 0 28 0 0 1514 29.52 
Tree cover 37 20708 14 2713 1899 124 134 0 352 5 52 26038 79.53 
Shrubland 0 25 270 74 27 2 102 0 1 0 0 501 53.89 
Grassland 9 1332 35 17256 1837 119 2848 0 75 11 401 23923 72.13 
Cropland 53 1310 45 1976 11424 275 857 0 119 16 0 16075 71.07 
Built-up 57 83 3 72 274 1128 122 0 8 0 0 1747 64.57 

Barren &Sparse veg. 50 209 23 5643 1031 418 24546 3 93 1 194 32211 76.20 
Snow & ice 0 2 0 94 7 0 51 135 2 0 92 383 35.25 

Water 2 21 0 39 105 12 59 0 1493 1 2 1734 86.10 
Wetland 0 37 11 46 28 3 7 0 14 135 0 281 48.04 

Moss & lichen 0 22 2 698 18 2 455 2 5 0 733 1937 37.84 

Total 655 23922 408 28820 16834 2311 29421 140 2190 169 1474 106344  

U.A. (%) 68.24 86.56 66.18 59.88 67.86 48.81 83.43 96.43 68.17 79.88 49.73   

O.A. (%) 73.61 
Kappa 0.6595 

Note:   TR=Traffic route; TC=Tree cover; SL=Shrubland; GL=Grassland; CL=Cropland; BD=Building; BL&SV=Barren and sparse vegetation; 
S&I=Snow and ice; WT=Water; WL=Wetland; M&L=Moss and lichen. 
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Figure 16. Confusion proportions for each land-cover type in the SinoLC-1 validation scheme. 

 

 

 

(a) Spatial distribution of O.A. for every province (b) Statistical O.A. for every geographical region of China 
Figure 17. Spatial distribution and the statistical results of overall accuracy all around China. 
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Table 7. Number of samples, coverage area, O.A., and Kappa coefficient of provincial administrative regions in China. 

Geographical 
region Provincial region Number of 

samples 
Provincial proportion to 

China's coverage (%) O.A. (%) Kappa 
coefficient 

South 
Hainan 314 0.37 82.41 0.6404 

Guangxi 2260 2.50 81.83 0.6346 

Guangdong 1737 1.89 73.60 0.5923 

East 

Fujian 1222 1.31 83.39 0.5202 

Anhui 1548 1.48 72.64 0.6827 

Zhejiang 1091 1.11 76.59 0.7022 
Shanghai 81 0.07 60.78 0.6541 

Jiangsu 1068 1.13 66.41 0.5904 

Taiwan 380 0.38 85.28 0.6382 

Jiangxi 1713 1.76 80.04 0.6555 

Shandong 1767 1.64 74.19 0.6366 

Central 

Hubei 1989 1.96 73.92 0.6538 

Hunan 2162 2.23 76.03 0.6444 

Henan 1755 1.75 72.75 0.6573 

North 

Shanxi 1700 1.65 65.81 0.6318 

Hebei 2227 1.99 58.10 0.5463 
Beijing 211 0.17 55.55 0.5431 

Inner Mongolia 14297 12.47 73.00 0.7457 

Tianjin 111 0.13 63.68 0.5961 

Northeast 

Liaoning 1723 1.56 65.94 0.6267 

Jilin 2357 0.29 65.98 0.5771 

Heilongjiang 6117 4.98 86.04 0.8921 

Northwest 

Shaanxi 2282 2.17 62.08 0.5927 
Gansu 4879 4.49 77.58 0.7878 

Xinjiang 19448 17.54 79.64 0.5799 

Ningxia 587 0.70 61.15 0.5688 

Qinghai 7728 7.61 75.36 0.6817 

Southwest 

Guizhou 1780 1.86 67.25 0.5969 
Chongqing 869 0.87 79.54 0.5016 

Xizang (Tibet) 12681 12.68 61.06 0.5487 

Yunnan 3787 4.15 72.53 0.6191 

Sichuan 4981 5.12 80.24 0.8290 
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4.3.2 Quantitative comparison based on open-access validation sets 475 

To compare the SinoLC-1 land-cover product with the other land-cover products quantitatively, we conducted a complete 

validation to the SinoLC-1 and the other five land-cover products based on two open-access validation datasets (Zhao et al., 

2014; Liu et al., 2019). These validation datasets were created based on multiple data sources and manual verification, reporting 

a stable quality and high independence. Their spatial distribution and classification system are shown in Figure 18. 

Based on two open-access validation datasets, we calculated the confusion matrix of SinoLC-1 and further validated the 480 

O.A., and kappa coefficient of the SinoLC-1. The O.A. of the SinoLC-1 validated on the validation sets created by Liu et al. 

and Zhao et al. are 78.80% and 64.69%, respectively. The Kappa coefficients are 0.7394 and 0.5588, respectively. To illustrate 

more detailed assessment results, Figure 19 shows the corresponding confusion proportions for each considered land-cover 

type of the SinoLC-1 validated on two datasets. Furthermore, Figure 20 shows the validation results of five comparative land-

cover products. Comparing the validation results of two datasets, all products have a higher O.A. on the validation set created 485 

by Liu et al., where the SinoLC-1 ranks second with an O.A. of 78.81% (lower than the 30-meter GLC_FCS30). With the 

validation set created by Zhao et al, all products have an O.A. of around 60%, while the SinoLC-1 ranks second with an O.A. 

of 64.69% (lower than the 10-meter ESA_GLC10). 

Overall, by quantitatively comparing the SinoLC-1 product with five widely used land-cover products on two open-access 

validation datasets, the produced SinoLC-1 shows acceptable confusion proportion among all considered land-cover types and 490 

has competitive accuracy among the other land-cover products across China. 

  
(a) The validation set created by Liu et al. (b) The validation set created by Zhao et al. 

Figure 18. Spatial distribution and classification system of two open-access validation sets.  
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(a)  Confusion proportions of the SinoLC-1 validated with the set 

created by Liu et al. 

(b) Confusion proportions of the SinoLC-1 validated with the set 

created by Zhao et al. 

Figure 19. Confusion proportions of the SionLC-1 with two open-access validation datasets. 

 

  
(a) The validation results based on the dataset created by Liu et 

al. 
(b) The validation results based on the dataset created by Zhao et 

al. 
Figure 20. The quantitative validation and comparison of the SinoLC-1 and the other five land-cover products  

 

  495 



33 
 

4.3.3 Statistical-level validation 

Based on the statistical validation set described in Sect. 3.3.2, the official land resource survey data of 31 provincial 

administrative regions were collected to validate the statistical-level performance of SinoLC-1, as shown in Table 3 and Table 

4. Figure 21 compares the statistical results of all considered land-cover types between the SinoLC-1 and 3rd NLRS data in 

every considered provincial administrative region where the overestimation (positive value) and underestimation (negative 500 

value) of SinoLC-1 are reflected. Furthermore, the statistical analysis among the provincial- and geographical-level regions is 

shown in Figure 23. 

The statistical comparisons in Figure 21 reveal the statistical results of most regions are relatively consistent with the 3rd 

NLRS data. Overall, in southern and central China, the misestimation of land-cover types is mainly distributed in “Tree cover” 

and “Cropland”. In eastern China, the over forecast of the cropland is the main confusion for the SinoLC-1 product, which is 505 

evident in Shandong, Anhui, and Jiangsu provinces. In northern China, the statistical comparisons indicate similar conclusions 

to the pixel-level validation discussed in Sect. 4.3.1. The landscapes vary and easily lead to incorrect predictions due to the 

wide longitude span of the regions. The misestimation of land-cover types in northern China is mainly the underestimation of 

shrubland and the over forecast of grassland, barren and sparse vegetation, and cropland. In northeastern China, the results of 

all provincial administrative regions show acceptable performance, which is highly consistent with the survey data, because 510 

the landscapes of northeastern China are relatively similar (mainly composed of tree cover and cropland) and not easily 

confused. In northwestern and southwestern China, as the main distribute land-cover types, the misestimation of “grassland” 

and “barren and sparse vegetation” still exists in some provinces. 

To demonstrate the spatial distribution of the misestimation rate for each land-cover type across China, we illustrated the 

misestimation maps for every land-cover type in Figure 22. From the results, the misestimation of some land-cover types 515 

shows a strong distribution pattern. For example, the misestimation of “Shrubland” is mainly distributed in the north and 

southwest of China. The misestimations of “Grassland” and “Barren and sparse vegetation” are concentrated in the north, 

northwest, and southwest of China. The misestimations of “Cropland” and “Building” are distributed on the coasts of eastern 

and southern China. The main misestimation land-cover types distributed in western China (i.e., Qinghai-Tibet Plateau and 

Xinjiang) are “Wetland” with a misestimation rate of 7.6%–9.5%, “Snow and ice” with a misestimation rate of 0.5%–1.8%, 520 

and “Moss and lichen” with a misestimation rate of 0.2%–0.3%. Besides, the SinoLC-1 of Hainan and Chongqing Provinces 

has a high overestimation of “Tree cover” and an underestimation of “Cropland”. By considering the survey data, statistical 

comparison, and model training processing shown in Table 4, Figure 21, and Figure 3, Hainan and Chongqing Provinces have 

a high proportion of “Tree cover” in practice, and the labels generated for model training retain massive samples of “Tree 

cover” in these two areas, which led to the model overfitting and overestimating the types of “Tree cover”. 525 

To evaluate and analyze the overall misestimation area of every land-cover type, first, a box plot was used to describe the 

error distribution of every land-cover type in 31 provincial administrative regions. Figure 23 (a) shows the misestimation rate 

of most types remains low, which indicates SinoLC-1 is a statistically acceptable land-cover product across the nation. 
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Nevertheless, some outliers and large misestimation areas are observed in the type of “Grassland” and “Barren and sparse 

vegetation,” and this misestimation is mainly in the northwest and southwest parts of China where such land-cover types 530 

occupy a very large proportion of these regions and are easily overestimated. Second, a multicolumn chart was used to 

demonstrate the misestimation rate in the seven geographical regions, which was calculated by using the misestimation area 

for each land-cover type to divide the total area of the region. Figure 23 (b) shows based on the various main landscapes of 

seven geographical regions, these regions exhibit different dominant misestimation land-cover types, and the misestimation 

rates of seven regions are all under 20% (most of them are under 15%). Third, we demonstrate a histogram of the national 535 

misestimation rate shown in Figure 23 (c) to visualize the statistical assessment of every land-cover type contained in 

SinoLC-1.  

 
Figure 21. Statistical comparison between SinoLC-1 and 3rd NLRS data for 31 provinces in China. The provinces in different 

geographical region are represented by dissimilar wireframe colors. In every subplot, the abscissa axis represents the land-cover 

types, and the vertical axis represents the misestimation area. 
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Figure 22. The misestimation rate of SinoLC-1 for 31 provinces in China. In every subplot, the statistical comparison between 
SinoLC-1 and 3rd NLRS data in every land-cover type is illustrated. 

Moreover, to measure the overall statistical performance of SinoLC-1, we calculated the Frequency Weighted 

Misestimation Rate (FWMR) of SinoLC-1 to measure the overall proximity of SinoLC-1 to the official survey reports. 

Formally, FWMR is calculated by multiplying the misestimation rate of each land-cover type by their proportion shown in 540 

Figure 7 (b) and summing them up. The FWMR can be written as: 

𝐹𝑊𝑀𝑅 =?𝑝7𝑚7 ,
++

7%+

 
(4) 

where 𝑐 represents the land-cover types counting from 1 to 11 (from “Traffic route” to “Moss and lichen”), 𝑝𝑐 represents 

the class proportion of 𝑐 land-cover type, and 𝑚𝑐 represents the misestimation rate of 𝑐 land-cover type. According to the 
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results shown in Figure 23 (c), the national misestimation rates of all land-cover types are under 11%, and the overall FWMR 

is 6.4%. 545 

Overall, according to the official land resource survey data collected from the 3rd NLRS project, the reliability of the 

SinoLC-1 from the statistical aspect was further validated. The 3rd NLRS data were published by the provincial administrative 

governments, so the comparisons of every land-cover type in 31 provincial administrative regions first indicate the SinoLC-1 

product is highly consistent with the official survey data in most of the provinces. Second, the overall performance of the 

SinoLC-1 at 31 provincial administrative regions and seven geographical regions was examined. The results indicate the 550 

misestimation rate of the SinoLC-1 is acceptable in general with an overall FWMR of 6.4%, and the main misestimation land-

cover types are “Grassland” and “Barren and sparse vegetation” in northwest and southwest China. 

 

 

 
(a) Overall misestimation rate of every land-cover type 

through 31 provinces in China 

(b) Overall misestimation rate of every land-cover type 

through seven geographical regions 

 
(c) National misestimation rate of every land-cover type across China 

Figure 23. Overall misestimation distributions in every land-cover type across China. 
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4.4 Uncertainty and limitations of the SinoLC-1 land-cover product  

SinoLC-1 enables VHR land-cover monitoring over China by using a deep learning-based mapping framework with 555 

multisource open-access data. During the production of SinoLC-1, no manual annotation to create VHR-labeled data was 

required, and no commercial VHR image source was used. The general process maintained low capital expenditure and low 

labor costs. However, as the trade-off situation between the spatial and temporal resolution of the remote-sensing images, one 

of the major limitations to the production of SinoLC-1 was the uneven temporal coverage of Google Earth images. The Google 

Earth images were collected from different platforms at different time points to generate seamless images with large-scale 560 

coverage. Although Google Earth is a low-cost source to acquire nationwide coverage VHR images, the uneven temporal 

coverage of the images can affect the uniformity of the land-cover products. 

Figure 24 shows the spatial distribution of the image capture time and the number of image tiles captured in different 

years. Most of the images were acquired around the year 2021, and the early captured images were mainly distributed in the 

northern land frontier and the northwest part of China. According to the DEM data shown in Figure 9 and other published 565 

GLC products, the outdated images were generally in the west of China and are covered by plateau landforms (typically 

“Grassland” and “Barren and sparse vegetation” land-cover types). Furthermore, based on the 30-meter annual land-cover 

datasets provided by Yang & Huang (2021), as shown in Figure 25, we generated the annual land-cover change heatmap from 

2011 to 2021 (the main time-distributions of the using VHR image) and the province-scale land-cover change map to 

demonstrate the change rate in every provincial region. From Figure 25 (a), the annual change heatmaps show the land-cover 570 

change from 2011 to 2021 was relatively sparse. From  Figure 25 (b), the spatial distribution of the change areas shows that 

the most significant land-cover changes from 2011 to 2010 are located in the provinces of the south (e.g., Hainan, Guangdong, 

Guangxi, etc.), north (e.g., Inner Mongolia, Shanxi, Hebei, etc.), northeast (i.e., Jilin), and northwest (e.g., Xinjiang and Gansu). 

By combining the image capture time shown in Figure 24, the outdated VHR images are most probably to cause uncertainty 

in the mapping results for the northern part of Inner Mongolia and Gansu (i.e., the northern border of China, with the change 575 

rate of 1%–3% from 2011 to 2021) and the southern part of Xinjiang (i.e., the Tarim Basin, with the change rate of 1%–3% 

from 2011 to 2021).   

This distribution indicates the areas containing mass outdated images generally had less land-cover change over the years 

(e.g., Tibet and Qinghai provinces of Southwest China, with a change rate lower than 1%), which limited the uneven effect on 

the produced results. Furthermore, during the production of SinoLC-1, the land-cover information mostly came from the three 580 

10-meter GLC products where two of them (ESA_WorldCover v100 and ESRI land cover) represented a more recent (i.e., the 

year of 2020) land-cover information, and the VHR optical images mainly provided the fine edge and texture information of 

the land surface. Therefore, although the uneven temporal of the VHR images can still cause uncertainty in the SinoLC-1 land-

cover products, owning to the training strategy that reasonably utilized the texture information of images and land-cover 

information of the labels, the influence was minimized. 585 
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Figure 24. Demonstration of the image capture time and the number of image tiles in different years. 

 

  
(a) The 30-m annual land-cover change of China from 2011 to 

2021 
(b) The province-scale land-cover change rate (2011-2021) of 

China 

Figure 25. Spatial distribution of 30-m land-cover change in China from 2011 to 2021. 
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Table 8. The province-scale land-cover change area/rate (2011-2021) of China 

Geographical region Provincial region Provincial proportion to 
China's coverage (%) 

Change area 
(km2) 

Change rate (%) 

South 

Hainan 0.37 714.06 2.04 

Guangxi 2.50 3207.55 1.36 

Guangdong 1.89 2107.36 1.18 

East 

Fujian 1.31 779.53 0.64 

Anhui 1.48 820.93 0.59 

Zhejiang 1.11 719.86 0.69 

Shanghai 0.07 111.32 1.32 

Jiangsu 1.13 1697.93 1.60 

Taiwan 0.38 145.90 0.41 

Jiangxi 1.76 1488.89 0.89 

Shandong 1.64 1416.42 0.92 

Central 

Hubei 1.96 1852.50 1.00 

Hunan 2.23 2300.15 1.02 

Henan 1.75 1172.96 0.69 

North 

Shanxi 1.65 2631.97 1.73 

Hebei 1.99 2186.14 1.18 

Beijing 0.17 126.53 0.76 

Inner Mongolia 12.47 13144.22 1.33 

Tianjin 0.13 207.55 1.76 

Northeast 

Liaoning 1.56 878.47 0.59 

Jilin 0.29 1739.63 0.93 

Heilongjiang 4.98 2849.54 0.61 

Northwest 

Shaanxi 2.17 2631.97 1.29 

Gansu 4.49 6175.12 1.45 

Xinjiang 17.54 90325.45 5.43 

Ningxia 0.70 1173.43 1.77 

Qinghai 7.61 5695.08 0.79 

Southwest 

Guizhou 1.86 2702.60 1.67 

Chongqing 0.87 1045.01 1.32 

Xizang (Tibet) 12.68 8792.25 0.81 

Yunnan 4.15 4743.78 1.30 

Sichuan 5.12 3818.27 0.83 
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5 Data availability 

The SinoLC-1 land-cover product generated in this paper and corresponding user guidelines are available at 

https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023). The product is grouped by city tiles in the GeoTIFF format, which 590 

are packaged in provincial administrative region folders and stored as “.zip” files. Each city tile is named “G_P_C.tif,” where 

“G” explains the geographical region (south, central, east, north, northeast, northwest, and northeast of China) information, 

“P” explains the provincial administrative region information, and “C” explains the city name. For example, the 1-meter land-

cover map for Wuhan City, Hubei Province is named “Central_Hubei_Wuhan.tif”. Furthermore, each tile contains a land-

cover label band ranging from 0 to 255, where the corresponding relationship between the value and the land-cover types is 595 

shown in Table 2 of Sect. 2. 

6 Conclusions 

A VHR (i.e., 1.07-meter resolution) national-scale land-cover product for China, called SinoLC-1, was produced by using 

a low-cost deep learning-based L2H-Frame and multisource free access data derived from three 10-meter GLC products, OSM, 

and Google Earth imagery. In the L2H-Frame, the reliable land-cover and traffic route labeled information was collected to 600 

generate the training labels, and the VHR texture features were extracted from the 1-meter images by using the RP backbone. 

The resolution mismatch between the VHR prediction results and the coarse training labels was resolved using the CAS module 

and the L2H loss function with their weakly and self-supervised strategies.  

The produced SinoLC1 dataset is the first 1-meter resolution and currently the highest resolution land-cover product that 

covers all of China. Comprehensive comparisons with five other widely used products revealed the SinoLC-1 product with the 605 

highest spatial resolution yielded the most accurate land-cover edges, indicating the finest landscape details. Moreover, with 

an additional “Traffic route” land-cover type, the SinoLC-1 product portrayed the details of dense city and urban patterns more 

precisely compared with other products. Quantitative assessments found the validation results derived from over 100,000 

samples indicate SinoLC-1 achieved an O.A. of 73.61% and a kappa coefficient of 0.6595 across China. The validation results 

of every geographical region indicated an acceptable accuracy distribution all around China. Furthermore, the statistical 610 

validation results indicated SinoLC-1 conforms to the official survey reports with an overall misestimation rate of 6.4% 

according to the government data. Overall, assessments and analysis in this paper suggested the SinoLC-1 land-cover product 

accurately provided clear land-cover information and could become a vital support for downstream applications.  
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