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Referee #1 

We thank the reviewer for a thoughtful and thorough review of our manuscript (ESSD-2023-87: 

SinoLC-1: the first 1-meter resolution national-scale land-cover map of China created with the deep 

learning framework and open-access data). The suggestions and comments are listed in bold type. The 

modified words or materials are marked as blue color in the revised manuscript. The item-by-item 

responses to all comments are listed below. 

General comments: 

The SinoLC-1 product, the initial 1-m resolution land cover data product for China, is 

introduced in this work. It may be useful for understanding fine-scale biogeophysical issues on 

the land. Also, the product offers development in big data processing, sample migration, and 

open-access data application that might be useful for efficient national land resource surveys and 

the mapping of large-scale very-high-resolution land cover data. Before it may be accepted, this 

manuscript should yet be improved. 

Response:  

We are particularly grateful for your careful reading, and for giving us many constructive 

comments on this work. According to the suggestions and comments, we have carefully considered all 

of them and tried our best to improve the manuscript.  

 

Suggestions and comments: 

(1) The Introduction, which focuses on data at the global scale, highlights 3 types of land use 

land cover data that fully or partially cover China. Reviewing national and local-scale land 

use land cover data in China is advised given that this manuscript focuses on the production 

of land cover maps at the national scale. The CLCD and CLUD in China and the NLCD in 

the United States are examples of the several extensively utilized national-scale land use land 

cover product. 
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Response:  

We appreciate this suggestion from the reviewer and agree that reviewing the various achievements 

of researchers in national-scale land-cover products enables us to improve the logicality of the 

introduction part and make the manuscript more complete. 

Based on the suggestions, we supplemented the types of ‘National-scale moderate-/high-resolution 

land-cover products’ in the Introduction Section and carefully collected the materials of five high-

quality national-scale land-cover products. Furthermore, to clearly demonstrate various types of land-

cover datasets reviewed in the manuscript, we summarized their information and reference sources in 

Table R1-1. 

The supplement materials include:  

l The 30-m resolution National Land Cover Database (NLCD) covering the whole United States, 

which is cyclically updated by the United States Geological Survey (USGS) with the Landsat 

imagery (Wickham et al., 2021);  

l The 10-m resolution LCM2020 covering the whole United Kingdom, which is periodically 

published by the United Kingdom Centre for Ecology & Hydrology (UKCEH) with the 

Sentinel imagery (Morton et al., 2021);  

l The 30-m China Land Use Dataset (CLUD) covering the whole China from the 1980s to 2015 

at an interval of 5 years, which was produced by the Chinese Academy of Sciences with 

multitemporal Landsat imagery (Liu et al., 2014);  

l The 30-m China Land Cover Dataset (CLCD) covering the whole China from 1990 to 2019 

annually, which was produced by Wuhan University with multitemporal Landsat imagery and 

Google Earth Engine (Yang & Huang 2021). 

l The 10-m Cross Resolution Land Cover (CRLR 2020) covering the whole China in the year 

2020, which was generated by Wuhan University with Sentinel imagery and deep learning 

framework (Liu et al., 2023). 
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Table R1-1. Different types of land-cover datasets reviewed in the manuscripts. The supplements are colored in blue.

  

 

 

Type Spatial
resolution Image source Affiliation Published

year Coverage Reference

1000m SPOT4 EC-JRC 2007 Global
Bartholomé, E., & Belward, A. S. (2007). GLC2000 : a new approach to global land
cover mapping from Earth observation data. 1161.
https://doi.org/10.1080/01431160412331291297

1000m AVHRR EC-JRC and
USGS 2010 Global

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., & Yang, L. (2010).
Development of a global land cover characteristics database and IGBP DISCover from
1 km AVHRR data. 1161. https://doi.org/10.1080/014311600210191

500m MODIS USGS and
NASA 2009 Global

Friedl, M. A., Sulla-menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A.,
& Huang, X. (2010). Remote Sensing of Environment MODIS Collection 5 global land
cover : Algorithm re fi nements and characterization of new datasets. Remote Sensing of
Environment, 114(1), 168–182. https://doi.org/10.1016/j.rse.2009.08.016

30m Landsat Tsinghua
University 2013 Global

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Yu, L., Wang, L., Liu, X.,
Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z.,
Chen, J., & Chen, J. (2013). Finer resolution observation and monitoring of global land
cover : first mapping results with Landsat TM and ETM + data. 1161.
https://doi.org/10.1080/01431161.2012.748992

30m Landsat and
Huanjing-1

National
Geomatics
Center of

China

2015 Global

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S.,
Lu, M., Zhang, W., Tong, X., & Mills, J. (2015). ISPRS Journal of Photogrammetry
and Remote Sensing Global land cover mapping at 30 m resolution : A POK-based
operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7
–27. https://doi.org/10.1016/j.isprsjprs.2014.09.002

30m Lansat
Chinese

Academy of
Sciences

2021 Global
Zhang, X, Liu, L., Chen, X., Gao, Y., Xie, S., & Mi, J. (2021). GLC_FCS30: global
land-cover product with fine classification system at 30&thinsp;m using time-series
Landsat imagery. Earth Syst. Sci. Data , 13 (6), 2753–2776.
https://doi.org/10.5194/essd-13-2753-202

10m Sentinel Tsinghua
University 2019 Global

Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W.,
Bai, Y., Chen, B., Xu, B., Zhu, Z., & Yuan, C. (2019). Stable classification with limited
sample : transferring a 30-m resolution sample set collected in 2015 to mapping 10-m
resolution global land cover in 2017. 64, 370 – 373.
https://doi.org/10.1016/j.scib.2019.03.002

10m Sentinel ESA 2021 Global
Van De Kerchove, R., Zanaga, D., Keersmaecker, W., Souverijns, N., Wevers, J.,
Brockmann, C., Grosu, A., Paccini, A., Cartus, O., & Santoro, M. (2021). ESA
WorldCover: Global land cover mapping at 10 m resolution for 2020 based on
Sentinel-1 and 2 data. AGU Fall Meeting Abstracts, 2021, GC45I-0915.

10m Sentinel ESRI Inc. and
IO Inc. 2021 Global Karra, K., Kontgis, C., Statman-weil, Z., Mazzariello, J. C., Mathis, M., Steven, P., &

Observatory, I. (n.d.). Global land use / land cover with Sentinel 2 and deep learning.

30m Lansat USGS Since 2001 National (USA)
Wickham, J., Stehman, S. V, Sorenson, D. G., Gass, L., & Dewitz, J. A. (2021).
Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous
United States. Remote Sensing of Environment, 257, 112357

10m Sentinel UKCEH Since 2015 National (UK)
Morton, R. D., Marston, C. G., O' Neil, A. W., & Rowland, C. S. (2021). Land
Cover Map 2020 (10m classified pixels, GB). NERC EDS Environmental
Information Data Centre . https://doi.org/10.5285/35c7d0e5-1121-4381-9940-
75f7673c98f7

30m Lansat
Chinese

Academy of
Sciences

2014 National (CN)
Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R.,
& Yan, C. (2014). Spatiotemporal characteristics, patterns, and causes of land-use
changes in China since the late 1980s. Journal of Geographical Sciences, 24, 195–210.

30m Lansat Wuhan
University 2021 National (CN)

Yang, J., & Huang, X. (2021). The 30m annual land cover dataset and its dynamics in
China from 1990 to 2019. Earth System Science Data, 13(8), 3907 – 3925.
https://doi.org/10.5194/essd-13-3907-2021

10m Sentinel Wuhan
University 2023 National (CN)

Liu, Y., Zhong, Y., Ma, A., Zhao, J., & Zhang, L. (2023). Cross-resolution national-
scale land-cover mapping based on noisy label learning: A case study of China.
International Journal of Applied Earth Observation and Geoinformation, 118, 103265.

0.3m Google Earth and
airborne images

Wuhan
University 2021 3 cities of CN

Wang, J., Zheng, Z., Lu, X., & Zhong, Y. (2021). LoveDA: A Remote Sensing Land-
Cover Dataset for Domain Adaptive Semantic Segmentation. Thirty-Fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

2.1m Ziyuan-3 Wuhan
University 2020 42 cities of CN

Huang, X., Wang, Y., Li, J., Chang, X., Cao, Y., Xie, J., & Gong, J. (2020). High-
resolution urban land-cover mapping and landscape analysis of the 42 major cities in
China using ZY-3 satellite images. Science Bulletin, 65(12), 1039 – 1048.
https://doi.org/10.1016/j.scib.2020.03.003

2.4m
Google Earth,

Ziyuan-3,and Gaofen-
6

Peking
University 2020 81 cities of CN

Du, S., Du, S., Liu, B., Zhang, X., & Zheng, Z. (2020). Large-scale urban functional
zone mapping by integrating remote sensing images and open social data. GIScience &
Remote Sensing, 57(3), 411–430. https://doi.org/10.1080/15481603.2020.1724707

Global LR
land-cover

product

Global
MR/HR

land-cover
product

National
MR/HR

land-cover
product

Regional
VHR land-

cover
product
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The cited references of the national-scale moderate-/high-resolution land-cover datasets are as follows: 

Wickham, J., Stehman, S. V, Sorenson, D. G., Gass, L., & Dewitz, J. A. (2021). Thematic accuracy assessment of the 

NLCD 2016 land cover for the conterminous United States. Remote Sensing of Environment, 257, 112357. 

https://doi.org/10.1016/j.rse.2021.112357 

Morton, R. D., Marston, C. G., O' Neil, A. W., & Rowland, C. S. (2021). Land Cover Map 2020 (10m classified pixels, 

GB). NERC EDS Environmental Information Data Centre. https://doi.org/10.5285/35c7d0e5-1121-4381-9940-

75f7673c98f7 

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., & Yan, C. (2014). Spatiotemporal 

characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical 

Sciences, 24, 195–210. https://doi.org/10.1007/s11442-014-1082-6 

Yang, J., & Huang, X. (2021). The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth 

System Science Data, 13(8), 3907–3925. https://doi.org/10.5194/essd-13-3907-2021 

Liu, Y., Zhong, Y., Ma, A., Zhao, J., & Zhang, L. (2023). Cross-resolution national-scale land-cover mapping based on 

noisy label learning: A case study of China. International Journal of Applied Earth Observation and Geoinformation, 

118, 103265. https://doi.org/10.1016/j.jag.2023.103265 

(2) Why not use bands composition to assist in mapping? 

Response:  

 Thank you for the constructive comment. We have carefully considered this question during the 

production process of SinoLC-1. Since the VHR Google Earth images contain three basic bands which 

are difficult to apply common band composition process, we agree that using multi-spectral images 

(e.g., Sentinel-2) or composition index data (e.g., NDVI, NDWI, etc.) enables to assist the mapping 

process. Specifically, I would like to respond this comment from three aspects, which are concluded 

during the practical production of the SinoLC-1: 

l (1/3) The additional information provided by multi-spectral images and band composition data. 

In the moderate-/high-resolution land-cover mapping process, multi-spectral images from 

Landsat or Sentinel mission general provide abundant spectral information which can better 

distinguish confused land-cover types. This enables land-cover products produced based on these 

images to contain reasonable classification results on these confused land-cover types. The 

production process of SinoLC-1 was based on the classification results of these multi-spectral 
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images, where these products (i.e., ESA_GLC10, FROM_GLC10, and ESRI_GLC10) were used 

as training labels. By combining the rich labeled information of these training labels and the fine 

edge and texture information of three band VHR Google images, the classification results based 

on multi-spectral images with a fine edge and details can be learned and inherited by SinoLC-1 to 

a certain extent. 

As shown in the top row of Figure R1-1, SinoLC-1 has learned and inherited these 

classification results (e.g., water, vegetation, impervious) of 10-m GLC produced by using 

multispectral images. As shown in the bottom row of Figure R1-1, we collected the multi-spectral 

Sentinel-2 image from the same location and used common band composition to generate index 

data for NDVI and NDWI, the information contained in the index data is basically reflected in the 

GLC training labels. 

 
Figure R1-1. Demonstration of different data in a sample area of Shanghai. 

l (2/3) The mismatched resolution between the VHR optical images, multi-spectral images, and 

band composition index data. 

The 10-m Sentinel-2 imagery, as a suitable multi-spectral auxiliary data to conduct band 

composition, has a 10 times spatial resolution discrepancy to the using VHR Google Earth 

images. As shown in the top row of Figure R1-2, the mismatched resolution between the VHR 
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optical images, multi-spectral images, and band composition index data can cause data offset 

when they are input to the network for training. Furthermore, the land-cover mapping network 

used in this manuscript includes a resolution-preserving backbone, a weakly supervised label 

selection module, and a self-supervised loss function. Although the network performs well in 

resolving the resolution offset between images and labels by highly preserving the resolution 

of extracted features, the land-object edge and spatial detail of the mapping results inevitably 

rely on the input VHR images. Besides, in our previous works, we have validated that taking 

multi-spectral images with lower resolution as auxiliary data for the VHR land-cover mapping 

process can bring in abundant spectral information, but reduce the spatial details of the 

mapping results. 

Figure R1-2 shows the masks generated from the index data by setting different 

thresholds. In addition to the resolution offset between these data, different threshold setting 

has a significant impact on the mask generated by these band composition index data. In the 

national-scale land-cover mapping process, the variation of band composition index data in 

different regions can make it difficult to select appropriate thresholds for mask generation. 

  
(a) An example of NDVI (b) An example of NDWI 

Figure R1-2. Demonstration of the index data generated by the band composition   
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l (3/3) Discussion on two ways of using band composition to assist the VHR national-scale land-

cover mapping. 

Based on the above-mentioned analysis, we have listed two suitable ways to use band 

composition to assist VHR national scale land cover mapping after fully considering the utilized 

framework and calculation resources. As shown in Figure R1-3, the listed two ways include: (a) 

Using Sentinel-2 imagery as auxiliary data to the VHR optical imagery and (b) Using band 

composition index data as post-processing data to the SinoLC-1 dataset. 

(a) By combining the 13 multi-spectral bands of Sentinel-2 images with the current VHR 

images to reconstruct the input image data is a basic method to assist the land-cover 

mapping process. As shown in Figure R1-3 (a), this combination can maximize the 

utilization of spectral information provided by the Sentinel-2 image. However, in addition 

to the abovementioned resolution offset issue between different image sources, it requires 

us to collect the Sentinel-2 images covering the whole China, and the reconstructed image 

contains a large number of channels, which relies on more computational and storage 

capabilities for conducting the national-scale mapping process. 

(b) By calculating the band composition index data and using them to assist the post-

processing of the mapping results is another suitable method to improve the quality of the 

SinoLC-1 dataset. As shown in Figure R1-3 (b), with the index data (e.g., NDVI, NDWI, 

etc.) calculated based on multispectral images, it is possible to correct the 

misclassification land-cover types and improve the overall quality of the SinoLC-1. The 

advantage of such a method is that it does not require the reconstruction of training data 

(especially the images) and model retraining, but only uses appropriate band composition 

data to post-process the results. Therefore, we are trying our best to utilize the index data 

generated by the Sentinel-2 image to improve the current results and reevaluate the 

accuracy. In future work, we continue to reevaluate the improved results and update the 

dataset. 
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(a) Using Sentinel-2 imagery as auxiliary data to the VHR optical imagery 

 
(b) Using band composition index data as post-processing data to the SinoLC-1 dataset. 
Figure R1-3. Two ways of using band composition to assist the VHR national-scale land-cover mapping. 

 

(3) Why are other OSM types not involved in mapping? 

Response:  

Thanks for the question. Before conducting the national-scale land-cover mapping, we 

conducted thorough research on the selection of input data. Open Street Map (OSM), as one of the 

most popular volunteer geographic information data sources, allows everyone in the community to 

edit the maps. As shown in Figure R1-4, OSM contains three types of data: points of interest, traffic 

routes, and polygons. Among them, the points of interest are usually labeled coordinate points 

without a systematic classification system. For example, in the example of Shanghai, the points of 

interest are labeled with the names of different restaurants, hotels, and coffee shops, which makes 

them difficult to utilize in land-cover mapping tasks. For polygons, their corner points are manually 
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labeled, and their attributes contain the basic land use types (such as commercial, industrial, etc.). 

For traffic routes, they are usually labeled by uploaders who carried with GPS receivers and 

updated to OSM by walking, cycling, or driving along the road. Based on this, traffic routes usually 

have more accurate labeling information. 

 

Figure R1-4. Demonstration of the OSM data in Shanghai City. 

To demonstrate different types of data in the OSM, we selected three sample areas in Figure 

R1-4 (a). For sample 1, it can be found that OSM's polygons data does not accurately label the 

boundaries of ‘industrial’, but instead labels most of the area of a factory. For samples 2 and 3, it 

can be observed that due to the inaccurate manual-annotation of OSM's polygons data, many basic 

land-use types such as industrial and residential areas in the same area miss annotation information. 

Figure R1-4 (c) shows the land-cover product which was used in the training process of the 

SinoLC-1. Since the land-cover products are interpreted from the remote-sensing images rather 

than manually annotating, the information provided by land-cover products is more complete.  
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Figure R1-5. Demonstration of the OSM data in Heihe City, Heilongjiang Province. 

Furthermore, Figure R1-5 shows another example of OSM data in Heihe City, Heilongjiang 

Province. Compared to Shanghai City, Heihe City is sparsely populated and has a lower level of 

urban development. From Figure R1-5 (d-f), the traffic route data of OSM is accurate, but the 

polygons data is relatively inaccurate (only labeling a rough area). The land-cover or land-use 

information provided by the polygons data is far less accurate than the land-cover product. 

In general, OSM's traffic route data can provide additional information for land cover mapping 

tasks. In numerous land-cover mapping studies, OSM's traffic route data is also widely used 

(Audebert et al 2017; Guzder-Williams et al, 2022; Zhu et al, 2022), because they provide accurate 

road-labeled information and reflect urban patterns. For the national-scale land-cover mapping 

process, the examples shown in Figure R1-5 reveal that the data quality of OSM's polygons has 

significant differences in different regions, and inaccurate manual-annotation may also bring more 

label noise. Therefore, in the production of SinoLC-1, we obtained the land-cover information from 

three GLC products, and only extracted the accurate traffic route data from the OSM to construct 

the training labels. 

The cited references of this response are as follows: 

Guzder-Williams, B., Mackres, E., Angel, S., Blei, A.M. and Lamson-Hall, P., 2023. Intra-urban land use maps for a 

global sample of cities from Sentinel-2 satellite imagery and computer vision. Computers, Environment and 

Urban Systems, 100, p.101917. https://doi.org/10.1016/j.compenvurbsys.2022.101917 
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Zhu, Q., Lei, Y., Sun, X., Guan, Q., Zhong, Y., Zhang, L. and Li, D. (2022). Knowledge-guided land pattern depiction 

for urban land use mapping: A case study of Chinese cities. Remote Sensing of Environment, 272, p.112916. 

https://doi.org/10.1016/j.rse.2022.112916 

Audebert, N., Le Saux, B. and Lefèvre, S. (2017). Joint learning from earth observation and OpenStreetMap data to 

get faster better semantic maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition Workshops 67-75. 

 
 

(4) It's possible to argue against the classification system's building category. Table 2 compares 

building to mining land in the NLRS, which is inappropriate because mining land refers to a 

mine site (see the NLRS land category determination rules published in 2019). 

Moreover, optical images and even RGB images should have difficulty classifying forest 

swamps. The authors are suggested to submit mapping results for land cover types that are 

challenging to distinguish in medium resolution imagery in order to show the scientific 

significance and applicability of SinoLC-1. 

Response: 

Thank you for the constructive comments. For the first comment, we carefully checked the 

document ‘Detailed Rules for the Recognition of Land Classification in the Third National Land 

Survey (2019)’ at the website of the Ministry of Natural Resources of the People's Republic of 

China (https://m.mnr.gov.cn/zt/td/dscqggtdc/zl/201906/P020190604539900543194.pdf). Indeed, the mining 

land is inappropriate to be sorted into ‘building’ type. According to the rules, the type of mining 

land in NLRS refers to ground production lands such as mining, quarrying, sand (sand) quarries, 

brick and tile kilns, as well as soil (stone) and tailings storage areas. Therefore, we revised the 

corresponding land-cover type relationship between the SinoLC-1 products and the 3rd NLRS 

shown in Table 2 of the manuscript (Table R1-2 of the response letter) and the statistical validation 

set collected from the third national land resource survey projects shown in Table 3 of the 

manuscript (Table R1-3 of the response letter). Furthermore, based on the revised classification 

system and relationship table of the land-cover types, we updated the statistical-level validation 

results shown in Figures 21–23 of the revised manuscript. 
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Table R1-2. Corresponding land-cover type relationship between the SinoLC-1 products and the 3rd national 
land survey. 

SinoLC-1 category 3rd NLRS land-cover type SinoLC-1 category 3rd NLRS land-cover type 

Tree cover 

Arbor woodland 

Building 

Urban land 

Bamboo groves Administrative towns 

Other woodland Village land 

Shrubland Shrubland Airport land 

Grassland 

Barren and  

sparse vegetation 

Natural grassland Wharf land 

Artificial grassland Pipeline transportation 

Other grassland Scenic Spot 

Mining land 

Wetland 

Forest swamp 

Cropland 

Paddy field Shrub swamp 

Irrigated land Swampy grassland 

Dry cropland Coastal tidal flat 

Orchard  Inland tidal flat 

Tea plantation Marshland 

Rubber plantation 

Water 

River 

Other plantations Lake 

Traffic route 

Railway Reservoir 

Rail transit Pond 

Highway Ditch 

Rural road Hydraulic construction 

Snow and ice Glaciers and snow Moss and lichen Tundra 
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Table R1-3. Statistical validation set collecting from the third national land resource survey projects. 

Geo. 

region 

Province/ 

City 

Statistical results of different land-cover types (km2) 

TR TC SL GL+BL&SV CL BD S&I WT WL M&L  

South 

Hainan 524 10799 943 173 17047 2468 0 1831 1157 57  

Guangxi 3272 124831 36122 2767 49779 9857 0 7490 1178 94  

Guangdong 3000 106522 1404 2390 32267 17757 0 13423 1683 106  

East 

Fujian 2000 87427 686 753 18503 7109 0 3731 1874 12  

Anhui 2824 40055 860 483 59196 17588 0 17285 477 0  

Zhejiang 2268 58616 2319 3 20507 11559 0 7025 1655 1  

Shanghai 275 818 1 0 1772 2944 0 1913 727 0  

Jiangsu 3362 7787 84 942 43293 21103 0 25426 4264 0  

Shandong 3997 25383 670 2379 77242 28206 0 13254 2463 0  

Central 

Hubei 3047 83936 8865 898 53243 14172 0 19837 615 0  

Hunan 3425 121363 5804 18520 45150 16336 0 12585 2362 0  

Henan 3560 37362 6601 2579 79419 24495 0 14445 393 0  

North 

Shanxi 2420 43611 17346 31064 45105 10185 0 1731 546 0  

Hebei 3666 44371 19883 19492 70400 21094 0 5711 1428 0  

Beijing 401 5977 3701 146 2509 3176 0 618 32 0  

Inner 

Mongolia 
21228 167115 76564 543772 115508 14975 0 10645 38094 0  

Tianjin 453 1852 0 153 3296 3319 0 2373 327 0  

Northeast 

Liaoning 2654 52080 8077 4886 57100 13302 0 6916 2864 0  

Jilin 272 15733 53 86 9303 1125 0 1001 82 0  

Heilongjiang 5043 214459 1773 11864 172578 11671 0 16864 35010 0  

Northwest 

Shaanxi 2804 106245 18515 22109 41483 9204 0 2733 487 0  

Gansu 1320 11968 4488 149072 93632 15840 0 5984 10736 0  

Xinjiang 5172 40832 81293 519885 81087 14163 22242 30842 15245 0  

Ningxia 942 9537 0 20312 11984 2973 0 1688 249 0  

Qinghai 3125 9096 36940 394727 6265 4909 4233 20233 51012 0  

Southwest 

Guizhou 3174 79346 32755 1888 34726 7751 0 2554 71 0  

Chongqing 1433 38067 8823 237 21508 6426 0 2717 150 0  

Xizang (Tibet) 1596 98180 80782 800653 4540 1642 20715 38589 43025 0  

Yunnan 5219 220773 28917 13238 79676 10773 431 5654 398 0  

Sichuan 4492 183471 70724 96884 64302 18496 459 10073 12309 0  

Note:   
TR=Traffic route; TC=Tree cover; SL=Shrubland; GL+BL&SV=the total of ‘Grassland’ and ‘Barren and sparse vegetation’; 

CL=Cropland; BD=Building; S&I=Snow and ice; WT=Water; WL=Wetland; M&L=Moss and lichen. 
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For the second comment, we agree that the optical images have difficulty in classifying forest 

swamps and other similar land-cover types. According to your suggestion, we supplemented the 

land-cover mapping results of the SinoLC-1 in three challenging landscapes. Figure 15 of the 

manuscript (Figure R1-6 of the response letter) demonstrates three special landscapes that are 

challenging to distinguish in VHR optical images and even HR multispectral images. The three 

landscapes include (a) Marshland (i.e., muddy areas with dense water and grass that have been 

soaked in stagnant water) captured from the Daqing Longfeng Wetland Nature Reserve, 

Heilongjiang Province, which is the largest urban wetland in China, (b) Forest swamp (i.e., the 

landscape dominated by trees or shrubs formed under humid soil, stagnant water, or shallow water 

layers) captured from Chongming island, Shanghai City, which is known as the world's largest 

estuarine alluvial island wetland, and (c) Watercourse (the route through which river water flows, 

usually referring to navigable waterways) captured from the Beijing-Hangzhou Grand Canal.  

To show the scientific significance and applicability of SinoLC-1, we illustrated the VHR 

Google Earth image, the SinoLC-1, the Sentinel-2 image, and three 10-m land-cover products in 

these landscapes. As shown in Figure R1-6 (a), the SinoLC-1 reveals most of the marshland in the 

area and distinguishes the surrounding water and grasslands. Among the three 10-m land-cover 

products generated from the Sentinel image, the ESA_GLC10 accurately reflects the marshland in 

the area, but the FROM_GLC10 and ESRI_GLC10 miss the majority of wetland type. As shown 

in Figure R1-6 (b), it is observed that the VHR optical image shows more clear spatial detail than 

the 10-m Sentinel image. From the perspective of the land-cover map, the SinoLC-1 shows the 

forest swamp (i.e., land cover type of wetland in the legend), rivers, and tree canopy content in the 

area. The ESRI_GLC10 shows an accurate result on the forest swamp landscape. The ESA_GLC10 

overestimates the tree canopy type, and the FROM_ GLC10 overestimates the cropland. As shown 

in Figure R1-6 (c), the SinoLC-1 accurately reflects the watercourse, and due to the fine spatial 

resolution, the bridges on the watercourse are also clearly displayed. Among the three 10-m land-

cover products generated from the Sentinel image, the ESRI_GLC10 and FROM_GLC10 have 

acceptable classification results on the watercourse. However, the FROM_ GLC10 only shows the 

central part of the watercourse and underestimates the width. For ESA_GLC10, the watercourse 

was incorrectly classified into the land-cover type of ‘barren and low vegetation’. 
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Figure R1-6. Demonstrations of the visual comparison for challenging land-cover types which include (a) 
Marshland, (b) Forest swamp, and (c) Watercourse. The VHR remote sensing images in the figure are from 
© Google Earth 2021. 
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(5) Add legends to all maps to address the current difficulty of comparing different product 

qualities, such as Figure 13. 

Response:  

Thanks for your constructive suggestions. We have supplemented the legends to all maps in 

Figures 8, 13, and 14 of the revised manuscript (Figures R1-7, R1-8, and R1-9). In the comparison 

of different products, we demonstrated the original land-cover types of different products and 

unified the color of similar land-cover types for better visual comparison.  

 
 Figure R1-7. Demonstration of SinoLC-1: a 1-meter-resolution national-scale land-cover map of China. 
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Figure R1-8. Demonstration of the visual comparison for Changzhou City, Jiangsu Province. The VHR remote 
sensing image in the figure is from © Google Earth 2021. 
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Figure R1-9. Demonstrations of the visual comparison for four typical regions. The VHR remote sensing images 
in the figure are from © Google Earth 2021. 
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(6) The authors utilized current global-scale land cover products as mapping samples, but the 

quality of them in the Chinese region is uncertain. The quality of these products in the 

Chinese region is not always robust according to the text and figures in section 4.2 of the 

manuscript. Therefore, how do the authors account for these variables that might affect 

SinoLC-1's quality? 

Response:  

Thank you for your constructive comment. We agree that using global-scale land-cover 

products as training data for SinoLC-1 may bring uncertainty. To be clearer and in accordance 

with your concerns, we would like to respond to this question from three aspects, including (1) 

Analyzing the sources of uncertainty in training labels; (2) Analyzing how we reduce the 

uncertainty during sample selection and network training; (3) Comprehensively analyzing the 

impact of uncertainty on the SinoLC-1 mapping results.  

l (1/3) Unstable sample brought by the low-resolution, outdated, noisy training labels.  

The manual annotation of labeled data is laborious and time-consuming, which challenges 

the efficiency, expenditure, and applied coverage of the VHR land-cover mapping. Based on this 

situation, the SinoLC-1 dataset was produced by using low-resolution land-cover products as 

training labels. According to the production of SinoLC-1, we sorted out the noise sources of 

labeled data into three main parts:  

(a) Spatial resolution mismatch 

There is a resolution gap between the 1-meter images and the 10-meter labels. The coarse 

label brought noisy samples to the fine edges and texture info of VHR images during the 

training process. 

(b) Temporal mismatch 

There is a temporal gap between the VHR images and the adopted 10-meter resolution GLC 

products. The land-cover maps produced at different time points brought noisy samples. 

(c) Product defects: 

Due to the defects of classifiers and the insufficient image quality, the using GLC products 

may have incorrect results, which brought labeling errors and noisy samples to the 

production of SinoLC-1. 

Figure R1-10 shows the samples of these three main noise sources and the results of the SinoLC-
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1 which are accurate and consistent with the VHR images.  

 
Figure R1-10. Demonstration of the main uncertainty and unstable samples exiting in the training labels 

 

l (2/3) Reliable training sample collection and network training process. 

    To reduce the impact of uncertainty during the production of SinoLC-1, we conducted a 

reliable sample collection and network training process. Firstly, Figure R1-11 shows the details 

of the training sample collection process. The land-cover types of three 10-m global land-cover 

products were unified, and then they were intersected to generate the label-selected mask. In the 

selected mask, the pixels/areas, where their land-cover types were the same in the three GLC 

products, would be preserved as the stable labeled areas; otherwise, the pixels/areas would be 

set as unlabeled type and maintained void value. As an example of the selected training sample 

shown in Figure R1-12, we demonstrate three typical areas where the first area shows a preserved 

correct sample (three GLC products have the same type), the second area shows an inaccurate 

sample (partial samples are abandoned), and the third area shows an incorrect sample (the 

samples are completely abandoned). Based on this sample collection process, the stable parts of 

these GLC products were preserved and the uncertain parts were abandoned, which ensures the 

reliability of the training labels. Secondly, to address the noisy label issue, the low-to-high 

network (L2HNet) was designed with a weakly-supervised based Confident Area Selection 
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(CAS) module and a self-supervised loss function. As the network training process shown in 

Figure R1-13, the CAS module selects the high-confident samples from the coarse, outdated, 

and noisy labels based on the confidence probability of the prediction batches. For the loss 

calculation, the Cross-Entropy (CE) loss is only calculated on the selected confident area, and 

the vague area (with low confidence probability) is ignored in the CE loss calculation. Then, the 

self-supervised Dynamic Vague Area (DVA) loss is calculated between the confident area and 

the vague area by constraining the feature similarity of the same land-cover types. Based on these 

components, the L2HNet enables to learn reliable information from the coarse, outdated, noisy 

labels, and the capacity of L2HNet to utilize noisy labels for accurate large-scale VHR land 

mapping has been validated in numerous datasets (Li et al., 2022). 

In general, by combining the reliable training sample collection and network training 

process, the impact of uncertainty in training labels could be reduced to a certain extent during 

the production of SinoLC-1. 

 
Figure R1-11. Demonstration of the training sample collection process 
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Figure R1-12. Demonstration of the selected training samples 

 

 
Figure R1-13. Demonstration of the training process of the land-cover mapping network.  

 

l (3/3) Comprehensively analyzing the impact of uncertainty on mapping results. 

To comprehensively analyze the uncertainty of three global land-cover products, which were 

used to generate the SinoLC-1, more rigorously, we added two widely used open-access 

validation datasets to assess the accuracy of five global-scale products (including three utilized 

10-m products and other two 30-m products) across China. Figure R1-14 shows the 
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supplemented workflow added to comprehensively evaluate the accuracy and uncertainty of the 

SinoLC-1 and other land-cover products. We have fully evaluated their producer accuracy (P.A.), 

user accuracy (U.A.), overall accuracy (O.A.), and kappa coefficients for each land-cover type 

in China, which are presented in Table R1-8, Figure R1-19, and Figure R1-20. We also analyzed 

their potential impact on the production process of SinoLC-1 comprehensively. 

 
Figure R1-14. The supplemented workflow to evaluate the accuracy and uncertainty of the SinoLC-1 and 
other five global land-cover products 

Firstly, the utilized two open-access validation datasets are created based on multiple data 

sources and manual verification, reporting a stable quality and high independence. The detailed 

information on these validation sets is as follows: 

(a) Validation set created by Liu et al. DOI: https://doi.org/10.5281/zenodo.3551995 

Liu et al. (2019) created a global land-cover validation set by combining several existing 

reference datasets such as the GLCNMO2008 training dataset, VIIRS reference dataset, 

STEP reference dataset, Global cropland reference data, and so on to guarantee the 

confidence and objective of the validation samples. Furthermore, high-resolution imagery 

in Google Earth and time-series NDVI, NDSI values of each related point were integrated 

to derive the validation datasets.  
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(b) Validation set created by Zhao et al. DOI: https://doi.org/10.1080/01431161.2014.930202 

Zhao et al. (2014) created a global land-cover validation set with a total of 38,664 sample 

units by interpreting Landsat images and MODIS EVI time series data, as well as high-

resolution images from Google Earth, recording the quality of reference data, and 

interpreter confidence. Zhao et al. confirmed that the dataset had been carefully improved 

through several rounds of interpretation and verification by different image interpreters, 

and checked by one quality controller. Independent test interpretation indicated that the 

quality control correctness level reached 90% at level 1 land-cove type.  

According to the description of the data providers, these validation sets contain two levels of 

land-cover types, and their spatial distribution and classification system are shown in Figure R1-

15, Table R1-7, and Table R1-8.  

The cited references of this response are as follows: 
Zhao, Y., Gong, P., Yu, L., Hu, L., Li, X., Li, C., Zhang, H., Zheng, Y., Wang, J., Zhao, Y. and Cheng, Q. (2014). 

Towards a common validation sample set for global land-cover mapping. International Journal of Remote 
Sensing, 35(13), 4795-4814. https://doi.org/10.1080/01431161.2014.930202 

Liu, L., Gao, Y., Zhang, X., Chen, X., & Xie, S. (2019). A Dataset of Global Land Cover Validation Samples 
(Version v1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3551995 

  

(a) Validation set created by Liu et al. (b) Validation set created by Zhao et al. 

Figure R1-15. Demonstration of two open-access validation set.  
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Table R1-4. The classification system of the validation set created by Liu et al. 
Level 1 type Level 2 type Sample count Total Proportion (%) 

Cropland 
Rainfed cropland 44 

353 14.33%  Herbaceous cover 0 
Irrigated cropland 311 

Forest 

Evergreen broadleaved forest 123 

542 22.01%  Deciduous broadleaved forest 303 

Mixed leaf forest 116 

Shrubland 
Shrubland 78 

104 4.22%  Evergreen shrubland 26 
Grassland Grassland 360 360 14.62% 
Wetlands Wetlands 17 17 0.69% 
Impervious surfaces Impervious surfaces 71 71 2.88% 

Bare areas 

Sparse vegetation 285 

641 26.03%  
Bare areas 329 
Consolidated bare areas 3 
Unconsolidated bare areas 24 

Water body Water body 37 37 1.50% 
Permanent ice and snow Permanent ice and snow 338 338 13.72% 

 

Table R1-5. The classification system of the validation set created by Zhao et al. 
Level 1 type Level 2 type Sample count Total Proportion (%) 

Crop 
Rice 3 

353 16.98%  Greenhouse 1 
Other 349 

Forest 

Broadleaf 303 

512 24.63%  
Needleleaf 81 
Mixed 114 
Orchard 14 

Grass 
Managed 0 

312 15.01%  Nature 312 
Shrub Shrub 103 103 4.95% 

Wetland 
Grass 15 

15 0.72%  Silt 0 

Water 

Lake 7 

33 1.59%  
Pond 19 
River 7 
Sea 0 

Impervious 
High albedo 19 

52 2.50%  Low albedo 33 

Bare land 

Saline-Alkali 10 

619 29.77%  

Sand 138 
Gravel 303 
Bare-cropland 89 
Dry river/lake bed 2 
other 77 

Snow and Ice 
Snow 80 

80 3.85% 
Ice 0 

Secondly, to comprehensively validate the accuracy and uncertainty of the SinoLC-1, we 

calculated the confusion matrix of SinoLC-1 and further validated its P.A., U.A., O.A., and kappa 

coefficient based on two open-access validation sets. As shown in Table R1-6 and Table R1-7, the 
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O.A. of the SinoLC-1 validated on the validation sets created by Liu et al. and Zhao et al. are 78.80% 

and 64.69%, respectively. The Kappa of the SinoLC-1 validated on the validation sets created by Liu 

et al. and Zhao et al. are 0.7394 and 0.5588, respectively. Furthermore, to illustrate more detailed 

assessment results, Figure R1-16 shows the corresponding confusion proportions for each considered 

land-cover type of the SinoLC-1 validated on two datasets.  

Table R1-6. Confusion matrix for the SinoLC-1 according to the validation set created by Liu et al. 
Classification TC SL GL CL IP BL&SV S&I WT WL Total P.A. (%) 

Tree Cover 421 5 80 32 0 2 1 1 0 542 77.68 

Shrubland 7 34 32 2 0 27 2 0 0 104 32.69 

Grassland 2 2 342 0 0 7 0 0 0 353 96.88 

Cropland 5 1 3 316 29 3 0 3 0 360 87.78 

Impervious 7 0 3 7 51 3 0 0 0 71 71.83 

Barren &Sparse veg. 1 7 12 0 0 616 5 0 0 641 96.10 

Snow and ice 1 0 78 0 0 121 136 2 0 338 40.24 

Water 7 0 0 5 3 1 0 19 2 37 51.35 

Wetland 0 0 1 4 0 1 2 3 6 17 35.29 

Total 451 49 551 366 83 781 146 28 8 2463  
  

U.A. (%) 93.35 69.39 62.07 86.34 61.45 78.87 93.15 67.86 75.00 
  

 

O.A. (%) 78.80 

Kappa 0.7394 

Note:   
TC=Tree cover; SL=Shrubland; GL=Grassland; CL=Cropland; IP=Impervious (Building and traffic route); BL&SV=Barren and 

sparse vegetation; S&I=Snow and ice; WT=Water; WL=Wetland 
 

Table R1-7. Confusion matrix for the SinoLC-1 according to the validation set created by Zhao et al. 

Classification TC SL GL CL IP BL&SV S&I WT WL Total P.A. (%) 

Tree Cover 376 13 60 35 6 7 1 5 9 512 73.44 

Shrubland 10 34 33 3 0 21 2 0 0 103 33.01 

Grassland 37 2 215 20 3 33 0 1 1 312 68.91 

Cropland 83 1 36 191 18 21 0 2 1 353 54.11 

Impervious 3 0 4 13 29 3 0 0 0 52 55.77 

Barren &Sparse veg. 13 7 109 62 6 411 5 5 1 619 66.40 

Snow and ice 1 0 5 0 0 8 65 1 0 80 81.25 

Water 6 0 0 7 2 2 0 16 0 33 48.48 

Wetland 0 0 2 0 1 2 2 0 8 15 53.33 

Total 529 57 464 331 65 508 75 30 20 2079   

U.A. (%) 71.08 59.65 46.34 57.70 44.62 80.91 86.67 53.33 40.00 
  

 

O.A. (%) 64.69 

Kappa 0.5588 

Note:   
TC=Tree cover; SL=Shrubland; GL=Grassland; CL=Cropland; IP=Impervious (Building and traffic route); BL&SV=Barren and 

sparse vegetation; S&I=Snow and ice; WT=Water; WL=Wetland 
 



 27 / 61 
 

  
(a) Confusion proportions for land-cover type of the SinoLC-1 

validated with the set created by Liu et al. 

(b) Confusion proportions for land-cover type of the SinoLC-1 

validated with the set created by Zhao et al. 

Figure R1-16. Confusion proportions of the validation results. 

Thirdly, to assess the uncertainty impact of three utilized 10-m land-cover products more 

rigorously and transparently, and to conduct a more complete comparison, we used these 

validation sets to validate the accuracy of five comparative land-cover datasets (including three 

utilized 10-m products and other two 30-m products). Figure R1-17 and Figure R1-18 show the 

spatial distribution of two validation sets among five comparative land-cover products in China. 

For clearer expression, we mark the validation set created by Liu et al. (2019) as S1 and mark 

the set created by Zhao et al. (2017) as S2.  

The comparison results are shown in Table R1-8 and Figure R1-19. From the quantitative 

comparison, the SinoLC-1 has the second highest O.A. on two validation sets where the SinoLC-

1 has a O.A. of 0.6469 with S1 (lower than the 10-meter ESA_GLC10) and has an O.A. of 0.7881 

with S2 (lower than the 30-meter GLC_FCS30). Furthermore, we compared the U.A. of every 

considered type between the SionLC-1 and the other five products in Figure R1-20. From the 

results shown in Figure R1-20 (a), the SinoLC-1 has the second highest U.A. in types of ‘Tree 

canopy’, ‘Shrubland’, ‘Grassland’, and ‘Wetland’ compared to the other five products, and has 

the U.A. of ‘Cropland’ and ‘Impervious surface’ surpassing the average of other five products. 

From the results shown in Figure R1-20 (b), the SinoLC-1 has the highest U.A. in types of 

‘Shrubland’ and ‘Grassland’ and has the U.A. of ‘Snow and ice’ and ‘Wetland’ surpassing the 

average of the other five products. 
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In general, by quantitatively comparing the SinoLC-1 product with five widely used land-

cover products on two open-access validation datasets, the produced SinoLC-1 shows acceptable 

confusion proportion among land-cover types and has competitive accuracy among the other 

land-cover products across China. The quantitative results are used to explain the uncertainty of 

the three training data and further demonstrate that the production process of the SinoLC-1 

reduced the impact of noise labels to a certain extent. The supplemented quantitative comparison 

and analysis were added in Section 4.2.2 of the revised manuscript.  

 
Figure R1-17. Demonstration of five comparison products and the validation set (S1) created by Liu et al. 

 
Figure R1-18. Demonstration of five comparison products and the validation set (S2) created by Zhao et al. 
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Table R1-8. Quantitative comparison between the SionLC-1 and other five land-cover products. 
           Metric 

Dataset 

Validation set of Zhao et al. Validation set of Liu et al. 

O. A. Kappa O. A. Kappa 

SinoLC-1 0.6469 0.5588 0.7881 0.7394 

ESA_GLC10 0.6646 0.5722 0.7356 0.6269 

FROM_GLC10 0.6411 0.5942 0.7538 0.6871 

ESRI_GLC10 0.6232 0.5210 0.6675 0.5972 

GlobaLand30 0.6209 0.5285 0.7694 0.7090 

GLC_FCS30 0.5778 0.4675 0.8684 0.8241 

 

  
(a) The validation results based on S1 (b) The validation results based on S2 

Figure R1-19. The quantitative validation and comparison of the SinoLC-1 and other five products  
 

 
 

(a) The U.A. comparison based on S1 (b) The U.A. compassion based on S2 

Figure R1-20. The U.A. comparison of the SinoLC-1 and other five products 
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(7) It is challenging to automatically map forests, shrubs, grasslands, wetlands, and tundra using 

medium-resolution images. To help the reader comprehend the characteristics of various 

land cover types in Google images, it is advised that the authors change Figure 6 by adding 

VHR samples. 

Response:  

Thanks for the constructive comment. We agree that some of the land-cover types are 

challenging to identify in medium-resolution images due to their low spatial details in the images. 

According to your suggestion, we have added the VHR samples captured from the 1.07-m Google 

Earth images for all the land-cover types of the SinoLC-1. As shown in Figure 6 of the revised 

manuscript (Figure R1-21 of the response letter), every land-cover type includes three VHR 

samples to help the readers comprehend their characteristics. 

 
Figure R1-21. Demonstration of the sample grid, VHR samples, and the national validation sample set. Left: the 
spatial distributions of the sample set (the legend is written in shorter forms). Right: the VHR samples of different 
land-cover types collected from 1.07-m resolution © Google Earth imagery all around China. 
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(8) The area discrepancies between the provincial land cover categories of SinoLC-1 and NLRS 

are compared in Figure 17. It is important to note that the value interval on the vertical axis 

is too big. For instance, in Henan province, each pitch of the vertical axis corresponds to a 

5,000 km2 gap. Thus, the area difference between the two results cannot be well reflected for 

land cover categories with small areas. It is suggested that the authors seek alternative 

comparison methods to make the area difference between all types of land cover clear. 

Response: 

We appreciate this helpful feedback to increase the statistical comparison between the SinoLC-

1 and 3rd NLRS. According to your feedback, we changed Figure 21 in the revised manuscript to 

directly illustrate the misestimation area between sinoLC-1 and 3rd NLRS under each land-cover 

type. To better demonstrate the differences between SinoLC-1 and 3rd NLRS, the overestimation 

(positive value) and underestimation (negative value) of SinoLC-1 are also reflected in Figure 21 

of the manuscript (Figure R1-22 of the response letter). To make the area difference between all 

land-cover types clearly visible, we used breakpoints to illustrate the excessively large values of 

misestimation area to ensure that the land-cover types with large gaps can be reasonably displayed 

in the same vertical axis.  

Furthermore, we have also taken your consideration in the comparison at the national scale. In 

the box chart shown in Figure 23 (a) of the manuscript (Figure R1-23 (a) of the response letter), 

we have changed the vertical axis from ‘misestimation area (km2)’ into ‘misestimation rate’, 

because the coverage and misestimation area of different land-cover types has significant 

differences, which makes it difficult to reflect in the box chart with the vertical axis of ‘area (km2)’. 

Moreover, we supplemented Figure 23 (c) in the revised manuscript (Figure R1-23 (b) of the 

response letter) to show the overall misestimation rates of SinLC-1 in the whole China and 

evaluated the performance of Sinolc-1 from a statistical perspective which has a misestimation rate 

under 10% among all the land-cover types. 

In addition, to demonstrate the spatial distribution of the misestimation rate for each land-cover 

type across China, and to provide more comparable information on the statistical assessment, we 

have collected the results and added the map of the misestimation rate for every land-cover type in 

Figure 22 of the revised manuscript (shown in Figure R1-24 of the response letter). 
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Figure R1-22. Statistical comparison between SinoLC-1 and 3rd NLRS data for 31 provinces in China. The provinces 
in different geographical region are represented by dissimilar wireframe colors. In every subplot, the abscissa axis 
represents the land-cover types, and the vertical axis represents the misestimation area. 

 

 
 

(a) Overall misestimation rate of every land-

cover type through 31 provinces in China 

(b) National misestimation rate of every land-cover type across China 

Figure R1-23. Overall misestimation distributions in every land-cover type across China. 
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Figure R1-24. The misestimation rate of SinoLC-1 for 31 provinces in China. In every subplot, the statistical 
comparison between SinoLC-1 and 3rd NLRS data in every land-cover type is illustrated. 
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(9) It is advised that the authors use more inclusive language, primarily in section 4.2, where 

words like "worst" need to be changed. 

Response:  

Thank you for the comments, we have carefully checked the whole manuscript. Primarily, in 

Section 4.2.1, we changed the word “the worst performance” to “limited performance”. Then we 

inclusively analyzed the performance of different products, especially comprehensive descriptions 

of every comparative product in different land-cover types and demonstration areas. Furthermore, 

the revised manuscript has been carefully proofread by a language editor, and we have made 

numerous changes on the expressions to make sure the language is inclusive. 

(10)  Checking the terms and some phrases is advised, e.g., "OBAI" in line 104 and "cropped" 

in line 199. 

Response:  

Thank you for the corrections. We have corrected the grammar issue and checked the whole 

manuscript with the help of language editors. We corrected the “OBAI” in line 104 to “OBIA” 

and changed the expression of 'cropped ' to 'divided’. 
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Referee #2 

We thank the reviewer for a thoughtful and thorough review of our manuscript (ESSD-2023-87: 

SinoLC-1: the first 1-meter resolution national-scale land-cover map of China created with the deep 

learning framework and open-access data). The suggestions and comments are listed in bold type. The 

modified words or materials are marked as blue color in the revised manuscript. The item-by-item 

responses to all comments are listed below. 

General comments: 

The authors of this manuscript took such a tremendous effort to classify land cover of China 

in a very high (1m) resolution. However, the uncertainty of training datasets, the reproducibility 

of methods and the independence of validation were not clear. 

Response:  

We appreciate your considerable comments and suggestions which help to clarify the scientific 

significance of SinoLC-1 land-cover dataset and expand its applicability. We have carefully considered 

all of the comments and suggestions listed below and tried our best to improve the manuscript focusing 

on clarifying the certainty of the training set, the reproducibility of the method, and the independence 

of validation. 

 

Suggestions and comments: 

(1) This manuscript utilized 3 global-scale land cover products as training samples, but the 

mapping accuracy of them in China is uncertain especially considering that a small number 

of observations in China were included to generate these maps. Also, the uncertainty of the 

SinoLC-1 in the Southwest, Northwest and North regions due to unmatched training data 

and outdated VHR images need to be considered. 

Response:  
We appreciate the reviewer for providing relevant and constructive comments and suggestions. 

To be clearer and in accordance with your concerns, we made major revisions and added materials 

as follows: 
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Firstly, to analyze the uncertainty of three global land-cover products, which were used to 

generate the SinoLC-1, more rigorously, we added two widely used open-access validation datasets 

to assess the accuracy of five global-scale products (including three utilized 10-m products and 

other two 30-m products) across China. According to your concerns in Comments 2 and 9, we 

have fully evaluated their user accuracy, overall accuracy, and kappa coefficient for each land-

cover type in China, which are presented in Table R2-5, Figure R2-17, and Figure R2-18. We also 

analyzed their potential impact on the production process of SinoLC-1 comprehensively. Figure 

R2-1 shows the supplemented workflow added to comprehensively evaluate the accuracy and 

uncertainty of the SinoLC-1 and other land-cover products. The detailed material and descriptions 

are demonstrated in response to your Comments 2 and 9. 

 
Figure R2-1. The supplemented workflow to evaluate the accuracy and uncertainty of the SinoLC-1 and 
other five global land-cover products 
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Secondly, to evaluate the uncertainty of the SinoLC-1 in the Southwest, Northwest, and North 

regions due to unmatched training data and outdated VHR images, we conducted a more complete 

accuracy validation based on the two open-access datasets in Section 4.3.2 (Statistical-level 

validation) Section 4.2.2 (Quantitative comparison with other land-cover products) of the revised 

manuscript and added a statistical-level error analysis of each land-cover type in Section 4.3.2 

(Statistical-level validation). Furthermore, following your concerns in Comment 11, we have 

added a statistical table in Table 8 of the revised manuscript (shown in Table R1 of the response 

letter) to demonstrate the proportion and coverage of the change areas in each provincial region 

and added a province-scale change map in Figure 22 of the revised manuscript (shown in Figure 

R2-22 of the response letter) to illustrate the change rate (2011-2021) of China. Figure R2-2 shows 

the supplemented workflow to evaluate the error and uncertainty distribution of the SinoLC-1. The 

detailed material and descriptions are demonstrated in response to your Comments 9 and 11. 

 
Figure R2-2. The supplemented workflow to evaluate the error and uncertainty distribution of SinoLC-1 
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(2) Validation uncertainty. The authors manually annotated 106,852 points by visual 

interpretation results of VHR or HR imagery as validation datasets (Line 296-298). However, 

the accuracy of visual interpretation might contain considerable uncertainty. For example, 

ponds/lakes, paddy fields, and wetlands might be mis-interpretated. There are some open-

accessed validation datasets (some obtained from field surveys), it would be great if the 

authors could add more rigorous and transparent validation. 
Response: 

We are grateful to the reviewer for pointing out this problem. To address it, we first added the 

VHR samples captured from the 1.07-m Google Earth images for all land-cover types in Figure 6 

of the manuscript (Figure R2-3 of the response letter). For each land-cover type, three VHR 

samples were added to help readers comprehend their characteristics. Secondly, we added two 

widely used open-access validation datasets (Liu et al., 2019; Zhao et al., 2014) to conduct more 

rigorous and transparent validation. These validation datasets were created on a basis of multiple 

data sources and manual verification, reporting a stable quality and high independence. The 

detailed information of these validation sets is as follows: 

(1) Validation set created by Liu et al. DOI: https://doi.org/10.5281/zenodo.3551995. 

Liu et al. (2019) created a global land-cover validation set by combining several existing 

reference datasets, such as the GLCNMO2008 training dataset, VIIRS reference dataset, 

STEP reference dataset and Global cropland reference data, to guarantee the confidence 

and objective of the validation samples. Furthermore, high-resolution imagery in Google 

earth and time-series NDVI, NDSI values of each related point were integrated to obtain 

the validation datasets.  

(2) Validation set created by Zhao et al. DOI: https://doi.org/10.1080/01431161.2014.930202. 

Zhao et al. (2014) created a global land-cover validation set with a total of 38,664 sample 

units by interpreting Landsat images and MODIS EVI time series data, as well as high-

resolution images from Google Earth, recording the quality of reference data, and 

interpreter confidence. Zhao et al. confirmed that the dataset had been carefully improved 

through several rounds of interpretation and verification by different image interpreters and 

checked by one quality controller. Independent test interpretation indicated that the quality 

control correctness level reached 90% at level 1 land-cove type.  
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According to the description of the data providers, these validation sets contain two levels of land-

cover types, and their spatial distribution and classification system are shown in Figure R2-4, Table 

R2-1, and Table R2-2. 

 
Figure R2-3. Demonstration of the sample grid, VHR samples, and the national validation sample set. Left: the 
spatial distributions of the sample set (the legend is written in shorter forms). Right: the VHR samples of different 
land-cover types collected from 1.07-m resolution © Google Earth imagery all around China. 

  

(b) Validation set created by Liu et al. (b) Validation set created by Zhao et al. 

Figure R2-4. Demonstration of two open-access validation set.  
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Table R2-1. The classification system of the validation set created by Liu et al. 

Level 1 type Level 2 type Sample count Total Proportion (%) 

Cropland 
Rainfed cropland 44 

353 
14.33% 
 

Herbaceous cover 0 
Irrigated cropland 311 

Forest 

Evergreen broadleaved forest 123 

542 
22.01% 
 Deciduous broadleaved forest 303 

Mixed leaf forest 116 

Shrubland 
Shrubland 78 

104 
4.22% 
 Evergreen shrubland 26 

Grassland Grassland 360 360 14.62% 
Wetlands Wetlands 17 17 0.69% 
Impervious surfaces Impervious surfaces 71 71 2.88% 

Bare areas 

Sparse vegetation 285 

641 
26.03% 
 

Bare areas 329 
Consolidated bare areas 3 
Unconsolidated bare areas 24 

Water body Water body 37 37 1.50% 
Permanent ice and snow Permanent ice and snow 338 338 13.72% 

 

 

Table R2-2. The classification system of the validation set created by Zhao et al. 

Level 1 type Level 2 type Sample count Total Proportion (%) 

Crop 
Rice 3 

353 
16.98% 
 

Greenhouse 1 
Other 349 

Forest 

Broadleaf 303 

512 
24.63% 
 

Needleleaf 81 
Mixed 114 
Orchard 14 

Grass 
Managed 0 

312 
15.01% 
 Nature 312 

Shrub Shrub 103 103 4.95% 

Wetland 
Grass 15 

15 
0.72% 
 Silt 0 

Water 

Lake 7 

33 
1.59% 
 

Pond 19 
River 7 
Sea 0 

Impervious 
High albedo 19 

52 
2.50% 
 Low albedo 33 

Bare land 

Saline-Alkali 10 

619 
29.77% 
 

Sand 138 
Gravel 303 
Bare-cropland 89 
Dry river/lake bed 2 
other 77 

Snow and Ice 
Snow 80 

80 3.85% 
Ice 0 
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Based on two open-access validation sets, we calculated the confusion matrix of SinoLC-1 and 

further validated its producer accuracy (P.A.), user accuracy (U.A.), overall accuracy (O.A.), and 

kappa coefficient. As shown in Table R2-3 and Table R2-6, the O.A. of the SinoLC-1 validated on the 

validation sets created by Liu et al. and Zhao et al. are 78.80% and 64.69%, respectively. The Kappa 

of the SinoLC-1 validated on the validation sets created by Liu et al. and Zhao et al. are 0.7394 and 

0.5588, respectively. 

Furthermore, to illustrate more detailed assessment results, Figure R2-5 shows the corresponding 

confusion proportions for each considered land-cover type of the SinoLC-1 validated on two sets. In 

addition, to assess the SinoLC-1 more rigorously and transparently, we used these validation sets to 

validate the accuracy of five comparative land-cover datasets, and the quantitative results are shown 

in Table R5. With the validation set created by Liu et al, all products have a higher O.A. and the 

SinoLC-1 ranks second with an O.A. of 78.81%. With the validation set created by Zhao et al, all 

products have an O.A. of around 60%, and the SinoLC-1 ranks second with an O.A. of 64.69%. 

According to your consideration in Comment 9 (recommending us to add numerical statistics 

results to compare the performance of different land-cover products in China), we made a more 

detailed comparison and analysis in response to Comment 9 to compare the SinoLC-1 and the other 

five products more comprehensively. 

Table R2-3. Confusion matrix for the SinoLC-1 according to the validation set created by Liu et al. 
Classification TC SL GL CL IP BL&SV S&I WT WL Total P.A. (%) 

Tree Cover 421 5 80 32 0 2 1 1 0 542 77.68 

Shrubland 7 34 32 2 0 27 2 0 0 104 32.69 

Grassland 2 2 342 0 0 7 0 0 0 353 96.88 

Cropland 5 1 3 316 29 3 0 3 0 360 87.78 

Impervious 7 0 3 7 51 3 0 0 0 71 71.83 

Barren &Sparse veg. 1 7 12 0 0 616 5 0 0 641 96.10 

Snow and ice 1 0 78 0 0 121 136 2 0 338 40.24 

Water 7 0 0 5 3 1 0 19 2 37 51.35 

Wetland 0 0 1 4 0 1 2 3 6 17 35.29 

Total 451 49 551 366 83 781 146 28 8 2463   

U.A. (%) 93.35 69.39 62.07 86.34 61.45 78.87 93.15 67.86 75.00    

O.A. (%) 78.80 

Kappa 0.7394 

Note:   
TC=Tree cover; SL=Shrubland; GL=Grassland; CL=Cropland; IP=Impervious (Building and traffic route); BL&SV=Barren and 

sparse vegetation; S&I=Snow and ice; WT=Water; WL=Wetland 
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(c) Confusion proportions for land-cover type of the SinoLC-1 

validated with the set created by Liu et al. 

(d) Confusion proportions for land-cover type of the SinoLC-1 

validated with the set created by Zhao et al. 

Figure R2-5. Confusion proportions of the validation results. 
 

 
 
 
 
 
 

Table R2-4. Confusion matrix for the SinoLC-1 according to the validation set created by Zhao et al. 

Classification TC SL GL CL IP BL&SV S&I WT WL Total P.A. (%) 

Tree Cover 376 13 60 35 6 7 1 5 9 512 73.44 

Shrubland 10 34 33 3 0 21 2 0 0 103 33.01 

Grassland 37 2 215 20 3 33 0 1 1 312 68.91 

Cropland 83 1 36 191 18 21 0 2 1 353 54.11 

Impervious 3 0 4 13 29 3 0 0 0 52 55.77 

Barren &Sparse veg. 13 7 109 62 6 411 5 5 1 619 66.40 

Snow and ice 1 0 5 0 0 8 65 1 0 80 81.25 

Water 6 0 0 7 2 2 0 16 0 33 48.48 

Wetland 0 0 2 0 1 2 2 0 8 15 53.33 

Total 529 57 464 331 65 508 75 30 20 2079   

U.A. (%) 71.08 59.65 46.34 57.70 44.62 80.91 86.67 53.33 40.00    

O.A. (%) 64.69 

Kappa 0.5588 

Note:   
TC=Tree cover; SL=Shrubland; GL=Grassland; CL=Cropland; IP=Impervious (Building and traffic route); BL&SV=Barren and 

sparse vegetation; S&I=Snow and ice; WT=Water; WL=Wetland 
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Table R2-5. Quantitative comparison between the SionLC-1 and other five land-cover products. 

           Metric 

Dataset 

Validation set of Zhao et al. Validation set of Liu et al. 

O. A. Kappa O. A. Kappa 

SinoLC-1 0.6469 0.5588 0.7881 0.7394 

ESA_GLC10 0.6646 0.5722 0.7356 0.6269 

FROM_GLC10 0.6411 0.5942 0.7538 0.6871 

ESRI_GLC10 0.6232 0.5210 0.6675 0.5972 

GlobaLand30 0.6209 0.5285 0.7694 0.7090 

GLC_FCS30 0.5778 0.4675 0.8684 0.8241 

 

The cited references of this response are as follows: 

Zhao, Y., Gong, P., Yu, L., Hu, L., Li, X., Li, C., Zhang, H., Zheng, Y., Wang, J., Zhao, Y. and Cheng, Q. (2014). Towards 
a common validation sample set for global land-cover mapping. International Journal of Remote Sensing, 35(13), 
4795-4814. https://doi.org/10.1080/01431161.2014.930202 

Liu, L., Gao, Y., Zhang, X., Chen, X., & Xie, S. (2019). A Dataset of Global Land Cover Validation Samples (Version v1) 
[Data set]. Zenodo. https://doi.org/10.5281/zenodo.3551995 

 

(3) Line 25: “SinoLC-1 conformed closely to the official survey reports”, this expression is vague, 

needs statistical values to support how close. 

Response: 

Thank you for the suggestion. To be clearer and in accordance with your concerns, we have 

added a histogram of the national misestimation rate, as shown in Figure 23 (c) of the revised 

manuscript (Figure R2-6 (a) of the response letter), to visualize the statistical assessment of every 

land-cover type containing in SinoLC-1. Furthermore, we calculated the Frequency Weighted 

Misestimation Rate (FWMR) of SinoLC-1 to measure the overall proximity of SinoLC-1 to the 

official survey reports. Referring to the calculation of Frequency Weighted Intersection over 

Union (FWIoU) (Long et al., 2015), FWMR is calculated by multiplying the misestimation rate 

of each land-cover type by their proportions shown in Figure R2-6 (b) and summing them up. 

Formally, the FWMR can be written as: 

𝐹𝑊𝑀𝑅 =&𝑝!𝑚! ,
""

!#"

 

where 𝑐 represents the land-cover types counting from 1 to 11 (from ‘traffic route’ to ‘Moss and 

lichen’), 𝑝!  represents the class proportion of 𝑐  land-cover type, and 𝑚!  represents the 
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misestimation rate of 𝑐 land-cover type.  

According to the results shown in Figure R2-6 (a), the national misestimation rates of all land-

cover types are under 11%, and the overall FWMR is 6.4%. Based on the analysis, we have revised 

the expression describing the overall proximity of SinoLC-1 to the official survey reports in the 

Abstract, Section 4.3.2 (Statistical-level validation), and Section 6 (Conclusion) of the manuscript.  

  
(a) National misestimation rate of every land-cover type across China (b) Class proportion of the SinoLC-1 dataset. 

Figure R2-6. National misestimation rate and class proportion of the SinoLC-1 dataset. 

The cited reference of this response is as follow: 

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of 

the IEEE conference on computer vision and pattern recognition, 3431-3440. 

 

(4) Line 275-276: “the predicted batches were seamlessly merged into the land-cover tiles by 

taking the average predicted values of the overlapped areas”, since the land cover is 

categorical data, it would be more reasonable to take the majority instead of the average. 

Response: 

Thanks for your constructive feedback. For common majority-voting process, three or more 

prediction results are required. For the overlapping part of two prediction results, we calculated the 

average of probability matrix for the overlapping areas, and then for every pixel located in the 

overlapping areas, we take the class with maximum predicted probabilities among all land-cover 

classes as the final prediction results. According to your comment, we would like to explain the 

seamless mapping and merging process more clearly. In this response letter, we supplemented 

Figure R2-7 to illustrate the processing process of overlapped areas and Figure R2-8 to show a 

simple example to explain how the final results are obtained via two overlapped batches. 
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For each image tile ( 6000×6000 pixels) shown in Figure R2-7, adjacent image batches (256

×256 pixels) with 128 pixels overlapped areas are taken as the input of a well-trained model to 

obtain two prediction matrices M1 and M2 , where each matrix has a prediction probability with 

the sizes of 11×256×256 (Class×Height×Width). Subsequently, the average value of the 

overlapped parts on each class (e.g., tree, building, water, etc.) is calculated to obtain the average 

matrix Mavg. Finally, as shown in Figure R2-8, the maximum value of each pixel in Mavg is taken 

among each class channel to obtain the final land-cover mapping results. Based on this process, 

the problem of edge mismatch between adjacent prediction results is alleviated to a certain extent, 

assisting us to obtain seamless and continuous land-cover maps. 

In order to provide a clearer explanation of this process in the revised manuscript, we have 

supplemented the expression in Section 3.2.2 (Seamless mapping and merging) and modified 

Figure 5 of the manuscripts (shown in Figure R2-9 of the response letter). 

 
Figure R2-7. Demonstration of the processing process of overlapped areas 
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Figure R2-8. Demonstration of a simple example to explain how the final results are obtain via two overlapped 
batches. 

 

 
Figure R2-9. Demonstration of the mapping and merging for producing SinoLC-1. The VHR remote sensing 
images in the figure are from © Google Earth 2021 
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(5) Figure 7: the bar showed the sample number instead of the proportion. It would be better to 

show the proportion of the validation samples of each type account for all sample points (106, 

852) and the area proportion of each land-cover type of China in the SinoLC-1 dataset. 

Response: 

Thank you for the constructive comments which can improve the quality and reasonability of 

the manuscript. According to your comments, we modified the histogram shown in Figure 7 of the 

previous manuscript (Figure R2-10 (a) of the response letter) into the pie chart which can better 

demonstrate the proportion of each land-cover type. Furthermore, as shown in Figure R2-10 (b), 

we supplemented the pie chart of the land-cover proportion in the SinoLC-1 dataset. Based on the 

modified Figure 7 of the revised manuscript, the land-cover proportion of selected sample points 

in the validation set is relatively similar to the SinoLC-1 dataset, further indicating that the 

~100,000 sample points have reasonable class distribution. 

 

  
(a) Class proportion of the national validation sample set. (b) Class proportion of the SinoLC-1 land-cover dataset. 

Figure R2-10. Land-cover proportion of the national validation sample set and the produced SinoLC-1 land-
cover dataset. 
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(6) Figure 8: the legend is missing. 

Response: 

Thank you for your constructive feedback. We have supplemented the legends to Figures 8 of 

the revised manuscript (Figure R2-11 of the response letter). Furthermore, to improve the 

visualization of the qualitative comparison between the SionLC-1 and other land-cover datasets, 

we also supplemented the legends to all maps shown in Figure 13 and Figure 14 of the manuscript 

(Figure R2-12 and Figure R2-13 of this respond letter).  

 
 Figure R2-11. Demonstration of the SinoLC-1: a 1-meter-resolution national-scale land-cover map of China. 
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Figure R2-12. Demonstration of the visual comparison for Changzhou City, Jiangsu Province. The VHR remote 
sensing image in the figure is from © Google Earth 2021. 
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Figure R2-13. Demonstrations of the visual comparison for four typical regions. The VHR remote sensing images 
in the figure are from © Google Earth 2021. 
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(7) Line 409-412: The expression is not clear, please clarify which types showed higher 

accuracies (O.A. and kappa), and which types showed low accuracies. 

Response: 

Thank you for the comment. We have clarified the exact land-cover types that showed higher 

and lower accuracies in Section 4.3.1 (Pixel-level sample validation). To describe the analysis 

results in a more understandable way, the descriptions of the revised manuscript have been revised 

to ‘ 

By combining the class proportion of the validation sample set shown in Figure 7and the confusion 

matrix shown in Table 6 and Figure 19, the quantitative results of the basic land-cover types (i.e., 

the types of tree canopy, grassland, cropland, barren & sparse vegetation, and water), which have 

easily distinguishable features and occupy a large area in China, report higher accuracies and 

have a small proportion of misclassification. By contrast, the land-cover types (i.e., the types of 

traffic route, moss & lichen, and snow & ice), which occupy a small area, obtain relatively low 

accuracies and have a large proportion of misclassification.’ 
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(8) Figure 15: Adding the numerical values of confusion proportions to this figure would provide 

more quantitative information. 

Response: 

Thank you for the constructive feedback for improving the quantitative information of the 

figure. We have added the numerical values in Figure 15 of the previous manuscript (Figure R2-

14 of this response letter). 
 

 
Figure R2-14. Confusion proportions for each land-cover type in the SinoLC-1 validation scheme. 
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(9) 3.2 section belongs to Results, but almost no numerical statistics were shown to support the 

descriptions. 

Response: 

We are grateful to the reviewer for pointing out this problem. In the previous manuscript, 

Section 4.2 (Qualitative comparison with other land-cover products) focused on the qualitative and 

visual comparison based on one large-scale demonstration area (shown in Figure 13 of the 

manuscript) and four region-scale areas (shown in Figure 14 of the manuscript). To conduct a more 

rigorous comparison and quantitative analysis, we added two widely used open-accessed validation 

datasets (Liu et al., 2019; Zhao et al., 2014) to conduct validation and comparison of the SinoLC-

1 and other five products across China. Moreover, we added a subsection of ‘Quantitative 

comparison with other land-cover products’ in Section 4.2.2 to make the comparison more 

scientific and transparent. Detailed information of these two open-access validation sets has been 

introduced in Comment 2. For clearer expression, we mark the validation set created by Liu et al. 

(2019) as S1 and mark the set created by Zhao et al. (2017) as S2. Figure R2-15 and Figure R2-16 

show the spatial distribution of two validation sets among five comparative products in China. 

 
Figure R2-15. Demonstration of five comparison products and the validation set (S1) created by Liu et al. 
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Figure R2-16. Demonstration of five comparison products and the validation set (S2) created by Zhao et al. 

 

Based on the two validation sets, we compared the O.A. and Kappa between the SinoLC-1 and 

the other five products. The comparison results are shown in Table R2-5 and Figure R2-17. From the 

quantitative comparison, the SinoLC-1 has the second highest O.A. on two validation sets where the 

SinoLC-1 has a O.A. of 0.6469 with S1 (lower than the 10-meter ESA_GLC10) and has an O.A. of 

0.7881 with S2 (lower than the 30-meter GLC_FCS30). Furthermore, we compared the U.A. of every 

considered type between the SionLC-1 and the other five products in Figure R2-18. From the results 

shown in Figure R2-18 (a), the SinoLC-1 has the second highest U.A. in types of ‘Tree canopy’, 

‘Shrubland’, ‘Grassland’, and ‘Wetland’ compared to the other five products, and has the U.A. of 

‘Cropland’ and ‘Impervious surface’ surpassing the average of other five products. From the results 

shown in Figure R2-18 (b), the SinoLC-1 has the highest U.A. in types of ‘Shrubland’ and ‘Grassland’ 

and has the U.A. of ‘Snow and ice’ and ‘Wetland’ surpassing the average of the other five products. 

 In general, by quantitatively comparing the SinoLC-1 product with five widely used land-cover 

products on two open-access validation datasets, the produced SinoLC-1 shows acceptable confusion 

proportion among land-cover types and has competitive accuracy among the other land-cover products 

across China. 
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(c) The validation results based on S1 (d) The validation results based on S2 

Figure R2-17. The quantitative validation and comparison of the SinoLC-1 and other five products  

 

 
 

(a) The U.A. comparison based on S1 (b) The U.A. compassion based on S2 

Figure R2-18. The U.A. comparison of the SinoLC-1 and other five products. 
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(10) Figure 18, the left figure (a) showed the misestimated area, while it would be more 

comparable if it showed the misestimated rate for each land-cover type. 

Response: 

We are grateful for the suggestion. We agree that the misestimated rate can include more 

comparable information than the misestimated area between different land-cover types. To be 

clearer and in accordance with your concerns, we illustrated the misestimated rate of every land-

cover type through 31 provincial regions in Figure R2-19 to better visualize the distribution of 

original results. In the revised manuscript, we have revised Figure 23 (shown in Figure R2-20 of 

the response letter) by changing the vertical axis of subfigure (a) from ‘misestimation area (km2)’ 

to misestimation rate. Moreover, to visualize the total results of the statistical assessment in China, 

we have added a histogram of the national misestimation rate shown in Figure 23 (c) of the revised 

manuscript (Figure R2-20 (c) of the response letter). 

In addition, to demonstrate the spatial distribution of the misestimation rate for each land-

cover type across China, and to provide more comparable information on the statistical assessment, 

we have collected the results and added the map of the misestimation rate for every land-cover 

type in Figure 22 of the revised manuscript (shown in Figure R2-21 of the response letter). From 

the maps of the misestimation rate, misestimations of some land-cover types show a strong 

distribution pattern. For example, the misestimation of ‘Shrubland’ is mainly distributed in the 

north and southwest of China. The misestimations of ‘Grassland’ and ‘Barren and sparse 

vegetation’ are concentrated in the north, northwest, and southwest of China. The misestimations 

of ‘Cropland’ and ‘Building’ are distributed on the coasts of eastern and southern China. The main 

misestimation land-cover types distributed in western China (i.e., Qinghai-Tibet Plateau and 

Xinjiang) are ‘Wetland’ with a misestimation rate of 7.6%–9.5%, ‘Snow and ice’ with a 

misestimation rate of 0.5%–1.8%, and ‘Moss and lichen’ with a misestimation rate of 0.2%–

0.3%. 
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Figure R2-19. Misestimation rate of every land-cover type through 31 provinces in China. 

 

 
 

(a) Overall misestimation rate of every land-cover type 

through 31 provinces in China 

(b) Overall misestimation rate of every land-cover type through 

seven geographical regions 

 

(c) National misestimation rate of every land-cover type across China 

Figure R2-20. Overall misestimation distributions in every land-cover type across China. 
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Figure R2-21. The misestimation rate of SinoLC-1 for 31 provinces in China. In every subplot, the statistical 
comparison between SinoLC-1 and 3rd NLRS data in every land-cover type is illustrated. 

 

(11) Line 480-485: Figure 20 shows significant land-cover changes between 2011 and 2021. It 

would be better to add a statistical table of the proportion of change areas in each region, 

which would be helpful to assess the uncertainty in the Southwest, Northwest and North 

region. 

Response: 

Thank you for the suggestion that can help visualize the change areas between 2011 to 2021 

more clearly and further assist the analysis of uncertainty in the Southwest, Northwest, and North 

regions. In accordance with your concerns, we have added a statistical table in Table 8 of the 

revised manuscript (shown in Table R2-6 of the response letter) to demonstrate the proportion and 

coverage of the change areas in each provincial region.  
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Table R2-6. The province-scale land-cover change area/rate (2011-2021) of China 

Geographical region Provincial region 
Provincial proportion to 

China's coverage (%) 

Change area 

(km2) 
Change rate (%) 

South 

Hainan 0.37 714.06 2.04 

Guangxi 2.50 3207.55 1.36 

Guangdong 1.89 2107.36 1.18 

East 

Fujian 1.31 779.53 0.64 

Anhui 1.48 820.93 0.59 

Zhejiang 1.11 719.86 0.69 

Shanghai 0.07 111.32 1.32 

Jiangsu 1.13 1697.93 1.60 

Taiwan 0.38 145.90 0.41 

Jiangxi 1.76 1488.89 0.89 

Shandong 1.64 1416.42 0.92 

Central 

Hubei 1.96 1852.50 1.00 

Hunan 2.23 2300.15 1.02 

Henan 1.75 1172.96 0.69 

North 

Shanxi 1.65 2631.97 1.73 

Hebei 1.99 2186.14 1.18 

Beijing 0.17 126.53 0.76 

Inner Mongolia 12.47 13144.22 1.33 

Tianjin 0.13 207.55 1.76 

Northeast 

Liaoning 1.56 878.47 0.59 

Jilin 0.29 1739.63 0.93 

Heilongjiang 4.98 2849.54 0.61 

Northwest 

Shaanxi 2.17 2631.97 1.29 

Gansu 4.49 6175.12 1.45 

Xinjiang 17.54 90325.45 5.43 

Ningxia 0.70 1173.43 1.77 

Qinghai 7.61 5695.08 0.79 

Southwest 

Guizhou 1.86 2702.60 1.67 

Chongqing 0.87 1045.01 1.32 

Xizang (Tibet) 12.68 8792.25 0.81 

Yunnan 4.15 4743.78 1.30 

Sichuan 5.12 3818.27 0.83 
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Furthermore, we added a province-scale change map in Figure 22 of the revised manuscript 

(shown in Figure R2-22 of the response letter) to illustrate the change rate (2011-2021) in China. In 

Figure R2-22 (b), the spatial distribution of the change areas shows that the most significant land-cover 

changes from 2011 to 2010 are located in the provinces of the south (e.g., Hainan, Guangdong, 

Guangxi, etc.), north (e.g., Inner Mongolia, Shanxi, Hebei, etc.), northeast (i.e., Jilin), and northwest 

(e.g., Xinjiang and Gansu). By combining the distribution of outdated images shown in Figure R2-23 

and the significant change area shown in Figure R2-22 (b), the outdated VHR images are most 

probably to cause uncertainty in the mapping results for the northern part of Inner Mongolia and Gansu 

(i.e., the northern border of China, with the change rate of 1%–3% from 2011 to 2021) and the southern 

part of Xinjiang (i.e., the Tarim Basin, with the change rate of 3%–6% from 2011 to 2021).   

This distribution indicates the areas containing mass outdated images generally had less land-

cover change over the years (e.g., Tibet and Qinghai provinces of Southwest China, with a change rate 

lower than 1%), which limited the uneven effect on the produced results. 

  
(a) The 30-m annual land-cover change of China from 2011 to 

2021 

(b) The province-scale land-cover change rate (2011-2021) of 

China 

Figure R2-22. Spatial distribution of 30-m land-cover change in China from 2011 to 2021. 
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Figure R2-23. Demonstration of the image capture time and the number of image tiles in different years 

 

 


