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Abstract. The French coast of the Eastern English Channel (ECC) is classified as a potential eutrophication zone by the Paris 

and Oslo Convention (OSPAR)), and as moderate to poor according to the phytoplankton quality element of the Water 

Framework Directive (WFD). ItIndeed, the French part of the EEC is regularly affected by Phaeocystis globosa bloom events, 

which have detrimental effects on the marine ecosystem, economy, and as well as public health. In this context and to improve 

our observation strategy, Since phytoplankton is an important indicator of water quality, the MAREL Carnot, a multi-sensor  15 

oceanographic multi-sensor station, was installed in the Eastern English Channel in 2004 at the Carnot wall in Boulogne sur 

Mer in 2004. The aim of this station was to collect high frequency measurements of severalmonitor water quality 

parametersand phytoplankton in order to complement results from existing more conventional low- resolution monitoring 

programs., with high frequency data (sampling every 20 minutes). The purpose of this paper is to describeintroduce the 

MAREL Carnot dataset and show how it can be used for several research objectives. MAREL Carnot collects high- frequency, 20 

multi-parameter observations from surface water, as well as meteorological measurements, and sends thesend data in near real-

timealmost immediately to an inshore data center. In this paper, we present several physical, chemical,physiochemical and 

biological parameters measured by this station. We also demonstrateIn addition, we demonstrated, based on previous research 

activities, that the MAREL Carnot dataset can be used to assessis useful for evaluating environmental or ecological statuses 

and conduct research in the field of, marine phytoplankton ecology, andphysical oceanography. In addition, we show that this 25 

dataset may indirectly aid in improving European environmental management strategies, turbulence, as well as public policy. 

Most importantly, we showed its contribution to Marine Strategy Framework Directive (MSFD) and other regional or universal 

conventions. 

1 Introduction 

For millennia, the marine environment has been subjected to various sources of pollution. Major inputs of nitrate, phosphate, 30 

and other pollutants have been causing detrimental effects on the marine environment, including harmful algal blooms (HAB) 

https://w3.ifremer.fr/annuaire/
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and eutrophication (Le Moal et al., 2019). Since phytoplankton are at the base of the food web, their blooms can affect higher 

trophic levels and cause serious changes in marine biodiversity and water quality (e.g., oxygen deficiency) (Kazmi et al., 2022; 

Young et al., 2020). HABs can produce toxins that degrade water quality and cause health problems in humans and marine 

animals (Ross Brown et al., 2022; Young et al., 2020). They can also be associated with mass foam accumulations on beaches, 35 

as with Phaeocystis globosa blooms (Blauw et al., 2010; Spilmont et al., 2009). Furthermore, they can detrimentally cause 

economic losses in sectors such as fish farms, shellfish aquaculture, tourism, and recreational activities, as well as public health 

(Derot et al., 2020; Hallegraeff et al., 2021). 

1 Introduction 

For millennia, the marine environment has been subjected to various sources of pollution. Major inputs of nitrate, phosphate, 40 

sulphate, metals, and others have been causing detrimental effects on the marine environment, including harmful algal blooms 

(HAB), and eutrophication (Le Moal et al., 2019). Since phytoplanktons are at the base of food webs, their blooms can affect 

the entire trophic levels, and can cause serious changes in the marine biodiversity and water quality (e.g. oxygen deficiency). 

HABs can produce toxins that degrade water quality and may cause health problems in humans and marine animals, in addition 

to their ability to form high biomass, which leads to foam accumulation with direct and indirect impacts. (Ross Brown et al., 45 

2 2022). Furthermore, they can detrimentally cause economic losses in sectors such as fish farms, shellfish aquaculture, tourism 

and recreational activities, as well as public health (Derot et al., 2020).  

Understanding the processes underlying HABs and eutrophicationthese problems necessitates continuous monitoring of the 

marine environmentenvironments in order to prevent the associated deterioration effects and help managers and stakeholders 

achieve optimizedoptimised environmental assessment and management strategies. Traditionally, monitoring aquatic and 50 

marine ecosystems was done using low frequency in -situ measurements (weekly to monthly sampling frequency). ItThis was 

performeddone by collecting water samples through Niskin bottles, and then performing several laboratory analysesanalysis 

to determine various physical, chemical,physiochemical and biological parameters, including salinity, temperature, 

conductivity, organic and inorganic matter, as well as phytoplankton biomass, abundance and diversity.analysis. Despite the 

fact that these datatests helped scientists to have an overview of the processes taking place in the marine environment, they 55 

arefailed to enhance their knowledge and understandings of insufficient temporal resolution to advance understanding ofmarine 

ecosystems, particularly phytoplankton dynamics and eutrophication. because of their too low sampling resolution.  

In order to implement proper management strategies that prevent further deterioration of the marine ecosystem, it is crucial to 

enhance our understanding of algal blooms, eutrophication, recurrent, rare, and extreme events, as well as phytoplankton 

dynamics. Thus, it is necessary to collect continuous measurements not only on a monthly or weekly basis but also on an 60 

hourly or even sub hourly scale. Satellites and models can provide data of high spatio-temporal resolution (Chai et al., 2020), 

but such data must be validated with in situ data (Lefebvre and Schmitt, 2016). This motivated scientists to study the marine 
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environment using in situ high frequency (high temporal resolution) monitoring systems such as buoys, ferry boxes, etc. 

(Dickey and Bidigare, 2005). 

In order to be able to set proper management to prevent further deterioration of marine ecosystems, continuous measurements 65 

are needed to derive the most relevant information, not just on a monthly or weekly scale, but rather on a daily or hourly scale. 

In other words, high frequency measurements are needed in order to enhance our understanding of harmful algal blooms, their 

dynamics, as well as processes such as eutrophication. Although satellite and earth modelling data provide high frequency 

data, they alone, remain incapable of providing all the needed information required to set better management practices. Indeed, 

in-situ data is essential to calibrate and validate algorithms used by these two complementary data sources. This urged scientists 70 

and stakeholders to study the marine environment using high frequency in-situ monitoring systems, such as ferry boxes, buoys 

etc. 

Over the past decades, the advancement of sensor technology and data science has shed light on the importance of time series 

in marine research. This urged the construction of autonomous systems capable of supporting long-term time series for key 

physical, chemical, and biological parameters. TheIn other words, the implementation of such automated systems enabled the 75 

measurement of essential ocean variables (EOV) and essentialimportant biodiversity variables (EBV) at high frequency, which 

aided in reorienting marine research from low frequency measurements to high frequency measurements (Blain et al., 2004). 

In the Eastern English Channel (EEC), HABs are mainly caused by the Prymnesiophyceae, Phaeocystis globosa, which is 

often associated with Pseudo-nitzchia (Karasiewicz and Lefebvre, 2022). When the temperature of the water rises in the spring 

and summer and nutrient concentration is optimal, P. globosa forms a large biomass.(Blain et al., 2004). In the Eastern English 80 

Channel (EEC), HABs are mainly caused by the Prymnesiophyceae Phaeocystis globosa, which is often associated with 

Pseudo-nitzchia causing severe paralytic shellfish poisoning (Karasiewicz & Lefebvre, 2022). When the temperature of the 

water rises in the spring and summer, P. globosa forms large biomass. In fact, P.globosa was identified as a potentially harmful 

species for several reasons. First, it releases dimethyl sulfide gas (DMS), which can irritate people's eyes, skin, and respiratory 

system (Riegman and Van Boekel, 1996). Second, mucopolysaccharides are abundant in its colonies (Zhu et al., 2021).systems 85 

(Riegman & Van Boekel, 1996). Second, mucco-polysaccharides are abundant in its colonies. These polysaccharides are 

broken up by external factors like turbulence as well as internal factors like lysis and aging, which cause the accumulation of 

a thick, odorous foam on the coast. Besides, needle-shaped Pseudo-nitzschia complex needles can stick into P. globosa 

colonies and form structures that irritate filter feeders during P. globosa blooms (Sazhin et al., 2007). These structures can also 

injure fish, making them more susceptible to bacterial and viral infections (Lefebvre and Devreker, 2023). Moreover, the 90 

neurotoxin domoic acid (DA) produced by Pseudo-nitzschia is responsible for the neurological disorder known as amnesic 

shellfish poisoning (ASP) in humans (Bates et al., 2018; Petroff et al., 2021). Additionally, marine mammals and seabirds may 

get poisoned if they consume DA-contaminated planktivorous prey (Delegrange et al., 2018).globosa blooms. These structures' 

lesions may promote viral and bacterial infections in fish, thereby affecting higher trophic levels, and reducing biodiversity 

(Alain & David, 2022). 95 

The French monitoring of phytoplankton population and associated environmental factors in the Eastern English Channel 
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(ECC) started in 1979 with RNO (Réseau National d’Observation) or RNC (Réseau Nationale de Contrôle). Then, in 1984, a 

national network called REPHY (le REseau de surveillance du PHYtoplankton et des phycotoxines) was established by Ifremer 

to estimate the abundance and taxonomic composition of phytoplankton, describe their spatio-temporal dynamics, detect toxin-

producing species, monitor, and alert for harmful blooms (https://doi.org/10.17882/47248). After that, in 1992, the Artois-100 

Picardy Water Agency and Ifremer decided to establish SRN (Suivi Régional des Nutriments) to accurately monitor nutrient 

concentration (Lefebvre and Devreker, 2023). Although these monitoring networks enhanced our knowledge of phytoplankton 

dynamics, they remain inadequate to thoroughly understand recurrent, rare and extreme events occurring in the marine 

environment. 

InMoreover, the neurotoxin domoic acid (DA) produced by Pseudo-nitzschia is responsible for the neurological disorder 105 

known 3 as amnesic shellfish poisoning (ASP) in humans. Additionally, marine mammals and seabirds can get poisoned if 

they consume DA-contaminated planktivorous prey (Delegrange et al., 2018).  

The french monitoring of phytoplankton populations and associated environmental factors in the English Channel started in 

1979 with RNO (Réseau National d’Observation) or RNC (Réseau Nationale de Contrôle). Then, in 1984, a national network 

called REPHY(le Réseau de Surveillance du Phytoplankton et des phycotoxines) was established by Ifremer, to estimate the 110 

abundance and taxonomic composition of phytoplankton, describe their spatio-temporal dynamics, detect toxin-producing 

species, and monitor and alert for harmful blooms (https://doi.org/10.17882/47248). After that, in 1992, the Artois-Picardy 

Water Agency and Ifremer decided to establish SRN (Suivi Régional des Nutriments) in response to the need of precise 

monitoring of nutrient concentration over a longer period of time, and to harmful algal blooms. Despite the fact these studies 

helped a lot in avoiding the detrimental effects of HABs, they alone remained insufficient to fully understand the dynamics of 115 

phytoplanktons and algal blooms (Dickey, 2003).  

It was until 2004, thewhen MAREL (Mesures Automatisées en Réseau pour l'Environnement Littoral) Carnot monitoring 

station washas been installed in the French part of the ECC.English Channel. The MAREL (Mesures Automatisées en Réseau 

pour l'Environnement Littoral) Carnot station, developed and implemented by Ifremer (French Research Institute for Sea 

Exploitation), is a moored buoy protected by a tube and equipped with physical, chemical,physicochemical and biological 120 

measuring devices and sensors that operate continuously and autonomously. This multi-sensor station is located in the 

Boulogne-sur-Mer harbor (Eastern English Channel),) which is influenced by both marine and fresh waterwaters. It is equipped 

with high-performance systems for seawater analysis and data transmission in near real time. It measures the following 

parameters with a high frequency resolution (20 minutes): estimated sea level, gust wind speed, wind direction relative to true 

north, horizontal wind speed, photosynthetic active radiationrelative humidity, light irradiance surface PAR, sea water 125 

temperature, practical salinity, pH, dissolved oxygen, oxygen saturation, fluorescence, and turbidity. For nutrients, including 

nitrate, phosphate, and silicate, the sampling frequency is set to 12 hours. 

2. Objectives 

https://doi.org/10.17882/47248
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The purpose of this article is to describeintroduce the MAREL Carnot dataset and provide an overview of theits variability of 

its physical, chemical, and biological parameters. For future users of the related dataset, we. We will offerprovide a 130 

thoroughdetailed description of the MAREL Carnot station, including its deployment and measurements., for any future users 

of the associated dataset. Based on previous research paperspublications, we aim to demonstrate that the MAREL Carnot 

dataset can be used to evaluate theis useful for evaluating environmental or ecological status and conduct research instatuses, 

marine phytoplankton ecology and, physical oceanography, turbulence, as well as public policy. 

3. Materials and Methods 135 

3.1 Location and Study Area 

TheIn 2004, the MAREL station was installed on the Carnot sea wall in 2004, hence the name MAREL Carnot. It is located 

at 50.7405N and 1.5677Esituated on the French 4 side of the Eastern English Channel, near the  at 50.7405N, and 1.5677W. 

In other words, this automated channel is situated at the exit of the port of Boulogne-sur-Mer harbour, which is France's 

greatestFrance’s first fishing port in terms of annual tonnage. Figure 1. Figure 1 below depicts the location of MAREL Carnot 140 

station on the map.  

There is no seasonal pycnocline in the Eastern English Channel (ECC), and stratification is limited and sporadic depending on 

freshwater discharge levels. Water can be extremely turbid due to the continental shelf nature of its seabed, which can reach a 

maximum depth of 180 m depending on tidal regimes. The ECC has a macro-tidal regime in the Dover Strait that varies from 

3 m to 9 m during neap and spring tides, respectively (Jouanneau et al., 2013). This regime produces significant residual tidal 145 

currents from the English Channel to the North Sea, as well as high tidal currents that are nearly parallel to the shore. Fluvial 

supplies distributed throughout the French coast from the Bay of Seine to Cape Gris-Nez form a nearshore coastal water mass 

that is protected from the open ocean by a frontal area (Brylinski et al., 1996). This coastal water mass is tide-dependent and 

can extend from 3 to 5 miles offshore (Brylinski et al., 1991). The frontal area plays a significant role in structuring biological 

and non-biological exchange between coastal and offshore water masses. It is more sloped from the vertical during neap tides, 150 

resulting in a greater surface of exchange between the two water masses (Brylinski et al., 1991). Thus, particle and nutrient 

movement between inshore and offshore water masses is greater during neap tides than during spring tides (Lefebvre and 

Devreker, 2023). 

In general, there is no seasonal pycnocline in the Eastern English Channel (ECC), and stratification is limited and sporadic 

depending on freshwater discharge levels. Water can be extremely turbid due to the continental shelf nature of its seabed, 155 

which can reach a maximal depth of 180 m depending on tidal regimes. Most importantly, ECC has macro-tidal regime in the 

Dover Strait which varies from 3 m to 9 m during neap tide and spring tide, respectively. This regime produces significant 

residual tidal currents from the English Channel to the North Sea, as well as high tidal currents that are nearly parallel to the 

shore. Fluvial supplies distributed throughout the French coast from the Bay of Seine to Cape Gris-Nez form a coastal water 

mass that floats near the shore and is protected from the open ocean by a frontal area (Brylinski et al., 1996) . This frontal area 160 
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plays a significant role in structuring biological and non-biological exchange between coastal and offshore water masses. 

However, particle and nutrient transport, as well as exchanges between inshore and offshore water masses, are tide-dependent, 

with neap tides being stronger than spring tides. 

 

Figure 1 LocationThe location of MAREL Carnot station in the Eastern English Channel (EEC) (Map data © 2022 Google Satellite). 165 

3.2 Description of the MAREL Carnot Station 

MAREL is a French acronym for Mesures Automatisées en Réseau pour l’Environnement Littoral (automated sampling 

network for coastal waters). It belongs to a network of fixed platforms extending across the entire French coast called COAST-

HF (https://coast-hf.fr), which). In fact, COAST HF is a component of the IR ILICO research infrastructure at the French 

national level (https://www.ir-ilico.fr/). MAREL Carnot station consists of a tube weighing 12 tons, and measuring 15 meters 170 

in length. Because MAREL Carnot is located in a macrotidalmegatidal zone, it is encased in a tube to be protectedprotect it 

from strong currents, frequent storms, and boat collisions near the port. IndeedIn other words, buoys are not designed to 

withstandfor such challenging environments, sothus an infrastructure to maintainretain the buoy in a specific location and 

provide necessary protection was required. However, such an infrastructure would be very huge and expensive, so the tube 

https://coast-hf.fr/
https://www.ir-ilico.fr/
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was the best solution. Figure 2Figure 2 shows the MAREL Carnot measuring station, consistingwhich consists of the MAREL 175 

tube and the lighthouse platform which is used for meterological sensors, along with the light house. 

Its sensors are placed on a float inside the tube in order to follow tidal movements. A pulley system is placed in a chamber 

inside the harbor structure to manage the cables during high and low tides and to easily lift the station for maintenance when 

needed. Until 2014, it was made up of a measurement cell containing several sensors. The seawater was pumped 

upwardupwards to be analyzedanalysed. During periods when there wereare no measurement cycles, the system was 180 

chlorinated via electrolysis to prevent biofouling. WaterIn other words, water was extractedtaken from the subsurfacesub-

surface at an approximate a depth of 1.5 meters, and then sent to a measurement the passage chamber to be redistributed to 

different sensors.  

The first version of the measuring system was constructed using electronic, computer, and mechanical equipment that date 

back to the 1990s. Some of these elements deteriorated over time, particularly those submerged in seawater, and had to be 185 

replaced with new equipment. In 2014, the prior measuring equipment was replaced with a new automated measuring probe. 

The objective was to conduct direct in-situ In order to make measurements using andirectly in-situ using a multi-parameter 

probe. Thus,, the system was updated in 2014, and water circulation in the chamber was no longer performedremoved to avoid 

air intake, which would compromise measurements and data quality. The replacement of The pulley system is placed in a 

chamber inside the harbor structure, allowing for the management of the cables during the tide's downward and upward 190 

movements, as well as the old measuring system with a new one consumed time due to financial and technological challenges, 

and hence mostraising of the data for 2014 is missing. Table 1 shows the characteristics of the sensors installed on MAREL 

Carnot from 2004 to 2022. Sensor calibration was performed on a regular basis, usually every three monthsstation for 

maintenance. 

 195 

The MAREL Carnot automated station is built with 1990s electronic, computer, and mechanical components. The general 

aging process, which primarily affects marine-exposed systems, necessitates the replacement of a number of elements that are 

no longer functional and whose maintenance is impossible due to a lack of spare parts. This explains why the measurement 

system was replaced in 2014 with a new automated measuring probe. Hence, several data for the year 2014 are missing. The 

core of the system is now composed of the following elements:  200 

-a PLC type MAREL ESTRAN 

-a small in situ circulation pump (pumping of the water on the probe) 

- a chlorinator for the production of chlorine by electrolysis 

-a multiparameter probe type MP6 nke  

-a Systea nutrient analyzer (nitrate, phosphate, silicate) 205 

-Seabird PAR Satlantic to measure the Photosynthetic Active Radiation, 

-A PONCPC-EH-10 probe for pH measurement. 

Measurements are taken at 3 different levels, numbered -1, 0, 1. Level -1 denotes atmospheric measurements (+ 28 m). Level 
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0 represents water surface measurements, while level 1 represents primary levels of immersion (-1.5 m).  

 210 
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Table 1 The characteristics of the senors installed on MAREL Carnot station from 2004 to 2022 

(a)Salinity was derived from Conductivity before 2014 

(b)The conductivity data before 2014 were deleted by Coriolis 215 

(c) pH sensor failure after 2015 

Parameter Level of 

measurement 

Sensor Accuracy Duration 

Sea Water 

Temperature 

1.5 m below water  

(Level 1) 

Pt100  ± 0.1°C 2004 - 2014 

NKE MP6 ± 0.05°C 2014 - 2022 

Practical Salinity 1.5 m below water 

(Level 1) 

NKE MP6 ± 0.1 PSU 2014 – 

2022(a) 

Electrical 

Conductivity 

1.5 m below water 

(Level 1) 

InduMax H CLS 52 ± 0.3mS/cm (b) 2004 - 2014 

NKE MP6 ± 0.05 mS/cm 2014 - 2022 

Turbidity 1.5 m below water 

(Level 1) 

TurbiMax W CUS 31 ± 10% 2004 - 2014 

NKE MP6 ± 5% 2014 - 2022 

Dissolved Oxygen 1.5 m below water OxyMax W COS 31 ± 0.2 mg/L 2004 - 2014 

NKE MP6 ± 5% 2014 - 2022 

Fluorescence 1.5 m below water 

(Level 1) 

SeaPoint Chlorophyll 

Fluorometer 

± 10%  

 

2004 - 2014 

NKE MP6 ± 5% 2014 - 2022 

PAR 28 m above water 

(Level -1) 

LI-COR Sensor ± 5% 2004 - 2010 

Seabird PAR Satlantic  ± 5% 2010 - 2022 

pH 1.5 m below water 

(Level 1) 

Orbisint CPS11 ± 0.2 2004 - 2014 

NKE MP6  -(c) 2014 - 2022 

Nutrients (Nitrate 

+ Nitrite, 

Phosphate, 

Silicate)  

1.5 m below water 

(Level 1) 

SYSTEA NPA: 

Nutrient Probe Analyzer 

± 5% 2004 - 2010 

Wind Speed 28 m above water 

(Level -1) 

ROWIND CV3F wind 

vane anemometer 

± 15% RMS for Wind Speed 

<3.6 m/s  

±6 % RMS for Wind Speed 

>3.6 m/s 

2004 - 2015 

AirMAR 200WX ±5%  2021 - 2022 

Wind Direction 28 m above water 

(Level -1) 

ROWIND CV3F wind 

vane anemometer 

± 2°  2004 - 2015 

AirMAR 200WX ±3°  2021 - 2022 

Air Temperature 28 m above water 

(Level -1) 

ROWIND CV3F wind 

vane anemometer 

±1.5°C 2004 - 2015 

AirMAR 200WX ±5%  2021 - 2022 

Estimated Sea 

Level 

Sea surface 

(Level 0) 

Hydro Ranger PLUS 

Siemens 

- 2005-2014 
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Figure 2 MAREL Carnot station consisting of the lighthouselight house (a)), and the MAREL Carnot tube (b) (photo ©  Ifremer). 

3.3 Measured and Calculated Parameters 

The MAREL Carnot multi-sensormultisensor station measures physical, chemicalphysiochemical and biological parameters 220 

in a continuous and autonomous mode. With a sampling frequency of 20 minutes, it is capable of providing high resolution 

data for conductivity (S.m-1), water and air temperature (°C), pH, fluorescence (FFU), turbidity (NTU), dissolved oxygen 

concentration (mg.L-1), Photosynthetically Active Radiation or P.A.R (µEµmol of photons.s-1.m-2), wind direction (degree), 

gust wind direction (degree), wind speed (m.s-1) and gust wind speed (m.s-1), as well as sea level (m). On the other hand, 

nutrient concentration like nitrate, phosphate, and silicate wereare only measured once every 12 hours in orderdue to limit the 225 

limited amount of chemical reagents required for the in situ analysis. Apart from salinity, which was. As a result, taking 

measurements twice a day allows chemicals to last longer (3 months). In addition to these measurements, certain parameters 

are calculated from conductivity prior to the installation of the NKE MP6 sensor in 2014, the only estimated parameter is sea 

level.such as oxygen saturation (%). Table 1Table 1 shows the different physiochemical parameters measured by MAREL 
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Carnot station, along with their sensor and expert ranges. 230 

 

Table 1 Sensor and expert ranges of the various parameters measured by MAREL Carnot station 

*: Due to complicated calculations involving several formulas and rules, the sensor range of dissolved oxygen is unavailable 

in mL/L. Consequently, it is also absent in mg/L 

**: There is no specific sensor range for Observed Sea Level 235 

3.4 Pre-processing of MAREL Carnot dataset 

Data acquired by MAREL Carnot station are transmitted in near real-time toFigure 3 shows the Coriolis data center. Coastal 

CORIOLIS, or simply CORIOLIS, is a data portal for all in situ data platforms in Coastal French waters, including MAREL 

Carnot (https://data.coriolis-cotier.org). After downloadingdifferent steps performed for the dataset before visualization. 

Briefly, the variables represented in Table 1 are selected and severalsteps of pre-processing steps were performed including 240 

offset correctionare Data Correction and NA transformation, quality codeQuality Control (QC) extraction and correction, 

sensor and expert range correction, andas well as time alignment (Figure 3). The subsections below provide details for. Below 

is a detailed explanation of each step. 

 

Parameter Unit Sensor Range Expert Range 

Fluorescence FFU 0 - 500 0.03 - 120 

pH - 1 - 14 6.5 - 9.5 

Practical Salinity PSU 2 - 42 5 - 35 

Electrical Conductivity S/m 0 – 7 3 - 6 

Sea Water Temperature °C -5 - 35 0 - 30 

Air Temperature °C -20 - 40 -20 - 45 

P.A.R (Photosynthetic Active Radiation) µmol.s-1.m-2 0 – 5000 0 - 2500 

Turbidity NTU 0 – 500 0 - 270 

Nitrate +Nitrite Concentration µmol/L 0 - 100 0 - 100 

Phosphate Concentration µmol/L 0 - 100 0 - 10 

Silicate Concentration µmol/L 0 - 100 0 - 50 

Dissolved Oxygen mL/L -* -* 

Dissolved Oxygen mg/L -* 0 - 20 

Oxygen Saturation % 0 - 150 0 - 150 

Horizontal Wind Speed m/s 0 - 40 0 - 40 

Wind Direction Relative True North degree 0 - 360 0 - 360 

Observed Sea Level m  - ** 0 - 20 

https://data.coriolis-cotier.org/
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Figure 3 A simplified overviewSchematic representation of the pre-processing steps and data visualization of the dataset 

3.4.1 OffsetData Correction and NA Transformation 

WeFirst, we checked the data to see if it contains major errors. After the year 2020, we corrected thean offset present in the 

photosynthetically activePAR (Photosynthetically Active Radiation (PAR) and salinity variables.) variable. Then, we noticed 

thatdiscovered some nutrient values were present on Level 2. Since no measurements are carried out data for nutrients present 255 

at Level 2 in. Since MAREL Carnot,  doesn't contain Level 2 data, we knew that these measurements were deletednutrients 

belong to Level 1, but were wrongly introduced into Level 2. Hence, we made sure values are similar at Level 1 and Level 2, 

and remove all values from Level 2. 

In addition, missing values in datasets are typically represented as NA, which stands for Not Available. However, in some 

cases, NA values are replaced with other numbers such as 77.77, 7777, 999, 999.999, 9999.99... Etc. A dataset may also include 260 

Raw 

Data 

       Pre-Processing Steps: 

1- Data Correction & NA Transformation 

2- QC Correction 

3- Sensor & Expert Range Correction 

4- Time Alignement 

 

Visualization 
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values like Inf, which stands for infinity, and Nan, which stands for infinity and Not A Number, respectively. Because these 

types of observations can affect or even obstruct further processing steps, we convert them into something feasible, which is 

NA.  

3.4.2 Quality Code Extraction and Correction 

Coastal CORIOLIS, or simply CORIOLIS, is a data portal for all in situ data platforms in Coastal French waters, including 265 

MAREL Carnot (https://data.coriolis-cotier.org). CORIOLIS quality control proceduresprocedure provide the users with the 

quality of each measurement as a Quality Code (QC) (). This code is normally given following the completion of quality 

control procedures, which are a part of the CORIOLIS harmonized method. During this process, the data is automatically 

verified using fundamental statistics (minimum, maximum, median, and standard deviation), and is subsequently validated or 

modified by an expert using more sophisticated methods and based on his environmental expertise. Table 2). Quality codes 270 

are assigned according to the Argo Quality Control flag scale (Wong et al., 2022), and are part of the CORIOLIS harmonized 

procedure applied to all its in situ data platforms.  

In the raw dataset, the quality codes are present in one single column and requires deserialization. To extract the quality code 

of each observation, we deserialized the QC data and returned it into a matrix. According to Argo quality control manual, 

measurements given a QC 4 are not to be used. A flag '4' is assigned when a relevant real-time QC test has failed, or for bad 275 

measurements that are known to be not adjustable, e.g. due to sensor failure (Wong et al., 2022). Thus, all data with QC =4 

(Bad data) were deleted, and replaced with NA values. 

At the end of this step, we converted the dissolved oxygen measurements from mL/L into mg/L according to Aminot & 

Kérouel, (2004) using the following formula 

𝐷𝑂 (𝑚𝑔/𝐿) = 1.429 × 𝐷𝑂 (𝑚𝐿/𝐿) 280 

Even after QC correction, the data may still contain errors. For instance, a pH measurement of 1 might not have a quality code 

of 4, and will therefore appear correct despite being false. For this reason, we performed sensor and expert range correction to 

remove values that are unusual in marine coastal waters. shows the significance of the quality code utilized with MAREL 

Carnot dataset. Thus, all data with QC =4 (Bad data) were deleted, and replaced with NA values. 

 285 

Table 2 Significance of the quality code (QC) 

Quality Code Significance 

0 No Quality Code was performed 

1 Good data 

2 Probably Good data 

3 Probably bad data that are potentially correctable 

4 Bad data 

5 Value Changed 

https://data.coriolis-cotier.org/
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6 Not Used 

7 Not Used 

8 Interpolated Value 

9 Missing Value 

 

It is worth noting that the QC procedure is not always accurate, experts cannot verify all measurements, and a false value may 

be found under a different code, like QC=2 or QC=3. For instance, an oxygen reading of 0 is wrong but may not be consistent 

with QC=4. As a result, we sought an additional method for automatically eliminating a sizable portion of the potential false 290 

data in addition to QC. Hence, correction is usually performed using both "sensor" and "expert" ranges. 

3.4.3 Sensor and Expert Range Correction 

The sensor range is a rangean interval of correct values from the highest possible measurement to the lowest possible 

measurement setdefined by the manufacturer. The, while the expert range is a rangean interval of correct values setdefined by 

a field expert. TheIndeed, the sensor range wasranges were obtained from the information provided by the sensor suppliers 295 

and MAREL (Ifremer),, whereas the expert range wasranges were derived from expert judgment based on specific knowledge 

acquired in the studied area through previous research activities. For all of the parameters, only the values that fall within the 

sensor and expert ranges are kept. Values that fall outside of the ranges are replaced with NAmissing data (Not Available or 

NA). 

The sensor and expert range and the sensor rangeranges for MAREL Carnot are represented in Table 3.Table 1. Indeed, the 300 

expert range is more precise than the sensor range. For instance, the sensor may give us a salinity value of 38, but our specialists 

know that salinity can only reach 35 in the Boulogne sur merEastern English Channel, so the sensor's result is qualified as 

false and must be remvedcorrected. Indeed, it is worth mentioning that scientists willing to use this dataset for any research 

objectives shall perform this additional pre-processing step in order to achieve higher levels of accuracy and precision. 

Table 3 Sensor and expert ranges of parameters measured by MAREL Carnot 305 

Parameter Given Name Unit Sensor Range Expert Range 

   Before 2014 After 2014  

Fluorescence Fluorescence_FFU FFU - - 0 - 120 

pH pH - 0.001 - 14 0 - 14 6.5 - 9.5 

Practical Salinity Salinity_PSU PSU - 2 - 42 5 - 35 

Electrical Conductivity Conductivity_S_m S/m - 0 – 7 3 - 6 

Sea Water Temperature Water_Temp_degreeC °C -5 - 30 -5 - 35 0 - 30 
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* value determined for the entire period from 2004 to 2022 

3.4.4 Time Alignment 

TheBefore statistical methods can be applied to the dataset, it must have an identical time interval between each measurement. 

However, the measurements of the various sensors are not taken at the same time, resulting in a time lag that can range from 

few seconds to several minutes. In addition, the series may contain duplicates in some cases. Before statistical methods can be 310 

appliedThus, to eliminate potential replicates and synchronize the dataset, it must have an identicalwe perform a temporal 

alignment using the average time interval between each measurement.of the measurements.  

In order to synchronize the dataset and eliminate potential replicates, we performed a time The alignment protocol calculates 

the average time step. After extracting the day, month, years and hours initially present in the raw dataset, we extracted the 

minute’s column and set minutes 0 through 19 to 10, 20 through 39 to 30, and 40 through 59 to 50. From this, we generated a 315 

time sequence of 20 minutes interval and merged it with the original data. After that, we aggregated the data at the obtained 

regularThis time step (20 minutes). If multiple measurements of the same creates a regular/no-replicates time variable exist 

within the same time step. Based on the parameter to be regularized and the goals to be attained, the maximum, /minimum, /or 

average can be returned. In order to focus on the most critical environmental conditions posing risk of eutrophicationof all 

subsets of our dataset matching to each regular interval of our ideal time variable is then returned. 320 

Air Temperature TempAir_degreeC °C -10 - 50 -40 - 80 -10 - 45 

P.A.R (Photosynthetic 

Active Radiation) 

PAR_micoE_m2_s1 µE.m-2.s-1 - - 0 - 2500 

Turbidity Turbidity_NTU NTU 0 - 4000 0 – 2000 0 - 270 

Nitrate + Nitrite 

Concentration 

Nitrate_Nitrite_micromol_l µmol/L 0 - 100 - 0 - 100 

Phosphate Concentration Phosphate_micromol_l µmol/L 0 - 100 - 0 - 10 

Silicate Concentration Silicates_micromol_l µmol/L 0  - 100 - 0 - 50 

Dissolved Oxygen OxyDissolved_mg_l mg/L 0 - 20 0 - 16  0 – 20* 

Oxygen Saturation OxygenSaturation_percent % - 0 - 120 0 - 120 

Horizontal Wind Speed WindSPD_m_s m/s 0 – 50.93 0 - 40 -  

Wind Direction Relative 

True North 

WindDIR_degree degree 0-359.9 0 – 359.9 0 - 359.9 

Gust Wind Speed Gust_WindSPD_m_s m/s 0 – 50.93 0 - 40 - 

Gust Wind Direction Gust_WindDIR_degree degree - 0 – 359.9 - 

Relative Humidity RelativeHumidity_Percent % 0 - 100 0 - 100  

Atmospheric Pressure Atmospheric_Pressure_hPa hPa - 300 - 1100  

Estimated Sea Level SeaLevel_m m -  -  0 - 20 



 

18 

 

In this paper, the maximum value wasis chosen for all parametersvariables except oxygen, where the minimum value was 

chosen. The QC valueis used. This is because during phytoplankton blooms, the amount of each observation was then retained, 

and a quality code of 9 was assigned to all NAoxygen in the water drops. Hence, it is more interesting to use the minimum 

values, including those removed by previously mentioned pre-processing steps to highlight this feature of HABs. 

4 Results and Discussion 325 

To summarize, several pre-processing procedures were performed on the displayed dataset, including data correction and NA 

transformation, quality code correction, sensor range correction, as well as temporal alignment. Table 4 represents the 

descriptive statistics for the main physiochemical parameters measured by MAREL Carnot from 2004 until 2022. The results 

show a high percentage of missing data, denoted as NA, or Not Available. MissingIn fact, missing data is a major problem in 

time series. It is primarily due to sensor failure, communication problems, or sensor maintenance disability. 330 

 

Table 4 Statistical summary (minimum, first quartile, median, mean, third quartile, maximum, and percentage of NA) of the 

parameters measured by MAREL Carnot station 

Parameters 

(Units) Min Q1 Median Mean Q3 Max percentage of NA 

Air Temperature 

(°C) -6.18 7.82 11.990 11.71071 16.11 35.00 56.87344.58 

Gust Wind 

Direction (°) 7.8 124.55 226.3 205.176 271.5 359.9 94.622 

Gust Wind Speed 

(m/s)Water 

Temperature (°C) 03.60 7.278.73 11.2412.80 12.28294 16.2417.30 23.50.9 61.53223.73 

Photosynthetic 

Active Radiation 

(µE.m-2.s-1)Salinity 

(PSU) 010.04 033.07 34.733.64 280.85033.32 361.834.09 2497.3435.00 60.11028.45 

Relative Humidity 

(%)Turbidity 

(NTU) 25.210.00 74.074.63 82.058.91 81.03914.62 88.9917.30 100259.70 63.44725.25 

P.A.R (µmol.s-1.m-2) 0.00 0.00 25.00 282.26 373.20 2489.03 47.81 

Wind Direction 

(°)(Degree) 0.00 92.00 198.00 177.98999 246.00 359.990 61.41448.14 

Horizontal Wind Speed 

(m/.s-1) 0.00 5.7877 9.08 9.73771 13.1412 50.8239.96 61.51148.23 

Estimated Sea Level (m) 5.43 8.08 10.2 10.280 12.32 15.84 73.091 

Water Temperature (°C) 3.6 8.73 12.8 12.935 17.3 23.5 30.276 

Electrical Conductivity 

(S/m) 3 3.601 3.944 3.991 4.411 4.959 69.017 

Dissolved Oxygen 

(mg/L) 0 6.844 7.990 8.051 9.210 17.01* 37.049 

Fluorescence (FFU) 0.03 0.5152 1.0708 3.00404 2.4648 116.59 25.93320.93 
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Nitrate + Nitrite 

(µmol/.L-1) 0.0201 5.2381 10.90513.22 15.21317.44 21.94724.06 98.8999.54 99.36665.50 

Oxygen Saturation (%) 0 83.69 91.573 88.582 97.11 120 70.150 

Phosphate (µmol/.L-1) 0.00 0.4448 0.6571 0.71995 0.8696 10.00 99.42666.00 

Silicate (µmol.L-1) 0.00 2.10 4.44 5.55 7.79 49.04 64.73 

Dissolved Oxygen (mL.L-1) 0.00 4.80 5.60 5.67 6.46 13.92 28.76 

Oxygen Saturation (%) 0.00 83.78 91.68 88.89 97.30 198.72 54.78 

pH 6.550 7.92 8.110 8.13714 8.38 9.33 67.18652.66 

Practical Salinity (PSU) 8.7748 32.98 33.56 33.225 34.01 35 31.525 

Silicate 

(µmol/L)Conductivity 

(S.m-1) 03.00 1.96253.60 4.1353.94 5.1453.99 7.31754.41 39.254.96 99.32654.10 

Turbidity (NTU)Sea 

Level (m) 05.43 4.6348.08 8.910510.20 14.62410.28 17.312.32 15.84259.7 32.21257.29 

Atmospheric Pressure 

(hPa) 980 1011 1018 1016.964 1024 1044 94.622 

*Value obtained before 2014 

  335 

Figure 4 and Figure 5Figure 5 show the time series of parameters signals collected from MAREL Carnot station from 2004 

until 2022. We noticed that some signals have seasonalvisible cycles, such as water and air temperature as well as 

photosynthetic active radiation (PAR). In addition, the signals contain episodic or continuous missing values over several time 

periods. For instance, a large number of missing values can be found around the year 2014 almost in most time seriesall signals. 

This is due to station and sensor alterations that occurred during that time, particularly, the replacement of several sensors with 340 

a multi-parameter probe (Lefebvre and Schmitt, 2016). Likewise, the signals of air temperature, PAR, wind speed as well as 

sea level have been lost for several years while waiting for new funding resources to ensure the renewal of sensors and 

associated electronic systems. Conductivity data prior to 2015 were deleted by Coriolis data center, probably under the 

presumption that salinity is more relevant to the scientific community. This highlights the added value of our research, which 

is to ensure that all observations collected by MAREL Carnot remain permanently available and accessible to everyone. 345 

(Lefebvre and Schmitt, 2016). Similarly, signals of air temperature, PAR, wind speed as well as sea level have been lost for 

several years. However, conductivity signals have only been available since 2015. 
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 Figure 4 Time series of parameters collected from MAREL Carnot station during the period 2004-2022 
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 Figure 4 Signals collected from the MAREL Carnot station during the period 2004-2022 
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Figure 5 Time series of parameters5 Signals collected from the MAREL Carnot station during the period 2004-2022 
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Nutrient signals such as phosphate, nitrate, and silicate are only available until 2010. This is caused by a previous sensor failure 355 

and the inability to replace it.  

Indeed, high frequency fluorescence data from MAREL Carnot station can contribute to the calibration of satellite 

observations. In addition, MAREL Carnot perform measurements of nutrients that are not provided by current spacecraft 

techniques. Hence, it is much more effective than satellites at monitoring water quality (Lefebvre and Schmitt, 2016). 

Nonetheless, nutrient signals such as phosphate, nitrate, and silicate are only available until 2010. This is caused by a previous 360 

sensor failure and the inability to replace it.  

Figure 6 shows a wind rose showingfor the frequency (%) and, wind speed (m/s) for different wind directions measuredand 

direction relative true north collected by MAREL Carnot from 2004 until 2022. station, after removing all NA values. 
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 365 

Figure 6 wind rose showingWind Rose representing the frequency (%) wind speed and wind speed (m/s) for different wind 

directionsdirection measured by MAREL Carnot station from 2004 until 2022 

ScientistsIndeed, scientists from several disciplinary backgrounds have utilized MAREL Carnot data to accomplish a wide 

range of research objectives. In the following paragraphs, we will go over some of the most significant findings from several 

research efforts. The scientific community that is interested in the MAREL Carnot dataset may find this evaluation useful in 370 

determining which topics may or may not require further study based on the results of this evaluation. ThisIn general, this 

dataset allows researchers to investigate the dynamics of phytoplankton as well as detect blooms caused by human activities 

and/or climate change. 

For instance, Rousseeuw et al., (2015)Rousseeuw et al., (2015) developed an unsupervised Hidden Markov Model (uHMM) 

for monitoring the marine environment, specifically for detecting algal blooms and understanding phytoplankton dynamics. In 375 

theirhis unsupervised Hidden Markov Model, uHMM parameters were estimated using spectral clustering rather than the 

commonly used iterative Expectation Maximization. The results obtained using MAREL Carnot dataset showed that the 

proposed system is efficient to detect the main productive and non-productive periods, as used for the purposes of the EU 

Water Framework Directive to assess good environmental status, and refine knowledge about phytoplankton bloom dynamics 

in a temperate ecosystem, temporarily dominated by a harmful algae, Phaeocystis globosa. Thus, the suggested uHMM system 380 

successfully characterizes phytoplankton dynamics from new incoming data (in near real-time), and will enable researchers to 

gain a better understanding of the main controlling or forcing parameters (e.g., nutrient pressure, light availability, turbidity), 

the environmental status (e.g., phytoplankton biomass), and the direct and/or indirect effects of algal blooms (e.g., oxygen 

concentration) (Rousseeuw et al., 2015). 

Followingsuch blooms (e.g., oxygen concentration). Most importantly, the ability of uHMM to establish environmental states 385 
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represents a clear potential to better understand what a good environmental condition is, as defined and applied for the needs 

of the WFD, MSFD, or other regional sea conventions such as OSPAR. Even though uHMM was only applied to the MAREL 

Carnot dataset, it could contribute to the processing of huge multivariate time series generated by high resolution platforms, 

which are increasingly used for the integrated observation of pelagic ecosystems and biogeochemical cycles in oceans 

Rousseeuw et al., (2015) unsupervised approach, Grassi et al., (2019)(Rousseeuw et al., 2015). suggested a Multilevel Spectral 390 

Clustering (M-SC) to split multivariate time series from general patterns to extreme events without a priori knowledge. The 

results obtained from MAREL Carnot dataset have shown that we can extract knowledge on dynamics of events or 

environmental states. In addition, it was shown that M-SC allows unsupervised labelling of time series, which is a basic part 

of machine learning needed to build an event prediction system and improve sampling strategies to become in near real time 

(Grassi et al., 2019). As a result, scientists should be able to create a HAB early warning expert system to warn shellfish 395 

farmers, and prevent both public health risks and commercial losses in the shellfish farming business. 

On the other hand, Grassi et al., (2019) suggested a Multilevel Spectral Clustering (M-SC) to split multivariate time series 

from general patterns to extreme events without a priori knowledge. The results obtained from MAREL Carnot dataset have 

shown that we can extract knowledge on dynamics of events or environmental states. The application of M-SC and uHMM on 

MAREL Carnot dataset can reveal rare, recurrent and extreme events, which may aid in improving coastal assessment and 400 

defining what constitutes a desirable environmental state. This can indirectly help improve management strategies established 

by the Water Framework Directive (WFD), Marine Strategy Framework Directive (MSFD) and Oslo and Paris Convention 

(OSPAR). 

MAREL Carnot dataset can be also be beneficial to data scientists and machine learning specialists. This dataset contains some 

missing data due to sensor failure, and harsh weather conditions that prevent immediate sensor maintenance. It was used to 405 

evaluate the performance of a proposed Dynamic Time Warping method to fill in successive missing values of univariate time 

series (Phan et al., 2017b), and low uncorrelated multivariate time series (Phan et al., 2017a). It was also utilized in the 

application of a fuzzy logic-based similarity measure to impute large gaps of uncorrelated  multivariate time series (Phan et 

al., 2018). These data imputation approaches are published on the Comprehensive R Archive Network (CRAN) and accessible 

through DTWBI and DTWUMI packages, respectively. The MAREL Carnot high frequency dataset can be used to validate 410 

satellite-derived products such as fluorescence. In addition, MAREL Carnot provide measurements for parameters that cannot 

be measured from space such as nutrient concentration (Lefebvre and Schmitt, 2016). 

This dataset can also be utilized to assess the performance of time series analysis methods on marine datasets. For instance, 

Kbaier Ben Ismail et al., (2016) used four parameters measured by MAREL Carnot to compare the classical techniques of time 

series analysis to recent ones. Also, Huang and Schmitt, (2014) performed empirical mode decomposition (EMD) to study 415 

time dependent intrinsic correlation of temperature and dissolved oxygen time series measured by MAREL Carnot.  

Derot et al., (2020) investigated the impact of different sampling frequency on forecasting harmful algal blooms. They applied 

Random Forest (RF) and sliding window strategy on 12 parameters derived from MAREL Carnot dataset. This research 

demonstrated that the sampling frequency has a direct impact on the forecast performance of a Random Forest (RF) model as 
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high-frequency datasets might provide useful information to the RF. This type of model sets the groundwork for the creation 420 

of a numerical decision-making tool that could help mitigate the impact of algal blooms, and can recreate interactions that 

closely resemble the real biological processes (Derot et al., 2020). 

Moreover, MAREL Carnot dataset might be useful for studying turbulence. Derot et al., (2015) studied the phytoplankton 

biomass during bloom events by applying Empirical mode decomposition (EMD) on fluorescence dataset from MAREL 

CARNOT. Results revealed that bloom events include considerable internal variations. Blooms are not smooth and "mountain-425 

like", but exhibit high frequency oscillations due possibly to turbulent advection and complex population dynamics (Derot et 

al., 2015). Besides, Zongo & Schmitt, (2011) demonstrated that pH fluctuations in marine waters are strongly influenced by 

turbulent hydrodynamical transport, and may be considered as a turbulent active scalar. 

Moreover, the sensors placed on the lighthouse provide valuable data for meteorological research and may improve local 

weather forecasts by measuring variables including wind speed, wind direction and air temperature. Also, the MAREL Carnot 430 

high frequency dataset can be used to validate satellite-derived products such as fluorescence. It also provides measurements 

for parameters that cannot be measured from space such as nutrient concentration (Lefebvre and Schmitt, 2016). Our dataset 

may assist fisheries research. For instance, Toomey et al., (2023) incorporated MAREL Carnot water temperature time series 

in the supplementary material of her study on the impact of temperature on Downs herring.  

Overall, the MAREL Carnot station provides automatic, continuous, and long-term observation of various physical, chemical 435 

and biological parameters that enhance our knowledge about the environmental state of the coastal environment and bloom 

events. Hence, MAREL Carnot dataset aligns with objectives of SRN (Suivi Régional des Nutriments in French, Regional 

Nutrients Monitoring Program), especially by assessing the influence of continental inputs on the marine environment, and 

their implication on possible eutrophication which can assist in estimating the effectiveness of development and management 

policies in the marine coastal zone (Lefebvre and Devreker, 2023). To clarify, MAREL Carnot is the first coastal sampling 440 

station for the SRN transect. Thus, it assists in understanding phytoplankton dynamics by determining recurrent, extreme and 

rare events in this highly impacted and vulnerable coastal area. 

Furthermore, MAREL Carnot dataset can be complementaryIn addition, it was shown that M-SC allows unsupervised labelling 

of time series, which is a basic part of machine learning and is needed to build an event prediction system and come up with 

sampling strategies that work close to real time (Grassi et al., 2019). As a result, scientists will be able to create a HAB early 445 

warning expert system to warn shellfish farmers, and prevent both public health risks and commercial losses in the shellfish 

farming business. 

Nevertheless, datasets, notably MAREL Carnot, are typically incomplete and contain a significant amount of missing data due 

to sensor failures, communication/transmission difficulties, or poor weather conditions for manual measurements or 

maintenance. Phan et al., (2018) proposed Dynamic Time Warping method to fill in successive missing values of univariate 450 

time series as well as low uncorrelated multivariate time series (Phan et al., 2017). 

Furthermore, to compare alternative approaches to studying and understanding HABs, all researchers must have access to the 

same datasets. For instance, researchers may now assess the effectiveness of new and old machine learning algorithms in 
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understanding the dynamics and forecasting harmful algal blooms. Thus, a comparative study of clustering approaches applied 

to spatial or temporal pattern discovery gave promising results in the segmentation of both UCI databases and marine time 455 

series compared to other approaches (Grassi et al., 2020). Therefore, we may conclude that the MAREL Carnot dataset is 

beneficial not just for marine ecologists, but also for machine learning specialists and data scientists. It is worth mentioning 

that all the above algorithms are available and published on the Comprehensive R Archive Network (CRAN). 

Another study performed by Derot et al., (2020) analysed how forecasts of phytoplankton blooms are impacted by different 

sampling frequencies. They applied Random Forest (RF) and sliding window strategy on 12 parameters derived from MAREL 460 

Carnot dataset. This research demonstrated that the sampling frequency has a direct impact on the forecast performance of a 

Random Forest (RF) model as high-frequency datasets might provide useful information to the RF. Furthermore, this type of 

model sets the groundwork for the creation of a numerical decision-making tool that could help mitigate the impact of algal 

blooms, and can recreate interactions that closely resemble the real biological processes (Derot et al., 2020). 

Moreover, MAREL Carnot dataset is useful for studying turbulence. In fact, many fields in the marine environment fluctuate 465 

over a wide variety of geographical and temporal scales. To study their dynamics and estimate their variations at all scales, 

high frequency measurements are needed (Huang and Schmitt, 2014). Hence, Derot et al., (2015) investigated phytoplankton 

biomass during bloom by applying Empirical mode decomposition (EMD) on fluorescence dataset from MAREL CARNOT. 

Results revealed that bloom events include considerable internal variations. In other words, blooms are not smooth and 

"mountain-like", but exhibit high frequency oscillations due to turbulent advection and complex population dynamics (Derot 470 

et al., 2015). Similarly, (Huang and Schmitt, 2014) analysed time dependent intrinsic correlation analysis of temperature and 

dissolved oxygen time series using empirical mode decomposition. The anti-correlation between temperature and oxygen 

showed that higher temperatures may favor larger phytoplankton growth rate, and hence, with a time delay, a lower percentage 

of oxygen (Huang and Schmitt, 2014). In addition, Zongo & Schmitt, (2011) demonstrated that pH fluctuations in marine 

waters are strongly influenced by turbulent hydrodynamical transport, and may be considered as a turbulent active scalar 475 

(Zongo and Schmitt, 2011). 

Overall, the MAREL Carnot station provides automatic, continuous, and long-term observation of various physiochemical and 

biological parameters that allow for monitoring the general quality of marine environment, detecting harmful algal blooms 

(HAB) and understanding phytoplankton dynamics. Hence, MAREL Carnot dataset aligns with objectives of SRN (Suivi 

Régional des Nutriments in French, Regional Nutrients Monitoring Program), especially by assessing the influence of 480 

continental inputs on the marine environment, and their implication on possible eutrophication, and can assist in estimating 

the effectiveness of development and management policies in the marine coastal zone (Alain and David, 2022). In other words, 

MAREL Carnot is the first sampling station for the SRN transect. Thus, it assists in understanding phytoplankton dynamics 

by determining recurrent, extreme and rare events.  

Furthermore, MAREL Carnot dataset can contribute to both REPHY (Observation and Surveillance Network for 485 

Phytoplankton and Hydrology in coastal waters) (https://doi.org/10.17882/47248), and REPHYTOX (Monitoring Network for 

Phycotoxins in marine organisms) (https://doi.org/10.17882/47251). TheActually, the goal of REPHY is to measure the 

https://doi.org/10.17882/47248
https://doi.org/10.17882/47251
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biomass, abundance, and composition, and hydrological parameters of marine phytoplankton as well as hydrological 

parameters in coastal and lagoon waters. REPHYTOX is designed to find and track three types of toxins that can build up in 

bivalve mollusks and cause DSP (Diarrheic Shellfish Poisoning), PSP (Paralytic Shellfish Poisoning), and ASP (Amnesic 490 

Shellfish Poisoning) (Belin et al., 2021)(Belin et al., 2021). Monitoring carried out by MAREL Carnot in parallel with REPHY 

and REPHYTOX permits continuous adaptation to the objectives, developing analysis strategies with extensive and complex 

data, thereby ensuring sustainability, which were challenges faced by REPHY and REPHYTOX before. 

Thus, the contribution of MAREL Carnot to improve assessment based on low frequency renders it important to achieve the 

objectives of WFD (Water Framework Directive) and MSFD (Marine Strategy Framework Directive). Besides, the lighthouse's 495 

sensors provide valuable data for meterological research and may improve local weather forecasts by measuring variables 

including wind speed, wind direction and air temperature. Additionally, depending on the goals, some of the parameters 

determined by our station can actually be useful for fisheries research when making the link between the different trophic 

levels. 

While MAREL Carnot has made substantial progress toward automating marine ecosystem monitoring, there are still some 500 

significant challenges to overcome. IndeedIn fact, it can be interrupted by rough sea conditions, such as strong tidal currents 

and storms. In addition, biofouling presents a major problem for sensors in the coastal environment, which explains why only 

a few moored autonomous systems have been deployed in the coastal environment (Blain et al. 2004). Due to sensor failure, 

phosphate, nitrate, and silicate measurements are not available after 2010. To better explain the large data gap, we should 

emphasize that we were in an interim phase, facing difficulties in maintaining a system developed and built in the early 2000s, 505 

with electronic parts that were no longer available and waiting for the improvement of the smart multisensor marine 

observation platform, costof2, which was driving all of the sensors and dataflow. despite their ease of maintenance (Blain et 

al. 2004). Also, new EOV (Essential Ocean Variables) and EBV (Essential Biodiversity Variables) might be added with time. 

This adds a further obstacle, as it may be necessary to install brand-new sensors for the updated parameters. Above all, the 

major challenge will continue to be the issue of missing values, especially when it comes to data that has been missing for a 510 

long time, as in the case of nutrients, where nitrate, phosphate, and silicate observations have been missing since 2010 due to 

sensor failure. 

As our knowledge and understanding of coastal ecosystems is growing with time, the EOV (Essential Ocean Variables) and 

EBV (Essential Biodiversity Variables) might be updated in the future. This may necessitate the installation of new sensors on 

MAREL Carnot station to measure these new variables or parameters.  515 

In future work, we plan to use a multi-scale, multi-source, multi-criteria, and multi-parameter approach to characterize and 

predict harmful algal blooms in the Eastern English Channel caused by Phaeocystis globosa and Pseudo-nitzschia spp.. We 

will do this by combining high frequency datasets from MAREL Carnot, satellite, and modeling data with low frequency 

datasets from other sources. This integrated observing system will be used to identify environmental states present in the 

region, and develop an early warning system that can anticipate harmful algal blooms in particular, as well as changes in water 520 

quality and environmental state in general. 
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4.1 Data Availability 

The raw data are present on the official Coriolis website. "These data were collected and made freely available by the Coriolis 

project and programmes that contribute to it (http://www.coriolis.eu.org).” The dataset after quality control procedures are 

present on the SEANOE website (DOI: 10.17882/39754) (Lefebvre A, 2023) in file “2004-2022 Coriolis processed data” . 525 

Our(Lefebvre, 2015). In fact, our data are made available according to the FAIR approach (Findable, Accessible, Interoperable, 

Reusable). 

5 Conclusion 

In conclusion, this high frequency data from MAREL Carnot instrumented station aredataset is useful in many scientific fields, 

such as phytoplankton ecology, data science, and oceanographyturbulence. It can be used to describe the environmental state 530 

and forecastpredict harmful algal blooms in the Eastern English Channel, which is important to warn shellfish farmers and 

prevent economic losses and health problems. It can also be used with satellite, modeling, and low-frequency in situ data to 

enhance our understanding of the marine ecosystem. achieve better knowledge and understanding of the marine 

ecosystem.  Most importantly, this data set has been shown to be useful for fulfilling the goals set by the Water Framework 

Directive (WFD), the Marine Strategy Framework Directive (MSFD), and the Oslo and Paris Conventions (OSPAR). This 535 

would help researchers in the future get better results, which would lead to more scientific progress. 
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