essd-2023-77 Submitted on 03 Mar 2023

Mapping of peatlands in the forested landscape of Sweden using LiDAR-based terrain indices Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius

The manuscript presents the use of machine learning to model soil data against LiDAR-based terrain indices for the purpose of producing national scale peat depth maps for Sweden. The authors use data acquired from the Swedish Forest Soil Inventory and the Geological Survey of Sweden alongside LiDAR derived DEM. The combined soil data provide good coverage and data gaps are explained. Assumptions and decisions made on the data used are also well reasoned. The independent variables, referred to as features are topographic classifications derived from the DEM. A reference for each is provided so the reader could find further detail.

The work is valuable in that it presents a technique that is relatively simple to reproduce across other nations (where equivalent soil and LiDAR datasets are available). In all sections the information presented is clear and concise. The data sources are well explained and the data processing steps are outlined in an instructive and accessible way so that the reader could repeat on their own datasets.

The model performance and results are well reasoned, and the example images are nicely presented. However, I found the comments in the Discussion regarding the reliability of Gotland and Oland results a little confusing. Would it not have been better to exclude these areas?

The explanation for data download was simple and clear. Data was downloaded (from https://bolin.su.se/data/rimondini-2023-peatlands-1) and each of the 4 raster datasets was viewed in QGIS with ease and appeared to be complete and of high quality.

My overall recommendation would be to accept the manuscript with the following minor corrections addressed.

Abstract, Line 10	degradation by land cover should read
	degradation by land cover change
2.2.2 Features, Line 115	created support delineation should read
	created to support delineation
Table 1 caption	with and asterisk should read
	with an asterisk
2.3.2 Machine Learning workflow, Line 135	Totally, 10115 data points would read better as
	In total, 10115 data points
Line 167	Final prediction mapping
	Unclear if this is supposed to be a sub-heading?
Table 2 caption	Capitalise <i>peat40</i> to make consistent with other
	mapping layer titles.
5 Discussions, Line 205	in which a land should read
	in which case a land
Line 214	Superscript missing Km2
Line 216	land as us would read better as
	land as we did
Lines 219, 220, 224, 225, 225	Superscript for km2