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Abstract: Currently, in the modeling of various atmospheric pollutants, the simulation 17 

of independent trace gases (SO2 and O3) is constrained by the insufficient resolution of 18 

key remote sensing products, resulting in insufficient simulation reliability. In this study, 19 

spatial sampling and parameter convolution are combined to optimize LightGBM by 20 

utilizing ground observations, remote sensing products, meteorological data, assistance 21 

data, and random ID. Through the above techniques and an sequentialsimulation of air 22 

pollutants, we produce seamless daily 1-km-resolution products of PM2.5, SO2 and O3 23 

for most parts of China from 2015 to 2020. Through random sampling, random site 24 

sampling, area-specific validation, comparisons of different models, and a cross-25 

sectional comparison of different studies, we verified that our simulations of the spatial 26 

distribution of multiple atmospheric pollutants are reliable and effective. The CV of the 27 

random sample yielded an R2 of 0.88 and an RMSE of 9.91 µg/m3 for PM2.5, an R2 of 28 

0.89 and an RMSE of 4.62 µg/m3 for SO2, and an R2 of 0.91 and an RMSE of 6.88 29 

µg/m3 for O3. Combined with the SHapley Additive exPlanations (SHAP) approach, 30 

the roles of different parameters in the simulation process were clarified, and the 31 

positive role of parameter convolution was confirmed. Our dataset was used to assess 32 

the changes in the Air Pollution Index (API) in China before and after the outbreak of 33 
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COVID-19, and the results indicate that these changes were relatively small huge, 34 

suggesting that the epidemic control measures in 2020 were effective. The study 35 

demonstrates that the multipollutant datasets produced with the proposed models are of 36 

great value for long-term, large-scale, and regional-scale air pollution monitoring and 37 

prediction, as well as population health evaluation. The datasets are available at 38 

https://doi.org/10.5281/zenodo.7533813 (Chi et al. 2023a), 39 

https://doi.org/10.5281/zenodo.7547774 (Chi et al. 2023b), 40 

https://doi.org/10.5281/zenodo.7312179 (Chi et al. 2023c), 41 

https://doi.org/10.5281/zenodo.7580714 (Chi et al. 2023d), 42 

https://doi.org/10.5281/zenodo.7580720 (Chi et al. 2023e), 43 

https://doi.org/10.5281/zenodo.7580726 (Chi et al. 2023f). 44 

Keywords: Multiple air pollutants, Machine learning model optimization, Spatial 45 

distribution products of air pollutants, SHAP 46 

 47 

1 Introduction 48 

The development of human society has led to large quantities of air pollutant 49 

emissions, seriously affecting human health (Dedoussi et al., 2020; Landrigan, 2017; 50 

Shen et al., 2019). In 2019, Global Disease Burden (GDB) data indicated that air 51 

pollution was the fourth leading cause of death. In 2015 alone, outdoor PM2.5 and ozone 52 

(O3) pollution caused 4.5 million deaths (Cohen et al., 2017). The concentrations of air 53 

pollutants such as PM2.5, O3, and SO2 can be effectively obtained with observation 54 

devices at ground stations (World Health, 2021; Copat et al., 2020). However, due to 55 

the high cost, it is difficult to build high-density ground monitoring stations to monitor 56 

air pollutants. In areas without monitoring stations, the levels of gases that are 57 

imperceptible to the naked eye, such as O3 and SO2, may be misestimated, thus 58 

increasing the uncertainty of quantitative assessments of population exposure (Liu et 59 

al., 2020). Therefore, establishing a set of refined spatially distributed products related 60 

to near-surface air pollution could improve quantitative assessments of population 61 

exposure. 62 

With the continuous development of remote sensing technology, satellite remote 63 

sensing can now be used to obtain the spatial distribution of atmospheric pollutants and 64 

has become an important scientific approach. The Ozone Monitoring Instrument (OMI) 65 

of the Aqua satellite, the SCIAMACHY sensor of ENVISAT, and the Tropospheric 66 

Monitoring Instrument (TROPOMI) of Sentinel-5P can directly observe and retrieve 67 

the levels of trace gases such as O3 and SO2 (Kang et al., 2021; Ialongo et al., 2020). 68 
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Among them, the OMI is characterized by a long observation duration, sufficient data 69 

storage, and global coverage, providing key data for studies of near-surface trace gases 70 

(Xue et al., 2020). However, the low resolution of the OMI limits the application of 71 

OMI data in high-resolution simulations of trace gases. Due to the complex composition 72 

of PM2.5, it is challenging to directly observe it through remote sensing, and it is usually 73 

necessary to combine parameters such as the aerosol optical depth (AOD) for indirect 74 

estimation. The AOD product produced from MODIS data combined with the 75 

multiangle implementation of atmospheric correction (MAIAC) algorithm provides 76 

high-resolution (1 km and daily) and stable data; additionally, this product is free and 77 

publicly available. In addition, the product can be used to recover relevant bidirectional 78 

reflectance distribution functions (BRDF) based on the time-series detection of 79 

multiangle surface features (Lyapustin et al., 2011). Compared with the traditional dark 80 

target (DT) and dark blue (DB) algorithms, it can more effectively identify clouds and 81 

snow, and the inversion effect is better in certain areas. 82 

Since 2013, China has built several air pollutant monitoring stations, gradually 83 

laying the foundation for the establishment of a national-scale and fine-scale dataset of 84 

air pollutants (Li et al., 2017). At present, the main methods for simulating the spatial 85 

distribution of near-surface air pollutants can be categorized into physical and chemical 86 

models, mathematical and statistical models, and artificial intelligence methods (Chong 87 

et al., 2020). Physicochemical models were developed first and are often combined to 88 

form relatively complete analysis systems (such as combining remote sensing retrieval 89 

products, reanalysis data, and atmospheric chemical transport models) (Ivey et al., 90 

2017). However, the corresponding products usually have a low resolution and cannot 91 

meet the needs of regional studies. Mathematical and statistical models include many 92 

spatial interpolation and linear algebra models (Zhang et al., 2018a). Although such 93 

models can simulate the spatial distribution of near-surface air pollutants at a high 94 

resolution, it is difficult to effectively simulate local abrupt changes (such as forest fires 95 

and abnormal emissions) (He and Huang, 2018). Therefore, this approach has not been 96 

broadly popularized and is difficult to apply over small spatial scales and in short time 97 

periods. Artificial intelligence methods, including machine learning and deep learning, 98 

have gradually matured, leading to improved simulations of the spatial distributions of 99 

atmospheric pollutants (Chang et al., 2020; Wei et al., 2022). Among them, the machine 100 

learning-based LightGBM model provides high cross-validation (CV) accuracy and 101 

reliability without requiring extensive computational resources (Ke et al., 2017; Zhong 102 

et al., 2021). However, when large-scale remote sensing data are used to simulate the 103 
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spatial distribution of near-surface atmospheric pollutants, especially trace gases such 104 

as SO2 and O3, in the LightGBM model, “bands” or “patches” that do not conform to 105 

natural patterns are often obtained (Figure S4) (Zhan et al., 2017b; Chi and Zhan, 2022). 106 

This phenomenon not only affects the reliability of the obtained spatial distributions of 107 

atmospheric pollutants but also hinders improvements to the spatial resolution of trace 108 

gas simulations. Therefore, models such as LightGBM still need to be further optimized. 109 

Trace gases such as SO2 and O3 are affected by the resolution of key corresponding 110 

remote sensing products, resulting in serious constraints on the resolution and accuracy 111 

of near-surface spatial simulations (Wang et al., 2022). However, PM2.5 data can be 112 

used to help optimize such simulations. Therefore, in this study, LightGBM is 113 

optimized using spatial sampling and parameter convolution to simulate the levels of 114 

atmospheric pollutants. Using ground observations, remote sensing products, 115 

meteorological parameters, random ID and sequential simulations of various air 116 

pollutants, the spatially distributed products of PM2.5, SO2, and O3 are generated at a 117 

resolution of 1 km and at the daily scale in most of China (excluding some islands) 118 

from 2015 to 2020. We interpret the output of our model using the SHapley Additive 119 

exPlanations (SHAP) method. The air pollutant trends in China before and after the 120 

outbreak of COVID-19 are assessed using the Air Pollution Index (API). This paper is 121 

organized as follows: in Section 2, the dataset is described, Section 3 presents the 122 

methodology of the model, Section 4 presents the results of the model, Section 5 123 

focuses on the model and its application, and Section 6 presents the conclusions. 124 

 125 

2. Data sets 126 

The data used in this study include daily ground monitoring data for PM2.5, SO2, 127 

and O3 in China. Additionally, remote sensing data, meteorological data, and auxiliary 128 

data are used. 129 

2.1 Air pollution monitoring data and meteorological data 130 

In this study, hourly observation data from 2,108 air pollutant stations were 131 

obtained from January 1, 2,015, to December 31, 2,020. Among them, the National 132 

Environmental Monitoring Center of China operates 2,020 stations, the Hong Kong 133 

Environment Department operates 18 stations, and the Taiwan Environment Agency 134 

operates 70 sites. Figure 1 shows that the spatial distribution of the air pollutant 135 

monitoring sites is heterogeneous, with a higher density of stations along the east coast 136 

and a lower density in the western plateau region. In addition, we collected daily 137 

monitoring data from 760 meteorological stations in mainland China from January 1, 138 
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2,015, to December 31, 2,020, with a focus on four parameters: wind speed, humidity, 139 

air pressure, and temperature. 140 

 141 

 142 

Figure 1 Map of the study area and distribution of air pollutant monitoring sites. The purple dots 143 

denote the atmospheric pollutant monitoring sites. The four red boxes represent the North China 144 

Plain (NCP), the Yangtze River Delta (YRD), the Pearl River Delta (PRD) and the Sichuan Basin 145 

(SB), areas considered in sampling CV. The three black boxes (a, b, and c) are used for visual 146 

assessment. 147 

2.2 Remote sensing data 148 

The remote sensing datasets used included (1) AOD datasets, (2) SO2 and O3 149 

column concentration data, and (3) other datasets. (1) The MAIAC AOD and 150 

Himawari-8 AOD data sets include 470 nm AOD and 550 nm AOD. Notably, the 151 

MAIAC AOD data set (earthdata.nasa.gov) has a spatial resolution of 1 km and a 152 

temporal resolution of 1 day, and the L3 daily product of the Himawari-8 AOD data set 153 

(ftp.ptree.jaxa.jp) has a spatial resolution of 5 km. (2) The SO2 and O3 column 154 

concentrations are based on the L3 data for OMI SO2 and OMI O3, respectively, with a 155 

temporal resolution of 1 day and a spatial resolution of 0.25°. (3) Other data include 156 

NDVI, topography, population distribution, road, and land use data sets. The NDVI was 157 

calculated from MODIS data (earthdata.nasa.gov) at a temporal resolution of 16 days 158 

and a spatial resolution of 1 km. Topographic data, including elevation and slope, were 159 

extracted from SRTM data (earthdata.nasa.gov), with a spatial resolution of 90 m. 160 

Population data were obtained from LandScan (landscan.ornl.gov) at a spatial 161 

resolution of approximately 1 km. The 2018 road data were obtained from 162 
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OpenStreetMap (www.openstreetmap.org) in the format of an ESRI shapefile. Land use 163 

data were obtained from the Copernicus Climate Change Service (C3S) 2018, with a 164 

spatial resolution of 300 m (cds.climate.copernicus.eu). 165 

2.3 Auxiliary data 166 

We constructed a WGS coordinate grid covering the Chinese region (the spatial 167 

extent is shown in Figure 1) with a longitude resolution of 0.01° and a latitude 168 

resolution of 0.008°. The year parameter, day of the year (DOY) parameter, 169 

weekday/nonweekday parameter, and the independent pixel space ID parameter were 170 

considered. The data preprocessing steps are described in Data S1. The data description 171 

is located at Data S2. 172 

3 Method 173 

A general machine learning model for multiple pollutants based on random ID, 174 

spatial adoption, parameter convolution, and other methods is used to improve the 175 

consideration of multiple factors in the prediction of changes in atmospheric pollutant 176 

concentrations and optimize estimates of the spatial distributions of pollutants (Figure 177 

2). We evaluate the model results using CV and visual qualitative analysis. LightGBM, 178 

LSTM, and RF-Ps are compared to our model to assess its performance. Finally, SHAP 179 

is used to try to interpret the output of the model. 180 
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 181 

Figure 2 Technical flow chart. The diagram at the upper left shows the data collection and RID 182 

creation process. The model at the upper right includes parametric convolution, spatial sampling, 183 

and the application of LightGBM. The data are transferred to the model, and the spatial 184 

distributions of atmospheric pollutants are obtained. Then, SHAP is used to analyze the model 185 

results and generate an API for secondary analysis. 186 

3.1 Multipollutant LightGBM model combining spatial sampling, random ID and 187 

parameter convolution 188 

LightGBM improves upon the gradient boosting decision tree (GBDT). 189 

LightGBM mainly implements gradient-based one-sided sampling (GOSS) and 190 

exclusive feature bundling (EFB). Compared with the GBDT model, LightGBM 191 

improves the calculation speed, ensures high accuracy and can better cope with large 192 
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amounts of data. At present, LightGBM has been applied in many fields. However, 193 

applications in atmospheric remote sensing are limited, and the potential for use in 194 

optimization is high. When developing LightGBM, we created new mechanisms for 195 

spatial sampling, parameter convolution, random ID, and the sequential simulation of 196 

multiple pollutants. 197 

3.1.1 Spatial sampling 198 

The spatial distribution of air pollutants is significantly affected by the locations 199 

and characteristics of monitoring sites and the surrounding environment, and many 200 

studies have considered the spatial correlations between different factors and air 201 

pollutants. We thoroughly explore the spatial information associated with remote 202 

sensing data and consider the elements near air pollutant monitoring sites. For a given 203 

pixel (𝑃(𝑥,𝑦)), the feature group of surrounding elements in a 3*3 neighborhood can be 204 

expressed as: 205 

[𝑃(𝑥𝑖,𝑦𝑖)] = {𝑃(𝑥−1,𝑦−1), 𝑃(𝑥−1,𝑦) … 𝑃(𝑥,𝑦+1), 𝑃(𝑥+1,𝑦+1)} (1) 

where [𝑃(𝑥𝑖,𝑦𝑖)] represents an array of 8 pixel values around a given pixel (𝑃(𝑥,𝑦)). 206 

3.1.2 Random ID 207 

Parameter randomization is a standard model optimization method in machine 208 

learning and is widely used in various studies. The random generation of data can 209 

mitigate overfitting in the training of machine learning models and simulations 210 

involving large amounts of data. In addition, simplifying spatial feature generation can 211 

reduce the cost of model construction. Therefore, we denote the positions of all pixels 212 

with independent ID, shuffle these ID with a random algorithm, and introduce random 213 

ID (RID) into a random forest model. The specific steps are as follows. 214 

1. Randomize the position parameters, scramble the position ID with a random 215 

algorithm, and assign a random ID to each pixel. 216 

2. Apply a 0-1 normalization algorithm to normalize the location parameters and 217 

random location ID. 218 

𝑅𝐼𝐷 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑑𝑜𝑚 𝐼𝐷) 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑥) =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (2) 

where 𝑟𝑎𝑛𝑑𝑜𝑚 is the randomization function, 𝑥𝑚𝑖𝑛 is the minimum value, and 𝑥𝑚𝑎𝑥 219 

is the maximum value. 220 

3.1.3 Parameter convolution 221 

The spatial distribution of air pollutants is affected by various factors, the 222 
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relationships among factors are complex, and the correlation coefficients among factors 223 

are low (Figure S3). In most cases, remote sensing factors do not fully reflect the many 224 

characteristics of atmospheric pollutants. To provide more features for model training, 225 

we implement random 1D convolution operations for various factors. The specific 226 

process is as follows: 227 

1. Normalize all features. 228 

2. Select a 1*3 convolution window. 229 

3. Set the number of features considered for the two convolution boosting parameters, 230 

where m1=64 and m2=16. 231 

4. Input random features into the convolution window. 232 

5. Initialize the random convolution kernel (LecunNormal) (Klambauer et al., 2017; 233 

Lecun et al., 2012). 234 

6. Apply the ‘same padding’ method to obtain a set of results. 235 

3.1.4 Sequential simulation of multiple pollutants 236 

PM2.5, SO2, and O3 interact with each other, and there is also a solid synergistic 237 

relationship between trends in space and time. To effectively predict the spatial 238 

distribution of multiple pollutants, it is necessary to introduce different pollutants into 239 

the prediction model. We set the sequential simulation prediction order as 240 

PM2.5>SO2>O3. 241 

3.2 Other models 242 

The LightGBM, LSTM, and RF-Ps models were used to independently simulate 243 

the spatial distributions of PM2.5, SO2, and O3. Only RF-Ps included an additional 244 

parameter, namely, Ps, and the other parameters remained the same. The details of the 245 

models are given in Table 1. 246 

Table 1 Details of the models 247 

Name Shared parameters PM2.5 SO2 O3 Special 

LightGBM Hum, Ws, Pr, Tem, Ele, 

SLOP, POP, NDVI, RL, 

LUCC, DOY, YEAR, 

WOND, PBLH, AOD550, 

AOD470, OMISO, 

OMIO3 

- 

PM2.5 

Predic

ted 

PM2.5 

Predicted

, SO2 

Predicted 

- 

LSTM - 

RF-Ps Ps 

 248 

3.3 CV and visualization assessment 249 

CV is divided into random CV and regular CV. Random CV is used to randomly 250 
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select 90% of the data for modeling and the rest for testing. This process was repeated 251 

ten times, and the average result was used. In regular CV, data from a specific time and 252 

space are used for testing, and the rest are used for training. The CV in this study were 253 

evaluated using the coefficient of determination (R2) and root mean square error 254 

(RMSE). 255 

Combined with atmospheric convection and regional transport theories, we 256 

qualitatively determined whether there were significant anomalies (patches and bands) 257 

in the visualization results. 258 

3.4 Model explanation 259 

SHapley Additive exPlanations (SHAP) is a game theory approach for calculating 260 

the importance of features in a model by comparing model estimates with and without 261 

features (Lundberg et al., 2020). A variety of parameter measurement methods can be 262 

used, and we selected the bee swarm approach to calculate the influence of each input 263 

parameter and each feature on the output (Lundberg et al., 2018). The main parameters 264 

that affect the model are identified, and the effect of each parameter on the simulation 265 

results is constrained (Zhong et al., 2021). 266 

4 Results and analysis 267 

4.1 CV results 268 

4.1.1 Total random sampling CV 269 

The sequential training and verification process of the models for multiple air 270 

pollutants includes training and verification using ground observation data and 271 

secondary training and verification using simulated data. Therefore, we illustrate the 272 

CV for these two steps in Figure 3. 273 

https://doi.org/10.5194/essd-2023-76
Preprint. Discussion started: 8 March 2023
c© Author(s) 2023. CC BY 4.0 License.



274 
11

  

https://doi.org/10.5194/essd-2023-76
Preprint. Discussion started: 8 March 2023
c© Author(s) 2023. CC BY 4.0 License.



12 

 

Figure 3. Model construction results considering various air pollutants and CVs of the spatial 275 

distributions of pollutants. (a) CV of PM2.5 in the model. (b) CV of SO2 model trained with PM2.5 276 

ground observation. (c) CV of O3 model trained with SO2 ground observation. (d) CV of SO2 277 

model trained with PM2.5 simulation. (e) CV of O3 model trained with SO2 simulation. In the 278 

figure, n represents the number of samples, and the color bar on the right represents the density of 279 

the samples. The black line represents the 1:1 reference. The red line represents the results of 280 

sample fitting. 281 

The estimation model of SO2 uses PM2.5 ground observation data, and the O3 282 

model uses PM2.5 and SO2 ground observation data. However, the lack of complete 283 

spatial information of air pollutants, this process cannot achieve further spatial 284 

modeling of multiple air pollutant products. Therefore, in the spatial distribution model, 285 

the predicted spatial air pollutants are used as the model inputs. For example, the 286 

estimation model of SO2 uses the simulated spatial distribution of PM2.5. Figure 3 shows 287 

that as the number of parameters increases, the R2 of PM2.5, SO2, and O3 increase 288 

sequentially. In addition, the estimates of the models based on simulation results are 289 

slightly lower than the site observations by approximately 1% (SO2 and O3). 290 
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Figure 4 Random site sampling verification results for PM2.5, SO2 and O3. The dots 292 

represent the spatial locations of the monitoring stations, and the colored column 293 

denotes the R2.294 

We randomly sampled one-tenth of the site data for CV (Figure 4). The R2 of PM2.5, 295 

SO2, and O3 varied between 0.82-0.94, 0.84-0.95, and 0.85-0.96, respectively. In 296 

addition, R2 were higher in regions with a dense station distribution and lower in regions 297 

with a sparse station distribution (such as western China). 298 

4.1.2 Regular sampling CV 299 

The North China Plain (113.6°E-118.8°E, 36°N-41.9°N), Yangtze River Delta 300 

(117°E -122.2°E, 29°EN-32.9°N), Pearl River Delta (110.4° E-115.3°E, 21.5°N, 301 

24.6°N), and Sichuan Basin (102.9°E-107.5°E, 28.8°N -32.2°N) were selected for CV 302 

analysis. The CV verifications of the PM2.5, SO2, and O3 simulation models in different 303 

regions were performed separately (Figure 5). 304 
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 305 

Figure 5. CV of PM2.5, SO2, and O3 in different regions. The simulation mode refers to using the 306 

simulation data as an input. a to d show the results of the four-region PM2.5 CV. e to h show the 307 

results of the SO2 CV in the four regions. i to l show the results of the O3 CV in the four regions. 308 

NCP, YRD, PRD, and SB denote the North China Plain, Yangtze River Delta, Pearl River Delta, 309 

and Sichuan Basin, respectively. 310 
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Figure 5 shows that satisfactory RMSE and R2 are obtained for the sampling results 311 

in the four regions. Notably, the R2 for PM2.5, SO2, and O3 sampling in the NCP and 312 

YRD regions are lower than those in the PRD and SB, and the RMSE are higher. The 313 

reason for these differences may be related to the amounts of training data and 314 

validation data used. However, the results verify the stability of the proposed model in 315 

regional validation (regular spatial sampling). 316 

Next, the data from each month and each year were sampled as validation samples, 317 

and the model was retrained. The corresponding CV statistics are shown in Figure 6. 318 

 319 

Figure 6. Annual and monthly CV of samples from 2015-2020. The upper part of the figure shows 320 

the mean of the resulting curve and CV for monthly sampling, and the lower part of the figures 321 

illustrates the bar plots and means for annual sampling. The three colors of the curves and 322 

columns denote PM2.5, SO2, and O3. 323 

In Figure 6, the R2 of the monthly sampling for PM2.5, SO2, and O3 is not as high 324 

as that for random sampling but is similar (0.78-0.83). The R2 for PM2.5, SO2, and O3 325 

based on monthly sampling are all higher than those for annual sampling (0.71-0.76); 326 

this result is related to the number of samples considered for training and validation. 327 

Regardless of whether the three pollutants were sampled monthly or annually, the 328 

average R2 displayed the following order: PM2.5<SO2<O3. Compared to random and 329 

regular spatial validation, regular temporal sampling validation was associated with 330 

lower R2, especially for CV at the annual scale. However, the model still displayed 331 

strong stability. 332 
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4.1.3 CV of LSTM, RF-Ps, and LightGBM 333 

Figure 7 shows the CV of random sampling for the LSTM, RF-Ps, and LightGBM 334 

models. 335 
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Figure 7 CV of the LSTM, RF-Ps, and LightGBM models. LSTM(a1)-LSTM(a3) illustrate the CV 337 

of PM2.5, SO2, and O3 simulations using the LSTM model, RF-Ps(b1)-RF-Ps(b3) show the CV of 338 

PM2.5, SO2, and O3 simulations using the RF-Ps model, and LightGBM(c1)-LightGBM(c3) 339 

illustrate the CV of PM2.5, SO2, and O3 simulations using the LightGBM model. 340 

In Figure 7, the CV of the LSTM and RF-Ps models are similar to those of the 341 

proposed model for PM2.5, SO2 and O3, with R2(PM2.5) < R2(SO2) < R2(O3). This result 342 

suggests that air pollutant output data can be input into different models to improve the 343 

predictions of other pollutants. However, the R2 and RMSE obtained for the LSTM and 344 

RF-Ps models are quite different from those of our model. Among the three models, the 345 

best CV are obtained for RF-Ps. However, our model still yields the highest R2 and 346 

RMSE. Notably, the R2 value of the proposed model is approximately 5% higher than 347 

that of the RF-Ps model. Additionally, the RMSEs of the proposed model are 2 µg/m3, 348 

2.3 µg/m3, and 4 µg/m3 lower than those of the RF-Ps model for PM2.5, SO2, and O3, 349 

respectively. The LightGBM model performs poorly based on both the R2 and RMSE, 350 

possibly due to the lack of auxiliary parameters and optimization. Comparatively, our 351 

model and the RF-Ps model use more auxiliary parameters than LightGBM, indicating 352 

that artificial auxiliary parameters enhance model training. Compared with the RF-Ps 353 

model, our model mainly improves the parameter convolution process and uses 354 

parameter convolution to further explore the relationships among features and 355 

parameters. Although the LSTM model does not perform as well as our model based 356 

on various verification parameters, it displays excellent development potential. 357 

In addition, we performed CV assessments of the random sampling approach after 358 

adding RID, Ps, and RID+Ps parameters to LightGBM (Figure S5). The results 359 

indicated that the RID increased the performance of LightGBM more so than did Ps 360 

and RID+Ps, suggesting that the RID are the most stable input parameters. 361 

We measured the time required to run the 4 models, as shown in Table 2 (for the 362 

PM2.5 case). 363 

Table 2 Time efficiency of the four models 364 

Name Time ratio R2 (PM2.5) GPU 

LightGBM 1 0.65 available 

RF-Ps 12.56 0.83 unavailable 

LSTM 7.5 0.74 available 

Ours 1.95 0.88 available 

 365 

In terms of efficiency, LightGBM runs the fastest, followed by our model, with 366 
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the LSTM and RF-Ps models required much more time to run. Among them, LightGBM, 367 

the LSTM model and our model all support GPU computing. However, RF-Ps is not 368 

yet supported on GPUs (Kim et al., 2021). In addition, we selected 16 models from the 369 

relevant literature to compare with our model based on CV, RMSE, and spatial 370 

resolution results, and the findings are presented in Table 3.371 
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 372 

4.2 Visual comparison of the spatial distribution of air pollutants 373 

We randomly sampled the spatial distributions of PM2.5, SO2, and O3 on January 374 

26, 2,015, and performed corresponding simulations with the LSTM, RF-Ps, and 375 

LightGBM models. 376 

 377 

Figure 8. Local comparison of different methods. a1, a2, a3, and a4 illustrate the PM2.5 results of 378 

our model, LSTM, RF-Ps, and LightGBM, respectively. b1, b2, b3, and b4 illustrate the SO2 379 

results of our model, LSTM, RF-Ps, and LightGBM, respectively. c1, c2, c3, and c4 illustrate the 380 

O3 results our model, LSTM, RF-Ps, and LightGBM, respectively. The red arrows indicate 381 

whether there is an abnormal spatial distribution in the local area. The red bars represent 382 

https://doi.org/10.5194/essd-2023-76
Preprint. Discussion started: 8 March 2023
c© Author(s) 2023. CC BY 4.0 License.



23 

 

atmospheric pollutant concentrations. 383 

The red arrows in Figure 8 indicate the anomalies observed in the simulation of 384 

pollutant distributions in local areas and bands. For the results in a1, b1 and c1, which 385 

were obtained with our model, few anomalies are present. Additionally, the 386 

visualization effect of LSTM is better than that of RF-Ps and LightGBM. 387 

4.3 SHAP results 388 

Figure 9 shows results of the SHAP approach with the bee swarm method, which 389 

was used to assess the impact of each sample and parameter on the model results. 390 

Moreover, SHAP was used to analyze the influence of parameter convolution on the 391 

model results (Figure 10). 392 
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Figure 9. SHAP bee swarm results. a, b, and c show the SHAP results for PM2.5, SO2, and O3, 394 

respectively. The color bar on the right represents the relative magnitude of the variable value, and 395 

the abscissa represents the SHAP value. 396 

 397 

Figure 10. Comparison of the SHAP values with and without applying parameter convolution. PM 398 

represents the main parameters used to simulate PM2.5, SO represents the main parameters used to 399 

simulate SO2, O3 represents the main parameters used to simulate O3, Param conv represents the 400 

use of parameter convolution, and None indicates the absence of parameter convolution.  401 
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Figure 9 shows the SHAP summary for the proposed model, and the ranking of 402 

features from top to bottom reflects the importance of each feature in the model. The 403 

results show that different variables have different effects on the simulation of PM2.5, 404 

SO2, and O3. We note that in our model, DOY and Year are crucial when constructing 405 

air pollutant models. Notably, DOY air pollutant simulations are comparatively random, 406 

and Year is negatively correlated with PM2.5 and SO2 and positively correlated with O3. 407 

The influence of the Year parameter on the model corresponds to the gradual 408 

improvement of the air pollution status in China in recent years. Meteorological 409 

parameters are also critical and relatively strongly related to the physical and chemical 410 

relationships among and spatial distribution of atmospheric pollutants. For example, 411 

the lower (higher) the temperature is, the higher (lower) the PM2.5 level; the lower 412 

(higher) the wind speed is, the higher (lower) the SO2 level; and the lower (lower) the 413 

humidity is, the higher (lower) the O3 level. In addition, pollutant parameters 414 

significantly affect the simulation of PM2.5, SO2, and O3. For example, AOD has a 415 

significant positive effect on the simulation of PM2.5, and PM2.5 displays a similar effect 416 

in SO2 simulations. Moreover, PM2.5, SO2, and OMISO simulation results all influence 417 

O3 prediction. 418 

In Figure 10, the SHAP value is the mean absolute value of the SHAP value of 419 

each sample, and the larger the value is, the stronger the contribution of the parameter 420 

to estimates of the concentrations of atmospheric pollutants. Notably, the convolution 421 

parameter significantly contributes to improvements in the predictions of atmospheric 422 

pollutants. 423 

4.4 Long-term spatial distribution characteristics of various air pollutants 424 

Figure 11 shows the average annual distributions of PM2.5, SO2, and O3 in China 425 

from 2015 to 2020 simulated with the proposed method.  426 
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 427 

Figure 11. Maps of the annual average spatial distributions of PM2.5, SO2, and O3 in China from 428 

2015 to 2020. a1-a6 show the annual average PM2.5 values from 2015-2020. b1-b6 show the 429 

annual average SO2 values from 2015-2020. c1-c6 illustrate the annual average O3 values from 430 

2015-2020. The bar at the bottom gives the concentrations of pollutants in the study area. 431 

The high-risk areas of PM2.5 and SO2 are mainly located in the northern and 432 

northwestern parts of China. Although ozone is also high in these two regions, there are 433 

two high-value areas in northern and northwestern China and on the Qinghai-Tibet 434 
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Plateau. The findings of Gao et al. (Gao et al., 2020; Zhong et al., 2021; Zhang et al., 435 

2019), PM2.5, SO2 and O3 further confirm the reliability of our results. 436 

4.6 Impact of COVID-19 on air pollution in China in 2019 and 2020 437 

Changes in air pollution before and after the COVID-19 pandemic can be 438 

effectively assessed using the API. Based on the calculation method reported in the 439 

National Environmental Protection Standard of the People's Republic of China - 440 

Ambient Air Quality Index (AQI), we calculated the daily API values of PM2.5, SO2, 441 

and O3 in 2019 and 2020. Figure 12 shows the average annual spatial distribution of the 442 

API in 2019 and 2020. If the API exceeds 100, it means that the day has exceeded the 443 

secondary standard of ambient air pollution concentration limit. Figure 13 shows the 444 

number of days on which the API exceeded 100.445 

 446 

 447 

Figure 12. Spatial distribution of API in China in 2019 and 2020. a shows the results for the 448 

Xinjiang region of China, with an API of 77.4 in 2019 and 75 in 2020. b shows the results for 449 

Hubei, China. Wuhan was on lockdown for the first time due to COVID-19 from January 23 to 450 

April 8, 2020. The API was 73 in 2019 and 66 in 2020. c shows the results for the Jilin region in 451 

Northeast China, with an API of 61.5 in 2019 and 63 in 2020. The color bar on the right shows the 452 

magnitude of the API values. 453 
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 454 

Figure 13. Spatial distribution of the number of days with API values over 100 in China in 2019 455 

and 2020. In the white regions, the API was less than 100 each day during the study period. The 456 

maximum number of days with API values exceeding 100 in China was 239 in 2019 and 177 in 457 

2020.458 

The results in Figure 12 and 13 are consistent with the trend of decreasing 459 

concentrations of major air pollutants in China. The API in China in 2019 and 2020 460 

displayed a downward trend, decreasing from 68.8 in 2019 to 66.4 in 2020. The 461 

percentage of areas with API values greater than 100 decreased from 85.2% in 2019 to 462 

75.6% in 2020. The number of days with an API over 100 also decreased from 239 to 463 

177 days. The influence of the main pollutant PM2.5 gradually decreased, and the range 464 

of influence of O3 increased. In addition, the API in central China declined in 2020, the 465 

API in the northwest nonsignificantly decreased, and the API in the northeast increased 466 

(Wen et al., 2020). 467 

In the obtained histogram and the API results (Figure S6), both the maximum value 468 

and the average value of the API decreased from 2019 to 2020, but the API values 469 

generally remained high. Since 2015, PM2.5 and SO2 have displayed significant 470 

downward trends, but the downward trend of O3 is not apparent (Figure 9 and Figure 471 

10). As shown in Figures 11-13, the epidemic in 2020 had a significant impact on air 472 

pollution in local areas (such as Wuhan and Hubei). However, the impact on the entire 473 

region of China is not particularly obvious. Due to the closure of Wuhan and other 474 

effective control measures in the early stage of the epidemic, the restriction of human 475 

activities significantly reduced air pollution in some areas in 2020. However, these 476 

measures in specific cities did not influence trends in the rest of China. In the second 477 

half of 2020, with the global spread of the epidemic, the industrial chains in other parts 478 

of the world were severely impacted, which in turn led to an increase in the industrial 479 

production capacity in areas of China not affected by the epidemic, thus increasing the 480 

emission of air pollutants to a certain extent. Local lockdowns associated with epidemic 481 

led to the return of urban workers to their hometowns, increased straw burning (remote 482 

https://doi.org/10.5194/essd-2023-76
Preprint. Discussion started: 8 March 2023
c© Author(s) 2023. CC BY 4.0 License.



30 

 

sensing observations suggest that the number of fires in 2020 increased by 20% over 483 

the number in 2019) (Meeprc, 2020, 2021), increased domestic heating and other 484 

phenomena that have exacerbated air pollution in Northeast China and other regions. 485 

Still, under the governance of policies such as the "Battle of Blue Sky and White 486 

Clouds", the air pollution conditions in China have generally improved since 2020. 487 

 488 

5 Discussion 489 

In-depth explorations of the spatial and temporal distributions of air pollutants will 490 

help enhance the understanding of the relationship among regional ecological security, 491 

population health, and air pollutants. Machine learning models can be used to 492 

effectively predict the spatial distributions of atmospheric pollutants. In this study, 493 

random ID, spatial sampling, parameter convolution, and the sequential simulation of 494 

various air pollutants are used to further optimize the accuracy of the proposed machine 495 

learning model to simulate the spatial distributions of air pollutants. 496 

5.1 Model overview 497 

This study introduces a variety of optimization rules based on LightGBM, ground 498 

air pollutant observations, and remote sensing, meteorological, and auxiliary data. 499 

Following sequential model training, gap-free PM2.5, SO2, and O3 products were 500 

obtained at a 1 km daily resolution near the ground in China. Good results were 501 

achieved for PM2.5 (R
2=0.88, RMSE=9.91 µg/m3), SO2 (R

2=0.89, RMSE=4.62 µg/m3), 502 

and O3 (R
2=0.91, RMSE=6.88 µg/m3). Additionally, the optimization processes applied 503 

did not seriously hinder the efficiency of the model. 504 

5.2 The efficacy of the model 505 

Simulations of the spatial distributions of air pollutants require remote sensing 506 

data. The accuracy and resolution of remote sensing data largely influence the CV and 507 

visualization of atmospheric pollutant results (Colmer et al., 2020). Due to the limited 508 

variety and quantity of remote sensing products, it is important to construct new 509 

parameters and effectively use known parameters. Notably, the use of the Ps parameter 510 

can improve the CV of models, such as RF-Ps and LightGBM+ Ps. However, the Ps 511 

parameter does not enhance the visualization of results. Alternatively, RID can enhance 512 

the CV process and visualization of results, mainly  because each pixel is associated 513 

with an independent ID. The independent ID can be used to optimize the impact of low-514 

resolution remote sensing products on the model and then mitigate the patch or banding 515 

phenomenon. Spatial sampling and parameter convolution are two ways to effectively 516 

utilize existing parameters. Spatial sampling can provide valuable spatial domain 517 
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information for each parameter, and parameter convolution can combine features 518 

associated with different parameters. The results show that under the premise of 519 

enhancing CV, the stability and generalization ability of the model can be further 520 

improved with RID and random sampling, and patch and banding phenomena are 521 

avoided. 522 

Based on the SHAP approach, the influence of different parameters on a model 523 

can be clearly expressed, and the positive or negative effect of a given sample or 524 

parameter can be visualized. Many physical variables (such as TEM for O3, PM2.5 for 525 

SO2, and AOD for PM2.5) have significant effects on air pollutant levels (positive or 526 

negative), and nonphysical variables such as DOY exhibit certain positive or negative 527 

correlations with air pollutant levels. Although the impact on air pollutants is significant 528 

in most cases, the correlation is not consistently positive or negative. This is mainly 529 

because nonphysical variables are related to anthropogenic activities and are much 530 

more random than physical variables. These factors should be considered in further 531 

assessments of air pollution based on machine learning simulations.  532 

In addition, the SHAP approach was used to assess the role of parameter 533 

convolution in the proposed model. Parameter convolution can be employed to 534 

efficiently use existing data and improve the modeling of atmospheric pollutants by 535 

considering different parameters. 536 

The selection of parameters in machine learning models should be performed with 537 

caution, and blind selection may degrade the overall performance of the model (Figure 538 

S4). There are obvious correlations among air pollutants, and understanding these 539 

relations can enhance the construction and application of air pollutant models. 540 

Specifically, one way to improve the simulation of trace gases near the surface is to 541 

fully utilize PM2.5 simulation results. In this study, with the addition of atmospheric 542 

pollutant parameters, the CV of the SO2 and O3 models were enhanced. However, the 543 

repeated use of simulated atmospheric pollutants increases uncertainty to some extent. 544 

Therefore, the proposed model was only used to simulate three air pollutants. In the 545 

future, we will conduct in-depth research to quantify and resolve the uncertainties in 546 

atmospheric pollutant simulations and then simulate additional major atmospheric 547 

pollutants. 548 

In addition to changes involving the data used, a more powerful deep learning 549 

model should be developed in the future. However, first, the fitting effect of LSTM 550 

must be improved in the context of this study, although the CV results were better than 551 

those of LightGBM. Shwartz et al. and Grinsztajn et al. (Grinsztajn et al., 2022; 552 
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Shwartz-Ziv and Armon, 2022) noted that in the processing of tabular data, most 553 

models are inferior to machine learning models, which is one of the reasons why the 554 

performance of the LSTM model is not ideal in this study. However, simulations of the 555 

spatial distributions of atmospheric pollutants are limited to tabular data supported by 556 

remote sensing products and other graphical data. We have shown that spatial sampling 557 

and parametric convolution are effective steps when using these types of data, and both 558 

of these steps are closely related to convolutional methods in deep learning. Moreover, 559 

the characteristics of input data should be considered when new parameters are selected, 560 

and blind selection should be avoided. In the future, we will combine time series and 561 

graphical neural networks to further explore the spatial distribution of air pollution. 562 

5.3. Limitations and prospects 563 

1) The TROPOMI mounted on the Sentinel-5P satellite can obtain SO2 and O3 data 564 

at a higher spatial resolution than that provided by the OMI. Unfortunately, these data 565 

were last provided in 2018. We believe that using more recent data in subsequent 566 

research as they become available will further improve the accuracy of simulations of 567 

atmospheric pollutants such as SO2 and O3. 568 

2) The limited accuracy of regular CV at the annual scale may limit predictions of 569 

the spatial distributions of air pollutants in the past or the future. Therefore, further 570 

improving the accuracy of annual and long-term atmospheric pollutant simulations will 571 

be a focus of our research. 572 

3) The critical indicator used in PM2.5 simulations is AOD, and the temporal 573 

resolution of AOD data obtained with geostationary satellites is less than one hour. 574 

Therefore, the spatial distribution of PM2.5 simulations can be obtained at the hourly 575 

scale. However, the OMI or TROPOMI cannot achieve this resolution. The sequential 576 

simulation of atmospheric pollutants can provide similar inputs to obtain predictions of 577 

the levels of other atmospheric pollutants. Therefore, it is important to reduce the 578 

uncertainty associated with the sequential simulation of air pollutants, improve the 579 

spatial distributions of major air pollutants such as PM10, NO2, and CO, and effectively 580 

estimate the spatial distribution of the AQI. In the future, we will publish our products 581 

and codes at (https://github.com/pingyinforbidden/china_air_pollutions). 582 

6 Data availability:  583 

Spatial distribution of various air pollutants in China at 1 km in this manuscript 584 

can be accessed at repository under data dois: 585 

Table 4 Data DOIs 586 

Name DOI Citation 
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PM2.5 
https://doi.org/10.5281/zenodo.7533813 (Chi et al. 2023a) 

https://doi.org/10.5281/zenodo.7547774 (Chi et al. 2023b) 

SO2 
https://doi.org/10.5281/zenodo.7312179 (Chi et al. 2023c) 

https://doi.org/10.5281/zenodo.7580714 (Chi et al. 2023d) 

O3 
https://doi.org/10.5281/zenodo.7580720 (Chi et al. 2023e) 

https://doi.org/10.5281/zenodo.7580726 (Chi et al. 2023f) 

 587 

7 Conclusion 588 

We introduced RID based on multisource heterogeneous data. The spatial 589 

sampling method and parameter convolution function were applied to improve the 590 

performance of LightGBM. Using the above approach combined with 591 

sequentialsimulation, daily gap-free PM2.5, SO2, and O3 products were obtained with a 592 

spatial resolution of 1 km in most areas of China from 2015 to 2020. Based on random 593 

sampling CV for the proposed model, we obtained an R2 of 0.88 and an RMSE of 9.91 594 

µg/m3 for PM2.5, an R2 of 0.89 and an RMSE of 4.62 µg/m3 for SO2, and an R2 of 0.91 595 

and an RMSE of 6.88 µg/m3 for O3. In addition, we demonstrated the stability and 596 

excellent generalization ability of our model by utilizing random sampling site 597 

validation, rule validation, and side-by-side comparison. We obtained 1 km of daily 598 

simulated products for PM2.5, SO2 and O3. In the visualization validation, it was 599 

confirmed that our model reduced the insufficient visualization of patches and bands, 600 

even when simulating the spatial distribution of multiple pollutants in the large-scale 601 

study area. We also introduced the SHAP method to quantitively verify the optimization 602 

effect of parameter convolution in the model and assess effects of different parameters 603 

on the simulated spatial distributions of atmospheric pollutants. The results indicated 604 

that LightGBM with RID, spatial sampling, parameter convolution and sequential 605 

simulation was able to effectively and stably simulate the spatial distributions of various 606 

atmospheric pollutants. Finally, we used the simulated air pollutant data to regenerate 607 

the spatial distribution of the API and assess the corresponding trends in most regions 608 

of China in 2019 and 2020. The method proposed in this paper is of great significance 609 

for comprehensive high-resolution, large-area simulation research involving the spatial 610 

distributions of various atmospheric pollutants. 611 
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