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Abstract. As the vegetation in the Arctic changes, tundra ecosystems along the southern border of the Arctic
are becoming greener and gradually giving way to boreal ecosystems. This change is affecting local populations,
wildlife, energy exchange processes between environmental compartments, and the carbon cycle. To understand
the progression and the implications of this change in vegetation, satellite measurements and surface models
can be employed. However, in situ observational data are required to validate these measurements and models.
This paper presents observational data from two nearby sites in the forest–tundra ecotone in the Tasiapik Valley
near Umiujaq in Northern Quebec, Canada. One site is on a mixture of lichen and shrub tundra. The associated
data set comprises 9 years of meteorological, soil and snow data as well as 3 years of eddy covariance data. The
other site, 850 m away, features vegetation consisting mostly of tall shrubs and black spruce. For that location,
6 years of meteorological, soil and snow data are available. In addition to the data from the automated stations,
profiles for snow density and specific surface area were collected during field campaigns. The data are available
at https://doi.org/10.1594/PANGAEA.964743 (Domine et al., 2024).

1 Introduction

The forest–tundra ecotone (FTE) marks a transition zone
where the open-canopy forest of the boreal biome merges
with the treeless Arctic tundra biome. According to
Callaghan et al. (2002), the FTE spans more than 13 400 km5

across the northern parts of North America, Asia and Europe,
with a width of up to several hundred kilometers. This makes
it the world’s largest vegetation transition zone. A trend to-
wards increased vegetation has been observed in the FTE.
In fact, the above-ground biomass is on the rise for all Arc-10

tic environments (Meredith et al., 2019). Future projections

indicate that the areal extent of tundra vegetation will de-
crease by at least 50 % by 2050 (Pearson et al., 2013), while
woody shrubs and trees will expand to 24 %–52 % of the
current tundra region, or 12 %–33 % if tree dispersal is re- 15

stricted (Meredith et al., 2019). This change will have ma-
jor repercussions, such as large reductions in the soil car-
bon content due to more frequent wildfires (Mack et al.,
2011) and widespread permafrost degradation occurring at
increased rates compared to when only the changing envi- 20

ronmental conditions are considered (Jones, 2015).
To understand, quantify and project changes in the FTE,

satellite monitoring and surface modeling are essential. How-
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ever, both require in situ measurements. Although satellites
cover large parts of Earth’s surface and are able to estimate
a variety of surface-related variables (e.g., surface temper-
ature, Qu et al., 2019, turbulent heat fluxes, Jiménez et al.,
2017, and vegetation cover, Guo et al., 2020), most must be5

calibrated and/or validated using point measurements (e.g.,
Boisvert et al., 2015; Riihelä et al., 2017; Martin et al., 2019).
Surface schemes for climate models also require validation
using in situ data (Krinner et al., 2018). Despite this need for
data, few stations in Arctic regions are equipped to measure10

large sets of variables over long periods of time.
The Tasiapik Valley in Northern Quebec, Canada, is lo-

cated within the FTE (Latifovic et al., 2017). This is an ideal
location for conducting research because the lower valley is
covered in open boreal forest, while the upper valley consists15

of shrub and lichen tundra. Arctic and boreal biomes, as well
as mixtures of both, are therefore present in close proxim-
ity to each other. Meteorological, snow and soil data were
collected starting in September 2012, and annual field sur-
veys were conducted to study snow and soil characteristics20

(Domine et al., 2015). Turbulent heat fluxes were measured
between 2017 and 2020 using the eddy covariance technique.

Detailed annual snow pit data are extremely valuable,
as studies have shown that current snow models struggle
to accurately simulate vertical profiles of density and ther-25

mal conductivity (Domine et al., 2016; Barrere et al., 2017;
Gouttevin et al., 2018; Royer et al., 2021; Lackner et al.,
2022aTS2 ). Although new models are being developed to ac-
count for this deficiency (Jafari et al., 2020; Simson et al.,
2021), critical validation data for snow density profiles re-30

main very rare in the Arctic. In this paper, we present infor-
mation on two research sites while fully documenting all the
available data and providing a detailed analysis of the soil
properties at the sites. We provide a comprehensive data set
with meteorological, snow, soil and turbulent flux data from35

2012 to 2021.

2 Site description

The study site is located in the Tasiapik Valley (Fig. 1) close
to the village of Umiujaq, Quebec, Canada (56.55861° N,
76.48222° W). The valley forms a small catchment40

4.5 kmCE1 long and 1.3 km wide and borders Lake Tasiu-
jaq at an elevation of 0 m. The climate is subarctic with a
mean annual temperature of − 4.0 °C. No long-term pre-
cipitation records exist, but our recent data indicate a rather
high mean annual precipitation compared to typical subarc-45

tic climates, at between 800 and 1000 mm. Around 50 % of
the precipitation occurs as snow. There is usually continuous
snow cover from late October to early June. Hudson Bay to
the west of the valley (4 km distance) strongly influences the
weather pattern. There is frequent fog throughout the year50

(Robichaud and Mullock, 2001). Advection fog often forms
in July and August when warmer air moves over the cold

Hudson Bay. The precipitation pattern is influenced by the
extent of the ice cover in Hudson Bay. After freeze-up, the
precipitation rate drops and remains rather low until spring. 55

Precipitation then increases in summer and peaks in late sum-
mer and fall. The heat storage of Hudson Bay in summer and
the subsequent release in fall also affect air temperatures, re-
sulting in relatively cold summer temperatures and warmer
fall temperatures. 60

In the Tasiapik Valley, vegetation is fairly spatially het-
erogeneous. In the upper valley, a mixture of lichen (Clado-
nia sp., mostly C. stellaris and C. rangiferina), shrubs with
dwarf birch (Betula glandulosa) and other shrub species
(Vaccinium sp., Alnus viridis subsp. crispa and Salix sp. in- 65

cluding S. planifolia) with heights between 0.2 and 2 m dom-
inate. Live lichens are present not only on lichen tundra, but
also in the understory of birches less than 80 cm tall. Live
lichen can form layers 5 to 20 cm thick over a 2 to 4 cm layer
of dead lichen, progressively transitioning to a thin organic 70

litter layer (Gagnon et al., 2019). The litter layer is only about
2 cm thick under lichen tundra and up to 5 cm thick under
80 cm tall birch. Taller birches such as those found in water
tracks have a mossy understory with a 10 cm thick organic
layer (Gagnon et al., 2019). Towards the bottom of the valley, 75

vegetation turns into forest–tundra with black spruce (Picea
mariana) covering about 20 % of the surface. Below the open
canopy, numerous birches are present. In areas not covered
by woody vegetation, a variety of grasses and mosses cover
the surface. 80

There is discontinuous to sporadic permafrost in the valley
(Lemieux et al., 2020), as witnessed by the presence of per-
mafrost mounds (lithalsas). At the exact location of the ex-
perimental setup, no permafrost was present. However, lithal-
sas were found within 30 m of the upper-valley site. The soil 85

composition is detailed in Sect. 7.
On 28 September 2012, a comprehensive meteorological

station called TUNDRA (56.55877° N, 76.48234° W; eleva-
tion 132 m) was deployed (Fig. 1). Instruments were placed
on a tripod. On 15 February 2013, snow temperature and 90

thermal conductivity sensors were installed on a vertical
post a few meters from the tripod in dwarf birch 30 cm
tall (Domine et al., 2015). The heights and number of in-
struments were modified on 19 September 2015, while soil
temperature and humidity sensors were installed. One set of 95

soil instruments was located under lichen and one under low
birch near the post holding the snow sensors.

The FOREST station (56.55308° N, 76.47258° W; eleva-
tion 82 m) was set up on 21 September 2015 with the same
instruments as those at the TUNDRA station. A fast-response 100

gas analyzer with a sonic anemometer (model IRGASON,
Campbell Scientific, USA) was mounted at a 10 m tower
about 15 m north of the TUNDRA station on 10 June 2017
and was operational until 30 April 2020. A second post with
temperature and thermal conductivity sensors was installed 105

on 20 September 2018 on lichen with no shrubs, about 15 m
northwest of the tripod at TUNDRA. Multiple Reconyx time
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Figure 1. (a) Location of the two sites in the Tasiapik Valley. (b)
Location of the valley along the eastern shore of Hudson Bay in
Northern Quebec. (c) Photo of the instrumentation at TUNDRA.
Most of the instruments are on the tripod. The precipitation gauge
is visible on the left. IRGASON and instruments used for data gap-
filling are on the 10 m tower. (d) The instrumentation at FOREST.
Source (a and b): ESRI.

lapse cameras took several pictures per day and were in-
stalled in order to monitor the instrumentation and their sur-
roundings. A complete list of all the instruments deployed
at TUNDRA and FOREST, as well as when each instrument
was installed and at what precise position, is provided in Ta-5

bles 1 and 2, respectively. The data obtained are available in
Domine et al. (2024). All the times are in UTC.

3 Climate data

3.1 Air temperature, humidity, atmospheric pressure
and wind speed10

3.2 TUNDRA

Air temperature and relative humidity (RH) were measured
at TUNDRA with a HC2-S3-XT sensor installed at a height
of 2.3 m. No large data gaps were present. Small data gaps
were filled using information from a similar sensor mounted15

close by on the 10 m tower (see Fig. 1c). As the RH measure-
ments never reached ice saturation in winter, we corrected the
raw values using linear equations based on air temperature in
order to reach ice saturation. The method has been detailed
in Domine et al. (2021).20

From June 2017, measurements of specific humidity (SH)
were collected with an IRGASON infrared gas analyzer.
However, this instrument is susceptible to measurement er-

rors caused by rain, snow, dew or any other particle within
the pathway of the gas analyzer. Complications with the IR- 25

GASON analyzer are detailed in Sect. 5. Gaps in the SH time
series were filled using converted RH measurements. The at-
mospheric pressure for SH was measured from June 2017
onward with the IRGASON analyzer. Before that date and
after dismantling the instrument in April 2020, ERA5 data 30

were used. ERA5 is a reanalysis product (Hersbach et al.,
2020) from the European Centre for Medium-Range Weather
Forecasts, which provides hourly estimates for various me-
teorological and soil variables starting from 1959, at a spa-
tial resolution of 30 km (https://www.ecmwf.int/en/forecasts/ 35

datasets/reanalysis-datasets/era5, last access: TS5 ). However,
as the ERA5 data do not correspond to the same elevation,
we corrected for an ≈ 10 hPa offset between the ERA5 data
and the observations that was detected for times when both
sets of data were available. Except for two long power out- 40

ages (see Sect. 5), there were no other significant gaps in the
time series for pressure. The gaps from the power outages
were filled using the corrected ERA5 data.

Wind speed data were collected with a cup anemome-
ter at a height of 2.3 m at TUNDRA. In winter, the instru- 45

ment was sometimes stalled due to frost under stable, low-
wind conditions. To fill those gaps, we used data from a
Young anemometer affixed at a height of 10 m on the nearby
tower (CEN, 1997–2020) and visible in Fig. 1c. At times,
the Young anemometer became covered in ice at the same 50

time as the cup anemometer. During those times, we used
the data from the FOREST station, where the instrument was
installed at the same height as at TUNDRA. During one pe-
riod in January 2021, all available instruments in the val-
ley were stalled. We therefore used an instrument from the 55

UMIROCA station (CEN, 1997–2020), a station located on
the shore of Hudson Bay. All data used to fill the gaps were
corrected using a linear regression. This was done to account
for different installation heights and environments (vegeta-
tion, elevations, topography). Figure 2 shows the time series 60

of the variables mentioned above.

3.2.1 FOREST

At the FOREST site, air temperature and wind speed were
recorded with the same instruments as at TUNDRA (see
Fig. 3). The temperature time series had no large gaps (>3 h), 65

and small gaps (≤ 3 h) were filled by interpolation. We used
values from TUNDRA to gap-fill data for FOREST when
the cup anemometer was ice-covered in winter and applied
a linear regression to adjust wind speeds. There was also an
RH sensor at FOREST, but due to malfunctions, the recorded 70

data could not be used.
Compared to TUNDRA, temperatures at FOREST were

slightly higher throughout the year, except in November and
December. From January 2016 to December 2020, the mean
difference was≈ 1 °C. Since the surface roughness is greater 75

at FOREST than at TUNDRA, wind speeds were lower for

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Table 1. Instrumentation at the TUNDRA study site.CE2

Variable Instrument Manufacturer Height/depth Years available Comment

Air temperature
and humidity

HC2-S3-XT sensor, in-
side white PVC tubing,
ventilated

Rotronic 2.3 m 2012–2021

Atmospheric
pressure

IRGASON Campbell
Scientific

4.2 m 2017–2020 Before 2017 and after 2020 corrected
ERA5 data

Wind speed A100 cup anemometer Vector
instruments

2.3 m 2012–2021

Radiation CNR4 with CNF4
heater/ventilator

Kipp & Zonen 2.3 m 2012–2021

Precipitation T-200 BM Geonor 2.3 m 2016–2021 Data before 2016 from uncorrected
ERA5

Snow depth SR50 acoustic gauge Campbell
Scientific

2012–2021

Snow temperature Pt1000 thermistor Hukseflux 4, 14, 34, 44 cm February 2013–
May 2015TS4

Near TUNDRA (SNOW1)

Snow temperature Pt1000 thermistor Hukseflux 4, 14, 29, 44,
64 cm

October 2015–2021 Near TUNDRA (SNOW1)

Snow thermal con-
ductivity

TP08 Hukseflux 4, 14, 34, 44 cm February 2013–
May 2015

Near TUNDRA (SNOW1)

Snow thermal con-
ductivity

TP08 Hukseflux 4, 14, 29, 44, 64 cm October 2015–2021 Near TUNDRA (SNOW1)

Snow thermal con-
ductivity

TP08 Hukseflux 7, 27, 47, 67 cm 2018–2020 Near TUNDRA (SNOW2)

Soil temperature
and volumetric
water content

Decagon 5TM Decagon (now
METER)

−6, −12, −21,
−32, −50 cm

2015–2021 Near TUNDRA under lichen

Soil temperature
and volumetric
water content

Decagon 5TM Decagon
(now METER)

−9, −15, −27,
−39, −50 cm

2015−2021 Near TUNDRA under shrubs

Scenery Time lapse camera Reconyx 1.5 m 2015–2021 Multiple cameras pointing in different
directions

Table 2. Instrumentation at the FOREST study site.CE3

Variable Instrument Manufacturer Height/depth Years available Comment

Air temperature
and humidity

HC2-S3-XT sensor, in-
side white PVC tubing,
ventilated

Rotronic 2.3 m 2015–2021

Wind speed Cup anemometer Vector instruments 2.3 m 2015–2021

Radiation CNR4 with CNF4
heater/ventilator

Kipp & Zonen 2.3 m 2015–2021

Snow depth SR50 acoustic
gauge

Campbell
Scientific

2015–2021

Snow
temperature

Pt1000 Hukseflux 4, 14, 29, 64 cm 2015–2021 Near FOREST
(SNOW3)

Snow thermal
conductivity

TP08 Hukseflux 4, 14, 29, 64 cm 2015–2021 Near FOREST
(SNOW3)

Soil temperature
and volumetric
water content

Decagon 5TM Decagon (now ME-
TER)

−5, −10, −20, −30,
−50 cm

2015–2021 Near FOREST
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Figure 2. Time series of hourly air temperature, relative humidity, wind speed and atmospheric pressure at TUNDRA. The red section of the
atmospheric pressure curve represents local observations, while the grey sections represent corrected ERA5 reanalysis data.

specific heights. Indeed, the mean wind speed from Jan-
uary 2016 to December 2020 was about ≈ 1 m s−1 lower at
FOREST than at TUNDRA.

3.3 Radiation

3.3.1 TUNDRA5

The surface radiation terms were measured using a four-
component radiometer (model CNR4, Kipp & Zonen, the
Netherlands) mounted at 2.3 m a.g.l.TS6 The radiometer was
equipped with a CNF4 heating and ventilation unit (Kipp &
Zonen, the Netherlands), which mostly prevented snow accu-10

mulation and the build-up of frost and dew on the measuring
lenses. Frost was however occasionally observed to partially
cover the lenses during winter field trips. The CNF4 was pro-
grammed to be active for 5 min every hourTS7 , just before
radiation measurements were collected.15

From 10 October 2018 to 27 September 2020, no tempera-
tures were recorded in the CNR4, which was otherwise used
to correct the longwave radiation. During this period, we esti-
mated CNR4 temperatures using a gradient boosting regres-
sor from scikit-learn (Pedregosa et al., 2011) with the follow-20

ing input variables: air temperature, radiation, humidity and
wind speed. We trained the decision tree using data from pe-
riods when the CNR4 temperatures were recorded and found
good agreement between the observed and estimated values.
Using the estimated temperatures, we calculated the long-25

wave (LW) radiation using

LW=
(

5.67× 10−8
) V
C
T 4, (1)

where V is the measured output voltage, C is the calibration
constant and T is the temperature of the instrument in Kelvin.

In October 2018, the entire CNR4 unit was replaced and 30

recalibrated. As the calibration constants had changed since
installation, we applied a correction to account for the drift.
We assumed that the calibration constants varied linearly
over time between both calibrations. Between October 2018
and September 2021, no recalibration took place. We there- 35

fore used the constants of the instrument deployed in Octo-
ber 2018 without time variations.

Small, mostly negative values were observed at night for
upwelling and downwelling shortwave radiation, although
both these values are typically expected to be zero. To com- 40

pensate for this discrepancy, we calculated the mean offset
for both components and subtracted them from the respec-
tive upwelling and downwelling radiation.

Despite the CNF4 heating unit, the accumulation of frost
and snow sometimes interfered with the incident radiation 45

measurements (longwave and shortwave). The exact periods
when the CNR4 sensors were impacted by frost and snow
could only be determined visually. Since a detailed visual
inspection could only be performed at the site, we applied
several quality control criteria to the downwelling radiation 50

(both longwave and shortwave) to exclude the affected peri-
ods. Therefore, all the values at times when the wind speed
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Figure 3. Time series of hourly air temperature and wind speed at FOREST.

was <0.5 m s−1 or the uncorrected longwave downwelling
radiation was >− 5 W m−2 were discarded if the air tem-
perature was <0 °C. Subsequently, gaps of up to 3 h were
interpolated, while longer gaps were filled using corrected
ERA5 data. The correlation between ERA5 data and obser-5

vations was established using the remaining data that passed
our quality control measures. The 9-year time series for the
four radiation components at TUNDRA are shown in Fig. 4.

3.3.2 FOREST

The FOREST station setup was similar to that at TUNDRA,10

with a CNR4 radiometer at a height of 2.3 m combined with
a CNF4 heating and ventilation unit. The CNR4 at FOREST
was recalibrated in October 2021. The raw values were cor-
rected for the drift of the calibration constants. No power
outages or instrumental failures occurred at this site, and the15

complete time series from 28 September 2015 is shown in
Fig. 5. Frost buildup on the sensors was detected as described
for the TUNDRA CNR4. Affected values were replaced with
corrected ERA5 values.

At FOREST, we also observed small, non-zero values at20

night for the shortwave radiation. To account for these off-
sets, we applied the same procedure as for TUNDRA. The
same problems with frost and snow build-up were observed
at FOREST. We applied the same criteria as for TUNDRA.

Small differences became apparent when we compared25

the radiation observations at both sites. The downwelling
shortwave radiation was smaller at FOREST, which can
be attributed to greater topographic shading by the cues-
tas, as FOREST is at a lower elevation than TUNDRA.
Between January 2016 and December 2020, the mean dif-30

ference was 4.15 W m−2. For the longwave radiation, there
was very little difference in summer, but a small deviation
was detected in winter when the longwave downwelling ra-
diation was slightly higher at FOREST. This might be an
effect of the higher vegetation levels at FOREST. Radia-35

tion from the steep cliffs surrounding the valley may also

contribute to the longwave downwelling radiation. How-
ever, for the same 4-year period, the difference was only
1.5 W m−2. Differences in upwelling radiation were slightly
higher (TUNDRA–FOREST: 4.6 W m−2 for shortwave radi- 40

ation and −2.15 W m−2 for longwave radiation). However,
these values heavily depend on the radiative and thermal
properties of the surface and soil as well as on the duration
of the snow-free period.

3.4 Precipitation 45

In May 2016, a T200B precipitation gauge (Geonor, USA)
equipped with a single alter shield was installed to measure
solid and liquid precipitation close to the TUNDRA station.
The gauge recorded hourly cumulative precipitation (PRtot;
kg m−2 h−1, equivalent to mm h−1). The standard deviation 50

(σi) of each hourly measurement was also recorded. The
gauge has an inlet with a diameter of 16 cm, and the rain or
snow is collected in a cylinder with a capacity of 1000 mm.
An anti-freeze agent was added in the cylinder to melt snow
and keep the stored water from freezing. The use of an anti- 55

freeze agent is preferable to a heating system, as heat in-
creases water loss due to evaporation, particularly in summer.
Evaporation is further reduced by adding a thin layer of oil
to the water surface. Three vibrating wire load sensors weigh
the entire cylinder and provide three independent measures 60

for mass. First, the raw cumulative values from the three vi-
brating wire load sensors were transformed into hourly mass
variations. Occasional erratic fluctuations occurred, induced
by perturbations of the wire load sensors by the wind and
other factors. Data that were obviously inconsistent given the 65

latitude, e.g., those beyond 30 mm h−1, were eliminated, and
the three independent precipitation rates (PRi with i = 1, 2,
3) were combined using a weighted mean. Each hour, the
wire load sensor with the highest standard deviation (σi) was
removed and the weighted mean was computed using the re- 70

maining two values, with the inverse of the standard devia-
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Figure 4. Time series of hourly downwelling and upwelling shortwave and longwave radiation at TUNDRA.

Figure 5. Time series of hourly downwelling and upwelling shortwave and longwave radiation at FOREST.

tion defining the weights as wi = 1/σi , such that

PRtot =
w1PR1+w2PR2

w1+w2
. (2)

Subsequently, the precipitation was partitioned into snow and
rain using a single threshold of 0.5 °C. In addition, a correc-
tion for the underestimation of solid precipitation in the pres-5

ence of wind (undercatch) was applied following Kochendor-

fer et al. (2018):

PRcor = PRuncor
1

0.742exp(−0.181U + 0.332)
, (3)

where PRcor is the corrected precipitation rate (mm), PRuncor
is the uncorrected precipitation (mm) and U (m s−1) is the 10

wind speed at the height of the gauge orifice, provided by the
nearby weather station. Prior to installing the precipitation
gauge with the single alter shield and three independent wire
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load sensors, a simpler version with a home-made alter shield
and only one wire load sensor was present at the site. How-
ever, this setup did not produce reasonable data, and there-
fore the data were discarded. For the period between 2012
and 2016, we only used ERA5 data, as they proved to be5

closer to our observations than data from the two closest me-
teorological stations from Environment and Climate Change
Canada (Kuujjuarapik, 160 km south, and Inukjuak, 230 km
north). When comparing summer and winter monthly precip-
itation observations with ERA5 data, we observed no biases10

for the summer values. However, we detected an underes-
timation of ERA5 for the winter months, with cumulative
precipitation exceeding 50 mm. To correct for this bias, the
values for November to April were multiplied by 1.3822 for
months with a cumulative precipitation greater than 50 mm.15

Otherwise, no correction was applied to the ERA5 precipita-
tion data.

In the lower panel in Fig. 6, the daily precipitation at TUN-
DRA is shown from 2016 to 2021, together with the ERA5
precipitation data before 2016. The upper panel in Fig. 6 de-20

picts the seasonal cumulative precipitation for each summer
and winter period, respectively. The dates associated with the
onset of snow and meltout are shown in Table 3 and were de-
termined using snow gauge data and time lapse cameras.

4 Spectral and broadband albedo25

The surface albedo for various types of vegetation covers
was measured between 12 and 18 September 2015 for wave-
lengths between 346.5 and 2513 nm with a portable field
spectroradiometer (HR-1024 model, Spectra Vista Corpora-
tion). The radiation signal over this spectral range was mon-30

itored with a Si photodiode (346.5 to 982 nm) and two In-
GaAs photodiodes over the 982–1882 and 1882–2513 nm
ranges. For wavelengths greater than 2340 nm, upwelling ir-
radiance was very low, resulting in a mostly unusable signal.
We therefore present only the results for the 346.5–2340 nm35

range. The radiation signal was collected by an integrating
sphere placed at the end of a 3 m rod to minimize interfer-
ence from the person taking the measurements. The horizon-
tal position of the sphere was ensured by an electronic in-
clinometer next to the sphere. The downwelling signal was40

collected first. Then, the sphere was rotated 180° to record
the upwelling signal. A photodiode monitored the solar radi-
ation to ensure that it remained constant (within 1 %) during
both measurements. Spectra were smoothed over 10 nm in-
tervals for wavelengths shorter than 1780 nm and over 60 nm45

intervals for longer wavelengths.
Spectra were recorded during the 12 to 16 September 2015

period. Five spectra were recorded over areas with lichen
cover in the vicinity of the TUNDRA site. Five spectra were
also recorded over short birch shrubs with lichen understories50

in the same area. We visually estimated that >90 % of the
leaves were still green. The FOREST site consisted of a mix-

ture of spruce that reached up to 3 m high, birch and grass.
As such, it was not possible to obtain a representative spec-
trum of the entire FOREST area, as this would have required 55

measurements from a height of at least 10 m. We therefore
measured eight spectra of dense, short spruce within a few
kilometers of the FOREST station (Fig. 7). Lastly, we mea-
sured the spectra of grassy surfaces with little to no erect
vegetation and with little to no lichen. Although these spec- 60

tra were not necessarily recorded at the FOREST site, the
grassy vegetation was fairly similar at both locations. The
average spectra for all four types of vegetation are shown
in Fig. 7. The broadband (BB) albedo (346.5–2340 nm) of
each spectrum was calculated from the ratio of the integrated 65

upwelling radiation to downwelling radiation. The average
BB albedos were 0.203 for lichen, 0.155 for birch, 0.174 for
spruce and 0.180 for low grassy vegetation.

For a given vegetation type, variations in the spectral
albedo were observed among the different measurement 70

spots, as detailed in Table 4. Variations between spots were
smallest for lichen, increased for birch and low grassy vege-
tation and highest for spruce. Variations in birch and spruce
are probably mostly due to differences in the leaf area index
and the amount of woody vegetation present. Differences in 75

low grassy vegetation are due to variations in species and the
occasional presence of short shrubs, such as Vaccinuim sp.
and Betula glandulosa.

These data allowed for the estimation of the BB albedo of
the FOREST site. We estimated that the vegetation coverage 80

is 25 % spruce, 40 % low grassy vegetation and 35 % birch,
leading to a BB albedo of 0.170. We estimated the TUNDRA
site to be 60 % lichen and 40 % birch, with a BB albedo of
0.184.

5 Turbulent flux data 85

Turbulent heat fluxes were measured at TUNDRA using
a fast-response sonic anemometer and a CO2/H2OTS9 in-
frared gas analyzer (IRGASON, Campbell Scientific, USA)
installed at 4.2 m a.g.l.TS10 on the 10 m tower. The three
components for wind speed and concentrations of H2O and 90

CO2 were recorded with a CR3000 data logger (Campbell
Scientific) at a frequency of 10 Hz. The 10 Hz data were
processed with the EddyPro® (version 7.0.3; Li-COR Bio-
sciences, USA) software package. This software calculates
30 min averages of the turbulent heat and carbon fluxes and 95

a set of corrections. These corrections are the detrending
of turbulent fluctuations based on a running mean, covari-
ance maximization, density fluctuation compensation (Webb
et al., 1980) and analytic correction of high-pass and low-
pass filtering effects (Moncrieff et al., 1997). To align the 100

coordinate system with the surface, we have chosen to ap-
ply a double rotation (Wilczak et al., 2001). Briefly, for each
30 min period, we perform two rotations to align the coor-
dinate system with the flow streamlines, imposing zero lat-
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Figure 6. Time series of cumulative precipitation and daily rain and snow. Before 28 May 2016, ERA5 data were used.

Table 3. Snow onset and meltout dates at the TUNDRA site used to determine cumulative seasonal precipitation.

Snow year Snow onset Meltout

2012–2013TS8 9 November 2012 31 May 2013
2013–2014 26 October 2013 22 May 2014
2014–2015 31 October 2014 28 May 2015
2015–2016 18 October 2015 28 May 2016
2016–2017 12 October 2016 24 May 2017
2017–2018 29 October 2017 15 June 2018
2018–2019 6 October 2018 4 June 2019
2019–2020 29 October 2019 11 June 2020
2020–2021 17 October 2020 24 May 2021

eral and vertical wind speed over the period. The planar fit
method from Wilczak et al. (2001) was also tested, but it was
unsuccessful due to the presence of snow. In order to assess
data quality, a random uncertainty quantification was used
following Finkelstein and Sims (2001), which identified out-5

liers, spikes and artifacts. Finally, the 0–1–2 quality scheme
from Mauder et al. (2013) was applied to flag the data, and
segments that were flagged as 2 (poor quality) were removed
from the data set.

To sort out the remaining outliers and to fill the gaps10

according to the EddyPro® procedure, post-processing was
necessary. This was done using the PyFluxPro program
(Isaac et al., 2017), which comprises six processing levels,
uses EddyPro® output files as inputs and produces a continu-
ous time series for all the fluxes. For the first three processing15

levels, data were read and quality-controlled, and finally aux-
iliary measurements were merged when gaps were present.
The quality control includes (i) range checks based on user-
defined limits, (ii) spike detection, (iii) manual removal for
specific dates and (iv) data rejection based on other vari-20

ables. Erroneous flux data were rejected based on CO2 and

H2O signal strengths from the infrared gas analyzer (IRGA)
and internal error codes from both the sonic anemometer and
the IRGA. For the fourth processing level, meteorological
variables were gap-filled with ERA5 data. Each variable was 25

bias-corrected using a linear fit between ERA5 and flux tower
observations during periods when both were available.

Finally, the fluxes were gap-filled using interpolation and
a self-organizing linear output map (SOLO) – a type of ar-
tificial neural network (ANN) (see Hsu et al., 2002, and 30

Abramowitz, 2005). Interpolation was only applied for gaps
of up to 3 h, while SOLO was used for longer gaps. SOLO
requires a set of environmental drivers such as air temper-
ature, radiation, humidity and the fluxes themselves as in-
puts. SOLO first constructs relationships between the envi- 35

ronmental drivers by applying an ANN equivalent of a prin-
cipal component analysis. It then uses an ANN equivalent of
a multiple linear regression to make connections between the
drivers and the fluxes. An ANN together with marginal dis-
tribution sampling (MDS, Reichstein et al., 2005) was shown 40

to be the best choice for gap-filling flux data (Moffat et al.,
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Figure 7. Average spectral albedo for the four types of vegetation cover.

Table 4. Variation in albedo within each vegetation class at 550 and 1100 nm.

550 nm 550 nm % variation 1100 nm 1100 nm % variation

Lichen 0.116 to 0.131 11.5 % 0.359 to 0.393 8.6 %
Low birch 0.051 to 0.067 23.9 % 0.305 to 0.387 21.2 %
Spruce 0.058 to 0.107 45.8 % 0.355 to 0.559 36.5 %
Low grassy 0.053 to 0.080 33.7 % 0.370 to 0.523 29.3 %

2007). The resulting series for the sensible and latent heat
fluxes as well as the CO2 fluxes are shown in Fig. 8.

Since IRGASON is an open-path sensor that is sensitive to
external disturbances such as precipitation particles, gaps are
frequently present in the data set for the turbulent and CO25

fluxes. The fraction of gaps subsequently increased with each
processing step in EddyPro® and PyFluxPro. Overall, 27 %
of the sensible heat flux, 43 % of the latent heat flux and 44 %
of the CO2 flux data were gap-filled using SOLO. These val-
ues include two longer outages of IRGASON in March 201810

and from January to March 2019. The interpolated data and
data gap-filled with SOLO are specifically flagged.

6 Snow data

6.1 Snow height

Two SR50 sonic distance sensors provided continuous snow15

height measurements near TUNDRA. One was installed ex-
actly at the TUNDRA site and the other was mounted on the
nearby 10 m tower. A snow height value of zero was assigned
for the snow-free period in summer. Unfortunately, the snow
height data were incomplete. We therefore decided to merge20

both data sets. The gaps that remained despite the merge were
filled with estimates from time lapseCE4 images of the snow
poles. A similar SR50 sonic sensor was installed at FOR-
EST. The sensor malfunctioned during winters 2016–2017
and 2017–2018TS11 , and no data are shown for these peri-25

ods. In spring, the snow height at FOREST almost reached
the sensor. We observed during our field visits that the wind
formed a depression on the snow surface just below the sen-
sor. We thus estimate that snow height was underestimated by
about 20 % by the sensor in late March–early April. The time 30

series for both stations are depicted in Fig. 9. Snow height
values at FOREST are consistently larger than at TUNDRA
due to the presence of taller vegetation, which more effec-
tively traps blowing snow.

6.2 Snow temperature 35

6.2.1 TUNDRA

Vertical profiles of snow temperature were recorded by two
snow poles located approximately 4 m (SNOW1) and 15 m
(SNOW2) from TUNDRA. They were equipped with Pt1000
thermistors (which are part of the TP08 needles) and col- 40

lected temperature measurements every 2 d at 05:00 lo-
cal summer time (UTC−4). SNOW1 was set up in Febru-
ary 2013 in a patch of shrubs about 30 cm tall with a lichen
understory. The Pt1000 thermistors were installed at 4, 14, 34
and 44 cm above the lichen top surface. In September 2015, 45

the post was replaced and the new pole was equipped with
sensors at 4, 14, 29, 44 and 64 cm heights. SNOW2 was in-
stalled in 2018 on a patch of lichen. Four Pt1000 thermistors
were placed at 7, 27, 47 and 67 cm above the lichen surface.
SNOW1 data are shown in Fig. 10. 50
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Figure 8. Time series of hourly sensible and latent heat fluxes and the CO2 flux. The grey-shaded areas indicate power outages at the station
during which no flux data were recorded.

Figure 9. Evolution of snow height from the automatic gauges at TUNDRA and FOREST.

For both stations, data associated with a positive snow
temperature were deleted as they implied that the sensor was
not buried in the snow or that the sensor was heated by the
Sun through a thin snow layer. Using time lapse images, we
were able to identify times when the thermocouples and ther-5

mistors were not covered with snow. However, as the camera
was 10 to 15 m away from the stations, we cannot rule out
that some data from times with no snow were included. Note
that different snow heights and internal snow properties were
observed at the two stations, and as such, the respective snow10

temperatures do not necessarily match for a similar measure-
ment level.

6.2.2 FOREST

At FOREST, another snow pole (SNOW3) was installed and
equipped with four Pt1000 thermistors at 4, 14, 29 and 64 cm15

heights. SNOW3 was placed in a patch of grass and moss. No
time lapse camera was available at FOREST, and as seen in
Fig. 9, the snow height time series was less complete. Thus,
only fall positive temperatures were removed and no further
data cleaning was performed. In spring, the first positive tem-20

peratures were left, as they provide an indication of snowmelt
down to the level of the sensor. Figure 11 shows the snow

temperature at the four measurement levels. Snow tempera-
tures were substantially higher at FOREST due to the deeper
snowpack. 25

6.3 Snow thermal conductivity

6.3.1 TUNDRA

TP08-heated needle probes were installed along with the
temperature probes at both SNOW1 and SNOW2. The instal-
lation heights were the same as those for the Pt1000 thermis- 30

tors. A description of the method used to determine the snow
effective thermal conductivity from the TP08-heated needle
probes is provided in Domine et al. (2015). Since the TP08
heats the snow, the measurement is deactivated by a temper-
ature threshold (−2.5 °C), so that there are data gaps. Fig- 35

ure 12 shows the observations from SNOW1 at five heights
over nine winters.

6.3.2 FOREST

The thermal conductivity at FOREST was also recorded with
the TP08-heated needles at SNOW3. These were also in- 40

stalled at the same heights as the Pt1000 temperature sen-
sors. Since the sensor at 14 cm did not work properly, the
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Figure 10. Bi-daily time series of the Pt1000 thermistors from the SNOW1 station at TUNDRA at heights of 4, 14, 24 and 34 cm for the
2013–2014 winter and at heights of 4, 14, 29, 44 and 64 cm starting in October 2015.

Figure 11. Hourly time series of the Pt1000 thermistors from the SNOW3 station at heights of 4, 14, 29 and 64 cm.

corresponding values were not included. Because of the tem-
perature threshold, the 4 cm sensor recorded data only during
the 2018–2019 winter and also a few data points during the
following winter. The recorded values are shown in Fig. 13.

6.4 Snow pit measurements5

Field trips were conducted most years to measure verti-
cal profiles of snow density and snow specific surface area
(SSA). Snow density was measured with a 100 cm3 box cut-
ter (Conger and McClung, 2009) and a field scale, while SSA
was measured using infrared reflectance at 1310 nm with10

an integrating sphere as described in Gallet et al. (2009).
One to three field trips were made each year between late
January and early April. The last field trip was in 2019,
since travel in 2020 and 2021 was forbidden because of the
COVID pandemic. The available snow data therefore provide15

an overview of the snow properties in mid-winter and early
spring. In most pits, snow density and SSA were measured in
sequence. However, in some pits, only density was measured.
It was often not possible to measure density near the base of
the snowpack, because of the dense birch branches. The snow20

there was usually soft depth hoar, which could be scooped
into the SSA sampler without alteration to SSA, so that SSA
profiles often go down to the snow base. Ice layers or layers
with melt forms were observed in the majority of the snow
pits and were sometimes impossible to sample because they25

were too hard. The profiles of snow density and SSA near the
TUNDRA and FOREST sites are illustrated in Fig. 14. Note
that the representativity of the measured profiles is limited,

as the physical snow properties are highly spatially variable
due to vegetation, micro-topography as well as wind erosion 30

and redeposition. However, at TUNDRA, the general trend
of a slight density increase with increasing height, except for
recent snowfalls near the top, is consistent and typical of the
Arctic (Domine et al., 2016). Figure 14 illustrates that the
SSA of the basal depth hoar is always close to 10 m2 kg−1

35

(Royer et al., 2021).

7 Soil data

7.1 Soil properties

The Tasiapik Valley consists of former beaches that have
been uplifted by isostatic rebound after the Laurentide Ice 40

Sheet melted a few millennia ago. According to Bhiry et
al. (2011), land at an elevation of around 130 m, such as the
TUNDRA site, emerged 6500 to 7000 years ago. The FOR-
EST site, at an elevation of 82 m, emerged about 5000 years
ago. Because they were formerly beaches, the soil at both 45

the TUNDRA and FOREST sites is mostly sandy. Gagnon
et al. (2019) conducted granulometric analyses at TUNDRA
and reported a unimodal particle size distribution of around
500 µm (pure sand), with an occasional, small, secondary
peak at around 80 µm (loamy sand). Based on two soil pits, 50

we estimate the sand fraction of the soil at FOREST to be
lower than at TUNDRA, but no granulometric analyses were
performed there.

The organic carbon content of the soil at TUNDRA is
among the lowest in the Arctic and subarctic (Gagnon et 55
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Figure 12. Time series of the snow thermal conductivity from the SNOW1 station at heights of 4, 14, 24 and 34 cm from February 2013 to
May 2015 and at heights of 4, 14, 29, 44 and 64 cm starting in October 2015.

Figure 13. Time series of the snow thermal conductivity from the SNOW3 station at heights of 4, 29 and 64 cm.

al., 2019), with about 1.5 kg m−2 of organic C in lichen tun-
dra and 4.2 kg m−2 in low birch shrubs (<80 cm). No de-
tailed soil analyses were performed at FOREST, but two soil
pits were dug and revealed an organic litter layer 6 to 10 cm
thick. The organic carbon content of the soil at FOREST was5

not measured, but given the thick litter layer, it is probably
greater than at TUNDRA.

Soil thermal conductivity and density profiles are shown
in Fig. 15. On 7 and 8 October 2014, short-distance spatial
variation tests were performed at a depth of 20 cm, reveal-10

ing changes within a range of 25 % over a horizontal dis-
tance of 30 cm. Overall, there was a clear trend of an in-
crease in thermal conductivity with depth. The thermal con-
ductivity of lichen was also measured, and it was essentially
the same as that of air, forming an efficient insulating layer15

in summer. In winter, snow crystals blend into the lichen.
Therefore, we determined that assuming only a depth hoar
snow layer while ignoring the lichen is likely adequate. We
recommend using thermal conductivities of 0.12 W m−1 K−1

for the top 5 cm of the soil (starting at the base of the live20

lichen), 0.5 W m−1 K−1 for depths between 5 and 10 cm,
0.9 W m−1 K−1 between 10 and 20 cm and 1.1 W m−1 K−1

for depths below 20 cm. We only measured three density pro-
files, which showed an increase in density down to 10 cm
in depth and then remained at an almost constant value of25

around 1500 kg m−3. Between depths of 0 and 10 cm, the
density is about 500 kg m−3 for the litter layer and approx-

imately 1000 kg m−3 for the underlying mineral layer. Sand
has a specific heat of about 796 J kg−1 K−1 (Carvill, 1993).

7.2 Soil temperature and moisture 30

Soil temperatures at TUNDRA and FOREST were recorded
using 5TM soil temperature and water content sensors. Ac-
cording to 5TM specifications, the resolution is 0.1 °C for
the soil temperature and 0.0008 m3 m−3 for the soil wa-
ter content. The accuracy is 1 °C for the temperature and 35

0.03 m3 m−3 for the soil water content. At all the stations,
we observed offsets during the zero-curtain period, when
T = 0 °C. The temperatures were corrected for these offsets,
ranging between 0.2 and 0.6 °C.

7.2.1 TUNDRA 40

The soil temperature and soil water content were measured at
two lichen sites near TUNDRA. One of these sites also had
30 cm tall birch shrubs and was about 1 m from the SNOW1
post. Five Decagon 5TM probes were installed at each site.
Figure 6 shows these values for a lichen-only-covered sur- 45

face, while Fig. 7 shows values for the site with low birch
shrubs. The soil temperature at the lichen site is warmer dur-
ing the summer months compared to the low-shrub site, and
the soil water content is generally lower. This might be due
to shading from the shrubs and the differences in soil com- 50

position, as detailed in Sect. 7.2.
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Figure 14. Vertical profiles of snow density and SSA measured in the vicinity of the TUNDRA station from 2012 to 2019 and near the
FOREST station from 2016 to 2018.

7.2.2 FOREST

The soil temperature and water content were measured at
FOREST using the same instruments as the TUNDRA site
(Fig. 18). The sensors were placed about 80 cm from the
SNOW3 pole. The soil water content and temperatures at5

FOREST were very distinct from those measured at the
TUNDRA site. During summer, the soil temperatures were
slightly cooler than those under the low-shrub surface. How-
ever, in winter, the soil freezes late and the minimum temper-
atures were only slightly below 0 °C due to the thick snow10

cover. The soil water content is substantially higher at FOR-
EST than at TUNDRA because the soil contains less sand
compared to TUNDRA and because more snow accumulates
in winter at FOREST and melts in spring.

8 Data availability 15

TheTS12 data are available in the PANGAEA repository at
https://doi.org/10.1594/PANGAEA.964743 (Domine et al.,
2024) as tab-delimited text files. All times are in UTC.

9 Conclusions

The increasing temperatures in Arctic regions are causing 20

substantial environmental changes, such as the thawing of
permafrost and the greening of the Arctic landscapes. Both
effects are more pronounced along the southern border of the
Arctic, where the land is transitioning into a boreal forest.
In this study, we present two data sets, a 9-year data set for 25

TUNDRA and a 6-year data set for FOREST, which include

https://doi.org/10.1594/PANGAEA.964743
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Figure 15. Thermal properties of soils. (a) Thermal conductivity; (b) density. Depths were measured from the base of the live lichen.

Figure 16. Time series of the daily soil temperature and the soil
water content (SWC) under a lichen-covered surface at depths of 6,
12, 21, 39 and 50 cm at TUNDRA.

Figure 17. Time series of the daily soil temperature and the SWC
under a patch of low shrubs over lichen at depths of 9, 15, 27, 39
and 50 cm at TUNDRA.

Figure 18. Time series of the daily soil temperature and the SWC
below grass and moss at depths of 5, 10, 20, 30 and 50 cm at FOR-
EST.

numerous measurements in soil, snow and above the ground
at two sites along the treeline in eastern Canada. These data
provide information that can be used to calibrate and im-
prove Earth system models, particularly snow and land sur-
face schemes, which have previously shown poor perfor- 5

mance when simulating Arctic snowpack properties (Domine
et al., 2019). Our data can help advance understanding of the
relationships between potential meteorological drivers, per-
mafrost degradation and Arctic greening.
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