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Abstract 13 

Barium is widely used as a proxy for dissolved silicon and particulate organic carbon fluxes in 14 
seawater. However, these proxy applications are limited by insufficient knowledge of the dissolved 15 
distribution of Ba ([Ba]). For example, there is significant spatial variability in the barium–silicon 16 
relationship, and ocean chemistry may influence sedimentary Ba preservation. To help address 17 
these issues, we developed 4,095 models for predicting [Ba] using Gaussian Progress Regression 18 
Machine Learning. These models were trained to predict [Ba] from standard oceanographic 19 
observations using GEOTRACES data from the Arctic, Atlantic, Pacific, and Southern Oceans. 20 
Trained models were then validated by comparing predictions against withheld [Ba] data from the 21 
Indian Ocean. We find that a model trained using depth, temperature, salinity, as well as dissolved 22 
dioxygen, phosphate, nitrate, and silicate can accurately predict [Ba] in the Indian Ocean with a 23 
mean absolute percentage deviation of 6.0 %. We use this model to simulate [Ba] on a global basis 24 
using these same seven predictors in the World Ocean Atlas. The resulting [Ba] distribution 25 
constrains the Ba budget of the ocean to 122(±7)×1012 mol and reveals systematic variability in 26 
the barium–silicon relationship. We also calculate the saturation state of seawater with respect to 27 
barite. In addition to revealing systematic spatial and vertical variations, our results show that the 28 
ocean below 1,000 m is at equilibrium with respect to barite. We describe a number of possible 29 
applications for our model output, ranging from use in biogeochemical models to paleoproxy 30 
calibration. Our approach demonstrates the utility of machine learning to accurately simulate the 31 
distributions of tracers in the sea and provides a framework that could be extended to other trace 32 
elements. 33 
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1. Introduction 34 

Barium (Ba) is a Group II trace metal that is widely applied in studies of modern and ancient 35 

marine biogeochemistry, despite lacking a recognized biochemical function (e.g., Horner & 36 

Crockford, 2021). These applications of Ba are based on two empirical correlations relating to its 37 

dissolved and particulate cycles. The first correlation relates to the dissolved concentration of Ba, 38 

hereafter [Ba], which is strongly correlated with that of the algal nutrient silicon (Si; as dissolved 39 

silicic acid; Fig. 1; Chan et al., 1977). Unlike [Si], ambient [Ba] concentrations are faithfully 40 

recorded by a number of marine carbonates, such as planktonic (e.g., Hönisch et al., 2011) and 41 

benthic foraminifera (e.g., Lea & Boyle, 1990), surface- (e.g., Gonneea et al., 2017) and deep-sea 42 

corals (e.g., Anagnostou et al., 2011; LaVigne et al., 2011), and mollusks (e.g., Komagoe et al., 43 

2018). Preservation of these signals means that the Ba content of carbonates can be related to the 44 

Ba content of seawater and, by extension, that of Si. Accordingly, the Ba–Si proxy has been applied 45 

to understand ocean nutrient dynamics on decadal (e.g., Lea et al., 1989) to millennial timescales 46 

(e.g., Stewart et al., 2021).  47 

The nutrient-like distribution of dissolved Ba in seawater is thought to be sustained by the second 48 

empirical correlation, relating to cycling of particulate Ba. Particulate Ba in seawater occurs mostly 49 

in the form of discrete, micron-sized crystals of the mineral barite (BaSO4(s), barium sulfate; e.g., 50 

Dehairs et al., 1980; Stroobants et al., 1991). Pelagic BaSO4 is an ubiquitous component of marine 51 

particulate matter (e.g., Light & Norris, 2021) and constitutes the principal removal flux of 52 

dissolved Ba from seawater (Paytan & Kastner, 1996). Pelagic BaSO4 is thought to precipitate 53 

within ephemeral particle-associated microenvironments that develop during the microbial 54 

oxidation of sinking organic matter (e.g., Chow & Goldberg, 1960; Bishop, 1988). The flux of 55 

particulate BaSO4 to the seafloor is correlated with the flux of exported organic matter (e.g., 56 

Dymond et al., 1992; Eagle et al., 2003; Serno et al., 2014; Hayes et al., 2021). This correlation 57 

means that the accumulation rate of sedimentary BaSO4—or its main constituent, Ba—can be used 58 

to trace patterns of past organic matter export on timescales ranging from millenia to millions of 59 

years (e.g., Bains et al., 2000; Paytan & Griffith, 2007; Schmitz, 1987; Schroeder et al., 1997). 60 
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Figure 1. Distribution of barium in seawater. A. Property–property plot showing the 4,345 co-located, 61 
core-feature complete dissolved data used in ML model training (Sect. 2). Sample locations shown in Figure 62 
2. Dashed line shows best-fit linear regression through these data, whereby [Ba] = 0.54·[Si] + 39.3. Panels 63 
B., C., D., and E. show average Pacific Ocean dissolved depth profiles of [Si], [Ba], Ba*, and Ωbarite, 64 
respectively. Solid line denotes the arithmetic mean and the shaded region encompasses one standard 65 
deviation either side of the mean. Dashed line indicates Ba* = 0 (D) and Ωbarite = 1 (E). 66 

 

While the Ba-based proxies are valuable, their applications are potentially limited by insufficient 67 

knowledge of the distribution of [Ba]. For example, there is significant vertical and spatial 68 

variability in the Ba–Si relationship (Sect. 3.3.; Fig. 1), which we quantify using Ba* (barium-star; 69 

e.g., Horner et al., 2015): 70 

 Ba* = [Ba]in situ – [Ba]predicted        [Eq. 1] 71 

where [Ba]predicted is based on the Ba–Si linear regression (Fig. 1): 72 

 [Ba]predicted = 0.54·[Si]in situ + 39.3       [Eq. 2] 73 

Here, [Si]in situ has units of µmol kg–1 and [Ba]predicted nmol kg–1; therefore, Ba* also has units of 74 

nmol kg–1. The vertical profile of Ba* is rarely conservative (Fig. 1D) and these variations could 75 

introduce uncertainty in the reconstruction of [Si] using Ba. 76 

The relationship between sedimentary BaSO4 accumulation rates and productivity also contains a 77 

significant degree of scatter (e.g., Serno et al., 2014; Hayes et al., 2021). Some of this scatter may 78 

relate to variability in BaSO4 preservation, which is at least partially sensitive to ambient saturation 79 
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state, Ωbarite (e.g., Schenau et al., 2001; Singh et al., 2020; Fig. 1). The saturation state of a parcel 80 

of water with respect to BaSO4 is defined as: 81 

 Ωbarite = Q / Ksp         [Eq. 3] 82 

where Q is the Ba and sulfate ion product and Ksp is the in situ BaSO4 solubility product. Discerning 83 

the importance of Ωbarite on BaSO4 preservation has hitherto been challenging owing to the sparsity 84 

of in situ [Ba] measurements. Accurately determining the global distribution of [Ba] would be 85 

valuable for geochemists and oceanographers, and would enable a more thorough investigation of 86 

the effects of preservation on BaSO4 fluxes and refinement of the Ba–Si nutrient proxy. 87 

A powerful way of interrogating oceanic element distributions is through modeling. Broadly, there 88 

are two modeling approaches relevant for simulating [Ba]: mechanistic (i.e., theory driven) and 89 

statistical modeling (i.e., data driven; e.g., Glover et al., 2011). In mechanistic or process-based 90 

modeling, model outputs are derived from sets of underlying equations that are based on 91 

fundamental theory. As such, mechanistic model outputs can be interrogated to obtain 92 

understanding of processes and their sensitivities. However, creating a mechanistic model of the 93 

marine Ba cycle requires embedding a biogeochemical model of BaSO4 cycling within a 94 

computationally expensive global circulation model. Although the computational cost associated 95 

with building mechanistic models has been reduced by the development of ocean circulation 96 

inverse models (e.g., DeVries, 2014; John et al., 2020), this approach still requires detailed 97 

parametrizations of the marine Ba cycle, which do not currently exist. In contrast, statistical models 98 

are based on extracting patterns from existing data and using those relationships to make 99 

predictions. Statistical models encompass a wide variety of approaches ranging from regression 100 

analysis to machine learning (ML). Of particular interest to our study are ML models, which can 101 

make predictions without any explicit parameterizations of causal relationships. Machine learning 102 

models are computationally efficient and can be highly accurate, though they offer limited 103 

interpretability. Machine learning is increasingly being used to solve problems in Earth and 104 

environmental sciences, including simulating the dissolved distribution of tracers in the sea (e.g., 105 

for cadmium, Roshan & DeVries, 2021; copper, Roshan et al., 2020; iodine, Sherwen et al. 2019; 106 

nitrogen isotopes of nitrate, Rafter et al., 2019; and zinc, Roshan et al., 2018).  107 
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The goal of this study is to obtain an accurate simulation of [Ba], which ML makes possible even 108 

in the absence of a process-level understanding of the marine Ba cycle. We tested thousands of 109 

ML models that were trained using quality-controlled GEOTRACES data from the Arctic, 110 

Atlantic, Pacific, and Southern Oceans, supplemented by Argo, satellite chlorophyll, and 111 

bathymetry data products (Sect. 2.). Models were tested for their accuracy by simulating [Ba] in 112 

the Indian Ocean and comparing predictions against observations made between 1977–2013. Since 113 

no Indian Ocean data were seen by any of the models during training, we are able to identify 114 

models with high generalization performance (Sect. 2.). We then identify an optimal set of 115 

predictor variables, calculate model uncertainties, and simulate [Ba], Ba*, and Ωbarite on a global 116 

basis (Sect. 5.). This result will be valuable for researchers interested in marine Ba cycling, and 117 

demonstrates the utility of ML to tackle problems in marine biogeochemistry.  118 

 

2. Training and testing data  119 

Machine learning algorithms are adept at making accurate predictions of a target variable by 120 

identifying relationships between variables within large data sets. However, making accurate 121 

predictions first requires that a ML algorithm is trained on existing observations of that variable 122 

alongside a number of other parameters. These other parameters, hereafter termed features, are an 123 

important part of model training; features should encode information that may help the ML 124 

algorithm predict [Ba], otherwise their inclusion may diminish model performance. Features 125 

should also be well characterized in the global ocean, which allows ML models to make predictions 126 

in regions beyond the initial training dataset. We selected 12 model features by considering the 127 

tradeoff between feature availability and presumed predictive power (Table 1). While testing more 128 

features may have resulted in a more accurate final model, we found that many observations of 129 

[Ba] did not have corresponding data for multiple features; thus, including more features would 130 

have meant fewer training data. Moreover, we find that including more than nine features can 131 

actually diminish model performance. As such, we did not evaluate the predictive power of other 132 

features beyond the 12 initially selected. 133 
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Table 1. List of oceanographic parameters selected as model features. The features tested were 134 
selected based on their presumed predictive power and geospatial coverage. 135 

# Parameter Name Abbreviation Units Coverage* 

1 Latitude Lat. degrees north (°N) – 

2 Longitude Long. degrees east (°E) – 

3 Sample collection depth z meters (m) – 

4 Temperature T degrees Celsius (°C) 97.44% 

5 Salinity S unitless, but often written 
in ‘units’ of PSU or PSS 

97.44% 

6 Dissolved oxygen [O2] µmol kg−1 97.44% 

7 Dissolved nitrate [NO3 µmol kg−1 97.44% 

8 Dissolved phosphate [PO4] µmol kg−1 97.44% 

9 Dissolved silicon (as silicic acid) [Si] µmol kg−1 97.44% 

10 Maximum monthly mean mixed-layer depth MLD meters (m) 88.20% 

11 Mean average annual surface chlorophyll Chl. a mg m-3 93.95% 

12 Bathymetry Bathy. meters (m) 100% 

*Coverage values represent the percentage of data points within the World Ocean Atlas 2018 grid that have 

available data for a given parameter. Latitude, longitude, and depth have 100 % coverage as these features define 

the grid itself.  

The 12 features used to predict [Ba] and their associated data sources are summarized in Table 1 136 

and described below. The first three features (latitude, longitude, depth) record geospatial 137 

information that defines the location of an observation in three-dimensional space. To avoid 138 

numerical discontinuities, latitude and longitude were introduced into the model as a 139 

hyperparameter consisting of the cosine and sine of their respective values (in radians). Data for 140 

features 1–3 were included in the sample metadata. Features 4–9 encode physical (temperature, 141 

salinity) and chemical (oxygen, nutrients) information that is routinely measured alongside [Ba]. 142 

These data were generally available for the same bottle as the [Ba] measurements; however, when 143 

that was not the case, nutrient data were taken from the corresponding location during a separate 144 
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cast, or, in the case of oxygen, from linearly interpolated sensor data. The final three features are 145 

independent of depth, meaning that all samples within a given vertical profile exhibit the same 146 

value for MLD (mixed-layer depth), sea-surface chlorophyll a, and bathymetry. Features 10–12 147 

were drawn from several data sources. A climatology of MLD (feature 10) was compiled using 148 

the Argo database (Holte et al., 2017). We selected maximum monthly mean MLD as the feature 149 

of interest, as this appears to be the spatiotemporal scale most relevant for influencing [Ba] 150 

distributions (Bates et al., 2017). Feature 11 represents a blended SeaWiFS and MODIS 151 

climatology of chlorophyll a that was obtained from the Copernicus Marine Environment 152 

Monitoring Service (CMEMS, 2021). We calculated the mean annual chlorophyll a for each grid 153 

cell in the data product and log transformed the data to reduce parameter weighting (e.g., Rafter et 154 

al., 2019). Data for MLD and chlorophyll a were extracted at the location of [Ba] observations 155 

using nearest-neighbor interpolation and their values logged in the master record. Bathymetric 156 

information (feature 12) was extracted from one of two sources. Our preferred source was the 157 

sample metadata, which generally included a value for bathymetry. For samples lacking 158 

bathymetric information, we used nearest-neighbor interpolation to extract a value from the 159 

ETOPO5 Global Relief Model (National Geophysical Data Center, 1993). Occasionally, the 160 

ETOPO5-extracted bathymetry was shallower than the deepest observation of [Ba] in a given 161 

vertical profile. In such cases, the bathymetry logged in the master record was set to 1.01 times the 162 

depth of the deepest observation in that profile. 163 

The [Ba] data from the Indian Ocean were collected from several, primarily pre-GEOTRACES 164 

sources (Table 2). As such, these data were generally incomplete for the 12 features used to train 165 

the ML models. Rather than using a mixture of in situ and interpolated data, we decided to 166 

interpolate all Indian Ocean data for parameters 4–12. Data for parameters 4–9 were linearly 167 

interpolated from the nearest vertical profile in the World Ocean Atlas 2018 (WOA; Boyer et al., 168 

2018; García et al., 2018a; 2018b; Locarnini et al., 2018; Zweng et al., 2018) and values for MLD 169 

and chlorophyll a were extracted from the aforementioned data products using nearest-neighbor 170 

interpolation. Bathymetric information was obtained from either the WOA or ETOPO5. For the 171 

vast majority of most samples, bathymetry was taken as the arithmetic mean of the maximum 172 

depth of the nearest vertical profile in the WOA and the depth at the standard level below. For 173 

example, if the maximum depth at a station was 950 m, the bathymetry was recorded as 975 m, 174 

which is the mean of levels 46 (950 m) and 47 (1,000 m). For profiles with a maximum depth of 175 
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5,500 m—level 102, the lowest in the WOA—bathymetry was recorded as either 5,550 m or the 176 

nearest-neighbor interpolated value from ETOPO5, whichever was deeper. 177 

Table 2. Data sources. Information regarding the source of [Ba] incorporated into the master record. 178 

Purpose  Region Expedition 
ID Data source Data Originators 

(if unpublished) 

 
 
 
 

Model 
training 

 
 
 
 
 
 
 

South Atlantic 
(Meridional) GA02 GEOTRACES IDP 2017 

(Schlitzer et al., 2018) Jose M. Godoy 

North Atlantic (Zonal) GA03 Rahman et al., 2022 

South Atlantic (Zonal) GA10 Horner et al., 2015; Bates et al., 2017; Hsieh & 
Henderson, 2017; Bridgestock et al., 2018 

Southern Ocean 
(Meridional) GIPY04 GEOTRACES IDP 2017 

(Schlitzer et al., 2018) Frank Dehairs 

Southern Ocean (Zonal) GIPY05 Hoppema et al., 2010 

Arctic 
GIPY11 Roeske et al., 2012 

GN01 Whitmore et al., 2022 

Pacific (Meridional) GP15 
GEOTRACES IDP 2021 

(GEOTRACES IDP 
Group, 2021) 

Laura Whitmore, Melissa 
Gilbert, Emilie Le Roy, 

Tristan Horner, Alan Shiller 

Subtropical South 
Pacific (Zonal) GP16 Rahman et al., 2022 

Model 
testing 

 
Indian Ocean 

GEOSECS Craig & Turekian (1980) 

INDIGO 1 

Jeandel et al. (1996) INDIGO 2 

INDIGO 3 

SR3 Jacquet et al. (2004) 

SS259 Singh et al. (2013) 

 179 
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This data ingestion process resulted in a master record containing 5,502 observations of [Ba] that 180 

also contained a corresponding value for all 12 core features (Table 1). The record was then split 181 

into a Pareto partition: the first partition was used for ML model training (4,345 observations, 79 182 

% of data; Fig. 1A) and the second for model testing (1,157 data; 21 %). This partitioning was 183 

determined based on the basin from which the sample was collected; data from the Arctic, Atlantic, 184 

Pacific, and Southern Oceans were used in model training, whereas the 1,157 [Ba] data from the 185 

Indian Ocean were reserved for model testing (Table 2; Fig. 2). This location-based separation of 186 

training and testing data was chosen to minimize overfitting, which can occur when the training–187 

testing separation is randomly assigned (see Sect. 3.2.). 188 

 

Figure 2. Geographical distribution of the training and testing data. The 4,345 core-feature complete 189 
training data (red; Fig. 1) are from the GEOTRACES 2021 Intermediate Data Product (GEOTRACES IDP 190 
Group, 2021); GEOTRACES expedition identifiers are noted next to each section. The n = 1,157 testing 191 
data from the Indian Ocean are color-coded by expedition. Data sources listed in Table 2.  192 

3. Methods 193 

In the following subsections we discuss details of the specific ML algorithm that was used for 194 

model development (Sect. 3.1.), explain the model training and testing process (Sect. 3.2.), and 195 

describe how a global prediction of [Ba] was obtained and interrogated (Sect. 3.3.).  196 



- 10/49 - 

3.1. Algorithm selection and training 197 

We opted for supervised ML using a Gaussian Process Regression learner, implemented in 198 

MATLAB. This particular ML algorithm is non-parametric, kernel-based, and probabilistic, which 199 

means that it does not make strong assumptions about the mapping function, can handle 200 

nonlinearities, and takes into account the effect of random occurrences when making predictions. 201 

Gaussian Process Regression algorithms are widely used in geostatistics, where it is often referred 202 

to as ‘kriging’ (e.g., Cressie, 1993; Rasmussen & Williams, 2006; Glover et al., 2011). This type 203 

of algorithm is ideal when working with continuous data that also contains a certain level of noise, 204 

such as from measurement uncertainty or oceanographic variation. The MATLAB function, 205 

fitrgp, was used for model training. A full list of the parameter selections used in fitrgp is 206 

provided in Table S1. All predictors were normalized and standardized to have a mean of zero and 207 

a standard deviation of unity. This process places all parameters on the same relative range and 208 

reduces scale dependencies. 209 

A selection of the training data were used to train 4,095 different machine learning models with 210 

the goal of finding a model that could accurately simulate the global distribution of [Ba]. The 211 

number of models derives from the number of features investigated; each model uses a unique 212 

combination of the 12 features in Table 1 and our testing followed a factorial design whereby each 213 

feature was either enabled or disabled. This design yields a total of 212 unique feature combinations 214 

(i.e., levelsfeatures); however, since it is not possible to train a model with no features enabled, the 215 

final number of unique, trainable, ML models with ≥1 features is 212–1=4,095. The full experiment 216 

list is provided in Section 6. Each of the 4,095 models was trained using the same data and with 217 

the same function parameters described in Table S1. 218 

 

3.2. Assessing model performance 219 

Model performance—accuracy and generalizability—was assessed during two phases: training 220 

and testing. During model training, the 4,345 observations of [Ba] from the Arctic, Atlantic, 221 

Pacific, and Southern Oceans were randomly split into two folds: a training fold containing 80 % 222 

of the observations, and a holdout fold containing the other 20 %. Model accuracy was assessed 223 

by comparing model-predicted [Ba] against observed [Ba] for the 20 % of the data in the holdout 224 
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fold. We then performed additional testing to establish model generalizability. A significant 225 

problem in supervised ML, and particularly Gaussian Process Regression learning, is overfitting: 226 

models may fit the noise in the training data, leading to poor generalization performance 227 

(Rasmussen & Williams, 2006). Since our goal was to develop a global model of [Ba] using 228 

regional training data, we deemed it especially important to identify generalizable models. 229 

Generalizable models were identified through a testing process involving regional cross-230 

validation; each trained model was used to predict [Ba] for the 1,157 samples from the Indian 231 

Ocean and model predictions were again compared against observations. Importantly, no [Ba] data 232 

from the Indian Ocean were seen by any of the models during training. This process helped to 233 

identify models that may have been overfit to the training data and can further be used to calculate 234 

generalization errors (Sect. 4.1).  235 

The accuracy of trained models was determined by comparing ML model predictions against 236 

withheld data and calculating the mean absolute error (MAE) and mean absolute percentage error 237 

(MAPE), defined as: 238 

 MAE = 
∑"#$% &[()]+,-.#/0-.1[()]234-,5-.&

6
      [Eq. 4] 239 

and: 240 

 MAPE = 788	%
6

∑6;<7 =[()]+,-.#/0-.1[()]234-,5-.
[()]234-,5-.

=     [Eq. 5] 241 

respectively, where n is the sample size.  242 

Models with lower accuracy exhibit higher errors, whereas models with high accuracy have lower 243 

errors. We calculated MAE and MAPE for every possible feature combination, which enables 244 

quantification of how specific features affect model performance. Likewise, we calculated errors 245 

for each model on predictions made during training (i.e., for the holdout fold) and during model 246 

testing (i.e., during regional cross-validation; Fig. 3). This information is used to quantify 247 

generalization performance; low errors for both training and testing indicate models that are both 248 

accurate and generalizable, whereas models with low training errors and high testing errors might 249 

indicate models that are overfit to the training data.  250 
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3.3. Global predictions  251 

A select number of models with low MAE and MAPE were used to simulate [Ba] on a global 252 

basis. The process by which we selected these models is described in Section 5.1. Global 253 

simulations were performed on the same grid as the WOA, which was also used as the data source 254 

for features 1–9 (Boyer et al., 2018). The WOA is a 1°×1° resolution data product with around 255 

41,000 stations that contain up to 102 depth levels spanning 0–5,500 m in 5, 25, 50, or 100 m 256 

increments. Data for features 10–12 (MLD, chlorophyll a, and bathymetry) were also resampled 257 

to the WOA grid using the same sources and interpolation methods as described for the Indian 258 

Ocean testing data in Section 2. Model outputs were visualized using Ocean Data View software 259 

(ODV; Figs. 5–8; Schlitzer, 2023).  260 

A selection of the most accurate models of [Ba] were then used to simulate Ba* and Ωbarite. Star 261 

tracers, such as Ba*, are valuable for illustrating processes that influence the cycling of elements 262 

in the ocean. First defined for N–P decoupling (N*; Gruber & Sarmiento, 1997) star tracers show 263 

variations whenever there are differences in the sources and sinks of the two elements being 264 

compared. If there are no differences in sources and sinks, the tracer will show conservative 265 

behavior because both elements share the same circulation. Barium-star is based on Ba–Si 266 

decoupling and was first defined by Horner et al. (2015). The definition of Ba* is shown in 267 

Equations 1 and 2. The coefficients in Equation 2 are based on data from the GEOTRACES 2021 268 

Intermediate Data Product and specifically the subset of these data shown in Figure 1. These 269 

coefficients differ from previous formulations of Ba* that were based primarily on [Ba] and [Si] 270 

data from the Southern and Atlantic Oceans (e.g., Horner et al., 2015; Bates et al., 2017). The 271 

global distribution of Ba* was determined by calculating [Ba]predicted (Eq. 2) from [Si]in situ in the 272 

WOA 2018 (García et al., 2018b). Values of [Ba]in situ were taken from ML model output and 273 

[Ba]predicted were subtracted from this to yield Ba* (Eq. 1). 274 

Values of Ωbarite were computed using the method described by Rushdi et al. (2000), summarized 275 

in Equation 3. The numerator, Q, represents the in situ Ba and sulfate ion product and, in this 276 

formulation, depends only on [Ba] and [SO42–] molality. The denominator, Ksp, depends on T, S, 277 

and z (i.e., pressure) and is calculated in two steps: in situ T and S are used to calculate the 278 

stoichiometric solubility product and then this value is modified by calculating the effect of 279 

pressure on partial molal volume and compressibility, which are functions of T and z. As with the 280 
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calculation of Ba*, values of [Ba]in situ were obtained from ML models and co-located data for T, 281 

S, and z were extracted from the WOA (Locarnini et al., 2018; Zweng et al., 2018). Sulfate 282 

concentrations were assumed to be conservative with respect to S using [SO42–] = 29.26 mmol kg–283 
1 when salinity = 35 PSU. This latter assumption likely breaks down in certain environments (e.g., 284 

where [SO42–] reduction occurs); as such, our model is not used to predict Ωbarite in restricted basins, 285 

such as the Black Sea or Caspian Sea. Given that our estimates of Ωbarite exhibit a MAE of 0.08 286 

(Appendix), we believe that values of Ωbarite between 0.92 and 1.08 are indicative of equilibrium 287 

between BaSO4 and seawater. 288 

Output from the most accurate ML models was then used to calculate mean [Ba] and Ωbarite for 289 

each basin, for a series of prescribed depth bins, and for the global ocean. This calculation was 290 

performed by weighting each cell in the model output by its volume, which ensures a fair 291 

comparison between any two points in the model output. We then subdivided the global ocean into 292 

five sub-basins: Arctic, Atlantic, Indian, Pacific, and Southern. Basin boundaries were defined as 293 

per Eakins & Sharman (2010), though we merged the Mediterranean and Baltic Seas into the 294 

Atlantic and considered the South China Sea as part of the Pacific Ocean. Neither [Ba] nor Ωbarite 295 

were simulated in the Black or Caspian Seas and thus these regions are not included in the global 296 

mean calculations. 297 

4. Results 298 

4.1. Factors affecting model accuracy 299 

Here we examine how model performance is influenced by the number and nature of features 300 

included during training. We consider model performance in terms of accuracy and 301 

generalizability, which we quantify using MAE (Eq. 4). We first explore how the number of 302 

features influences model performance (Fig. 3). Here we see that increasing the number of features 303 

generally improves the accuracy of trained models; however, the response differs depending on 304 

whether accuracy is calculated based on comparison to the holdout fold (i.e., during model 305 

training) or to the withheld Indian Ocean data (i.e., during model testing). When considering only 306 

the holdout fold, trained models predict [Ba] with a high level of accuracy—the mean, median, 307 

and most-accurate trained models achieve a MAE of 2.4, 1.7, and 1.3 nmol kg–1, respectively. 308 

Similarly, increasing the number of features almost always improves model accuracy; the MAE of 309 
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the most accurate model for a given number of features decreases from 6.5 to 1.3 nmol kg–1 as the 310 

number of features is increased from one to nine, at which point MAE plateaus between 1.4–1.5 311 

nmol kg–1 for models with 10–12 features (Fig. 3A).  312 

 

Figure 3. Effect of feature addition on ML model accuracy. Accuracy was quantified for each of the 313 
4,095 trained models and quantified here using MAE (note log scale, which differs between panels). The 314 
accuracy of trained models is shown for random holdout cross-validation during training (top) and for 315 
regional cross-validation during testing (bottom). Square indicates the performance of our favored predictor 316 
model, #3080 (see Fig. 4, Sect. 5.1). The accuracy of the Ba–Si linear regression benchmark is shown as 317 
a dashed line in the lower panel (MAE = 6.8 nmol kg–1). To illustrate data density, points have been 318 
randomly positioned within their respective bin and plotted with 80 % transparency. 319 
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Moving to the regional cross-validation, the overall performance of models is lower; the same 320 

4,095 trained models achieve a mean, median, and most-accurate MAE for the Indian Ocean 321 

dataset of 8.8, 7.9, and 4.0 nmol kg–1, respectively. For comparison, if [Ba] was estimated for these 322 

same 1,157 Indian Ocean samples using the linear [Ba]–[Si] relationship (Fig. 1) and ambient [Si] 323 

as the only predictor, this linear model would achieve a MAE of 6.8 nmol kg–1. Thus, there are 324 

1,687 ML models that achieve a superior accuracy to existing methods for estimating [Ba], 325 

offering an improvement of as much as 41 % (Fig. 4). However, regional cross-validation also 326 

shows that the addition of more features may, in fact, degrade model performance. The MAE of 327 

the most accurate model for a given number of features decreases from 6.6 to 4.0 nmol kg–1 as the 328 

number of features is increased from one to eight. As the number of features is increased from 9–329 

12, the MAE of the most-accurate models increases monotonically from 4.1 to 7.1 nmol kg–1. The 330 

overall lower performance of trained models during regional cross validation—and the observation 331 

that many of the feature-rich models perform worse than models with fewer features—is indicative 332 

of certain models being over-fit to the training data. Together, these observations suggest that the 333 

optimum number of features needed to accurately predict [Ba] is between six and nine.  334 

 

Figure 4. Comparison of existing and ML methods to estimate [Ba] in seawater. Left panel shows the 335 
performance benchmark: predicted [Ba] for the Indian Ocean testing data using the [Ba]–[Si] linear 336 
regression and ambient [Si] as the sole predictor. Right panel shows predicted [Ba] using ML model 3080, 337 
which improves on existing methods by more than 37 %. Perfect correspondence between predictions and 338 
observations is indicated b the dashed line marked ‘1:1.’Data locations and sources are shown in Fig. 2 339 
and Table 2, respectively; n refers to the number of testing data for each campaign. Mean Absolute Error 340 
(MAE; Eq. 4) and Mean Absolute Percentage Error (MAPE; Eq. 5) are noted for both models. 341 
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We also evaluated the nature of the predictors used to estimate [Ba]. The full factorial experiment 342 

design enables us to perform comparisons between all models that contained a certain feature and 343 

all of those that did not (Sect. 3.1). We quantified the effect of adding a feature by comparing the 344 

absolute and percentage change in MAE relative to the mean MAE of the two sets of models. This 345 

comparison was performed three times: for all 4,095 models based on the holdout cross-folded 346 

training data, for all models using the regionally cross-validated testing data, and again for the 347 

testing data, but only considering those 1,687 models that achieved a superior accuracy compared 348 

to the [Ba]–[Si] linear regression model (Table 3).  349 

 

Table 3. Feature addition analysis. Effect of each feature on model performance for Training and Testing 350 
datasets. Model performance is quantified using MAE, thus all columns have units of nmol kg–1 unless 351 
otherwise shown. The Testing analysis is further subdivided into a comparison of all models and ‘good’ 352 
models, meaning those that achieved superior accuracy than the Ba–Si linear regression (Fig. 1). 353 

 

This analysis yields three main results. When considering only the holdout cross-folded training 354 

data, the addition of any of the 12 features improves model performance by between –4.8 and –56 355 

%. Excepting longitude, similar across-the-board improvements were observed when considering 356 

only the testing data, though the improvements for most features were more modest (between –3.0 357 

and –39 %). If considering only the ‘good’ models, six features improved model performance by 358 

–2.4 and –8.3 % ([PO4], [NO3], T, [O2], z, and [Si]), five degraded model performance by +0.2 to 359 

+22 % (bathy., Chl. a, MLD, lat., and long.), and salinity had no significant effect (Table 3).  360 
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Overall, our results indicate that between six and nine features will result in an accurate and 361 

generalizable ML model of [Ba], and that [PO4], [NO3], T, [O2], z, [Si], and possibly S, are likely 362 

to be included as predictors in such a model. 363 

 

4.2. Model outputs 364 

Almost 1,700 models achieved superior accuracy compared to the Ba–Si linear regression 365 

benchmark of 6.8 nmol kg–1. We winnow this list to a single model, #3080, in the next section. 366 

We henceforth refer to model #3080 as our favored predictor model, which achieves a MAE of 367 

4.3 nmol kg–1 using z, T, S, [O2], [PO4], [NO3], and [Si] as predictors (Fig. 4). Model #3080 is used 368 

to simulate [Ba], Ba*, and Ωbarite on a global basis and to calculate whole-ocean averages. Surface 369 

plots showing the model outputs for the sea surface, 1,000 m, 2,000 m, and 4,000 m are shown in 370 

Figures 5, 6, 7, and 8, respectively.  371 

 

Figure 5. Barium at the sea surface. Observed [Ba] between 0–50 m (A); Model 3080 [Ba] (B), Ba* (C), 372 
and Ωbarite (D). The dashed line in Panel D indicates the BaSO4 saturation horizon (i.e., Ωbarite = 1.0). Panels 373 
A and B use the roma color map, whereas Panels C and D use vik and cork, respectively (Crameri, 2018). 374 
Color palettes and parameter ranges are the same for the respective panels in Figure 6–8.  375 
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Figure 6. Barium at 1,000 m. Observed [Ba] (A); Model 3080 [Ba] (B), Ba* (C), and Ωbarite (D). The dashed 376 
line in Panel D indicates the BaSO4 saturation horizon.  377 

 

 378 

Figure 7. Barium at 2,000 m. Observed [Ba] (A); Model 3080 [Ba] (B), Ba* (C), and Ωbarite (D). The dashed 379 
line in Panel D indicates the BaSO4 saturation horizon.  380 
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Figure 7. Barium at 4,000 m. Observed [Ba] (A); Model 3080 [Ba] (B), Ba* (C), and Ωbarite (D). The dashed 381 
line in Panel D indicates the BaSO4 saturation horizon.  382 

 

Model #3080 contains 3,302,570 predictions for each of [Ba], Ba*, and Ωbarite (Sect. 6). Assuming 383 

that the MAPE and MAE are good estimates of the prediction error, we estimate that modeled [Ba] 384 

and Ba* have uncertainties of 6.0 % and 4.3 nmol kg–1, respectively. Uncertainties on Ωbarite were 385 

estimated by comparison to literature data, which yields a MAE of 0.08. These estimates are 386 

discussed in more detail in Section 5.2 and the Appendix. 387 

Modeled [Ba] ranges from 26.2–156.8 nmol kg–1 and the data exhibit an unweighted mean of 72.0 388 

nmol kg–1. The range of model #3080 predictions is within the range of [Ba] encountered in the 389 

4,345 training data (17.1–159.8 nmol kg–1). This is an important consideration when assessing the 390 

accuracy of Gaussian Process Regression models, and we provide additional discussion of this 391 

point in the Supplement. Based on our formulation (Eqs. 1, 2), Ba* varies from –27.2 to +27.9 392 

nmol kg–1 and possesses an unweighted mean of +2.4 nmol kg–1. Values of Ωbarite vary from 0.11 393 

to 1.70 and exhibit an unweighted mean of 0.75. To account for the different volumes represented 394 

by each cell in the WOA grid, we constructed a volume-weighted mean of [Ba] and Ωbarite for the 395 

ocean as a whole, for each ocean basin, and for a series of prescribed depth bins (Fig. 9). Looking 396 

at the ocean as a whole, the probability density function of [Ba] roughly resembles a uniform 397 

distribution, with a mean ocean [Ba] of 89 nmol kg–1 (Fig. 9A). Within this mean is considerable 398 
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spatial and vertical variation. For example, the Arctic Ocean exhibits the lowest volume-weighted 399 

mean [Ba] of 54 nmol kg–1, whereas mean Pacific [Ba] = 106 nmol kg–1. The Indian Ocean exhibits 400 

a similar mean [Ba] (90 nmol kg–1) to the mean of the global ocean. Shallower than 1,000 m, [Ba] 401 

infrequently exceeds 100 nmol kg–1, whereas concentrations <45 nmol kg–1 are rare below 1,000 402 

m (Fig. 9B).  403 

The probability density function of volume-weighted Ωbarite is more similar to a normal 404 

distribution, albeit with a slight negative skew. Volume-weighted mean oceanic Ωbarite is 0.82. The 405 

Arctic, Atlantic, and Indian Oceans are, on average, undersaturated with respect to BaSO4, all 406 

exhibiting mean Ωbarite ≤0.82. In contrast, the Pacific and Southern Oceans are within uncertainty 407 

of saturation, with mean Ωbarite of 0.97 and 1.04, respectively (Fig. 9C). Values of Ωbarite <0.2 are 408 

mostly restricted to the upper 250 m, whilst values of Ωbarite exceeding 1.5 are exceptionally rare, 409 

found only in the upper 1,000 m of the Southern Ocean. Lastly, Ωbarite tends to increase between 410 

the 0–250 m, 250–1,000 m, and 1,000–2,000 m depth bins, increasing from 0.42, to 0.65, and 0.96, 411 

respectively. Average Ωbarite in the deepest bin (2,000–5,500 m) is slightly lower, with a mean 412 

value of 0.92 (Fig. 9D). Given the accuracy of our model-derived Ωbarite predictions (0.08 to 0.10), 413 

the ocean between 1,000–5,500 m is within uncertainty of BaSO4 equilibrium.  414 
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Figure 9. Stacked, volume-weighted histograms showing the relative frequency distribution of 415 
dissolved [Ba] (A, B) and Ωbarite (C, D) in the global ocean. The left column shows data grouped by basin 416 
and the right column shows data grouped by a prescribed depth bin. Numbers in each panel display the 417 
mean property value for that bin. Dashed line shows the global mean. 418 
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5. Discussion  419 

5.1. Identification of the optimal predictor model 420 

Choosing a single, optimal model configuration is challenging given the sheer number of skillful 421 

ML models. Below we winnow the list from 4,095 to a single model (#3080). We base our 422 

winnowing primarily on the results of the regional cross-validation performed in the Indian Ocean, 423 

rather than from the errors determined from random holdout cross folding of the training data. We 424 

believe that there are three strong reasons for winnowing in this way. First, Gaussian Process 425 

Regression Learners tend to fit the noise in the training data, meaning that the training error is 426 

significantly lower than the generalization error (Rasmussen & Williams, 2006). Indeed, trained 427 

models showed overall lower performance during testing compared to training, which we believe 428 

is evidence of overfitting (Fig. 3, Table 3). Second, a generalizable global model should be able to 429 

make predictions in regions where it has not already learned anything about the target variable. 430 

Our regional cross-validation approach satisfies this consideration since no Indian Ocean data were 431 

seen during model training. Third, the Indian Ocean is an ideal basin for testing as it exhibits the 432 

full diversity of features expected to influence [Ba] (riverine inputs, oxygen-minimum zones, 433 

coastal upwelling, etc.) and constitutes ≈20 % of the global ocean volume. Likewise, the Indian 434 

Ocean captures most of the range in [Ba] seen elsewhere in the ocean (Fig. 9); this likely reflects 435 

the input of Atlantic waters through the Aughulas leakage, transport of old Pacific waters via the 436 

Indonesian Throughflow, and northward spreading of mode and intermediate waters from the 437 

Southern Ocean. We thus assume that the Indian Ocean testing errors are a good approximation of 438 

the generalization error, which we now use to winnow the list of models. 439 

Our results show that 1,687 of the 4,095 ML models (41 %) produce more accurate predictions of 440 

[Ba] than the benchmark Ba–Si linear regression using [Si] as the sole predictor (Fig. 3, Table 3). 441 

We focus our winnowing on these 1,687 models as they are superior to existing methods for 442 

estimating [Ba] in seawater. Focusing only on these ‘good’ models reveals significant differences 443 

in the information content of the 12 features tested. For example, the inclusion of spatial 444 

information in the form of latitude and longitude significantly degrades mean model performance 445 

by between +4.0 and +22 %, respectively. While bathymetry, chlorophyll a, and mixed-layer depth 446 

exhibited only minor influences, they were nonetheless deleterious to mean model performance 447 

by between +0.2 to +0.5 % (Table 3). Only [PO4], [NO3], T, [O2], z, and [Si] consistently improved 448 
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the mean ML model, which corresponds to model #3112 (testing MAE of 4.3 nmol kg–1). 449 

However, visual inspection of model #3112 output reveals that it does not reproduce expected 450 

near-shore surface plumes of elevated [Ba] close to certain major rivers (see Supplement). Though 451 

volumetrically minor, riverine inputs are a geochemically important component of the marine Ba 452 

cycle, and the existence of nearshore Ba plumes underpins a major proxy application of Ba. Near-453 

shore riverine influence is easily discerned by low S; we thus explored output from model #3080, 454 

which is identical to model #3112, but includes S as a seventh feature during training. Models 455 

#3080 and #3112 exhibit identical statistical performance for the testing data (MAE = 4.3 nmol 456 

kg–1; Fig. S1) and make similar predictions for mean marine [Ba] and Ωbarite (89 nmol kg–1 and 457 

0.82, respectively; see Supplement). The similar performance of the two models is consistent with 458 

S exerting a near-negligible impact on overall model performance (Table 3). Despite this small 459 

effect, model #3080 is better able to reproduce riverine [Ba] plumes compared to model #3112 460 

(see Supplement). We therefore consider model #3080 to be our best estimate of marine [Ba]. 461 

Model #3080 achieves a MAPE of 6.0 %, which represents a 39 % improvement over existing 462 

methods to estimate [Ba] (Fig. 4). We henceforth consider model #3080 as our optimal predictor 463 

model, which we use to simulate [Ba], Ba*, and Ωbarite in Figures 5–9.  464 

 

5.2. Model validation  465 

We now explore the validity of model #3080 in terms of its oceanographic consistency, the sources 466 

of uncertainty that affect its accuracy, and potential limitations of the model output. We find that 467 

model #3080 reproduces the major known features of the marine [Ba] distribution and makes 468 

testable predictions for regions that are yet to be sampled.  469 

 

5.2.1. Visual inspection of model output 470 

Visual inspection of model output is an important component of data analysis considering the 471 

limits of statistical tests (see e.g., Anscombe, 1973). Models may produce statistically satisfactory 472 

fits to the testing data, but the oceanic realism of the output is also important to consider. Modeled 473 

[Ba] should display patterns consistent with related oceanographic properties and exhibit smooth 474 
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vertical and spatial variations (Boyle & Edmond, 1975). Predicted [Ba] from model #3080 does 475 

indeed show smooth and systematic spatial and vertical variations that also resembles sparse 476 

observations (Figs. 4–8).  477 

Model #3080 also shows systematic increases in [Ba] close to land, especially near the mouths of 478 

major rivers (Fig. 4). This is reassuring given that elevated sea-surface [Ba] close to rivers is both 479 

widely reported and one of the major proxy applications of Ba: reconstructing spatiotemporal 480 

patterns of terrestrial runoff by measuring the Ba:Ca ratio of carbonates (e.g., Sinclair & 481 

McCulloch, 2004; LaVigne et al., 2016). For example, model #3080 correctly identifies elevated 482 

[Ba] near the Ganges–Brahmaputra (Singh et al., 2013), Río de la Plata (GEOTRACES IDP 483 

Group, 2021), and Yangtze outflows (Cao et al., 2021). Model #3080 also predicts elevated sea-484 

surface [Ba] in the Gulf of Guinea where several rivers discharge, including the Niger River; the 485 

Eastern Tropical Atlantic associated with the Congo River (Edmond et al., 1978; Zhang et al., 486 

2023); and in the Gulf of St. Lawrence (St. Lawrence River; see Supplement for additional details 487 

and figures). Except for the Congo River, these predictions of elevated near-shore [Ba] await 488 

corroboration. Interestingly, model #3080 does not predict elevated [Ba] at all major river mouths; 489 

neither the Mississippi nor Amazon Rivers are associated with significant increases in sea-surface 490 

[Ba] (see Supplement). The reasons for the lack of elevated [Ba] near the outflow of these two 491 

rivers is less clear. It is possible that the model is simply inaccurate in these regions, though we 492 

have no particular reason to believe that this is the case. Alternatively, it may reflect seasonal 493 

variations in Ba release that are not captured by our mean annual model (e.g., Joung & Shiller, 494 

2014). It could also indicate that these particular rivers are not major net sources of Ba to the 495 

surface ocean, which might be the case if dissolved Ba is being retained in the catchment (e.g., 496 

Charbonnier et al., 2020) or estuary (e.g., Coffey et al., 1997).  497 

Overall, model #3080 makes accurate, oceanographically consistent predictions of [Ba] in the 498 

Indian Ocean using input data from the WOA. Model #3080 also makes a number of testable 499 

predictions of [Ba] in regions lacking direct observations. Given that these predictions were made 500 

using the same model and the same WOA inputs, we believe that it is reasonable to assume that 501 

model #3080 output is an accurate representation of mean annual global [Ba]. 502 
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5.2.2. Quantifying uncertainties 503 

We now describe and, where possible, quantify two possible sources of uncertainty to our ML 504 

model output. Before doing so, we describe how uncertainty is quantified as well as the uncertainty 505 

of existing approaches. Certain ML models, such as Gaussian Process Regression, offer low 506 

interpretability, meaning it is not possible to assess uncertainty using a conventional error 507 

propagation. Thus, all model uncertainties are assessed post hoc, by comparing predictions against 508 

observations. Our preferred metrics are MAE and MAPE (Eqs. 4, 5). Existing approaches for 509 

estimating [Ba] result in a wide range of uncertainties. At the low end, the uncertainty associated 510 

with measuring [Ba] in seawater represents a fundamental limit to the accuracy of any model. A 511 

number of analysts report measurement uncertainties in the range of 1–2 % (e.g., Pyle et al., 2018; 512 

Cao et al., 2020). This level of intra-laboratory uncertainty is typical for [Ba] data obtained using 513 

isotope dilution–inductively coupled plasma mass spectrometry, and applies to GEOTRACES-era 514 

datasets and to much of the training data from the Indian Ocean. However, intra-laboratory 515 

uncertainty is typically much smaller than inter-laboratory uncertainty, which is often between 6–516 

9 % (e.g., Hathorne et al., 2013). At the upper end, the benchmark Ba–Si linear regression achieves 517 

a MAPE of 9.7 % in the Indian Ocean (Fig. 4). Thus, useful ML models of [Ba] should achieve 518 

MAPE between 1–10 %. Indeed, our favored predictor model, #3080, achieves a MAPE of 6.0 %. 519 

Now we consider two factors that contribute to the observed 6.0 % uncertainty: realization 520 

uncertainty and uncertainties in the training data. The realization uncertainty stems from the fact 521 

that two models trained on the same training dataset—even with the exact same subset of model 522 

features—will produce slightly different predictions. This is due to the holdout cross-folding 523 

process used during model training, which partitions the training dataset into random subsets ( 524 

Sect. 3.1.). Thus, the training process results in a slightly different trained model each time the 525 

model is realized. We quantified the realization uncertainty by training select models 100 times 526 

and calculating the relative standard deviation of the different predictions of [Ba] for the 3.3 527 

million values in the output. This uncertainty is small; the median, mean, and maximum realization 528 

uncertainty was 0.03 %, 0.04 %, and 0.32 % variability in modeled [Ba].  529 

Next we consider uncertainties in the training data. As noted above, many labs report uncertainties 530 

on [Ba] measurements of 1–2 %, while inter-laboratory differences may be up to a factor of five 531 

larger. However, this does not consider any uncertainties associated with the other physical and 532 
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chemical features used to predict [Ba]. In general, these supporting measurement uncertainties 533 

should be small: all overboard sensors are regularly calibrated and biogeochemical properties in 534 

GEOTRACES are determined using established methods that are based on GO-SHIP best practices 535 

(Hood et al., 2010). Moreover, all GEOTRACES sections include crossover stations that are 536 

intended to facilitate intercalibration of all parameters, including those used here to predict [Ba] 537 

(Fig. 2; Cutter, 2013). The WOA, MLD, Chl. a, and bathymetry data products are similarly 538 

subjected to stringent quality review and so we consider it unlikely that these data contribute 539 

systematic biases. We believe that the most likely source of uncertainty relates to the fact that all 540 

predictor information used for model testing in the Indian Ocean was derived from time-averaged 541 

data products, whereas [Ba] was derived from in situ measurements. We made this decision 542 

because the in situ data were incomplete for all 12 core features (Table 1), and this would have 543 

necessitated interpolation for some features and not others. Since all models were tested using the 544 

same predictor information, the comparison process should avoid systematic errors, though this 545 

does not preclude temporal variability, described next. 546 

 

5.2.3. Other considerations 547 

We now consider four other factors that potentially contribute to the uncertainty of the model 548 

output: short- and long-term temporal variations, limitations of ML, and uncertainties regarding 549 

the thermodynamic properties of BaSO4. Short-timescale variability in [Ba] may affect how 550 

models were evaluated, though this effect is difficult to quantify. In principle, the trained models 551 

should be able to resolve seasonal variations in [Ba] since they were trained on in situ physical and 552 

chemical data. In contrast, model predictions in the Indian Ocean were made using annual average 553 

physical and chemical conditions and then evaluated by comparing these predictions against in 554 

situ [Ba]. The temporal mismatch between Indian Ocean observations and predictions is unlikely 555 

to be significant in the deep ocean, where seasonal variations are minor and the Ba residence time 556 

is longest (e.g., Hayes et al., 2018). Seasonal variations are, however, likely to matter more for the 557 

surface ocean. We were able to minimize some of the impact of these uncertainties by using long-558 

term averages of Chl. a and the maximum monthly mean MLD during model training and testing. 559 

Significant seasonal mismatches for other parameters are unavoidable given that [Ba] data are too 560 

sparse to develop a time-resolved model. We suspect that these variations are most likely to be 561 
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significant for boundary sources rather than biogeochemical cycling of Ba; significant 562 

biogeochemical drawdown of surface [Ba] over seasonal timescales appears to be rare (e.g., Esser 563 

& Volpe, 2002), whereas there are large seasonal variations in river discharge that impact near-564 

shore [Ba] (e.g., Samanta & Dalai, 2016). These suspicions could be tested using a model with 565 

better than 1×1° spatial resolution, which—in theory—is possible with model #3080, so long as 566 

similarly high-resolution data are provided for the six predictors utilized by this model (z, T, S, 567 

[O2], [PO4], [NO3], and [Si]). While it is challenging to precisely quantify seasonal uncertainties, 568 

we note that model #3080 performs well at low [Ba], which is found mostly near the surface, where 569 

seasonal variations should exhibit the largest effects. Likewise, seasonal variations will have only 570 

a minor effect on our calculations of global mean [Ba] or Ωbarite (Fig. 8).  571 

Long-term variability in [Ba] may also influence model performance, since the testing data from 572 

the Indian Ocean were collected between 1977 (GEOSECS) and 2008 (SS259; Fig. 2). If secular 573 

changes in Indian Ocean [Ba] were occurring, we might expect models to make accurate 574 

predictions for some datasets at the expense of others. In contrast, we note that model #3080 575 

reproduces all testing datasets similarly well, with the exception of a subset of samples from SS259 576 

in the deep Bay of Bengal. Here we observe that model #3080 predicts 18 % higher [Ba] than 577 

observed by Singh et al. (2013) for the 42 samples between 1,000–3,000 m (Figs. 4B; 7A, B). 578 

Interestingly, model #3080 correctly predicts [Ba] at nearby GEOSECS stations 445 and 446, also 579 

in the Bay of Bengal, sampled some 31 years prior to SS259. We briefly consider three possibilities 580 

for the origin of this regional model–data discrepancy. It may derive from the fact that model 581 

#3080 does not include the features needed to correctly predict [Ba] in these samples. We view 582 

this as the least likely possibility as model #3080 performs well for other samples from the northern 583 

Indian Ocean, including samples shallower than 1,000 m from Singh et al. (2013). Another 584 

possibility is that it could reflect an 18 % decrease in [Ba] in the deep Bay of Bengal since the 585 

GEOSECS survey in the 1970’s. Lastly, it could reflect differences in how in situ [Ba] was 586 

measured, noting that Singh et al. (2013) opted for standard addition instead of isotope dilution. 587 

We currently lack the data needed to confidently distinguish between these latter two possibilities. 588 

A third factor concerns the limitations of ML itself. We note that no trained model was able to 589 

achieve a MAPE better than ~6 %. This 6 % value may represent one of three things. First, it may 590 

point toward an intrinsic limitation of Gaussian Process Regression. Other types of ML, such as 591 
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Decision Trees or Artificial Neural Networks, may be able to achieve superior accuracy, though 592 

this was not investigated. Second, it may indicate that the 12 features investigated provide 593 

insufficient information about [Ba] to achieve higher accuracy. We view this as unlikely given that 594 

our earlier analysis showed that only six–nine features were needed to accurately simulate [Ba] 595 

and that the 12 features tested have proved useful in other studies simulating dissolved tracer 596 

distributions (e.g., Rafter et al., 2019; Sherwen et al., 2019; Roshan & DeVries, 2021). However, 597 

this does not rule out the existence of other features beyond the 12 that we tested that are more 598 

useful for predicting [Ba], only that we did not investigate them. Third, it is possible that the lowest 599 

MAPE of ~6 % reflects the current limit of inter-laboratory uncertainty in determining [Ba]. We 600 

note that inter-laboratory uncertainties of 6–9 % were reported for the measurement of Ba:Ca in 601 

carbonates (n = 10 labs; Hathorne et al., 2013). If the ~6 % MAPE derives from inter-laboratory 602 

uncertainty, it is unlikely that further model refinements will improve the accuracy of [Ba] 603 

predictions: the fundamental limitation is the data, not the model. 604 

A final source of uncertainty concerns the computation of Ωbarite, which contains two further 605 

sources of uncertainty: the thermodynamic model and the solubility coefficients used to calculate 606 

Ksp. We calculated Ωbarite based on the computation described by Rushdi et al. (2000), and our 607 

approach yields similar values to their study and several others (e.g., Jeandel et al., 1996; Monnin 608 

et al., 1999; see Appendix). The model used by Rushdi et al. (2000) is based on BaSO4 solubility 609 

data from Raju & Atkinson (1988), who note good agreement with the thermodynamic data of 610 

Blount (1977). These solubility data were obtained based on experimentation with lab-made, 611 

coarse-grained BaSO4, which is unlikely to be wholly representative of the microcrystalline BaSO4 612 

precipitates found in seawater. Thus, the absolute values of Ωbarite calculated here may be subject 613 

to eventual revision; however, the vertical (Fig. 1), spatial (Figs. 4–8), and whole-ocean (Fig. 9) 614 

trends in Ωbarite are robust. Should new thermodynamic data for marine-relevant micron-sized 615 

pelagic BaSO4 become available, updated maps of Ωbarite could be recalculated using model #3080-616 

derived [Ba] data. Given the nature of these uncertainties, we opted to calculate prediction 617 

uncertainties for Ωbarite empirically by comparison to literature data (see Appendix). This yields a 618 

value between 0.08 and 0.10, similar to the 10 % prediction error reported by Monnin et al. (1999). 619 
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5.3. Barium in seawater: A global perspective 620 

Here we provide an overview of the main model features in [Ba], Ba* and Ωbarite, then outline three 621 

possible applications of the model output.  622 

 

5.3.1. Dissolved distribution of [Ba] 623 

Model #3080 predictions show several interesting features in [Ba] (Figs. 5–8). The model 624 

reproduces the expected nutrient-like distribution of [Ba] (Fig. 1C) and shows a general increase 625 

in [Ba] along the Meridional Overturning Circulation: volume-weighted mean [Ba] increases from 626 

67 to 90 to 106 nmol kg–1 from the Atlantic to Indian to the Pacific Ocean, respectively. The model 627 

also predicts some variation in shallow [Ba] that follows major surface-water currents, such as a 628 

region of elevated [Ba] associated with the North Pacific Current, as well as low [Ba] in the western 629 

North Atlantic associated with the Gulf Stream (Fig. 5B; Talley et al., 2011). However, these 630 

features and the processes driving them await corroboration.  631 

Considering the ocean as a whole, we can use our model to calculate the total Ba inventory of 632 

seawater. Using the mean oceanic [Ba] of 89 nmol kg–1 and multiplying by the mass of seawater 633 

(1.37×1021 kg) yields a total inventory of 122±7 Tmol Ba, whereby the uncertainty is based on the 634 

MAPE of model #3080 (6.0 %). This estimate of the total oceanic Ba inventory is between 11–21 635 

% lower than existing estimates of 145 Tmol Ba (Dickens et al., 2003; Carter et al., 2020). Given 636 

the range of probable global marine Ba fluxes between 18 (Paytan & Kastner, 1996) and 44 Gmol 637 

Ba yr–1 (Rahman et al., 2022), our inventory estimate places the mean residence time of Ba in 638 

seawater between 2,600–7,200 years.  639 

 

5.3.2. The Ba–Si relationship  640 

We now quantify spatial and vertical variations in the Ba–Si relationship, which we explore using 641 

Ba*. Star tracers, such as Ba*, highlight the processes affecting the distribution of a tracer by 642 

comparing it to another tracer that shares the same circulation (Gruber & Sarmiento, 1997). The 643 

concept has since been extended to study the processes affecting the distributions of many other 644 

bioactive elements, including Si (Si*, relative to N; Sarimento et al., 2004), cadmium (Cd*, 645 
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relative to P; Baars et al., 2014), zinc (Zn*, relative to Si; Wyatt et al., 2014). First defined by 646 

Horner et al. (2015) for Ba, Ba* is analogous to other star tracers: it is a measure of Ba–Si 647 

decoupling whereby larger values indicate larger Ba–Si deviations relative to expected mean ocean 648 

behavior. Vertical or spatial differences in Ba and Si sources or sinks will drive variations in Ba*, 649 

as will any Ba:Si fractionation occurring during their combined cycling. Conversely, if all Ba and 650 

Si cycling occurs in the same places (and with a fixed Ba:Si ratio), no Ba–Si decoupling will occur 651 

and Ba* will exhibit conservative behavior. Since Ba and Si are cycled by different processes and 652 

there are large vertical and spatial variations in the intensity of these processes (e.g., Bishop, 1989), 653 

significant variations in Ba* are possible. We now explore these variations.  654 

In the surface ocean, patterns of Ba* generally resemble those of [Ba] (Fig. 4). In large parts of 655 

the ocean, surface [Si] approaches 0 µmol kg–1; thus, variations in Ba* derive mostly from 656 

variations in [Ba]. This is most evident when examining regions with significant terrestrial input 657 

of Ba, such as from major rivers (Sect. 5.2.1) and from rivers and continental shelves in the Arctic 658 

(e.g., Guay & Falkner, 1998; Whitmore et al., 2022; Fig. 5A). The Southern Ocean also exhibits 659 

positive Ba*, though we suspect the mechanism is different. Here we observe a belt of waters with 660 

positive Ba* ≈+20 nmol kg–1 centered on the Polar Frontal Zone—the region between the Antarctic 661 

Polar Front and the Subantarctic Front (Orsi et al., 1995; Fig. 5A). Silicic acid is intensely stripped 662 

from waters that transit northward through this region (e.g., Sarmiento et al., 2004), potentially 663 

contributing to elevated Ba* at the sea surface. Dissolved [Ba] and Ba* then decrease to the north 664 

of the Subantarctic front, partly driven by extensive particulate Ba formation in the frontal region 665 

(e.g., Bishop, 1989).  666 

At 1,000 m, the Atlantic, South Pacific, and southern Indian Oceans exhibit positive Ba* around 667 

+10 nmol kg–1, whereas the North Pacific, Southern, and northern Indian Oceans are negative 668 

between –10 to –20 nmol kg–1 (Fig. 6C). The positive anomalies are likely related to the northward 669 

spreading of southern-sourced intermediate waters that originate within the Polar Frontal Zone and 670 

carry positive Ba* into the low latitudes (e.g., Bates et al., 2017). In the Atlantic, these values are 671 

carried all the way to the north of the basin and return as North Atlantic Deep Water with only 672 

minor modifications to Ba* (≈+10 nmol kg–1; Figs. 6C, 7C, 8C). Negative Ba* in the North Pacific, 673 

Southern, and northern Indian Ocean at 1,000 m likely reflects a mixture of hydrographic processes 674 

and in situ processes. For example, the extensive region of negative Ba* in the North Pacific is 675 
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closely associated with North Pacific Intermediate Water, which originates in the Sea of Okhotsk 676 

(Talley, 1991). While the specific mechanism sustaining this particular Ba* feature is unknown, it 677 

most possibly reflects a combination of preferential removal of Ba relative to Si in the source water 678 

formation region (such as from particulate Ba formation) and weak vertical mixing in the 679 

subsurface North Pacific relative to lateral transports (e.g., Kawabe & Fujio, 2010). We suspect 680 

that the negative Ba* values seen above 1,000 m in the northern Indian Ocean originate through 681 

processes occurring internally within this basin, as the majority of the Indian Ocean below 1,000 682 

m exhibits positive Ba*. A possible mechanism for these shallow negative Ba* anomalies may 683 

relate to the relatively weak overturning transports (Talley, 2008) and strong particulate Ba cycle 684 

north of 30 °S (Singh et al., 2013), though this awaits more detailed investigation.  685 

Lastly, the Southern Ocean exhibits negative Ba* between –10 and –20 nmol kg–1 from ≈200 m 686 

water depth to the seafloor. These negative anomalies in Ba* appear to be associated with 687 

Circumpolar Deep Water and, below that, Antarctic Bottom Water; the influence of the latter can 688 

also be seen in near-bottom negative Ba* in the South Pacific, southern Indian, and South Atlantic 689 

Oceans (Fig. 8C). As with the other basins, the origin of the negative Ba* waters in the Southern 690 

Ocean likely reflects a combination of in situ and circulation-related phenomena. For example, in 691 

the Southern Ocean, Si is only stripped at the very surface, whereas particulate Ba formation is 692 

thought to be greatest in the mesopelagic (i.e., between 200–1,000 m; e.g., Stroobants et al. 1991). 693 

Barite formation is generally considered to be related to the regeneration of particulate organic 694 

matter (e.g., Chow & Goldberg, 1960), whereby the former consumes Ba and the latter releases 695 

Si. Thus, intense organic matter remineralization and associated pelagic BaSO4 precipitation could 696 

contribute to negative Ba* in the mesopelagic Southern Ocean. Similarly, the Si cycle in the 697 

Southern Ocean tends to ‘trap’ a significant fraction of the global Si inventory in the waters 698 

circulating close to Antartica (e.g., Holzer et al., 2014). Since the calculation of Ba* depends on 699 

both [Ba] and [Si], waters with elevated [Si] will exhibit lower Ba* whether or not there is elevated 700 

Ba removal.  701 

By 2,000 m, almost all of the ocean north of 50 °S exhibits positive Ba* (Fig. 7C). By 4,000 m, 702 

the areal extent of the positive-Ba* waters shrinks to encompass the area north of 30 °S (Fig. 8C). 703 

Despite covering a smaller area, the abyssal ocean exhibits the most positive Ba* values outside 704 

of the surface of the Southern Ocean. The reasons for elevated and increasing Ba* between the 705 
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deep and abyssal oceans likely reflects a mixture of local and regional processes, and we offer two 706 

speculative explanations for these patterns. First, Si trapping in the Southern Ocean potentially 707 

renders most of the deep ocean away from Antarctica deficient in Si relative to Ba. Thus, much of 708 

the ocean may exhibit more positive Ba* than the deep circum-Antarctic region due to processes 709 

unrelated to Ba cycling. Second, the most positive Ba* values are generally found close to the 710 

seafloor, rather than the mid-depths, especially in the North Pacific, the Peru and Chile Basins, 711 

and the Philippine Sea. This may indicate a mechanism that preferentially removes Ba (relative to 712 

Si) from the mid-depths, or input of Ba (relative to Si) close to the seafloor. 713 

Systematic variations in Ba* arise due to differences in the marine biogeochemical cycles of Ba 714 

and Si. While, in some cases, the specific drivers of these variations remains unresolved, our model 715 

identifies multiple hotspots of Ba–Si decoupling that warrant additional study. 716 

 

5.3.3. Barite saturation state of seawater 717 

Here we show that our approach can predict Ωbarite with an MAE of 0.08, that our output is in 718 

agreement with published values, and that the deep ocean, below 1,000 m, is at saturation with 719 

respect to BaSO4. By comparison to literature data, we estimate that our model achieves a typical 720 

prediction uncertainty on Ωbarite of 0.08 (see Appendix). Accordingly, values of Ωbarite between 721 

0.92–1.08 can be considered as ‘BaSO4 saturated,’ whereas values of Ωbarite <0.92 or >1.08 indicate 722 

under- or super-saturation, respectively. Global patterns in Ωbarite derived using our model are 723 

similar to those reported by Monnin et al. (1999) and Rushdi et al. (2000). Readers looking for 724 

detailed basin-by-basin descriptions of Ωbarite are directed to those studies. Briefly our model shows 725 

that, excepting the high latitudes, the surface ocean is undersaturated with respect to BaSO4 (i.e., 726 

Ωbarite <0.92). The lowest values of Ωbarite in the open ocean are observed in the hot, salty cores of 727 

the Subtropical Gyres (Ωbarite between 0.1–0.2; Fig. 5D). Conversely, the cold and fresh polar 728 

regions exhibit supersaturation at the sea surface, though there are important differences between 729 

the Southern and Arctic Oceans. The Southern Ocean exhibits BaSO4 saturation to depths around 730 

2,000 m, whereas the Arctic Ocean switches to undersaturated conditions below the halocline 731 

(~250 m). At 1,000 m, most of the North Pacific achieves saturation (or slight supersaturation) 732 

with respect to BaSO4 (Fig. 6D) and at 2,000 m almost all of the ocean exhibits Ωbarite >0.92. The 733 
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main exceptions to this are the Atlantic Ocean, which is undersaturated at all depths, and the 734 

southern Indian Ocean between 35–50 °S (Fig. 7D). The South Pacific and Indian Oceans return 735 

to undersaturated conditions by 4,000 m, whereas parts of the North Pacific remain saturated to 736 

the seafloor (Fig. 8D). From a global perspective, the oceans are slightly undersaturated with 737 

respect to BaSO4: volume-weighted mean Ωbarite = 0.82; however, the ocean between 1,000–5,500 738 

m exhibits Ωbarite ≥0.92 (Fig. 9). This result implies that the deep ocean, as a whole, is close to 739 

chemical equilibrium with respect to BaSO4.  740 

 

5.3.4. Model applications 741 

In the spirit of maximizing model utility, we suggest three possible uses for model #3080 outputs. 742 

First, the outputs can be used for model intercomparison and intercalibration. For example, a 743 

number of statistical models, such as Optimum Multiparameter Optimization, have been 744 

successfully used to study Ba cycling in the North Atlantic (Le Roy et al., 2018; Rahman et al., 745 

2022), Southeast Pacific (Rahman et al., 2022), and Mediterranean Sea (Jullion et al., 2017). These 746 

models can apportion the relative contributions of in situ biogeochemical cycling and conservative 747 

mixing to observed [Ba]; however, accurate quantification of these processes requires a priori 748 

knowledge of end-member water mass [Ba], which model #3080 can provide. Our model could 749 

also be used to benchmark output from process-based models, such as Ocean Circulation Inverse 750 

Models (e.g., John et al., 2020; Roshan & DeVries, 2021). Second, the output can be used for 751 

interpolation purposes. Many groups investigated Ba partitioning into various types of marine 752 

carbonates (see Sect. 1 for examples); however, these investigations are sometimes performed 753 

without a co-located measurement of [Ba]. In these cases output from model #3080 could be used 754 

to help calibrate specific substrates, such as deep-sea corals or benthic forams. This also avoids 755 

the potential for circular reasoning whereby [Si] is used to estimate [Ba], which is then 756 

reconstructed from the Ba:Ca ratio of carbonates to estimate [Si]. Third, the model output makes 757 

testable predictions for regions of the ocean that have yet to be sampled by GEOTRACES-style 758 

surveys. Several of these regions, such as the Southern Ocean, exhibit with sharp lateral and 759 

vertical gradients in [Ba], Ba*, and Ωbarite. Such gradients should be considered prime targets for 760 

future process-oriented studies of marine Ba cycling. 761 
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6. Data availability 762 

Data described in this manuscript can be accessed at the Biological and Chemical Oceanography 763 

Data Management Office under data doi:10.26008/1912/bco-dmo.885506.2 (Horner & Mete, 764 

2023). 765 

 

7. Conclusions 766 

This study presents a spatially and vertically resolved global model of [Ba] determined using 767 

Gaussian Process Regression machine learning. The model reproduces several known features of 768 

the marine [Ba] distribution and makes testable predictions in regions that are yet to be sampled. 769 

Analysis of the model output reveals the mean oceanic [Ba] is 89 nmol kg–1, implying a total 770 

marine Ba inventory of 122±7 Tmol. Using predictors from the World Ocean Atlas, we also 771 

estimate the global distribution of Ba* and Ωbarite. Both properties exhibit significant gradients that 772 

can be systematically investigated in future studies. The mean oceanic Ωbarite is 0.82, though 773 

between 1,000–5,500 m the mean is ≥0.92, implying that the deep ocean is at equilibrium with 774 

respect to BaSO4. Our model output should prove valuable in studies of Ba biogeochemistry, 775 

specifically for statistical- and process-based model validation, calibrating sedimentary archives, 776 

and for identifying promising regions for further study. More broadly, our study demonstrates the 777 

utility of using machine learning to accurately simulate the distributions of trace elements in 778 

seawater. With minor adjustments, our approach could be employed to make predictions for other 779 

dissolved tracers in the sea.   780 
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Appendix 781 

Here we compare our results with published profiles of Ωbarite. Our results were calculated using 782 

the thermodynamic model of Rusdi et al. (2000), model #3080 [Ba], and WOA T, S, and pressure. 783 

Literature profiles of Ωbarite were calculated using one of three different thermodynamic models 784 

and in situ observations of [Ba], T, S, and pressure. In general, there is strong agreement between 785 

modeled and in situ Ωbarite whereby our model reproduces the shape of published profiles (Fig. 786 

A1). There are, however, some small systematic offsets between the various approaches, and we 787 

suspect that these derive from differences in the underlying thermodynamic models.  788 

 789 

Figure A1. Comparison of literature- (symbols) and Model #3080-derived (dashed line) values of 790 
Ωbarite. Panels A and B show profiles of Ωbarite at GEOSECS St. 89 (60°0’ S, 0°2’ E). The other panels are 791 
from the Indian Ocean: C and D are from INDIGO 2 St. 36 (6°9’ S, 50°55’ E) and E!"#$%!&'()'*)!)+,!792 

-./!0/123!)4!5/1553!'64!7$%8!9:;5!<%!=$#+>!$"!?@A?&(!.!)+,!2:,  793 
 

We compare our model output with literature data Ωbarite at two locations in two basins (Fig. A1). 794 

These locations were chosen to ensure a fair comparison between studies; at each location, at least 795 

two studies calculated profiles of Ωbarite using the same underlying in situ data for [Ba], T, S, and 796 

pressure. Thus, any differences in modeled Ωbarite should derive from the thermodynamic model 797 

and not the input data. Likewise, literature profiles at these locations were based on calculations 798 

for pure, rather than strontian, BaSO4, as in our study. Published profiles of Ωbarite were extracted 799 

graphically from each study using WebPlotDigitizer (Rohatgi, 2022). This extraction process may 800 
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introduce some minor scatter in the literature data, though this is relatively minor compared to the 801 

range of variation in Ωbarite. 802 

First, we examine profiles of Ωbarite reported for GEOSECS St. 89 in the Southern Ocean (Fig. A1; 803 

Monnin et al., 1999; Rushdi et al., 2000). Modeled and published profiles show supersaturation in 804 

the surface ocean and undersaturation below 2,000–2,500 m. Profiles from Rushdi et al. (2000) 805 

show excellent agreement with Ωbarite calculated from model #3080 [Ba] and WOA T, S, and 806 

pressure, with our output offset by a MAE of 0.06 (n = 22). Given that we use the same 807 

thermodynamic model as Rushdi et al. (2000), the overall excellent agreement with their study is 808 

not surprising. However, the result is nonetheless reassuring since our study uses mean annual 809 

values for the various inputs, whereas Rushdi et al. (2000) utilized in situ data. There is a slightly 810 

larger offset between our profile of Ωbarite and that calculated by Monnin et al. (1999), with our 811 

respective profile exhibiting an MAE of 0.13 (n = 41). This most likely reflects differences in the 812 

underlying thermodynamic model and not the in situ data since our model reproduces the same 813 

overall profile shape as Monnin et al. (1999). Likewise, both Monnin et al. (1999) and Rushdi et 814 

al. (2000) used the same in situ input data and their results are highly comparable, albeit with an 815 

offset similar to that between our results and Monnin et al. (1999). 816 

Next we examine profiles of Ωbarite in the Indian Ocean for samples from INDIGO 2 St. 36 (Fig. 817 

A1; Jeandel et al., 1996; Rushdi et al., 2000). Profiles of Ωbarite show undersaturation at the surface, 818 

moderate supersaturation between 2,000–3,500 m, then return to undersaturated conditions down 819 

to the seafloor. Our profile shows overall excellent agreement with that of Jeandel et al. (1996), 820 

whereby a comparison of Ωbarite yields a MAE of of 0.03 (n = 21). Our profile shows similarly 821 

good agreement with Rushdi et al. (2000), whereby a comparison between our respective values 822 

of Ωbarite yields a MAE of 0.04 (n = 20).  823 

We also compared our results with data from St. 420 of GEOSECS (Monnin et al., 1999), which 824 

is located ≈675 km north of INDIGO 2 St. 36 (Fig. 2). As with data from the Southern Ocean 825 

(GEOSECS St. 89), our profile data are offset to higher Ωbarite than those of Monnin et al. (1999), 826 

with slightly larger MAE of 0.16 (n = 29). However, our modeled Ωbarite is generally in much closer 827 

agreement with Monnin et al. (1999) above 1,100 m than below, equivalent to a MAE of 0.04 (n 828 

= 8) and 0.21 (n = 21), respectively. In this case it is more challenging to ascribe a unique cause 829 
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of the differences in calculated Ωbarite; these offsets could relate to differences in the predictors or 830 

the thermodynamic model.  831 

We can use these comparisons to estimate the prediction uncertainty on our model-derived values 832 

of Ωbarite. The MAE of the 133 comparisons shown in Fig. A1 yields a value of 0.10. However, 833 

there are different numbers of points in each profile; we thus believe it is more appropriate to 834 

average the MAE calculated for each of the five profiles, which yields a value of 0.08. Both values 835 

are similar to the 10 % prediction uncertainty reported by Monnin et al. (1999).  836 

Overall, our ML-derived profiles of Ωbarite show excellent agreement with in situ data, both in 837 

terms of profile shape and values of Ωbarite. We use this comparison to estimate the prediction 838 

uncertainty on ML-derived values of Ωbarite, which we calculate as being between 0.08 and 0.10. 839 

Should a revised thermodynamic model and/or improved BaSO4 solubility coefficients become 840 

available, a new grid of Ωbarite could be calculated using Model #3080 [Ba] and WOA T, S, and 841 

pressure data. 842 
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