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Abstract 
Barium is widely used as a proxy for dissolved nutrientssilicon and particulate organic carbon 
fluxes in seawater. However, these proxy applications are limited by insufficient knowledge of the 
dissolved distribution of Ba ([Ba]). For example, there is significant spatial variability in the Ba–
Sibarium–silicon relationship, and ocean chemistry may influence sedimentary Ba preservation. 
To help address these issues, we developed 4,095 models for predicting [Ba] using Gaussian 
Progress Regression Machine Learning. These models were trained to predict [Ba] from standard 
oceanographic observations using GEOTRACES data from the Arctic, Atlantic, Pacific, and 
Southern Oceans. Trained models were then validated by comparing predictions against withheld 
[Ba] data from the Indian Ocean. We find that a model trained using depth, T, S, [O2], 
[PO4],temperature, salinity, as well as dissolved dioxygen, phosphate, nitrate, and [NO3] as 
predictorssilicate can accurately predict [Ba] in the Indian Ocean with a mean absolute percentage 
deviation of 6.30 %. We use this model to simulate [Ba] on a global basis using these same 
sixseven predictors in the World Ocean Atlas. The resulting [Ba] distribution constrains the total 
Ba budget of the ocean to 122±8 ×(±7)×1012 mol and clarifiesreveals systematic variability in the 
globalbarium–silicon relationship between dissolved Ba and Si.. We also calculate the saturation 
state of seawater with respect to barite,. In addition to revealing systematic spatial and vertical 
variations, our results show that the ocean below 1,000 m is, on average, at or near 
saturationequilibrium with respect to barite. We describe a number of possible applications for our 
model output, ranging from use in biogeochemical models to paleoproxy calibration. Our approach 
could be extended to other trace elements with relatively minor adjustments and demonstrates the 
utility of machine learning to accurately simulate the distributions of tracers in the sea and provides 
a framework that could be extended to other trace elements. 
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1. Introduction 

Barium (Ba) is a Group II trace metal that is widely applied in studies of modern and ancient 

marine biogeochemistry, despite lacking a recognized biochemical function (e.g., Horner & 

Crockford, 2021). These applications of Ba are based on two empirical correlations relating to its 

dissolved and particulate cycles. The first correlation relates to the dissolved concentration of Ba, 

hereafter [Ba], which is strongly correlated with that of the algal nutrient silicon (Si; as dissolved 

silicic acid; Fig. 1; Chan et al., 1977). Unlike [Si], ambient [Ba] concentrations are faithfully 

recorded by a number of marine carbonates, such as planktonic (e.g., Hönisch et al., 2011) and 

benthic foraminifera (e.g., Lea & Boyle, 1990), surface- (e.g., Gonneea et al., 2017) and deep-sea 

corals (e.g., Anagnostou et al., 2011; LaVigne et al., 2011), and mollusks (e.g., Komagoe et al., 

2018). Preservation of these signals means that the Ba content of carbonates can be related to the 

Ba content of seawater and, by extension, that of Si. Accordingly, the Ba–Si proxy has been applied 

to understand ocean nutrient dynamics on decadal (e.g., Lea et al., 1989) to millennial timescales 

(e.g., Stewart et al., 2021).  

The nutrient-like distribution of dissolved Ba in seawater is thought to be sustained by the second 

empirical correlation, relating to cycling of particulate Ba. Particulate Ba in seawater occurs mostly 

in the form of discrete, micron-sized crystals of the mineral barite (BaSO4(s), barium sulfate; e.g., 

Dehairs et al., 1980; Stroobants et al., 1991). Pelagic BaSO4 is an ubiquitous component of marine 

particulate matter (e.g., Light & Norris, 2021) and constitutes the principal removal flux of 

dissolved Ba from seawater (Paytan & Kastner, 1996). Pelagic BaSO4 is thought to precipitate 

within ephemeral particle-associated microenvironments that develop during the microbial 

oxidation of sinking organic matter (e.g., Chow & Goldberg, 1960; Bishop, 1988). The flux of 

particulate BaSO4 to the seafloor is correlated with the flux of exported organic matter (e.g., 

Dymond et al., 1992; Eagle et al., 2003; Serno et al., 2014; Hayes et al., 2021). This correlation 

means that the accumulation rate of sedimentary BaSO4—or its main constituent, Ba—can be used 

to trace patterns of past organic matter export on timescales ranging from millenia to millions of 

years (e.g., Bains et al., 2000; Paytan & Griffith, 2007; Schmitz, 1987; Schroeder et al., 1997). 
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Figure 1. Distribution of barium in seawater. A. Property–property plot showing the 4,345 co-located, 
core-feature complete dissolved data used in ML model training (Sect. 2). Sample locations shown in Figure 
2. Dashed line shows best-fit linear regression through these data, whereby [Ba] = 0.54·[Si] + 39.3. Panels 
B., C., D., and E. show average Pacific Ocean dissolved depth profiles of [Si], [Ba], Ba*, and Ωbarite, 
respectively. Solid line denotes the arithmetic mean and the shaded region encompasses one standard 
deviation either side of the mean. Dashed line indicates Ba* = 0 (D) and Ωbarite = 1 (E). 

 

While the Ba-based proxies are valuable, their applications are potentially limited by insufficient 

knowledge of the distribution of [Ba]. For example, there is significant vertical and spatial 

variability in the Ba–Si relationship (Sect. 3.3.; Fig.),. 1), which we quantify using Ba* (barium-

star; e.g., Horner et al., 2015): 

 Ba* = [Ba]in situ – [Ba]predicted        [Eq. 1] 

where [Ba]predicted is based on the Ba–Si linear regression (Fig. 1): 

 [Ba]predicted = 0.54·[Si]in situ + 39.3       [Eq. 2] 

Here, [Si]in situ has units of µmol kg–1 and [Ba]predicted nmol kg–1; therefore, Ba* also has units of 

nmol kg–1. The vertical profile of Ba* is rarely conservative (Fig. 11D) and these variations could 

introduce uncertainty in the reconstruction of [Si] using Ba. 

The relationship between sedimentary BaSO4 accumulation rates and productivity also contains a 

significant degree of scatter (e.g., Serno et al., 2014; Hayes et al., 2021). Some of this scatter may 

relate to variability in BaSO4 preservation, which is at least partially sensitive to ambient saturation 
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state, Ωbarite (e.g., Schenau et al., 2001; Singh et al., 2020; Fig. 1). The saturation state of a parcel 

of water with respect to BaSO4 is defined as: 

 Ωbarite = Q / Ksp         [Eq. 3] 

where Q is the Ba and sulfate ion product and Ksp is the in situ BaSO4 solubility product. Discerning 

the importance of Ωbarite on BaSO4 preservation has hitherto been challenging owing to the sparsity 

of in situ [Ba] measurements. Accurately determining the global distribution of [Ba] would be 

valuable for geochemists and oceanographers, and would enable a more thorough investigation of 

the effects of preservation on BaSO4 fluxes and refinement of the Ba–Si nutrient proxy. 

A powerful way of interrogating oceanic element distributions is through modeling. Broadly, there 

are two modeling approaches relevant for simulating [Ba]: mechanistic (i.e., theory driven) and 

statistical modeling (i.e., data driven; e.g., Glover et al., 2011). MechanisticIn mechanistic or 

process-based modeling is generally viewed as the gold-standard approach;, model outputs are 

derived from sets of underlying equations that are based on fundamental theory. As such, 

mechanistic model outputs can be interrogated to obtain understanding of processes and their 

sensitivities. However, creating a mechanistic model of the marine Ba cycle requires embedding a 

biogeochemical model of BaSO4 cycling within a computationally expensive global circulation 

model. Although the computational cost associated with building mechanistic models has been 

reduced by the development of ocean circulation inverse models (e.g., DeVries, 2014; John et al., 

2020), this approach still requires detailed parametrizations of the marine Ba cycle, which do not 

currently exist. In contrast, statistical models are based on extracting patterns from existing data 

and using those relationships to make predictions. Statistical models encompass a wide variety of 

approaches ranging from regression analysis to machine learning (ML). Of particular interest to 

our study are ML models, which can make predictions without any explicit parameterizations of 

causal relationships. Machine learning models are computationally efficient and can be highly 

accurate, though they offer limited interpretability. Machine learning is increasingly being used to 

solve problems in Earth and environmental sciences, including simulating the dissolved 

distribution of tracers in the sea (e.g., for cadmium, Roshan & DeVries, 2021; copper, Roshan et 

al., 2020; iodine, Sherwen et al. 2019; nitrogen isotopes of nitrate, Rafter et al., 20192019; and 

zinc, Roshan et al., 2018).  
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The goal of this study is to obtain an accurate simulation of [Ba], which ML makes possible even 

in the absence of a process-level understanding of the marine Ba cycle. We tested thousands of 

ML models that were trained using quality-controlled GEOTRACES data from the Arctic, 

Atlantic, Pacific, and Southern Oceans, supplemented by Argo, satellite chlorophyll, and 

bathymetry data products (Sect. 2.). Models were tested for their accuracy by simulating [Ba] in 

the Indian Ocean and comparing predictions against observations made between 1977–2013. 

Importantly,Since no Indian Ocean data were seen by any of the models during training (Sect. 2.). 

From this, we are able to identify models with high generalization performance (Sect. 2.). theWe 

then identify an optimal set of predictor variables that results in the most accurate estimates of 

[Ba],, calculate model uncertainties, and simulate [Ba], Ba*, and Ωbarite on a global basis (Sect. 5.). 

This result will be valuable for researchers interested in marine Ba cycling, and demonstrates the 

utility of ML to tackle problems in marine biogeochemistry.  

 

2. Training and testing data  

Machine learning algorithms are adept at making accurate predictions of a target variable by 

identifying relationships between variables within large data sets. However, making accurate 

predictions first requires that a ML algorithm is trained on existing observations of that variable 

alongside a number of other parameters. These other parameters, hereafter termed features, are an 

important part of model training; features should encode information that may help the ML 

algorithm predict [Ba], otherwise their inclusion may diminish model performance. Features 

should also be well characterized in the global ocean, which allows ML models to make predictions 

in regions beyond the initial training dataset. We selected 12 model features by considering the 

tradeoff between feature availability and presumed predictive power (Table 1). While testing more 

features may have resulted in a more accurate final model, we found that many observations of 

[Ba] did not have corresponding data for severalmultiple features. Thus; thus, including more 

features would have meant fewer training data. In subsequent sectionsMoreover, we find that only 

4–7including more than nine features are needed to accurately predict [Ba].can actually diminish 

model performance. As such, we did not evaluate the predictive power of other predictorsfeatures 

beyond the initial feature set. 12 initially selected. 
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Table 1. List of oceanographic parameters chosenselected as model features. The features tested 

were selected based on their presumed predictive power and geospatial coverage. 

# Parameter Name Abbreviation Units Coverage* 

1 Latitude Lat. degrees north (°N) – 

2 Longitude Long. degrees east (°E) – 

3 Sample collection depth z meters (m) – 

4 Temperature T degrees Celsius (°C) 97.44% 

5 Salinity S unitless, but often written 
in ‘units’ of PSU or PSS 

97.44% 

6 Dissolved oxygen [O2] µmol kg−1 97.44% 

7 Dissolved nitrate [NO3−] µmol kg−1 97.44% 

8 Dissolved phosphate [PO43−]PO4] µmol kg−1 97.44% 

9 Dissolved silicon (as silicic acid) [Si(OH)4] µmol kg−1 97.44% 

10 Maximum monthly mean mixed-layer depth MLD meters (m) 88.20% 

11 Mean average annual surface chlorophyll Chl. a mg m-3 93.95% 

12 Bathymetry Bathy. meters (m) 100% 

*Coverage values represent the percentage of data points within the World Ocean Atlas 2018 grid that have 

available data for a given parameter. Latitude, longitude, and depth have 100 % coverage as these features define 

the grid itself.  

The 12 features used to predict [Ba] and their associated data sources are summarized in Table 1 

and described below. The first three features (latitude, longitude, depth) record geospatial 

information that defines the location of an observation in three-dimensional space. To avoid 

numerical discontinuities, latitude and longitude were introduced into the model as a 

hyperparameter consisting of the cosine and sine of their respective values (in radians). Data for 

features 1–3 were included in the sample metadata. Features 4–9 encode physical (temperature, 

salinity) and chemical (oxygen, nutrients) information that is routinely measured alongside [Ba]. 

These data were generally available for the same bottle as the [Ba] measurements; however, when 
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that was not the case, nutrient data were taken from the corresponding location during a separate 

cast, or, in the case of oxygen, from linearly interpolated sensor data. The final three features are 

independent of depth, meaning that all samples within a given vertical profile exhibit the same 

value for MLD (mixed-layer depth), sea-surface chlorophyll a, and bathymetry. Features 10–12 

were drawn from several data sources. A climatology of MLD (feature 10) was compiled using 

the Argo database (Holte et al., 2017). We selected maximum monthly mean MLD as the feature 

of interest, as this appears to be the spatiotemporal scale most relevant for influencing [Ba] 

distributions (Bates et al., 2017). Feature 11 represents a blended SeaWiFS and MODIS 

climatology of chlorophyll a that was obtained from the Copernicus Marine Environment 

Monitoring Service (CMEMS, 2021). We calculated the mean annual chlorophyll a for each grid 

cell in the data product and log transformed the data to reduce parameter weighting (e.g., Rafter et 

al., 2019). Data for MLD and chlorophyll a were extracted at the location of [Ba] observations 

using nearest-neighbor interpolation and their values logged in the master record. Bathymetric 

information (feature 12) was extracted from one of two sources. Our preferred source was the 

sample metadata, which generally included a value for bathymetry. For samples lacking 

bathymetric information, we used nearest-neighbor interpolation to extract a value from the 

ETOPO5 Global Relief Model (National Geophysical Data Center, 1993). Occasionally, the 

ETOPO5-extracted bathymetry was shallower than the deepest observation of [Ba] in a given 

vertical profile. In such cases, the bathymetry logged in the master record was set to 1.01 times the 

depth of the deepest observation in that profile. 

The [Ba] data from the Indian Ocean were collected from a multitude ofseveral, primarily pre-

GEOTRACES sources (Table 2). As such, these data were generally incomplete for the 12 features 

used to train the ML models. Rather than using a mixture of in situ and interpolated data, we 

decided to interpolate all Indian Ocean data for parameters 4–12. Data for parameters 4–9 were 

linearly interpolated from the nearest vertical profile in the World Ocean Atlas 2018 (WOA; Boyer 

et al., 2018; García et al., 2018a; 2018b; Locarnini et al., 2018; Zweng et al., 2018) and values for 

MLD and chlorophyll a were extracted from the aforementioned data products using nearest-

neighbor interpolation. Bathymetric information was obtained from either the WOA or ETOPO5. 

For the vast majority of most samples, bathymetry was taken as the arithmetic mean of the 

maximum depth of the nearest vertical profile in the WOA and the depth at the standard level 

below. For example, if the maximum depth at a station was 950 m, the bathymetry was recorded 
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as 975 m, which is the mean of levels 46 (950 m) and 47 (1,000 m). For profiles with a maximum 

depth of 5,500 m—level 102, the lowest in the WOA—bathymetry was recorded as either 5,550 

m or the nearest-neighbor interpolated value from ETOPO5, whichever was deeper. 

Table 2. Data sources. Information regarding the source of [Ba] incorporated into the master record. 

Purpose  Region Expedition 
ID Data source Data Originators 

(if unpublished) 

 
 
 
 

Model 
training 

 
 
 
 
 
 
 

South Atlantic 
(Meridional) GA02 GEOTRACES IDP 2017 

(Schlitzer et al., 2018) Jose M. Godoy 

North Atlantic (Zonal) GA03 Rahman et al., 2022 

South Atlantic (Zonal) GA10 Horner et al., 2015; Bates et al., 2017; Hsieh & 
Henderson, 2017; Bridgestock et al., 2018 

Southern Ocean 
(Meridional) GIPY04 GEOTRACES IDP 2017 

(Schlitzer et al., 2018) Frank Dehairs 

Southern Ocean (Zonal) GIPY05 Hoppema et al., 2010 

Arctic 
GIPY11 Roeske et al., 2012 

GN01 Whitmore et al., 2022 

Pacific (Meridional) GP15 
GEOTRACES IDP 2021 

(GEOTRACES IDP 
Group, 2021) 

Laura Whitmore, Melissa 
Gilbert, Emilie Le Roy, 

Tristan Horner, Alan Shiller 

Subtropical South 
Pacific (Zonal) GP16 Rahman et al., 2022 

Model 
validation

testing 
 

Indian Ocean 

GEOSECS Craig & Turekian (1980) 

INDIGO 1 

Jeandel et al. (1996) INDIGO 2 

INDIGO 3 

SR3 Jacquet et al. (2004) 

SS259 Singh et al. (2013) 
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This data ingestion process resulted in a master record containing 5,502 observations of [Ba] that 

also contained a corresponding value for all 12 of thecore features listed in (Table 1.). The record 

was then split into a Pareto partition: the first partition was used for ML model training (4,345 

observations, 79 % of data; Fig. 1A) and the second for model testing (1,157 data; 21 %). This 

partitioning was determined based on the basin from which the sample was collected; data from 

the Arctic, Atlantic, Pacific, and Southern Oceans were used in model training, whereas the 1,157 

[Ba] data from the Indian Ocean were reserved for model testing (Table 2; Fig. 2). This location-

based separation of training and testing data was chosen to minimize overfitting, which can occur 

when the training–testing separation is randomly assigned (see e.g., Rafter et al, 2019).Sect. 3.2.). 

 

 

Figure 2. Geographical distribution of the training and testing data. The 4,345 core-feature complete 
training data (red; Fig. 1) are from the GEOTRACES 2021 Intermediate Data Product (GEOTRACES IDP 
Group, 2021); GEOTRACES expedition identifiers are noted next to each section. TestingThe n = 1,157 
testing data from the Indian Ocean are color-coded by expedition (see key; n = 1,157); data. Data sources 
are listed in Table 2.  
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3. Methods 

In the following subsections we discuss details of the specific ML algorithm that was used for 

model development (Sect. 3.1.), explain the model training and testing process (Sect. 3.2.), and 

describe how a global prediction of [Ba] was obtained and interrogated (Sect. 3.3.).  

 

3.1. Algorithm selection and training 

We opted for supervised ML using a Gaussian Process Regression learner, implemented in 

MATLAB. This particular ML algorithm is non-parametric, kernel-based, and probabilistic., 

which means that it does not make strong assumptions about the mapping function, can handle 

nonlinearities, and takes into account the effect of random occurrences when making predictions. 

Gaussian Process Regression algorithms are widely used in geostatistics, where it is often referred 

to as ‘kriging’ (e.g., Cressie, 1993; Rasmussen & Williams, 2006; Glover et al., 2011). This type 

of algorithm is ideal when working with continuous data that also contains a certain level of noise, 

such as from measurement uncertainty or oceanographic variation. The basis and kernel function 

parameters were chosen as constant and exponential, respectively, as this combination was found 

to produce the most accurate predictions.The MATLAB function, fitrgp, was used for model 

training. A full list of the parameter selections used in fitrgp is provided in Table S1. All 

predictors were normalized and standardized to have a mean of zero and a standard deviation of 

unity. This process placedplaces all parameters on the same relative range and was intended to 

diminishreduces scale dependencies. 

A significant problem in supervised ML algorithms is overfitting: the tendency to produce highly 

precise fits to the training data that cannot then be generalized to new domains or environments. 

We attempted to minimize overfitting by performing cross-validation during model training and 

during model testing. First, we used holdout cross-folding during model training. Data were 

randomly split into two folds, one containing 80 % of the data for model training and the other 20 

% withheld for model validation (i.e., the holdout fold). This holdout process was intended to 

eliminate models that could only generate arbitrary fits to specific subsets of the training data. In 

the second stage of cross-validation, we evaluated the performance of trained models by 

comparing predictions against a set of withheld [Ba] observations from the Indian Ocean. None of 
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the Indian Ocean data were seen by the models during training. This withholding was intended to 

help identify models that were generalizable to new environments and therefore the entire ocean 

(see Sect. 3.2). 

3.2. Model training and testing 

The training partition of the master record was used to train 4,095 different machine learning 

models with the goal of finding a model that could accurately simulate the global distribution of 

[Ba]. The number of models tested derives from the number of features investigated; each model 

uses a unique combination of the 12 features in Table 1 and our testing followed a factorial design 

whereby each feature was either enabled or disabled. This design yields a total of 212 unique feature 

combinations (i.e., levelsfeatures). Since); however, since it is not possible to train a model with no 

features enabled cannot be trained, the final number of unique, trainable, ML models with ≥1 

features wasis 212–1=4,095. The full experiment list is provided in Section 6. Each of the 4,095 

models was trained using the same 4,345 input data and with the same function parameters 

described above (Sect. 3.1.). Testing every possible feature combination allowed us to select for 

models with the highest predictive power while minimizing overfitting. in Table S1. 

 

3.2. In the second stage of cross validation, trained models were used to predict [Ba] for the 

withheld data from the Indian Ocean. Each of the 4,095 trained models were provided with the 

feature information that that particular model required to simulate [Ba] and the predictions 

recorded. The accuracy of the models was assessed by comparing ML model predictions against 

observed [Ba] for the Indian Ocean data (n = 1,157) and calculating the mean absolute deviation 

(MAD) and mean absolute percentage deviation (MAPD). The MAD is defined as: 

 MADAssessing model performance 

Model performance—accuracy and generalizability—was assessed during two phases: training 

and testing. During model training, the 4,345 observations of [Ba] from the Arctic, Atlantic, 

Pacific, and Southern Oceans were randomly split into two folds: a training fold containing 80 % 

of the observations, and a holdout fold containing the other 20 %. Model accuracy was assessed 

by comparing model-predicted [Ba] against observed [Ba] for the 20 % of the data in the holdout 
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fold. We then performed additional testing to establish model generalizability. A significant 

problem in supervised ML, and particularly Gaussian Process Regression learning, is overfitting: 

models may fit the noise in the training data, leading to poor generalization performance 

(Rasmussen & Williams, 2006). Since our goal was to develop a global model of [Ba] using 

regional training data, we deemed it especially important to identify generalizable models. 

Generalizable models were identified through a testing process involving regional cross-

validation; each trained model was used to predict [Ba] for the 1,157 samples from the Indian 

Ocean and model predictions were again compared against observations. Importantly, no [Ba] data 

from the Indian Ocean were seen by any of the models during training. This process helped to 

identify models that may have been overfit to the training data and can further be used to calculate 

generalization errors (Sect. 4.1).  

The accuracy of trained models was determined by comparing ML model predictions against 

withheld data and calculating the mean absolute error (MAE) and mean absolute percentage error 

(MAPE), defined as: 

 MAE = 
∑ "[$%]'()*+,-)*.[$%]/01)(2)*"3
+45

6
 
∑3+45 "[$%]'()*+,-)*.[$%]/01)(2)*"

6
   [Eq. 4] 

and MAPD as: 

 MAPDMAPE = 788	%
6

∑ ;[$%]'()*+,-)*.[$%]/01)(2)*
[$%]/01)(2)*

;6
<=7 ∑6<=7 ;[$%]'()*+,-)*.[$%]/01)(2)*

[$%]/01)(2)*
; 

    [Eq. 5] 

respectively, where n is the sample size.  

Models with lower accuracy exhibit higher MAD and MAPDerrors, whereas models with high 

accuracy will have lower MAD and MAPD. For reference, the Ba–Si linear regression predicts 

Indian Ocean [Ba] with a MAD and MAPDerrors. We calculated MAE and MAPE for every 

possible feature combination, which enables quantification of 6.8 nmol kg–1 and 9.7 %, 

respectively (Fig. 3). These values can be considered as benchmarks for the ML models. how 

specific features affect model performance. Likewise, we calculated errors for each model on 

predictions made during training (i.e., for the holdout fold) and during model testing (i.e., during 

regional cross-validation; Fig. 3). This information is used to quantify generalization performance; 
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low errors for both training and testing indicate models that are both accurate and generalizable, 

whereas models with low training errors and high testing errors might indicate models  overfit to 

the training data.  

 

3.3. Global predictions  

A select number of models with low MADMAE and MAPDMAPE were used to simulate [Ba] on 

a global basis. The process by which we selected these models is described in Section 5.1. Global 

simulations were performed on the same grid as the WOA, which was also used as the data source 

for features 1–9 (Boyer et al., 2018). The WOA is a 1°×1° resolution data product with around 

41,000 stations that contain up to 102 depth levels spanning 0–5,500 m in 5, 25, 50, or 100 m 

increments. Data for features 10–12 (MLD, chlorophyll a, and bathymetry) were also resampled 

to the WOA grid using the same sources and interpolation methods as described for the Indian 

Ocean testing data in Section 2. Model outputs were visualized using Ocean Data View software 

(ODV; Figs. 4–75–8; Schlitzer, 2023).  

A selection of the most accurate models of [Ba] were then used to simulate Ba* and Ωbarite. The 

calculationA selection of the most accurate models of [Ba] were then used to simulate Ba* and 

Ωbarite. Star tracers, such as Ba*, are valuable for illustrating processes that influence the cycling 

of elements in the ocean. First defined for N–P decoupling (N*; Gruber & Sarmiento, 1997) star 

tracers show variations whenever there are differences in the sources and sinks of the two elements 

being compared. If there are no differences in sources and sinks, the tracer will show conservative 

behavior because both elements share the same circulation. Barium-star is based on Ba–Si 

decoupling and was first defined by Horner et al. (2015). The definition of Ba* is shown in 

Equations 1 and 2. The coefficients in Equation 2 are based on data from the GEOTRACES 2021 

Intermediate Data Product and specifically the subset of these data shown in Figure 1. These 

coefficients differ from previous formulations of Ba* that were based primarily on [Ba] and [Si] 

data from the Southern and Atlantic Oceans (e.g., Horner et al., 2015; Bates et al., 2017). 

CalculationThe global distribution of ML–model-derived Ba* used values of [was determined by 

calculating [Ba]predicted (Eq. 2) using [Si]in situ from the WOA 2018 (García et al., 2018b) and). The 
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values of [Ba]in situ was taken from the ML model output.  and [Ba]predicted was subtracted from this 

to yield Ba* (Eq. 1). 

Values of Ωbarite were computed using the method described by Rushdi et al. (2000), summarized 

in Equation 3. In The numerator, Q, represents the in situ Ba and sulfate ion product and, in this 

formulation, sulfate is assumed to be conservative with respect to salinity and thus this method 

cannot be used to predict Ωbarite in restricted basins, such as the Black Sea or Caspian Sea. As 

withdepends only on [Ba] and [SO42–] molality. The denominator, Ksp, depends on T, S, and z (i.e., 

pressure) and is calculated in two steps: in situ T and S are used to calculate the stoichiometric 

solubility product and then this value is modified by calculating the effect of pressure on partial 

molal volume and compressibility, which are functions of T and z. As with the calculation of Ba*, 

values of [Ba]in situ were obtained from ML models and co-located data for T, S, and pressure dataz 

were extracted from the WOA (Locarnini et al., 2018; Zweng et al., 2018). Sulfate concentrations 

were assumed to be conservative with respect to S using [SO42–] = 29.26 mmol kg–1 when salinity 

= 35 PSU. This latter assumption likely breaks down in certain environments (e.g., where  [SO42–

] reduction occurs); as such, our model is not used to predict Ωbarite in restricted basins, such as the 

Black Sea or Caspian Sea. Given that our estimates of Ωbarite exhibit a MAE of 0.08 (Appendix), 

we believe that values of Ωbarite between 0.92 and 1.08 are indicative of ‘perfect’ saturation with 

respect to BaSO4. 

Output from the most accurate ML models was then used to calculate mean [Ba] and Ωbarite for 

each basin, for a series of prescribed depth bins, and for the global ocean. This calculation was 

performed by weighting each cell in the model output by its volume, which ensures a fair 

comparison between any two points in the model output. We then subdivided the global ocean into 

five sub-basins: Arctic, Atlantic, Indian, Pacific, and Southern. Basin boundaries were defined as 

per Eakins & Sharman (2010), though we merged the Mediterranean and Baltic Seas into the 

Atlantic and considered the South China Sea as part of the Pacific Ocean. Neither [Ba] nor Ωbarite 

were simulated in the Black or Caspian Seas and thus these regions are not included in the global 

mean calculations. 

 



 

- 15/54 - 

4. Results 

4.1. QuantifyingFactors affecting model accuracy 

Here we examine model accuracy and assess the role of different features in settinghow model 

performance. Accuracy was assessed using the mean absolute deviation (MAD; Eq. 3), which  is 

a measure of the correspondence between predicted and observed [Ba] for the n = 1,157 data from 

the Indian Ocean. This correspondence is illustrated for [Ba] predicted using WOA-interpolated 

[Si] and the Ba–Si linear regression (Fig. 3A) and for ML model #3336 (Fig. 3B; Sect. 5.1.). The 

calculation of MAD was repeated for all 4,095 trained models and the results are summarized in 

Figure 3C. Of these models, 1,687 (41 %) achieve a superior MAD in the Indian Ocean compared 

to the Ba–Si linear regression benchmark of 6.8 nmol kg–1. In general, ML models with fewer 

features tend to exhibit higher MAD than models with many features. However, adding more 

features to a model can also degrade its performance. Binnedinfluenced by the number of features, 

the MAD of the median model decreases from 15.8 to 7.1and nature of features included during 

training. We consider model performance in terms of accuracy and generalizability, which we 

quantify using MAE (Eq. 4). We first explore how the number of features influences model 

performance (Fig. 3). Here we see that increasing the number of features generally improves the 

accuracy of trained models; however, the response differs depending on whether accuracy is 

calculated based on comparison to the holdout fold (i.e., during model training) or to the withheld 

Indian Ocean data (i.e., during model testing). When considering only the holdout fold, trained 

models predict [Ba] with a high level of accuracy—the mean, median, and most-accurate trained 

models achieve a MAE of 2.4, 1.7, and 1.3 nmol kg–1, respectively. Similarly, increasing the 

number of features almost always improves model accuracy; the MAE of the most accurate model 

for a given number of features decreases from 6.5 to 1.3 nmol kg–1 as the number of features is 

increased from one to five. Beyond five features, the median-model MADnine, at which point 

MAE plateaus; the median MAD of the 2,510 models with ≥6 features is 7.8 nmol kg between 

1.4–1.5 nmol kg–1 for models with 10–12 features (Fig. 3A).  
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Figure 3. Effect of feature addition on ML model accuracy. Accuracy was quantified for each of the 
4,095 trained models and quantified here using MAE (note log scale, which differs between panels). The 
accuracy of trained models is shown for random holdout cross-validation during training (top) and for 
regional cross-validation during testing (bottom). Square indicates the performance of our favored predictor 
model, #3080 (see Fig. 4, Sect. 5.1). The accuracy of the Ba–Si linear regression benchmark is shown as 
a dashed line in the lower panel (MAE = 6.8 nmol kg–1). To illustrate data density, points have been 
randomly positioned within their respective bin and plotted with 80 % transparency. 

Moving to the regional cross-validation, the overall performance of models is lower; the same 

4,095 trained models achieve a mean, median, and most-accurate MAE for the Indian Ocean 

dataset of 8.8, 7.9, and 4.0 nmol kg–1, respectively. For comparison, if [Ba] was estimated for these 
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same 1,157 Indian Ocean samples using the linear [Ba]–[Si] relationship (Fig. 1) and ambient [Si] 

as the only predictor, this linear model would achieve a MAE of 6.8 nmol kg–1. Thus, there are 

1,687 ML models that achieve a superior accuracy to existing methods for estimating [Ba], 

offering an improvement of as much as 41 % (Fig. 4). However, regional cross-validation also 

shows that the addition of more features may, in fact, degrade model performance. The MAE of 

the most accurate model for a given number of features decreases from 6.6 to 4.0 nmol kg–1 as the 

number of features is increased from one to eight. As the number of features is increased from nine 

to twelve9–12, the MADMAE of the most-accurate ML model within each bin 

monotonicallymodels increases monotonically from 4.1 to 7.2 nmol kg–1 (Fig. 3C). Thus, the 

number of features necessary1 nmol kg–1. The overall lower performance of trained models during 

regional cross validation—and the observation that many of the feature-rich models perform worse 

than models with fewer features—is indicative of certain models being over-fit to the training data. 

Together, these observations suggest that the optimum number of features needed to accurately 

predict [Ba] in the Indian Ocean appears to beis between five and eight.  

We then quantified the importance of different features to model performance through a feature 

addition analysis (Fig. 3D). For example, model #3352 contains five features: z, S, [O2], [PO4], 

and [NO3] and achieves a MAD of 4.6 nmol kg–1. Adding T to this model increases the number of 

features to six and nine.  
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Figure 4. Comparison of existing and ML methods to estimate [Ba] in seawater. Left panel shows the 
performance benchmark: predicted [Ba] for the Indian Ocean testing data using the [Ba]–[Si] linear 
regression and ambient [Si] as the sole predictor. Right panel shows predicted [Ba] using ML model 3080, 
which improves on existing methods by more than 37 %. Perfect correspondence between predictions and 
observations is indicated b the dashed line marked ‘1:1.’Data locations and sources are shown in Fig. 2 
and Table 2, respectively; n refers to the number of testing data for each campaign. reducesMean Absolute 
Error (MAE; Eq. 4) and Mean Absolute Percentage Error (MAPE; Eq. 5) are noted for both models. 

 

We also evaluated the MAD to 4.4 nmol kg–1 (Fig. 3B). Since wenature of the predictors used ato 

estimate [Ba]. The full factorial experiment design, we were able enables us to perform analogous 

pairwise comparisons between the 211all models that contained a certain feature, such as T, and 

the 211all of those that did not. (Sect. 3.1). We quantified the effect of adding a feature by 

comparing the absolute and percentage change in MADMAE relative to the mean MADMAE of 

the two models. The likelihood that the inclusion of a given feature affected the MAD of the 

models sets of models. This comparison was then quantified using a two-tailed, paired t-test. 

Lower p values indicate performed three times: for all 4,095 models based on the holdout cross-

folded training data, for all models using the regionally cross-validated testing data, and again for 

the testing data, but only considering those 1,687 models that achieved a higher likelihood 

thatsuperior accuracy compared to the [Ba]–[Si] linear regression model (Table 3).  

 

Table 3. Feature addition analysis. Effect of aeach feature significantly changed the MAD. on model 
performance for Training and Testing datasets. Model performance is quantified using MAE, thus all 
columns have units of nmol kg–1 unless otherwise shown. The Testing analysis is further subdivided into a 
comparison of all models and ‘good’ models, meaning those that achieved superior accuracy than the Ba–
Si linear regression (Fig. 1). 
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This analysis reveals thatyields three main results. When considering only the holdout cross-folded 

training data, the addition of any one of 11 features will, on average, improve an ML model. 

Silicate (–40 %), T (–27 %), and z (–20 %)of the 12 features improves model performance by 

between –4.8 and –56 %. Excepting longitude, similar across-the-board improvements were 

observed when considering only the testing data, though the improvements for most features were 

more modest (between –3.0 and –39 %). If considering only the ‘good’ models, six features 

improved the models the most and S, chlorophyllmodel performance by –2.4 and –8.3 % ([PO4], 

[NO3], T, [O2], z, and [Si]), five degraded model performance by +0.2 to +22 % (bathy., Chl. a, 

and MLD the least (all –3 %). Latitude, [PO4], [O2], [NO3], and bathymetry improved the models 

by –16 % to –6 %. Longitude was the only feature found to degrade model performance, with a 

mean change in MAD of +59 %. The largest p value associated with these comparisons was 5E–

25, indicating that these relationships were highly, lat., and long.), and salinity had no significant 

(Fig. 3Deffect (Table 3).  

Overall, our results indicate that between six and nine features will result in an accurate and 

generalizable ML model of [Ba], and that [PO4], [NO3], T, [O2], z, [Si], and possibly S, are likely 

to be included as predictors in such a model. 

 

4.2. Model outputs 

Almost 1,700 models achieved superior accuracy compared to the Ba–Si linear regression 

benchmark of 6.8 nmol kg–1. We winnow this list to a single model, #33363080, in the next section. 

We henceforth refer to model #33363080 as our favored predictor model, which achieves a 

MADMAE of 4.43 nmol kg–1 using z, T, S, [O2], [PO4], [NO3], and [NO3Si] as predictors (Fig. 

3B4). Model #33363080 is used to simulate [Ba], Ba*, and Ωbarite on a global basis and to calculate 

whole-ocean averages. Surface plots showing the model outputs for the sea surface, 1,000 m, 2,000 

m, and 4,000 m are shown in Figures 4, 5, 6, 7, and 78, respectively.  
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Figure 45. Barium at the sea surface. Observed [Ba] between 0–50 m (A); Model 33363080 [Ba] (B), Ba* 
(C), and Ωbarite (D). The dashed line in Panel D indicates the BaSO4 saturation horizon (i.e., Ωbarite = 1.0). 
Panels A and B use the roma color map, whereas Panels C and D use vik and cork, respectively (Crameri, 
2018). Color palettes and parameter ranges are the same for the respective panels in Figure 5–76–8.  

 

 

Figure 5. Barium at 

 

Figure 6. Barium at 1,000 m. Observed [Ba] (A); Model 33363080 [Ba] (B), Ba* (C), and Ωbarite (D). The 
dashed line in Panel D indicates the BaSO4 saturation horizon.  
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Figure 7. Barium at 2,000 m. Observed [Ba] (A); Model 3080 [Ba] (B), Ba* (C), and Ωbarite (D). The dashed 
line in Panel D indicates the BaSO4 saturation horizon.  

 

 

 

 

Figure 7. Barium at 4,000 m. Observed [Ba] (A); Model 33363080 [Ba] (B), Ba* (C), and Ωbarite (D). The 
dashed line in Panel D indicates the BaSO4 saturation horizon.  
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Model #33363080 contains 3,305,505302,570 predictions for each of [Ba], Ba*, and Ωbarite. Values 

(Sect. 6). Assuming that the MAPE and MAE are good estimates of the prediction error, we 

estimate that modeled [Ba] range from 23.3–158and Ba* have uncertainties of 6.0 % and 4.3 nmol 

kg–1, with an unweighted mean of 71respectively. Uncertainties on Ωbarite were estimated by 

comparison to literature data, which yields a MAE of 0.08. These estimates are discussed in more 

detail in Section 5.2 and the Appendix. 

Modeled [Ba] ranges from 26.2–156.8 nmol kg–1. and the data exhibit an unweighted mean of 72.0 

nmol kg–1. The range of model #3080 predictions is within the range of [Ba] encountered in the 

4,345 training data (17.1–159.8 nmol kg–1). This is an important consideration when assessing the 

accuracy of Gaussian Process Regression models, and we provide additional discussion of this 

point in the Supplement. Based on our formulation of Ba* (Eqs. 1, 2), Ba* varies from –102.727.2 

to +51.327.9 nmol kg–1 and possesses an unweighted mean of +2.24 nmol kg–1. Values of Ωbarite 

vary from 0.11 to 1.7670 and exhibit an unweighted mean of 0.75. To account for the different 

volumes represented by each grid cell in the modelWOA grid, we constructed a volume-weighted 

mean of [Ba] and Ωbarite for the ocean as a whole, for each ocean basin, and for a series of prescribed 

depth bins (Fig. 8). Look9). Looking at the ocean as a whole, the probability density function of 

[Ba] roughly resembles a uniform distribution, with a mean ocean [Ba] of 89 nmol kg–1 (Fig. 

8A9A). Within this mean is considerable spatial and vertical variation. For example, the Arctic 

Ocean exhibits the lowest volume-weighted mean [Ba] of 5554 nmol kg–1, whereas mean Pacific 

[Ba] = 106 nmol kg–1. Likewise,The Indian Ocean exhibits a similar mean [Ba] exceeding(90 nmol 

kg–1) to the mean of the global ocean. Shallower than 1,000 m, [Ba] infrequently exceeds 100 nmol 

kg–1 rarely occurs above 1,000 m and values, whereas concentrations <45 nmol kg–1 are virtually 

absentrare below 1,000 m (Fig. 8B9B).  

The probability density function of volume-weighted Ωbarite is closermore similar to a normal 

distribution, possessingalbeit with a slight negative skew. Volume-weighted mean value ofoceanic 

Ωbarite is 0.82. The Arctic, Atlantic, and Indian Oceans are, on average, undersaturated with respect 

to BaSO4, all exhibiting mean Ωbarite ≤0.8182. In contrast, the Pacific Ocean is close to and 
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Southern Oceans are within uncertainty of saturation (, with mean Ωbarite =of 0.97), and the 

Southern Ocean slightly exceeds it (Ωbarite =  and 1.04; , respectively (Fig. 8C9C). Values of Ωbarite 

<0.25 are only found above 1,0002 are mostly restricted to the upper 250 m, whilst values of Ωbarite 

exceeding 1.455 are exceptionally rare and are, found only in the upper 1,000 m of the Southern 

Ocean. Lastly, Ωbarite tends to increase between the 0–250 m, 250–1,000 m, and 1,000–2,000 m 

depth bins, increasing from 0.42, to 0.6365, and 0.96, respectively. Average Ωbarite in the deepest 

bin (2,000–5,500 m) is slightly lower, with a mean value of 0.92 (Fig. 8D).9D). Given the accuracy 

of our model-derived Ωbarite predictions (0.08 to 0.10), the ocean between 1,000–5,500 m is within 

uncertainty of BaSO4 equilibrium.  

 



 

- 24/54 - 

 

 

Figure 89. Stacked, volume-weighted histograms showing the relative frequency distribution of 
dissolved [Ba] (A, B) and Ωbarite (C, D) in the global ocean. The left column shows data grouped by 
basin, whereas and the right column isshows data grouped by a prescribed depth bin (key in B).. Numbers 
in each panel display the mean property value for that bin. Dashed line shows the global mean. 
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5. Discussion  

5.1. Identification of the optimal predictor model 

Our results show that 1,687 of the 4,095 ML models (41 %) produce more accurate predictions 

than the benchmark. In this case, the benchmark is predicting Indian Ocean [Ba] based on the Ba–

Si linear regression and using WOA [Si] as the only predictor (Figs. 1, 3C). However, choosing 

the optimal feature combination is challenging given the sheer number of skillful ML models. 

Here, we winnow the list from 1,687 to a single model (#3336) by eliminating models based on 

the number and information content of various features. First, longitude was found to be the only 

feature that consistently degraded the performance of trained models (Fig. 3D). We therefore 

disabled this feature, eliminating 53 models. Having removed longitude, we also decided to 

eliminate models utilizing latitude; this decision was guided by the principle that a generalizable 

model should be able to predict [Ba] using only physical and/or chemical predictors, independent 

of where a sample is located in x–y space. This removed a further 853 models, winnowing the list 

to 781. After longitude, the features offering the least improvement to ML model performance 

were MLD and Chl. a, which improved trained models by around –3 % (Fig. 3D). Indeed, the 

median model was degraded by 2 % if Chl. a was included. Eliminating models containing either 

of MLD (397) or chlorophyll a (194 models) reduced the number of models exceeding the Ba–Si 

benchmark of 6.8 nmol kg–1 to 190, of which 122 utilized [Si] as a predictor. While [Si] was 

amongst the strongest overall predictors of [Ba] (Fig. 3D), incorporating [Si] into a trained model 

introduces potential circularity into the calculation of Ba* (see Eqs. 1, 2). Moreover, the four-most 

accurate surviving models containing [Si], models 3144, 3268, 3716, and 3732, achieve a similar 

MAD of 4.2 nmol kg–1 to our ultimately favored model #3336 (4.4 nmol kg–1). 

Eliminating models containing [Si] reduced the list of models to 68. Of these, 39 were eliminated 

as they contained ≤4 features, noting that our earlier analysis showed that the optimal number of 

features needed to accurately predict [Ba] in the Indian Ocean was between five and eight (Sect. 

4.1.). Models with fewer than four features likely do not contain sufficient information to make 

accurate predictions in the full range of environments encountered in the Indian Ocean. Likewise, 

beyond eight features, trained models tended to produce worse fits to observations. We suspect 

that the reason is overfitting; feature-rich models can be overfit to the training data and are unable 

to generalize when presented with completely new environments.Choosing a single, optimal model 
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configuration is challenging given the sheer number of skillful ML models. Below we winnow the 

list from 4,095 to a single model (#3080). We base our winnowing primarily on the results of the 

regional cross-validation performed in the Indian Ocean, rather than from the errors determined 

from random holdout cross folding of the training data. We believe that there are three strong 

reasons for winnowing in this way. First, Gaussian Process Regression Learners tend to fit the 

noise in the training data, meaning that the training error is significantly lower than the 

generalization error (Rasmussen & Williams, 2006). Indeed, trained models showed overall lower 

performance during testing compared to training, which we believe is evidence of overfitting (Fig. 

3, Table 3). Second, a generalizable global model should be able to make predictions in regions 

where it has not already learned anything about the target variable. Our regional cross-validation 

approach satisfies this consideration since no Indian Ocean data were seen during model training. 

Third, the Indian Ocean is an ideal basin for testing as it exhibits the full diversity of features 

expected to influence [Ba] (riverine inputs, oxygen-minimum zones, coastal upwelling, etc.) and 

constitutes ≈20 % of the global ocean volume. Likewise, the Indian Ocean captures most of the 

range in [Ba] seen elsewhere in the ocean (Fig. 9); this likely reflects the input of Atlantic waters 

through the Aughulas leakage, transport of old Pacific waters via the Indonesian Throughflow, and 

northward spreading of mode and intermediate waters from the Southern Ocean. We thus assume 

that the Indian Ocean testing errors are a good approximation of the generalization error, which 

we now use to winnow the list of models. 

Our results show that 1,687 of the 4,095 ML models (41 %) produce more accurate predictions of 

[Ba] than the benchmark Ba–Si linear regression using [Si] as the sole predictor (Fig. 3, Table 3). 

We focus our winnowing on these 1,687 models as they are superior to existing methods for 

estimating [Ba] in seawater. Focusing only on these ‘good’ models reveals significant differences 

in the information content of the 12 features tested. For example, the inclusion of spatial 

information in the form of latitude and longitude significantly degrades mean model performance 

by between +4.0 and +22 %, respectively. While bathymetry, chlorophyll a, and mixed-layer depth 

exhibited only minor influences, they were nonetheless deleterious to mean model performance 

by between +0.2 to +0.5 % (Table 3). Only [PO4], [NO3], T, [O2], z, and [Si] consistently improved 

the mean ML model, which corresponds to model #3112 (testing MAE of 4.3 nmol kg–1). 

However, visual inspection of model #3112 output reveals that it does not reproduce expected 

near-shore surface plumes of elevated [Ba] close to certain major rivers (see Supplement). Though 
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volumetrically minor, riverine inputs are a geochemically important component of the marine Ba 

cycle, and the existence of nearshore Ba plumes underpins a major proxy application of Ba. Near-

shore riverine influence is easily discerned by low S; we thus explored output from model #3080, 

which is identical to model #3112, but includes S as a seventh feature during training. Models 

#3080 and #3112 exhibit identical statistical performance for the testing data (MAE = 4.3 nmol 

kg–1; Fig. S1) and make similar predictions for mean marine [Ba] and Ωbarite (89 nmol kg–1 and 

0.82, respectively; see Supplement). The similar performance of the two models is consistent with 

S exerting a near-negligible impact on overall model performance (Table 3). Despite this small 

effect, model #3080 is better able to reproduce riverine [Ba] plumes compared to model #3112 

(see Supplement). We therefore consider model #3080 to be our best estimate of marine [Ba]. 

Model #3080 achieves a MAPE of 6.0 %, which represents a 39 % improvement over existing 

methods to estimate [Ba] (Fig. 4). We henceforth consider model #3080 as our optimal predictor 

model, which we use to simulate [Ba], Ba*, and Ωbarite in Figures 5–9.  

 Thus, this winnowing process reduced the number of candidate ML models to 29. All of these 

models exhibited superior accuracy compared to the Ba–Si linear correlation (MAD = 6.8 nmol 

kg–1); were not trained using longitude, latitude, MLD, chlorophyll a, or [Si]; and possessed 

between five and seven features. The most accurate amongst these 29 models, #3336, utilizes six 

features—z, T, S, [O2], [PO4], and [NO3]—and achieves a MAD and MAPD in the Indian Ocean 

of 4.4 nmol kg–1 and 6.3 %, respectively (Fig. 3B). This level of accuracy represents at least a 35 

% improvement compared to predicting [Ba] in seawater using the Ba–Si linear regression. We 

consider model #3336 as the optimal configuration for predicting [Ba] in this study, and use this 

model to simulate [Ba], Ba*, and Ωbarite in Figure 4–8. 

 

5.2. Model validation  

We now explore the validity of model #33363080 in terms of its oceanographic consistency, the 

sources of uncertainty that affect its accuracy, and potential limitations of the model output. We 

find that model #33363080 reproduces the major known features of the marine [Ba] distribution 

and makes testable predictions for regions that are yet to be sampled.  
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5.2.1. Visual inspection of model output 

Visual inspection of model output is an important component of data analysis considering the 

limits of statistical tests (see e.g., Anscombe, 1973). Models may produce statistically satisfactory 

fits to the testing data, but the oceanic realism of the output is also important to consider. Modeled 

[Ba] should display patterns consistent with related oceanographic properties and exhibit smooth 

vertical and spatial variations (Boyle & Edmond, 1975). Predicted [Ba] from model #33363080 

does indeed show smooth and systematic spatial and vertical variations that also resembles sparse 

observations (Figs. 3–74–8).  

There are, however, several sharp gradients in modeled [Ba], particularly at the sea surface (Fig. 

3). These variations generally show an increaseModel #3080 also shows systematic increases in 

[Ba] close to land and, especially near the mouths of major rivers. (Fig. 4). This is reassuring given 

that elevated sea-surface [Ba] close to rivers is both widely reported and is one of the major proxy 

applications of Ba: reconstructing spatiotemporal patterns of terrestrial runoff by measuring the 

Ba:Ca ratio of carbonates (e.g., Sinclair & McCulloch, 2004; LaVigne et al., 2016). Model 

#3336For example, model #3080 correctly identifies elevated [Ba] near the Ganges–Brahmaputra 

(Singh et al., 2013) and), Río de la Plata outflows (GEOTRACES IDP Group, 2021).), and Yangtze 

outflows (Cao et al., 2021). Model #33363080 also predicts elevated sea-surface [Ba] in the Gulf 

of Guinea (where several rivers discharge, including the Niger River; the Eastern Tropical Atlantic 

associated with the Congo River (Edmond et al., 1978; Zhang et al., 2023); and Volta Rivers) as 

well asin the Gulf of St. Lawrence (St. Lawrence River), though ; see Supplement for additional 

details and figures). Except for the Congo River, these latter predictions of elevated near-shore 

[Ba] await corroboration. Interestingly, model #33363080 does not predict elevated surface [Ba] 

at all major outflowsriver mouths; neither the Mississippi nor Amazon Rivers are associated with 

significant increases in sea-surface [Ba].] (see Supplement). The reasons for the lack of elevated 

[Ba] atnear the outflow of these riverstwo rivers is less clear. It is possible that the model is simply 

inaccurate in these regions, though we have no particular reason to believe that this is the case. 

Alternatively, it may reflect seasonal variations in Ba release that are not captured by our mean 

annual model (e.g., Joung & Shiller, 2014), or it may). It could also indicate that these particular 

rivers are not major net sources of Ba to the surface ocean, which might be the case if dissolved 
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Ba is being retained in the catchment (e.g., Charbonnier et al., 2020) or estuary (e.g., Coffey et al., 

1997).  

Overall, model #33363080 makes accurate, oceanographically consistent predictions of [Ba] in the 

Indian Ocean using input data from the WOA. Model #33363080 also makes a number of testable 

predictions of [Ba] in regions lacking direct observations. Given that these predictions were made 

using the same model and the same WOA inputs, we believe that it is reasonable to assume that 

model #33363080 output is an accurate representation of mean annual global [Ba]. 

 

5.2.2. Quantifying uncertainties 

We now describe and, where possible, quantify two possible sources of uncertainty to our ML 

model output. Before doing so, we describe how uncertainty is quantified as well as the uncertainty 

of existing approaches. Certain ML models, such as Gaussian Process Regression, offer low 

interpretability, meaning it is not possible to assess uncertainty using a conventional error 

propagation. Thus, all model uncertainties are assessed post hoc, by comparing predictions against 

observations. Our preferred metrics are MADMAE and MAPD—mean absolute deviation and 

mean absolute percentage deviation, defined in EquationsMAPE (Eqs. 4 and, 5, respectively.). 

Existing approaches for estimating [Ba] result in a wide range of uncertainties. At the low end, the 

uncertainty associated with measuring [Ba] in seawater represents a fundamental limit to the 

accuracy of any model. A number of analysts report relative [Ba]measurement uncertainties in the 

range of 1–2 % (e.g., Pyle et al., 2018; Cao et al., 2020). This level of intra-laboratory uncertainty 

is typical for [Ba] data obtained using isotope dilution–inductively coupled plasma mass 

spectrometry, and applies to GEOTRACES-era datasets and to much of the training data from the 

Indian Ocean. However, intra-laboratory uncertainty is typically much smaller than inter-

laboratory uncertainty, which is often between 6–9 % (e.g., Hathorne et al., 2013). At the upper 

end, the benchmark Ba–Si linear regression achieves a MAPDMAPE of 9.7 % in the Indian Ocean 

(Fig. 3A4). Thus, useful ML models of [Ba] should achieve uncertaintiesMAPE between 1–10 %. 

Indeed, our favored predictor model, #33363080, achieves a MAPDMAPE of 6.30 %. 

Now we consider two factors that contribute to the observed 6.30 % uncertainty: realization 

uncertainty and uncertainties in the training data. The realization uncertainty stems from the fact 
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that two models trained on the same training dataset—even with the exact same subset of model 

features—will produce slightly different predictions. This is due to the holdout cross-folding 

process used during model training, which partitions the training dataset into random subsets (see 

Sect. 3.1.). Because the partitioning is randomThus, the training process results in a slightly 

different trained model each time the model is realized. We quantified the realization uncertainty 

by training model #3336select models 100 times and calculating the relative standard deviation of 

the different predictions of [Ba] for allthe 3,305,505.3 million values in the output. This 

uncertainty is small; the median, mean, and maximum realization uncertainty was 0.03 %, 0.04 %, 

and 0.32 % variability in modeled [Ba].  

Next we consider uncertainties in the training data. As noted above, many labs report uncertainties 

on [Ba] measurements of 1–2 %, while inter-laboratory differences may be up to a factor of five 

larger. However, this does not consider any uncertainties associated with the other physical and 

chemical features used to predict [Ba]. In general, these supporting measurement uncertainties 

should be small since: all overboard sensors are regularly calibrated and biogeochemical properties 

in GEOTRACES are determined using established methods that are based on GO-SHIP best 

practices (Hood et al., 2010). Moreover, all GEOTRACES sections include crossover stations that 

are intended to facilitate intercalibration of all parameters, including those used here to predict 

[Ba] (Fig. 2; Cutter, 2013). The WOA, MLD, Chl. a, and bathymetry data products are similarly 

subjected to stringent quality review and so we consider it unlikely that these data contribute 

systematic biases. We believe that the most likely source of uncertainty relates to the fact that all 

predictor information used for model testing in the Indian Ocean was derived from time-averaged 

data products, whereas [Ba] was derived from in situ measurements. We made this decision 

because the in situ data were incomplete for all 12 core features (Table 1), and this would have 

necessitated interpolation for some features and not others. Since all models were tested using the 

same predictor information, the comparison process should avoid systematic errors, though this 

does not preclude temporal variability, described next. 
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5.2.3. Other considerations 

We now consider four other factors that potentially contribute to the uncertainty of the model 

output: short- and long-term temporal variations, limitations of ML, and uncertainties regarding 

the thermodynamic properties of BaSO4. Short-timescale variability in [Ba] may affect how 

models were evaluated, though this effect is difficult to quantify. In principle, the trained models 

should be able to resolve seasonal variations in [Ba] since they were trained on in situ physical and 

chemical data. In contrast, model predictions in the Indian Ocean were made using annual average 

physical and chemical conditions and then evaluated by comparing these predictions against in 

situ [Ba]. The temporal mismatch between Indian Ocean observations and predictions is unlikely 

to be significant in the deep ocean, where seasonal variations are minor and the Ba residence time 

is longest (e.g., Hayes et al., 2018). Seasonal variations are, however, likely to matter more for the 

surface ocean. We were able to minimize some of the impact of these uncertainties by using long-

term averages of Chl. a and the maximum monthly mean MLD during model training and testing. 

Significant seasonal mismatches for other parameters are unavoidable given that [Ba] data are too 

sparse to develop a time-resolved model. We suspect that these variations are most likely to be 

significant for boundary sources rather than biogeochemical cycling of Ba; significant 

biogeochemical drawdown of surface [Ba] over seasonal timescales appears to be rare (e.g., Esser 

& Volpe, 2002), whereas there are large seasonal variations in river discharge that impact near-

shore [Ba] (e.g., Samanta & Dalai, 2016). These suspicions could be tested using a model with 

better than 1×1° spatial resolution, which—in theory—is possible with model #33363080, so long 

as similarly high-resolution data are provided for the six predictors utilized by this model (z, T, S, 

[O2], [PO4], [NO3], and [NO3Si]). While it is challenging to precisely quantify seasonal 

uncertainties, we note that model #33363080 performs well at low [Ba], which is found mostly 

near the surface, where seasonal variations should beexhibit the largest (Figs. 3B, 8B).effects. 

Likewise, seasonal variations will have only a minor effect on our calculations of global mean 

[Ba] or Ωbarite (Fig. 8).  

Long-term variability in [Ba] may also influence model performance, since the testing data from 

the Indian Ocean were collected between 1977 (GEOSECS) and 2008 (SS259; Fig. 2). If secular 

changes in Indian Ocean [Ba] were occurring, we might expect models to make accurate 

predictions for some datasets at the expense of others. In contrast, we note that model #33363080 
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reproduces all testing datasets similarly well, with the exception of a subset of samples from SS259 

in the deep Bay of Bengal (Fig. 3C).. Here we observe that model #3336 tends to predict ~93080 

predicts 18 % higher [Ba] than observed by Singh et al. (2013), particularly around 2) for the 42 

samples between 1,000–3,000 m (Fig. 6AFigs. 4B; 7A, B). HoweverInterestingly, model 

#33363080 correctly predicts [Ba] at nearby GEOSECS stations 445 and 446, also in the Bay of 

Bengal, sampled some 31 years prior. The  to SS259. We briefly consider three possibilities for 

the origin of the this regional model–data discrepancy . It may derive from the fact that model 

#3080 does not include the features needed to correctly predict [Ba] in this regionthese samples. 

We view this as the least likely possibility as model #3080 performs well for other samples from 

the northern Indian Ocean, including samples shallower than 1,000 m from Singh et al. (2013). 

Another possibility is uncertain; we speculate that it may reflect could reflect an 18 % decrease in 

[Ba] in the deep Bay of Bengal since the GEOSECS survey in the 1970’s. Lastly, it could reflect 

differences in how in situ [Ba] was measured, noting that Singh et al. (2013) opted for standard 

addition overinstead of isotope dilution. Alternatively, it could reflect a ~9 % decrease in [Ba] in 

the deep Bay of Bengal since the 1970’s. We currently lack the data needed to confidently 

distinguish between these latter two possibilities. 

A third factor concerns the limitations of ML itself. We note that no trained model was able to 

achieve a MAPDMAPE better than ~6 %. This 6 % value may represent one of three things. First, 

it may point toward an intrinsic limitation of Gaussian Process Regression. Other types of ML, 

such as Decision Trees or Artificial Neural Networks, may be able to achieve superior accuracy, 

though this was not investigated. Second, it may indicate that the 12 features investigated provide 

insufficient information about [Ba] to achieve higher accuracy. We view this as unlikely given that 

our earlier analysis showed that only 5–8six–nine features were needed to accurately simulate [Ba] 

and that the 12 features investigatedtested have proved useful in other studies simulating dissolved 

tracer distributions (e.g., Rafter et al., 2019; Sherwen et al., 2019; Roshan & DeVries, 2021). 

However, this does not rule out the existence of other features beyond the 12 that we tested that 

are more useful for predicting [Ba], only that we did not investigate them. Third, it is possible that 

the lowest MAPDMAPE of ~6 % reflects the current limit of inter-laboratory uncertainty in 

determining [Ba]. We note that inter-laboratory uncertainties of 6–9 % were reported for the 

measurement of Ba:Ca in carbonates (n = 10 labs; Hathorne et al., 2013). If the ~6 % MAPDMAPE 
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derives from inter-laboratory uncertainty, it is unlikely that further model refinements will improve 

the accuracy of [Ba] predictions: the fundamental limitation is the data, not the model. 

A final source of uncertainty concerns the computation of Ωbarite, which contains two further 

sources of uncertainty: the thermodynamic model and the solubility coefficients used to calculate 

ΩbariteKsp. We calculated Ωbarite based on the computation described by Rushdi et al. (2000), and 

our approach yields similar values to their study and several others (e.g., Jeandel et al., 

1996;(2000). This calculation Monnin et al., 1999; see Appendix). The model used by Rushdi et 

al. (2000) is based on BaSO4 solubility data from Raju & Atkinson (1988), who note good 

agreement with the thermodynamic data of Blount (1977). These solubility data were obtained 

based on experimentation with lab-made, coarse-grained BaSO4, which is unlikely to be wholly 

representative of the microcrystalline BaSO4 precipitates found in seawater. Thus, the absolute 

values of Ωbarite calculated here may be subject to eventual revision; however, the vertical (Fig. 1), 

spatial (Figs. 3–74–8), and whole-ocean (Fig. 89) trends in Ωbarite are robust. Should new 

thermodynamic data for marine-relevant micron-sized pelagic BaSO4 become available, updated 

maps of Ωbarite could be easily recalculated using existing model #3336-derived [Ba] data. 

recalculated using model #3080-derived [Ba] data. Given the nature of these uncertainties, we 

opted to calculate prediction uncertainties for Ωbarite empirically by comparison to literature data 

(see Appendix). This yields a value between 0.08 and 0.10, similar to the 10 % prediction error 

reported by Monnin et al. (1999). 

 We can calculate Ωbarite to a high degree of precision; however, there are numerous uncertainties 

pertaining to ML-predicted [Ba], the BaSO4 solubility coefficients used to calculate Ksp, and the 

thermodynamic model used in the computation of Ωbarite (Sect. 5.2.). Thus,  

 

 

5.3. Barium in seawater: A global perspectiveModel applications 

Here we provide an overview of the main model features in [Ba], Ba* and Ωbarite, then outline 

fourthree possible applications of the model output. Predictions from model #3336 shows 
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5.3.1. Dissolved distribution of [Ba] 

Model #3080 predictions show several interesting features in [Ba] (Figs. 4–7). Model #33365–8). 

The model reproduces the expected nutrient-like distribution of [Ba] (Fig. 1C) and shows a general 

increase in [Ba] along the Meridional Overturning Circulation;: volume-weighted mean [Ba] 

increases from 67 to 8890 to 106 nmol kg–1 from the Atlantic to Indian to the Pacific Ocean, 

respectively. The model also predicts some variation in shallow [Ba] that follows major surface-

water currents, such as a region of elevated [Ba] associated with the North Pacific Current, as well 

as low [Ba] in the western North Atlantic associated with the Gulf Stream (Fig. 4B5B; Talley et 

al., 2011). TakingHowever, these features and the processes driving them await corroboration.  

Considering the ocean as a whole, we can also use our model output to calculate the total Ba 

inventory of the oceanseawater. Using the mean oceanic [Ba] of 89 nmol kg–1 and multiplying by 

the mass of seawater (1.37×1021 kg) yields a total inventory of 122±87 Tmol Ba, whereby the 

rangeuncertainty is based on the MAPDMAPE of model #33363080 (6.30 %). This estimate of 

the total oceanic Ba inventory is approximately 10between 11–21 % lower than previousexisting 

estimates of 145 Tmol Ba (Dickens et al., 2003; Carter et al., 2020). Thus, given current estimates 

Given the range of probable global marine Ba fluxes of between 18 (Paytan & Kastner, 1996) and 

44 Gmol Ba yr–1 (Rahman et al., 2022), our inventory estimate places the mean residence time of 

Ba in seawater is likely between 2,700600–7,200 years.  

Next we consider the main features in  

5.3.2. The Ba*–Si relationship  

We now quantify spatial and Ωbarite. vertical variations in the Ba–Si relationship, which we explore 

using Ba*. Star tracers, such as Ba*, highlight the processes affecting the distribution of a tracer 

by comparing it to another tracer that shares the same circulation (Gruber & Sarmiento, 1997). The 

concept has since been extended to study the processes affecting the distributions of many other 

bioactive elements, including Si (Si*, relative to N; Sarimento et al., 2004), cadmium (Cd*, 

relative to P; Baars et al., 2014), zinc (Zn*, relative to Si; Wyatt et al., 2014). First defined by 

Horner et al. (2015) for Ba, Ba* is analogous to other star tracers: it is a measure of Ba–Si 

decoupling whereby larger values indicate larger Ba–Si deviations relative to expected mean ocean 

behavior. Vertical or spatial differences in Ba and Si sources or sinks will drive variations in Ba*, 
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as will any Ba:Si fractionation occuring during their combined cycling. Conversely, if all Ba and 

Si cycling occurs in the same places (and with a fixed Ba:Si ratio), no Ba–Si decoupling will occur 

and Ba* will exhibit conservative behavior. Since Ba and Si are cycled by different processes and 

there are large vertical and spatial variations in the intensity of these processes (e.g., Bishop, 1989), 

significant variations in Ba* are possible. We now explore these variations.  

In the surface ocean, patterns of Ba* generally resemble those of [Ba] (Fig. 4). This is likely 

because inIn large parts of the ocean, surface [Si] approaches 0 µmol kg–1; thus, variations in Ba* 

derive mostly from variations in [Ba]. Barium-star is, however, strongly positive in the top 200 m 

of the This is most evident when examining regions with significant terrestrial input of Ba, such 

as from major rivers (Sect. 5.2.1) and from rivers and continental shelves in the Arctic (e.g., Guay 

& Falkner, 1998; Whitmore et al., 2022; Fig. 5A). The Southern Ocean, even also exhibits positive 

Ba*, though [Si] is in the 10’s of µmol kg–1we suspect the mechanism is different. Here we observe 

a belt of waters with positive Ba* ≈+20 nmol kg–1 range. centered on the Polar Frontal Zone—the 

region between the Antarctic Polar Front and the Subantarctic Front (Orsi et al., 1995; Fig. 5A). 

Silicic acid is intensely stripped from waters that transit northward through this region (e.g., 

Sarmiento et al., 2004), potentially contributing to elevated Ba* at the sea surface. Dissolved [Ba] 

and Ba* then decrease to the north of the Subantarctic front, partly driven by extensive particulate 

Ba formation in the frontal region (e.g., Bishop, 1989).  

At 1,000 m, the Atlantic, South Pacific, and southern Indian Oceans exhibit positive Ba* around 

+10 nmol kg–1, whereas the North Pacific, Southern, and Indian Oceans exhibit negative values 

between –10 to –20 nmol kg–1, whereas the Atlantic and South Pacific northern Indian Oceans are 

positive around +10 nmol kg–1 (Fig. 5). Below, 1,000 m, the Southern and negative between –10 

to –20 nmol kg–1 (Fig. 6C). The positive anomalies are likely related to the northward spreading 

of southern-sourced intermediate waters that originate within the Polar Frontal Zone and carry 

positive Ba* into the low latitudes (e.g., Bates et al., 2017). In the Atlantic Oceans do not exhibit 

significant gradients in Ba* and are , these values are carried all the way to the north of the basin 

and return as North Atlantic Deep Water with only minor modifications to Ba* (≈+10 nmol kg–1; 

Figs. 6C, 7C, 8C). Negative Ba* in the North Pacific, Southern, and northern Indian Ocean at 

1,000 m likely reflects a mixture of hydrographic processes and in situ processes. For example, 

the extensive region of negative and positive downBa* in the North Pacific is closely associated 
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with North Pacific Intermediate Water, which originates in the Sea of Okhotsk (Talley, 1991). 

While the specific mechanism sustaining this particular Ba* feature is unknown, it most possibly 

reflects a combination of preferential removal of Ba relative to Si in the source water formation 

region (such as from particulate Ba formation) and weak vertical mixing in the subsurface North 

Pacific relative to lateral transports (e.g., Kawabe & Fujio, 2010). We suspect that the negative 

Ba* values seen above 1,000 m in the northern Indian Ocean originate through processes occurring 

internally within this basin, as the majority of the Indian Ocean below 1,000 m exhibits positive 

Ba*. A possible mechanism for these shallow negative Ba* anomalies may relate to the relatively 

weak overturning transports (Talley, 2008) and strong particulate Ba cycle north of 30 °S (Singh 

et al., 2013), though this awaits more detailed investigation.  

Lastly, the Southern Ocean exhibits negative Ba* between –10 and –20 nmol kg–1 from ≈200 m 

water depth to the seafloor, respectively. In contrast, the Indian and North Pacific Oceans. These 

negative anomalies in Ba* appear to be associated with Circumpolar Deep Water and, below that, 

Antarctic Bottom Water; the influence of the latter can also be seen in near-bottom negative Ba* 

in the South Pacific, southern Indian, and South Atlantic Oceans (Fig. 8C). As with the other 

basins, the origin of the negative Ba* waters in the Southern Ocean likely reflects a combination 

of in situ and circulation-related phenomena. For example, in the Southern Ocean, Si is only 

stripped at the very surface, whereas particulate Ba formation is thought to be greatest in the 

mesopelagic (i.e., between 200–1,000 m; e.g., Stroobants et al. 1991). Barite formation is generally 

considered to be related to the regeneration of particulate organic matter (e.g., Chow & Goldberg, 

1960), whereby the former consumes Ba and the latter releases Si. Thus, intense organic matter 

remineralization and associated pelagic BaSO4 precipitation could contribute to negative Ba* in 

the mesopelagic Southern Ocean. Similarly, the Si cycle in the Southern Ocean tends to ‘trap’ a 

significant fraction of the global Si inventory in the waters circulating close to Antartica (e.g., 

Holzer et al., 2014). Since the calculation of Ba* depends on both [Ba] and [Si], waters with 

elevated [Si] will exhibit positive Ba* around 2,000 m, between +5 and +15 nmol kg–1 (Fig. 6). 

The most positive Ba* values, between +20 and +30 nmol kg–1, are observed at lower Ba* whether 

or not there is elevated Ba removal.  

By 2,000 m, almost all of the ocean north of 50 °S exhibits positive Ba* (Fig. 7C). By 4,000 m in 

the Pacific, specifically in the , the areal extent of the positive-Ba* waters shrinks to encompass 
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the area north of 30 °S (Fig. 8C). Despite covering a smaller area, the abyssal ocean exhibits the 

most positive Ba* values outside of the surface of the Southern Ocean. The reasons for elevated 

and increasing Ba* between the deep and abyssal oceans likely reflects a mixture of local and 

regional processes, and we offer two speculative explanations for these patterns. First, Si trapping 

in the Southern Ocean potentially renders most of the deep ocean away from Antarctica deficient 

in Si relative to Ba. Thus, much of the ocean may exhibit more positive Ba* than the deep circum-

Antarctic region due to processes unrelated to Ba cycling. Second, the most positive Ba* values 

are generally found close to the seafloor, rather than the mid-depths, especially in the North Pacific, 

the Peru and Chile Basins as well as, and the Philippine Sea (Fig. 7). Vertical profiles of Ωbarite are. 

This may indicate a mechanism that preferentially removes Ba (relative to Si) from the mid-depths, 

or input of Ba (relative to Si) close to the seafloor. 

Systematic variations in Ba* arise due to differences in the marine biogeochemical cycles of Ba 

and Si. While, in some cases, the specific drivers of these variations remains unresolved, our model 

identifies multiple hotspots of Ba–Si decoupling that warrant additional study. 

 

5.3.3. Barite saturation state of seawater 

Here we show that our approach can predict Ωbarite with an MAE of 0.08, that our output is in 

agreement with published values; comparisons are provided in the Appendix, and that the deep 

ocean, below 1,000 m, is at saturation with respect to BaSO4. By comparison to literature data, we 

estimate that our model achieves a typical prediction uncertainty on Ωbarite of 0.08 (see Appendix). 

Accordingly, values of Ωbarite between 0.92–1.08 can be considered as ‘BaSO4 saturated,’ whereas 

values of Ωbarite <0.92 or >1.08 indicate under- or super-saturation, respectively. Global patterns 

in Ωbarite derived using our model are similar to those reported by (e.g., Jeandel et al., 1996; Monnin 

et al., . (1999;) and Rushdi et al., . (2000). Excepting the Readers looking for detailed basin-by-

basin descriptions of Ωbarite are directed to those studies. Briefly our model shows that, excepting 

the high latitudes, the surface ocean is undersaturated with respect to BaSO4 (i.e., Ωbarite <1) and 

the0.92). The lowest values of Ωbarite in the open ocean are observed in the hot, salty cores of the 

Subtropical Gyres (Ωbarite between 0.1–0.2; Figs. 4D, 8D). WhereasFig. 5D). Conversely, the cold 

and fresh polar regions exhibit supersaturation at the sea surface, though there are important 
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differences between the Southern and Arctic Oceans. The Southern Ocean remains supersaturated 

(i.e., Ωbarite >1)exhibits BaSO4 saturation to depths around 2,000 m, whereas the Arctic Ocean 

switches to undersaturated conditions below ~the halocline (~250 m. Below). At 1,000 m, most of 

the North Pacific is supersaturatedachieves saturation (or slight supersaturation) with respect to 

BaSO4 (Fig. 6D) and byat 2,000 m almost all of the ocean exhibits Ωbarite >1, excepting0.92. The 

main exceptions to this are the Atlantic Ocean, which is undersaturated at all depths, and the 

southern Indian Ocean between 35–50 °S (Fig. 6D7D). The South Pacific and Indian Oceans return 

to undersaturated conditions by 4,000 m, whereas the majorityparts of the North Pacific exhibits 

Ωbarite >1remain saturated to the seafloor (Fig. 7D8D). From a volumetricglobal perspective, the 

oceans are slightly undersaturated with respect to BaSO4: volume-weighted mean Ωbarite = 0.82; 

however, the ocean belowbetween 1,000–5,500 m exhibits a mean Ωbarite ≥0.92, which (Fig. 9). 

This result implies that much of the deep ocean, as a whole, is close to saturationchemical 

equilibrium with respect to BaSO4 (Fig. 8D)..  

 

5.3.4. Model applicationsLastly, in 

In the spirit of maximizing model utility, we suggest three possible uses for these datamodel #3080 

outputs. First, the outputs can be used for model intercomparison and intercalibration. For 

example, a number of statistical models, such as Optimum Multiparameter Optimization, have 

been successfully used to study Ba cycling in the North Atlantic (Le Roy et al., 2018; Rahman et 

al., 2022), Southeast Pacific (Rahman et al., 2022), and Mediterranean Sea (Jullion et al., 2017). 

These models can apportion the relative contributions of in situ biogeochemical cycling and 

conservative mixing to observed [Ba]; however, accurate quantification of these processes requires 

a priori knowledge of end-member water mass [Ba], which model #33363080 can provide. Our 

model could also be used to benchmark output from process-based models, such as the Ocean 

Circulation Inverse ModelModels (e.g., John et al., 2020; Roshan & DeVries, 2021). Second, the 

output can be used for interpolation purposes. For example, manyMany groups investigated Ba 

partitioning into various types of marine carbonates (see Sect. 1 for examples); however, these 

investigations are sometimes performed without a co-located measurement of [Ba]. In these cases 

output from model #33363080 could be used to help calibrate specific substrates, such as deep-sea 

corals or benthic forams. This also avoids the potential for circular reasoning whereby [Si] is used 
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to estimate [Ba], which is then reconstructed from the Ba:Ca ratio of carbonates to estimate [Si]. 

Third, the model output makes testable predictions for regions of the ocean that have yet to be 

sampled by GEOTRACES-style surveys. Several of these regions, such as the Southern Ocean, 

exhibit with sharp lateral and vertical gradients in [Ba], Ba*, and Ωbarite. Such gradients should be 

considered prime targets for future process-oriented studies of marine Ba cycling. 

 

6. Data availability 

Data described in this manuscript can be accessed at the Biological and Chemical Oceanography 

Data Management Office under data doi:10.26008/1912/bco-dmo.885506.12 (Horner & Mete, 

2023). 

 

7. Conclusions 

This study presents a spatially and vertically resolved global model of [Ba] determined using 

Gaussian Process Regression machine learning. The model reproduces several known features of 

the marine [Ba] distribution and makes testable predictions in regions that are yet to be sampled. 

Analysis of the model output reveals the mean oceanic [Ba] is 89 nmol kg–1, implying a total 

marine Ba inventory of 122±87 Tmol. Using predictors from the World Ocean Atlas, we also 

estimate the global distribution of Ba* and Ωbarite. Both properties exhibit significant gradients that 

can be systematically investigated in future studies. The mean oceanic Ωbarite is 0.82, though 

between 1,000–5,500 m the mean is ≥0.92, implying that the deep ocean is close to saturationat 

equilibrium with respect to BaSO4. Our model output should prove valuable in studies of Ba 

biogeochemistry, specifically for statistical- and process-based model validation, calibrating 

sedimentary archives, and for identifying promising regions for further study. More broadly, our 

study demonstrates the utility of using machine learning to accurately simulate the distributions of 

trace elements in seawater. With minor adjustments, our approach could be employed to make 

predictions for other dissolved tracers in the sea.  
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Appendix 

Here we compare our results with published profiles of Ωbarite. Our results were calculated using 

the thermodynamic model of Rusdi et al. (2000), model #33363080 [Ba], and WOA T, S, and 

pressure. Literature profiles of Ωbarite were calculated using one of three different thermodynamic 

models and in situ observations of [Ba], T, S, and pressure. In general, there is strong agreement 

between modeled and in situ Ωbarite whereby our model reproduces the shape of published profiles 

(Fig. A1). There are, however, some small systematic offsets between the various approaches, and 

we suspect that these derive from differences in the underlying thermodynamic models.  

 

Figure A1. Comparison of literature- (symbols) and Model #33363080-derived (dashed line) 
estimatesvalues of Ωbarite. Panels A and B show profiles of Ωbarite at GEOSECS St. 89 (60°0’ S, 0°2’ E). 
The other panels are from the Indian Ocean;: C and D are from INDIGO 2 St. 36 (6°9’ S, 50°55’ E) and E!
"#$%!&'()'*)!)+,!-./!0/123!)4!5/1553!'64!7$%8!9:;5!<%!=$#+>!$"!?@A?&(!.!)+,!2:,  

 

We compare our model output with literature data Ωbarite at two stationslocations in two basins 

(Fig. A1). These stationslocations were selected for comparing Ωbarite becausechosen to ensure a 

fair comparison between studies; at both locationseach location, at least two studies calculated 

profiles of Ωbarite using the same underlying in situ data for [Ba], T, S, and pressure. This ensures 

a fair comparison between studies, sinceThus, any differences in modeled Ωbarite should derive 

from the thermodynamic model and not the input data. Likewise, the literature profiles at these 

locations were based on calculations for pure, rather than strontian, BaSO4, as in our study. 

Published profiles of Ωbarite were extracted graphically from each study using WebPlotDigitizer 
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(Rohatgi, 2022). This extraction process may introduce some minor scatter in the literature data, 

though this is relatively minor relativecompared to the range of variation in Ωbarite. 

First, we examine profiles of Ωbarite reported for GEOSECS St. 89 in the Southern Ocean (Fig. A1; 

Monnin et al., 1999; Rushdi et al., 2000). Modeled and published profiles show supersaturation in 

the surface ocean and undersaturation below 2,000–2,500 m. Profiles from Rushdi et al. (2000) 

show excellent agreement with Ωbarite calculated from model #33363080 [Ba] and WOA T, S, and 

pressure, with our output slightly negatively offset by a MADMAE of 0.06 (n = 22). Given that 

we use the same thermodynamic model as Rushdi et al. (2000), the overall excellent agreement 

with their study is not surprising. However, the result is nonetheless reassuring since our study 

uses mean annual values for the various inputs, whereas Rushdi et al. (2000) utilized in situ data. 

There is a slightly larger offset between our profile of Ωbarite and that calculated by Monnin et al. 

(1999), with our respective profile offset to higher Ωbarite by a MADexhibiting an MAE of 0.13 (n 

= 41). This most likely reflects differences in the underlying thermodynamic model and not the in 

situ data since our model reproduces the same overall profile shape as Monnin et al. (1999). 

Likewise, both Monnin et al. (1999) and Rushdi et al. (2000) used the same in situ input data and 

their results are highly comparable, albeit with an offset similar to that between our results and 

Monnin et al. (1999). 

Next we examine profiles of Ωbarite in the Indian Ocean for samples from INDIGO 2 St. 36 (Fig. 

A1; Jeandel et al., 1996; Rushdi et al., 2000). Profiles of Ωbarite show undersaturation at the surface, 

moderate supersaturation between 2,000–3,500 m, then return to undersaturated conditions down 

to the seafloor. Our profile shows overall excellent agreement with that of Jeandel et al. (1996), 

whereby our data are offset to slightly lower a comparison of Ωbarite withyields a MADMAE of of 

0.0603 (n = 21). The largest differences are observed between 594–1,042 m depth, where the MAD 

is 0.15 (n = 3). Our profile shows similarly good agreement with that of Rushdi et al. (2000), 

whereby our data are offset to lower a comparison between our respective values of Ωbarite 

withyields a MADMAE of 0.0704 (n = 20). As with the data of Jeandel et al. (1996), we observe 

a larger offset between modeled Ωbarite and the data of Rushdi et al. (2000) between 594–1,042 m, 

equivalent to a MAD of 0.17 (n = 3). We consider these larger mesopelagic offsets in Ωbarite to be 

the result of differences in the predictors (i.e., [Ba], T, S), rather than the thermodynamic model; 
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Jeandel et al. (1996) and Rushdi et al. (2000) use the same in situ predictor data and yield similar 

Ωbarite, despite using different thermodynamic models. 

We also compared our results with data from St. 420 of GEOSECS (Monnin et al., 1999), which 

is located ≈675 km north of INDIGO 2 St. 36 (Fig. 2). As with data from the Southern Ocean 

(GEOSECS St. 89), our profile data are offset to higher Ωbarite than those of Monnin et al. (1999) 

by a MAD), with slightly larger MAE of 0.1216 (n = 29). However, our modeled Ωbarite is generally 

in much closer agreement with Monnin et al. (1999) above 1,250100 m than below, equivalent to 

a MADMAE of 0.0304 (n = 98) and 0.1621 (n = 2021), respectively. In this case it is more 

challenging to ascribe a unique cause of the differences in calculated Ωbarite; these offsets could 

relate to differences in the predictors or the thermodynamic model.  

We can use these comparisons to estimate the prediction uncertainty on our model-derived values 

of Ωbarite. The MAE of the 133 comparisons shown in Fig. A1 yields a value of 0.10. However, 

there are different numbers of points in each profile; we thus believe it is more appropriate to 

average the MAE calculated for each of the five profiles, which yields a value of 0.08. Both values 

are similar to the 10 % prediction uncertainty reported by Monnin et al. (1999).  

Overall, our ML-derived profiles of Ωbarite show excellent agreement with in situ data, both in 

terms of profile shape and absolute values of Ωbarite. We use this comparison to withinestimate the 

prediction uncertainty on ML-derived values of Ωbarite, which we calculate as being between 0.108 

and 0.10. Should a revised thermodynamic model and/or improved BaSO4 solubility coefficients 

become available, a new grid of Ωbarite could be calculated using Model #33363080 [Ba] and WOA 

T, S, and pressure data.  
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