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Abstract

Barium is widely used as a proxy for dissolved nutrientssilicon and particulate organic carbon
fluxes in seawater. However, these proxy applications are limited by insufficient knowledge of the
dissolved distribution of Ba ([Ba]). For example, there is significant spatial variability in the Ba—
Sibarium-silicon relationship, and ocean chemistry may influence sedimentary Ba preservation.
To help address these issues, we developed 4,095 models for predicting [Ba] using Gaussian
Progress Regression Machine Learning. These models were trained to predict [Ba] from standard
oceanographic observations using GEOTRACES data from the Arctic, Atlantic, Pacific, and
Southern Oceans. Trained models were then validated by comparing predictions against withheld
[Ba] data from the Indian Ocean. We find that a model trained using depth, -S5O}
PO4}temperature, salinity, as well as dissolved dioxygen, phosphate, nitrate, and PNOs}-as
predietorssilicate can accurately predict [Ba] in the Indian Ocean with a mean absolute percentage
deviation of 6.30 %. We use this model to simulate [Ba] on a global basis using these same
sixseven predictors in the World Ocean Atlas. The resulting [Ba] distribution constrains the tetal
Ba budget of the ocean to 122+8-(+7)x10!2 mol and elarifiesreveals systematic variability in the
glebalbarium—silicon relationship-between-disselved Baand-St.. We also calculate the saturation
state of seawater with respect to barite;. In addition to revealing systematic spatial and vertical
variations, our results show that the ocean below 1,000 m is;—en—average; at er—near
saturatienequilibrium with respect to barite. We describe a number of possible applications for our
model output, rangmg from use in b10geochem1cal models to paleoproxy cahbratlon Our approach

: ner : and-demonstrates the
ut111ty of machine learmng to accurately 51mu1ate the dlStI‘lbuthl’lS of tracers in the sea and provides
a framework that could be extended to other trace elements.
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1. Introduction

Barium (Ba) is a Group II trace metal that is widely applied in studies of modern and ancient
marine biogeochemistry, despite lacking a recognized biochemical function (e.g., Horner &
Crockford, 2021). These applications of Ba are based on two empirical correlations relating to its
dissolved and particulate cycles. The first correlation relates to the dissolved concentration of Ba,
hereafter [Ba], which is strongly correlated with that of the algal nutrient silicon (Si; as dissolved
silicic acid; Fig. 1; Chan et al., 1977). Unlike [Si], ambient [Ba] concentrations are faithfully
recorded by a number of marine carbonates, such as planktonic (e.g., Honisch et al., 2011) and
benthic foraminifera (e.g., Lea & Boyle, 1990), surface- (e.g., Gonneea et al., 2017) and deep-sea
corals (e.g., Anagnostou et al., 2011; LaVigne et al., 2011), and mollusks (e.g., Komagoe et al.,
2018). Preservation of these signals means that the Ba content of carbonates can be related to the
Ba content of seawater and, by extension, that of Si. Accordingly, the Ba—Si proxy has been applied
to understand ocean nutrient dynamics on decadal (e.g., Lea et al., 1989) to millennial timescales

(e.g., Stewart et al., 2021).

The nutrient-like distribution of dissolved Ba in seawater is thought to be sustained by the second
empirical correlation, relating to cycling of particulate Ba. Particulate Ba in seawater occurs mostly
in the form of discrete, micron-sized crystals of the mineral barite (BaSOa(s), barium sulfate; e.g.,
Dehairs et al., 1980; Stroobants et al., 1991). Pelagic BaSOs is an ubiquitous component of marine
particulate matter (e.g., Light & Norris, 2021) and constitutes the principal removal flux of
dissolved Ba from seawater (Paytan & Kastner, 1996). Pelagic BaSO4 is thought to precipitate
within ephemeral particle-associated microenvironments that develop during the microbial
oxidation of sinking organic matter (e.g., Chow & Goldberg, 1960; Bishop, 1988). The flux of
particulate BaSOj4 to the seafloor is correlated with the flux of exported organic matter (e.g.,
Dymond et al., 1992; Eagle et al., 2003; Serno et al., 2014; Hayes et al., 2021). This correlation
means that the accumulation rate of sedimentary BaSOs—or its main constituent, Ba—can be used
to trace patterns of past organic matter export on timescales ranging from millenia to millions of

years (e.g., Bains et al., 2000; Paytan & Griffith, 2007; Schmitz, 1987; Schroeder et al., 1997).
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Figure 1. Distribution of barium in seawater. A. Property—property plot showing the 4,345 co-located,
core-feature complete dissolved data used in ML model training (Sect. 2). Sample locations shown in Figure
2. Dashed line shows best-fit linear regression through these data, whereby [Ba] = 0.54+[Si] + 39.3. Panels
B., C., D., and E. show average Pacific Ocean dissolved depth profiles of [Si], [Ba], Ba*, and Quarite,
respectively. Solid line denotes the arithmetic mean and the shaded region encompasses one standard
deviation either side of the mean._Dashed line indicates Ba* = 0 (D) and Qparite = 1 (E).

While the Ba-based proxies are valuable, their applications are potentially limited by insufficient
knowledge of the distribution of [Ba]. For example, there is significant vertical and spatial
variability in the Ba—Si relationship (Sect. 3.3.; Fig-);. 1). which we quantify using Ba* (barium-

star: e.g., Horner et al., 2015):

Ba* = [Baliy sie — [Balpredictea [Eq. 1]
where [Ba],rediciea 18 based on the Ba—Si linear regression (Fig. 1):

[Balpredicted = 0.54-[Silin sin + 39.3 [Eq. 2]

Here, [Si]in sie has units of umol kg! and [Ba]predices Nmol kg™!; therefore, Ba* also has units of
nmol kg!. The vertical profile of Ba* is rarely conservative (Fig. +1D) and these variations could

introduce uncertainty in the reconstruction of [Si] using Ba.

The relationship between sedimentary BaSO4 accumulation rates and productivity also contains a
significant degree of scatter (e.g., Serno et al., 2014; Hayes et al., 2021). Some of this scatter may

relate to variability in BaSO4 preservation, which is at least partially sensitive to ambient saturation
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state, Qvarite (€.g., Schenau et al., 2001; Singh et al., 2020; Fig. 1). The saturation state of a parcel

of water with respect to BaSOy is defined as:
Qbvarite = Q / Ksp [Eq 3]

where Q is the Ba and sulfate ion product and Kp is the in situ BaSO4 solubility product. Discerning
the importance of Qvarite 0n BaSO4 preservation has hitherto been challenging owing to the sparsity
of in situ [Ba] measurements. Accurately determining the global distribution of [Ba] would be
valuable for geochemists and oceanographers, and would enable a more thorough investigation of

the effects of preservation on BaSO4 fluxes and refinement of the Ba—Si nutrient proxy.

A powerful way of interrogating oceanic element distributions is through modeling. Broadly, there
are two modeling approaches relevant for simulating [Ba]: mechanistic (i.e., theory driven) and
statistical modeling (i.e., data driven; e.g., Glover et al., 2011). Mechanisticln mechanistic or
process-based modeling-is—generally—viewed-as—the-gold-standard-appreaech;, model outputs are

derived from sets of underlying equations that are based on fundamental theory. As such,

mechanistic model outputs can be interrogated to obtain understanding of processes and their
sensitivities. However, creating a mechanistic model of the marine Ba cycle requires embedding a
biogeochemical model of BaSO4 cycling within a computationally expensive global circulation
model. Although the computational cost associated with building mechanistic models has been
reduced by the development of ocean circulation inverse models (e.g., DeVries, 2014; John et al.,
2020), this approach still requires detailed parametrizations of the marine Ba cycle, which do not
currently exist. In contrast, statistical models are based on extracting patterns from existing data
and using those relationships to make predictions. Statistical models encompass a wide variety of
approaches ranging from regression analysis to machine learning (ML). Of particular interest to
our study are ML models, which can make predictions without any explicit parameterizations of
causal relationships. Machine learning models are computationally efficient and can be highly
accurate, though they offer limited interpretability. Machine learning is increasingly being used to
solve problems in Earth and environmental sciences, including simulating the dissolved

distribution of tracers in the sea (e.g., for cadmium, Roshan & DeVries, 2021; copper, Roshan et

al., 2020; iodine, Sherwen et al. 2019; nitrogen isotopes of nitrate, Rafter et al., 26492019; and
zinc, Roshan et al., 2018).
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The goal of this study is to obtain an accurate simulation of [Ba], which ML makes possible even
in the absence of a process-level understanding of the marine Ba cycle. We tested thousands of
ML models that were trained using quality-controlled GEOTRACES data from the Arctic,
Atlantic, Pacific, and Southern Oceans, supplemented by Argo, satellite chlorophyll, and
bathymetry data products (Sect. 2.). Models were tested for their accuracy by simulating [Ba] in
the Indian Ocean and comparing predictions against observations made between 1977-2013.
Impertantly;Since no Indian Ocean data were seen by any of the models during training{Seet—2-
Frem-this, we are able to identify models with high generalization performance (Sect. 2.). theWe
then identify an optimal set of predictor variables-thatresultsinthe-meost-aceurateestimates—of

{Bat};, calculate model uncertainties, and simulate [Ba], Ba*, and Qupasiee On a global basis (Sect. 5.).

This result will be valuable for researchers interested in marine Ba cycling, and demonstrates the

utility of ML to tackle problems in marine biogeochemistry.

2. Training and testing data

Machine learning algorithms are adept at making accurate predictions of a target variable by
identifying relationships between variables within large data sets. However, making accurate
predictions first requires that a ML algorithm is trained on existing observations of that variable
alongside a number of other parameters. These other parameters, hereafter termed features, are an
important part of model training; features should encode information that may help the ML
algorithm predict [Ba], otherwise their inclusion may diminish model performance. Features
should also be well characterized in the global ocean, which allows ML models to make predictions
in regions beyond the initial training dataset. We selected 12 model features by considering the
tradeoff between feature availability and presumed predictive power (Table 1). While testing more
features may have resulted in a more accurate final model, we found that many observations of
[Ba] did not have corresponding data for severalmultiple features—Fhus; thus, including more
features would have meant fewer training data. In-subsequentseetiensMoreover, we find that enly
4—7including more than nine features are-needed-to-aceuratelyprediet{Baj-can actually diminish

model performance. As such, we did not evaluate the predictive power of other predietersfeatures

beyond the initial feature-set—12 initially selected.
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Table 1. List of oceanographic parameters chosenselected as model features. The features tested

were selected based on their presumed predictive power and geospatial coverage.

# | Parameter Name Abbreviation | Units Coverage*
1 | Latitude Lat. degrees north (°N) —

2 | Longitude Long. degrees east (°E) —

3 | Sample collection depth z meters (m) -

4 | Temperature T degrees Celsius (°C) 97.44%
5 | Salinity S unitless, but often written 97.44%

in ‘units’ of PSU or PSS

6 | Dissolved oxygen [02] umol kg™t 97.44%
7 | Dissolved nitrate [NOs7 umol kg™t 97.44%
8 | Dissolved phosphate [RPO+#71P0s] pmol kg™t 97.44%
9 | Dissolved silicon (as silicic acid) [SicOHy4] pmol kg™t 97.44%
10 | Maximum monthly mean mixed-layer depth | MLD meters (m) 88.20%
11 | Mean average annual surface chlorophyll Chl. a mg m 93.95%
12 | Bathymetry Bathy. meters (m) 100%

*Coverage values represent the percentage of data points within the World Ocean Atlas 2018 grid that have
available data for a given parameter. Latitude, longitude, and depth have 100 % coverage as these features define

the grid itself.

The 12 features used to predict [Ba] and their associated data sources are summarized in Table 1
and described below. The first three features (latitude, longitude, depth) record geospatial
information that defines the location of an observation in three-dimensional space. To avoid
numerical discontinuities, latitude and longitude were introduced into the model as a
hyperparameter consisting of the cosine and sine of their respective values (in radians). Data for
features 1-3 were included in the sample metadata. Features 4-9 encode physical (temperature,
salinity) and chemical (oxygen, nutrients) information that is routinely measured alongside [Ba].

These data were generally available for the same bottle as the [Ba] measurements; however, when
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that was not the case, nutrient data were taken from the corresponding location during a separate
cast, or, in the case of oxygen, from linearly interpolated sensor data. The final three features are
independent of depth, meaning that all samples within a given vertical profile exhibit the same
value for MLD (mixed-layer depth), sea-surface chlorophyll a, and bathymetry. Features 10—12
were drawn from several data sources. A climatology of MLD (feature 10) was compiled using
the Argo database (Holte et al., 2017). We selected maximum monthly mean MLD as the feature
of interest, as this appears to be the spatiotemporal scale most relevant for influencing [Ba]
distributions (Bates et al., 2017). Feature 11 represents a blended SeaWiFS and MODIS
climatology of chlorophyll a that was obtained from the Copernicus Marine Environment
Monitoring Service (CMEMS, 2021). We calculated the mean annual chlorophyll @ for each grid
cell in the data product and log transformed the data to reduce parameter weighting (e.g., Rafter et
al., 2019). Data for MLD and chlorophyll a were extracted at the location of [Ba] observations
using nearest-neighbor interpolation and their values logged in the master record. Bathymetric
information (feature 12) was extracted from one of two sources. Our preferred source was the
sample metadata, which generally included a value for bathymetry. For samples lacking
bathymetric information, we used nearest-neighbor interpolation to extract a value from the
ETOPOS5 Global Relief Model (National Geophysical Data Center, 1993). Occasionally, the
ETOPOS5-extracted bathymetry was shallower than the deepest observation of [Ba] in a given
vertical profile. In such cases, the bathymetry logged in the master record was set to 1.01 times the

depth of the deepest observation in that profile.

The [Ba] data from the Indian Ocean were collected from a—multitude-efseveral, primarily pre-
GEOTRACES sources (Table 2). As such, these data were generally incomplete for the 12 features
used to train the ML models. Rather than using a mixture of in situ and interpolated data, we
decided to interpolate all Indian Ocean data for parameters 4—12. Data for parameters 4-9 were
linearly interpolated from the nearest vertical profile in the World Ocean Atlas 2018 (WOA; Boyer
et al., 2018; Garcia et al., 2018a; 2018b; Locarnini et al., 2018; Zweng et al., 2018) and values for
MLD and chlorophyll a were extracted from the aforementioned data products using nearest-
neighbor interpolation. Bathymetric information was obtained from either the WOA or ETOPOS.
For the vast majority of most samples, bathymetry was taken as the arithmetic mean of the
maximum depth of the nearest vertical profile in the WOA and the depth at the standard level

below. For example, if the maximum depth at a station was 950 m, the bathymetry was recorded
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as 975 m, which is the mean of levels 46 (950 m) and 47 (1,000 m). For profiles with a maximum
depth of 5,500 m—Ilevel 102, the lowest in the WOA—bathymetry was recorded as either 5,550

m or the nearest-neighbor interpolated value from ETOPOS5, whichever was deeper.

Table 2. Data sources. Information regarding the source of [Ba] incorporated into the master record.

. Expedition Data Originators
Purpose Region D Data source (if unpublished)
South Atlantic GEOTRACES IDP 2017
(Meridional) GAO2 (Schlitzer et al., 2018) Jose M. Godoy
North Atlantic (Zonal) GAO03 Rahman et al., 2022
. Horner et al., 2015; Bates et al., 2017; Hsich &
South Atlantic (Zonal) GAILO Henderson, 2017; Bridgestock et al., 2018
Southern Ocean GEOTRACES IDP 2017 .
Model (Meridional) GIPY04 (Schlitzer et al., 2018) Frank Dehairs
training
Southern Ocean (Zonal) GIPYO05 Hoppema et al., 2010
GIPY11 Roeske et al., 2012
Arctic
GNO1 Whitmore et al., 2022
GEOTRACES IDP 2021 Laura Whitmore, Melissa
Pacific (Meridional) GP15 (GEOTRACES IDP Gilbert, Emilie Le Roy,
Group, 2021) Tristan Horner, Alan Shiller
Subtropical South
Pacific (Zonal) GP16 Rahman et al., 2022
GEOSECS Craig & Turekian (1980)
INDIGO 1
Model
. Indian Ocean INDIGO 2 Jeandel et al. (1996)
testing
INDIGO 3
SR3 Jacquet et al. (2004)
SS259 Singh et al. (2013)
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This data ingestion process resulted in a master record containing 5,502 observations of [Ba] that
also contained a corresponding value for all 12 efthecore features listed-in-(Table 1-). The record
was then split into a Pareto partition: the first partition was used for ML model training (4,345
observations, 79 % of data; Fig. 1A) and the second for model testing (1,157 data; 21 %). This
partitioning was determined based on the basin from which the sample was collected; data from
the Arctic, Atlantic, Pacific, and Southern Oceans were used in model training, whereas the 1,157
[Ba] data from the Indian Ocean were reserved for model testing (Table 2; Fig. 2). This location-

based separation of training and testing data was chosen to minimize overfitting, which can occur

when the training—testing separation is randomly assigned (see e-g5Rafteret-al; 2019).Sect. 3.2.).

__1Training— GEOTRACES
GEOSECS
INDIGO 1, 2, 3
SR3
SS259

Testing

Ocean Data View

Figure 2. Geographical distribution of the training and testing data. The 4,345 core-feature complete
training data (red; Fig. 1) are from the GEOTRACES 2021 Intermediate Data Product (GEOTRACES IDP
Group, 2021); GEOTRACES expedition identifiers are noted next to each section. FestingThe n = 1,157
testing data from the Indian Ocean are color-coded by expedition{see-key;-r—=+157)-data. Data sources
are-listed in Table 2.
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3. Methods

In the following subsections we discuss details of the specific ML algorithm that was used for
model development (Sect. 3.1.), explain the model training and testing process (Sect. 3.2.), and

describe how a global prediction of [Ba] was obtained and interrogated (Sect. 3.3.).

3.1. Algorithm selection and training

We opted for supervised ML using a Gaussian Process Regression learner, implemented in
MATLAB. This particular ML algorithm is non-parametric, kernel-based, and probabilistic-,

which means that it does not make strong assumptions about the mapping function, can handle

nonlinearities, and takes into account the effect of random occurrences when making predictions.

Gaussian Process Regression algorithms are widely used in geostatistics, where it is often referred

to as ‘kriging’ (e.g., Cressie, 1993; Rasmussen & Williams, 2006; Glover et al., 2011). This type

of algorithm is ideal when working with continuous data that also contains a certain level of noise,

such as from measurement uncertainty or oceanographic variation. Fhe-basis-and-kernel funetion

to-produce-the-mest-aceuratepredietions:The MATLAB function, £itrgp, was used for model

training. A full list of the parameter selections used in fitrgp is provided in Table S1. All

a oOm a a a
Y5 O O cl O v O Cl

predictors were normalized and standardized to have a mean of zero and a standard deviation of

unity. This process plaeedplaces all parameters on the same relative range and was-intended-te

diminishreduces scale dependencies.




The-training partition—of the-master record—was used to train 4,095 different machine learning

models with the goal of finding a model that could accurately simulate the global distribution of
[Ba]. The number of models-tested derives from the number of features investigated; each model
uses a unique combination of the 12 features in Table 1 and our testing followed a factorial design
whereby each feature was either enabled or disabled. This design yields a total of 2!2 unique feature
combinations (i.e., levels®s)_Sinee): however, since it is not possible to train a model with no

features enabled-eannot-be-trained, the final number of unique, trainable, ML models with >1

features wasis 2'>~1=4,095. The full experiment list is provided in Section 6. Each of the 4,095
models was trained using the same 4;345-input-data and with the same function parameters

described a

— MADAssessing model performance

Model performance—accuracy and generalizability—was assessed during two phases: training

and testing. During model training, the 4.345 observations of [Ba] from the Arctic, Atlantic,

Pacific, and Southern Oceans were randomly split into two folds: a training fold containing 80 %

of the observations, and a holdout fold containing the other 20 %. Model accuracy was assessed

by comparing model-predicted [Ba] against observed [Ba] for the 20 % of the data in the holdout

-11/54 -



fold. We then performed additional testing to establish model generalizability. A significant

problem in supervised ML. and particularly Gaussian Process Regression learning, is overfitting:

models may fit the noise in the training data, leading to poor generalization performance

(Rasmussen & Williams, 2006). Since our goal was to develop a global model of [Ba] using

regional training data, we deemed it especially important to identify generalizable models.

Generalizable models were identified through a testing process involving regional cross-

validation; each trained model was used to predict [Ba] for the 1.157 samples from the Indian

Ocean and model predictions were again compared against observations. Importantly, no [Ba] data

from the Indian Ocean were seen by any of the models during training. This process helped to

identify models that may have been overfit to the training data and can further be used to calculate

generalization errors (Sect. 4.1).

The accuracy of trained models was determined by comparing ML model predictions against

withheld data and calculating the mean absolute error (MAE) and mean absolute percentage error

(MAPE), defined as:

™1 |[Balpredictea—[Balobserved [Eq. 4]

and-MAPD-as:
MAPE _100% v | Berpred [Balpredicted—[B@lobserved
MAPE n “=E] [Ba]opserved
[Eq. 5]

respectively, where n is the sample size.

Models with lower accuracy exhibit higher MAD-and MAPDerrors, whereas models with high

accuracy wil-have lower MA

IndianOecean{Bal-with-a MAD-and MAPDerrors. We calculated MAE and MAPE for every
possible feature combination, which enables quantification of 6-8—nmelkg—and—97 %;

—how

specific features affect model performance. Likewise, we calculated errors for each model on

predictions made during training (i.e., for the holdout fold) and during model testing (i.e., during

regional cross-validation: Fig. 3). This information is used to quantify generalization performance;
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low errors for both training and testing indicate models that are both accurate and generalizable,

whereas models with low training errors and high testing errors might indicate models -overfit to

the training data.

3.3. Global predictions

A select number of models with low MABDMAE and MAPBMAPE were used to simulate [Ba] on
a global basis. The process by which we selected these models is described in Section 5.1. Global
simulations were performed on the same grid as the WOA, which was also used as the data source
for features 1-9 (Boyer et al., 2018). The WOA is a 1°x1° resolution data product with around
41,000 stations that contain up to 102 depth levels spanning 0-5,500 m in 5, 25, 50, or 100 m
increments. Data for features 10-12 (MLD, chlorophyll a, and bathymetry) were also resampled
to the WOA grid using the same sources and interpolation methods as described for the Indian

Ocean testing data in Section 2. Model outputs were visualized using Ocean Data View software

(ODV; Figs. 4-75-8; Schlitzer, 2023).

ecaleulationA selection of the most accurate models of [Ba] were then used to simulate Ba* and

Quarite. Star tracers, such as Ba*, are valuable for illustrating processes that influence the cycling

of elements in the ocean. First defined for N—P decoupling (N*: Gruber & Sarmiento, 1997) star

tracers show variations whenever there are differences in the sources and sinks of the two elements

being compared. If there are no differences in sources and sinks, the tracer will show conservative

behavior because both elements share the same circulation. Barium-star is based on Ba-Si

decoupling and was first defined by Horner et al. (2015). The definition of Ba* is shown in
Equations 1 and 2. The coefficients in Equation 2 are based on data from the GEOTRACES 2021

Intermediate Data Product and specifically the subset of these data shown in Figure 1. These
coefficients differ from previous formulations of Ba* that were based primarily on [Ba] and [Si]
data from the Southern and Atlantic Oceans (e.g., Horner et al., 2015; Bates et al., 2017).
CaleulationThe global distribution of ME—medel-derived Ba* used-values-effwas determined by
calculating [Bal,rediciea (Eq. 2) using [Si]in sine from the WOA 2018 (Garcia et al., 2018b)-and). The

-13/54 -



values of [Ba]in sin was taken from the ML model output-- and [Ba], ediciea Was subtracted from this

to vield Ba* (Eqg. 1).

Values of Quarite Were computed using the method described by Rushdi et al. (2000), summarized

in Equation 3. 33-The numerator, O, represents the in situ Ba and sulfate ion product and, in this

formulation,

withdepends only on [Ba] and [SO4>~] molality. The denominator, K,. depends on 7, S, and z (i.e.,

pressure) and is calculated in two steps: in situ T and S are used to calculate the stoichiometric

solubility product and then this value is modified by calculating the effect of pressure on partial

molal volume and compressibility, which are functions of 7 and z. As with the calculation of Ba*,
values of [Ba]ix si» Were obtained from ML models and co-located data for 7, S, and pressure-dataz

were extracted from the WOA (Locarnini et al., 2018; Zweng et al., 2018). Sulfate concentrations

were assumed to be conservative with respect to S using [SO4>] = 29.26 mmol kg~! when salinity

= 35 PSU. This latter assumption likely breaks down in certain environments (e.g., where [SO4%

] reduction occurs); as such, our model is not used to predict Qparite in restricted basins, such as the

Black Sea or Caspian Sea. Given that our estimates of Qparite €xhibit a MAE of 0.08 (Appendix),

we believe that values of Qbarite between 0.92 and 1.08 are indicative of ‘perfect’ saturation with

respect to BaSQOj.

Output from the most accurate ML models was then used to calculate mean [Ba] and Qparite for
each basin, for a series of prescribed depth bins, and for the global ocean. This calculation was
performed by weighting each cell in the model output by its volume, which ensures a fair
comparison between any two points in the model output. We then subdivided the global ocean into
five sub-basins: Arctic, Atlantic, Indian, Pacific, and Southern. Basin boundaries were defined as
per Eakins & Sharman (2010), though we merged the Mediterranean and Baltic Seas into the
Atlantic and considered the South China Sea as part of the Pacific Ocean. Neither [Ba] nor Qparite
were simulated in the Black or Caspian Seas and thus these regions are not included in the global

mean calculations.
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4. Results

4.1. QuantifyingFactors affecting model accuracy

influenced by the number of features;
the MAD-of the- median-model-deereasesfrom-15-8to-71and nature of features included during

training. We consider model performance in terms of accuracy and generalizability, which we

quantify using MAE (Eq. 4). We first explore how the number of features influences model

performance (Fig. 3). Here we see that increasing the number of features generally improves the

accuracy of trained models; however, the response differs depending on whether accuracy is

calculated based on comparison to the holdout fold (i.e., during model training) or to the withheld

Indian Ocean data (i.e., during model testing). When considering only the holdout fold, trained

models predict [Ba] with a high level of accuracy—the mean, median, and most-accurate trained

models achieve a MAE of 2.4, 1.7, and 1.3 nmol kg !, respectively. Similarly, increasing the

number of features almost always improves model accuracy:; the MAE of the most accurate model

for a given number of features decreases from 6.5 to 1.3 nmol kg™' as the number of features is

increased from one to ﬁsv%Beyeﬂd—ﬁsv%feaﬂﬂes—th%re&aﬂ—medel—MADnme at which point
MAE plateaus:-the-med S : : with atu e s between

1.4-1.5 nmol kg! for models with 10—12 features (Fig. 3A).
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Figure 3. Effect of feature addition on ML model accuracy. Accuracy was quantified for each of the
4.095 trained models and quantified here using MAE (note log scale, which differs between panels). The
accuracy of trained models is shown for random holdout cross-validation during training (top) and for
regional cross-validation during testing (bottom). Square indicates the performance of our favored predictor
model, #3080 (see Fig. 4, Sect. 5.1). The accuracy of the Ba—Si linear regression benchmark is shown as
a dashed line in the lower panel (MAE = 6.8 nmol kg™'). To illustrate data density, points have been
randomly positioned within their respective bin and plotted with 80 % transparency.

Moving to the regional cross-validation, the overall performance of models is lower; the same

4.095 trained models achieve a mean, median, and most-accurate MAE for the Indian Ocean

dataset of 8.8, 7.9, and 4.0 nmol kg!, respectively. For comparison, if [Ba] was estimated for these
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same 1.157 Indian Ocean samples using the linear [Ba]—[Si] relationship (Fig. 1) and ambient [Si]

as the only predictor, this linear model would achieve a MAE of 6.8 nmol kg~!. Thus, there are

1.687 ML models that achieve a superior accuracy to existing methods for estimating [Ba],

offering an improvement of as much as 41 % (Fig. 4). However, regional cross-validation also

shows that the addition of more features may. in fact, degrade model performance. The MAE of

the most accurate model for a given number of features decreases from 6.6 to 4.0 nmol kg™ as the

number of features is increased from one to eight. As the number of features is increased from nine

to—twelve9-12, the MADMAE of the most-accurate MLE—medel—within—each—bin

monotonieallymodels increases monotonically from 4.1 to 7.2-amel kg (Fig-—3C)—Thusthe
number-of featuresnecessaryl nmol kg~!. The overall lower performance of trained models during

regional cross validation—and the observation that many of the feature-rich models perform worse

than models with fewer features—is indicative of certain models being over-fit to the training data.

Together, these observations suggest that the optimum number of features needed to accurately

predict [Ba] in-the Indian-Oecean-appears-to-beis between five-and-eight

features-to-six and nine.
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Figure 4. Comparison of existing and ML methods to estimate [Ba] in seawater. Left panel shows the
performance benchmark: predicted [Ba] for the Indian Ocean testing data using the [Ba]-[Si] linear
regression and ambient [Si] as the sole predictor. Right panel shows predicted [Ba] using ML model 3080,
which improves on existing methods by more than 37 %. Perfect correspondence between predictions and
observations is indicated b the dashed line marked ‘1:1.’Data locations and sources are shown in Fig. 2
and Table 2, respectively; n refers to the number of testing data for each campaign. reducesMean Absolute
Error (MAE; Eq. 4) and Mean Absolute Percentage Error (MAPE; Eq. 5) are noted for both models.

We also evaluated the MAD-to-4-4-nmolkg*(Fig-3B)-Since-wenature of the predictors used ato
estimate [Ba]. The full factorial experiment design;-we-were-able enables us to perform-anategeus

pairwise comparisons between the-2™all models that contained a certain feature;sueh-as—7; and
the2**all of those that did not- (Sect. 3.1). We quantified the effect of adding a feature by
comparing the absolute and percentage change in MADMAE relative to the mean MADMAE of
the two models—The likelihood-that-the-inclusion-of-agivenfeature-affected-the MAD of the
medels—sets of models. This comparison was then—quantified—using—a—two-tailed,paired—+test:
Lower p-values-indieate-performed three times: for all 4,095 models based on the holdout cross-
folded training data, for all models using the regionally cross-validated testing data, and again for
the testing data, but only considering those 1,687 models that achieved a higherlikelihood

thatsuperior accuracy compared to the [Ba]-[Si] linear regression model (Table 3).

Table 3. Feature addition analysis. Effect of acach feature significantly-changed-the MAD—on model

performance for Training and Testing datasets. Model performance is quantified using MAE, thus all
columns have units of nmol kg~ unless otherwise shown. The Testing analysis is further subdivided into a
comparison of all models and ‘good’ models, meaning those that achieved superior accuracy than the Ba—
Si linear regression (Fig. 1).

Training Testing
All models (n = 4,095) All models (n = 4,095) Good models (n = 1,687)
Feature |Moan MAE of| Me3N MAE | o lative | Mean MAE | M2 MAE | o ative | Mean MAE | ME2N MAE | o jative | Share of
N of models . of models . of models .
models with without change in | of models without change in | of models without change in models
feature MAE with feature MAE with feature MAE with feature
feature feature feature

[Si] 1.71 3.03 -56% 7.08 10.6 -39% 5.06 5.50 -8.3% 63%
z 1.83 2.90 -45% 7.94 9.70 -20% 5.05 5.44 -7.4% 55%
[0,] 2.03 2.71 -29% 8.25 9.39 -13% 5.14 5.33 -3.8% 54%
T 1.78 2.96 -50% 7.61 10.0 -27% 5.17 5.31 -2.8% 59%
[NO,] 2.09 2.65 -24% 8.27 9.36 -12% 5.16 5.30 -2.7% 53%
[PO4] 2.1 2.63 -22% 8.24 9.40 -13% 517 5.30 -2.4% 53%
S 2.02 2.72 -29% 8.67 8.97 -3.5% 5.23 5.23 0.0% 53%
Bathy. 2.30 244 -6.1% 8.55 9.08 -6.0% 5.23 5.22 0.2% 51%
Chl. 2.25 248 -10% 8.67 8.97 -3.5% 5.24 5.22 0.4% 50%
MLD 2.31 243 -4.8% 8.69 8.95 -3.0% 5.24 5.21 0.5% 50%
Lat. 2.16 2.58 -18% 8.13 9.51 -16% 5.32 5.11 4.0% 54%
Long. 217 2.57 -17% 11.4 6.24 58% 6.45 5.19 22% 3%
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This analysis reveals-thatyields three main results. When considering only the holdout cross-folded

training data, the addition of any ene-ef H features—will—on—average—improve—anME—medel:
Silicate(—40-% ), T 27 %),and=(20-%)of the 12 features improves model performance by

between —4.8 and —56 %. Excepting longitude, similar across-the-board improvements were

observed when considering only the testing data, though the improvements for most features were

more modest (between —3.0 and —39 %). If considering only the ‘good’ models, six features

improved the-medels-the-mest-and-S;-ehlerophylmodel performance by —2.4 and —8.3 % ([PO4],
[NOs], T, [O2], z, and [Si]), five degraded model performance by +0.2 to +22 % (bathy., Chl. a,

and-MLD-theJeast{al—3-%)FLatitude; OO {NO:f-and bathymetry-improved-the-medels

25indieating-that theserelationships-were-highly, lat., and long.), and salinity had no significant
Eig3Deffect (Table 3).

Overall, our results indicate that between six and nine features will result in an accurate and

generalizable ML model of [Ba], and that [PO4], [NO3], 7, [O]. z. [Si]. and possibly S, are likely

to be included as predictors in such a model.

4.2. Model outputs

Almost 1,700 models achieved superior accuracy compared to the Ba—Si linear regression
benchmark of 6.8 nmol kg~!. We winnow this list to a single model, #33363080, in the next section.
We henceforth refer to model #33363080 as our favored predictor model, which achieves a
MABMAE of 4.43 nmol kg! using z, T, S, [O2], [PO4], [NOs], and [NOsSi] as predictors (Fig.
3B4). Model #33363080 is used to simulate [Ba], Ba*, and Qparite On a global basis and to calculate
whole-ocean averages. Surface plots showing the model outputs for the sea surface, 1,000 m, 2,000

m, and 4,000 m are shown in Figures 4;-5, 6, 7. and 78, respectively.
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Figure 45. Barium at the sea surface. Observed [Ba] between 0-50 m (A); Model 33363080 [Ba] (B), Ba*
(C), and Quarite (D). The dashed line in Panel D indicates the BaSO4 saturation horizon (i.e., Qbarite = 1.0).
Panels A and B use the roma color map, whereas Panels C and D use vik and cork, respectively (Crameri,
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dashed line in Panel D indicates the BaSO4 saturation horizon.
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Model #33363080 contains 3,305;505302,570 predictions for each of [Ba], Ba*, and Quarite—Valaes
(Sect. 6). Assuming that the MAPE and MAE are good estimates of the prediction error, we
estimate that modeled [Ba] range-frem23-3—158and Ba* have uncertainties of 6.0 % and 4.3 nmol

kg!, with-an—unweighted-mean—of 7lrespectively. Uncertainties on Qpariee. Were estimated by

comparison to literature data, which yields a MAE of 0.08. These estimates are discussed in more

detail in Section 5.2 and the Appendix.

Modeled [Ba] ranges from 26.2—156.8 nmol kg~ and the data exhibit an unweighted mean of 72.0

nmol kg!. The range of model #3080 predictions is within the range of [Ba] encountered in the

4.345 training data (17.1-159.8 nmol kg™). This is an important consideration when assessing the

accuracy of Gaussian Process Regression models, and we provide additional discussion of this

point in the Supplement. Based on our formulation efBa*(Egs. 1, 2), Ba* varies from —+02.727.2

to +54:327.9 nmol kg! and possesses an unweighted mean of +2.24 nmol kg™!. Values of Qparite
vary from 0.11 to 1.7670 and exhibit an unweighted mean of 0.75. To account for the different
volumes represented by each grid-cell in the medelWOA grid, we constructed a volume-weighted
mean of [Ba] and Quarite for the ocean as a whole, for each ocean basin, and for a series of prescribed
depth bins (Fig. 8)—+eek9). Looking at the ocean as a whole, the probability density function of
[Ba] roughly resembles a uniform distribution, with a mean ocean [Ba] of 89 nmol kg! (Fig.
8A9A). Within this mean is considerable spatial and vertical variation. For example, the Arctic
Ocean exhibits the lowest volume-weighted mean [Ba] of 5554 nmol kg™!, whereas mean Pacific

[Ba] = 106 nmol kg™!. Eikewise; The Indian Ocean exhibits a similar mean [Ba] ig(90 nmol
g

ke1) to the mean of the global ocean. Shallower than 1,000 m, [Ba] infrequently exceeds 100 nmol

kg ! -rarely-oceurs-above1;000-m-and-values, whereas concentrations <45 nmol kg™! are virtuatly
absentrare below 1,000 m (Fig. 8B9B).

The probability density function of volume-weighted Qparite is €losermore similar to a normal

distribution, pessessingalbeit with a slight negative skew. Volume-weighted mean valae-efoceanic

Oparite 15 0.82. The Arctic, Atlantic, and Indian Oceans are, on average, undersaturated with respect

to BaSQOs, all exhibiting mean Qpariee. <0.8482. In contrast, the Pacific Oeean—is—elose—to—and
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Southern Oceans are within uncertainty of saturation—, with mean Qparite =0f 0.97);—and-the

Seuthern-Ocean-slightly-exeeeds it {Qparie— and 1.04+, respectively (Fig. 8€9C). Values of Qparite

<0.25-are-onlyfound-above 150002 are mostly restricted to the upper 250 m, whilst values of Qparite
exceeding 1.455 are exceptionally rare-and-are, found only in the upper 1,000 m of the Southern

Ocean. Lastly, Quasite tends to increase between the 0-250 m, 250—1,000 m, and 1,000-2,000 m

depth bins, increasing from 0.42, to 0.6365, and 0.96, respectively. Average Qparite in the deepest
bin (2,000-5,500 m) is slightly lower, with a mean value of 0.92 (Fig. 85).9D). Given the accuracy

of our model-derived Qparite predictions (0.08 to 0.10), the ocean between 1.000—5.500 m is within

uncertainty of BaSO4 equilibrium.
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5. Discussion

5.1. Identification of the optimal predictor model

-Choosing a single, optimal model
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configuration is challenging given the sheer number of skillful ML models. Below we winnow the

list from 4,095 to a single model (#3080). We base our winnowing primarily on the results of the

regional cross-validation performed in the Indian Ocean, rather than from the errors determined

from random holdout cross folding of the training data. We believe that there are three strong

reasons for winnowing in this way. First, Gaussian Process Regression Learners tend to fit the

noise in the training data, meaning that the training error is significantly lower than the

generalization error (Rasmussen & Williams, 2006). Indeed, trained models showed overall lower

performance during testing compared to training, which we believe is evidence of overfitting (Fig.

3, Table 3). Second, a generalizable global model should be able to make predictions in regions

where it has not already learned anything about the target variable. Our regional cross-validation

approach satisfies this consideration since no Indian Ocean data were seen during model training.

Third, the Indian Ocean is an ideal basin for testing as it exhibits the full diversity of features

expected to influence [Ba] (riverine inputs, oxygen-minimum zones, coastal upwelling, etc.) and

constitutes =20 % of the global ocean volume. Likewise, the Indian Ocean captures most of the

range in [Ba] seen elsewhere in the ocean (Fig. 9): this likely reflects the input of Atlantic waters

through the Aughulas leakage, transport of old Pacific waters via the Indonesian Throughflow, and

northward spreading of mode and intermediate waters from the Southern Ocean. We thus assume

that the Indian Ocean testing errors are a good approximation of the generalization error, which

we now use to winnow the list of models.

Our results show that 1,687 of the 4.095 ML models (41 %) produce more accurate predictions of

[Ba] than the benchmark Ba—Si linear regression using [Si] as the sole predictor (Fig. 3. Table 3).

We focus our winnowing on these 1,687 models as they are superior to existing methods for

estimating [Ba] in seawater. Focusing only on these ‘good’ models reveals significant differences

in the information content of the 12 features tested. For example, the inclusion of spatial

information in the form of latitude and longitude significantly degrades mean model performance

by between +4.0 and +22 %. respectively. While bathymetry, chlorophyll ¢, and mixed-layer depth

exhibited only minor influences, they were nonetheless deleterious to mean model performance
by between +0.2 to +0.5 % (Table 3). Only [PO4], [NO3], 7, [O»]. z. and [Si] consistently improved
the mean ML model, which corresponds to model #3112 (testing MAE of 4.3 nmol kg™).

However, visual inspection of model #3112 output reveals that it does not reproduce expected

near-shore surface plumes of elevated [Ba] close to certain major rivers (see Supplement). Though
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volumetrically minor, riverine inputs are a geochemically important component of the marine Ba

cycle, and the existence of nearshore Ba plumes underpins a major proxy application of Ba. Near-

shore riverine influence is easily discerned by low S; we thus explored output from model #3080,

which is identical to model #3112, but includes S as a seventh feature during training. Models

#3080 and #3112 exhibit identical statistical performance for the testing data (MAE = 4.3 nmol

kg~!: Fig. S1) and make similar predictions for mean marine [Ba] and Qparite (89 nmol kg~! and

0.82. respectively: see Supplement). The similar performance of the two models is consistent with

S exerting a near-negligible impact on overall model performance (Table 3). Despite this small

effect, model #3080 is better able to reproduce riverine [Ba] plumes compared to model #3112

(see Supplement). We therefore consider model #3080 to be our best estimate of marine [Ba].

Model #3080 achieves a MAPE of 6.0 %, which represents a 39 % improvement over existing

methods to estimate [Ba] (Fig. 4). We henceforth consider model #3080 as our optimal predictor

model, which we use to simulate [Ba], Ba*, and Qparite in Figures 5-9.

5.2. Model validation

We now explore the validity of model #33363080 in terms of its oceanographic consistency, the
sources of uncertainty that affect its accuracy, and potential limitations of the model output. We
find that model #33363080 reproduces the major known features of the marine [Ba] distribution

and makes testable predictions for regions that are yet to be sampled.

- 27/54 -



5.2.1. Visual inspection of model output

Visual inspection of model output is an important component of data analysis considering the
limits of statistical tests (see e.g., Anscombe, 1973). Models may produce statistically satisfactory
fits to the testing data, but the oceanic realism of the output is also important to consider. Modeled
[Ba] should display patterns consistent with related oceanographic properties and exhibit smooth
vertical and spatial variations (Boyle & Edmond, 1975). Predicted [Ba] from model #33363080
does indeed show smooth and systematic spatial and vertical variations that also resembles sparse

observations (Figs. 3-74-8).

3)—TFhese-vartations—generally-show-an-inereaseModel #3080 also shows systematic increases in

[Ba] close to land-and, especially near the mouths of major rivers- (Fig. 4). This is reassuring given
that elevated sea-surface [Ba] close to rivers is both widely reported and is-one of the major proxy
applications of Ba: reconstructing spatiotemporal patterns of terrestrial runoff by measuring the
Ba:Ca ratio of carbonates (e.g., Sinclair & McCulloch, 2004; LaVigne et al., 2016). Medel
#3336For example, model #3080 correctly identifies elevated [Ba] near the Ganges—Brahmaputra
(Singh etal., 2013}-and), Rio de la Plata eutflows(GEOTRACES IDP Group, 2021):). and Yangtze
outflows (Cao et al., 2021). Model #33363080 also predicts elevated sea-surface [Ba] in the Gulf

of Guinea ¢(where several rivers discharge, including the Niger River; the Eastern Tropical Atlantic
associated with the Congo River (Edmond et al., 1978; Zhang et al., 2023); and VeltaRivers)-as
wel-asin the Gulf of St. Lawrence (St. Lawrence River);-theuwgh-; see Supplement for additional

details and figures). Except for the Congo River, these latter-predictions of elevated near-shore
[Ba] await corroboration. Interestingly, model #33363080 does not predict elevated surface-[Ba]

at all major eutflewsriver mouths; neither the Mississippi nor Amazon Rivers are associated with

significant increases in sea-surface [Baj}:] (see Supplement). The reasons for the lack of elevated

[Ba] atnear the outflow of these riverstwo rivers is less clear. It is possible that the model is simply

inaccurate in these regions, though we have no particular reason to believe that this is the case.

Alternatively, it may reflect seasonal variations in Ba release that are not captured by our mean
annual model (e.g., Joung & Shiller, 2014);-er-itmay). It could also indicate that these particular

rivers are not major net sources of Ba to the surface ocean, which might be the case if dissolved
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Ba is being retained in the catchment (e.g., Charbonnier et al., 2020) or estuary (e.g., Coffey et al.,
1997).

Overall, model #33363080 makes accurate, oceanographically consistent predictions of [Ba] in the
Indian Ocean using input data from the WOA. Model #33363080 also makes a number of testable
predictions of [Ba] in regions lacking direct observations. Given that these predictions were made
using the same model and the same WOA inputs, we believe that it is reasonable to assume that

model #33363080 output is an accurate representation of mean annual global [Ba].

5.2.2. Quantifying uncertainties

We now describe and, where possible, quantify two possible sources of uncertainty to our ML
model output. Before doing so, we describe how uncertainty is quantified as well as the uncertainty
of existing approaches. Certain ML models, such as Gaussian Process Regression, offer low
interpretability, meaning it is not possible to assess uncertainty using a conventional error
propagation. Thus, all model uncertainties are assessed post hoc, by comparing predictions against

observations. Our preferred metrics are MADMAE and MAPD—mean—abselute-deviation—and
iati ' ionsMAPE (Egs. 4-and, 5;-respeetively:).

Existing approaches for estimating [Ba] result in a wide range of uncertainties. At the low end, the

uncertainty associated with measuring [Ba] in seawater represents a fundamental limit to the
accuracy of any model. A number of analysts report relative-fBajmeasurement uncertainties in the
range of 1-2 % (e.g., Pyle et al., 2018; Cao et al., 2020). This level of intra-laboratory uncertainty
is typical for [Ba] data obtained using isotope dilution—inductively coupled plasma mass
spectrometry, and applies to GEOTRACES-era datasets and to much of the training data from the
Indian Ocean. However, intra-laboratory uncertainty is typically much smaller than inter-
laboratory uncertainty, which is often between 6-9 % (e.g., Hathorne et al., 2013). At the upper
end, the benchmark Ba—Si linear regression achieves a MAPBMAPE 0f 9.7 % in the Indian Ocean
(Fig. 3A4). Thus, useful ML models of [Ba] should achieve uneertaintiesMAPE between 1-10 %.
Indeed, our favored predictor model, #33363080, achieves a MAPBDMAPE of 6.30 %.

Now we consider two factors that contribute to the observed 6.30 % uncertainty: realization

uncertainty and uncertainties in the training data. The realization uncertainty stems from the fact
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that two models trained on the same training dataset—even with the exact same subset of model
features—will produce slightly different predictions. This is due to the holdout cross-folding
process used during model training, which partitions the training dataset into random subsets (see
Sect. 3.1.). Beeause—thepartitioning—is—+randomhus, the training process results in a slightly
different trained model each time the model is realized. We quantified the realization uncertainty
by training medel#3336sclect models 100 times and calculating the relative standard deviation of
the different predictions of [Ba] for alithe 3;305;505.3 million values in the output. This
uncertainty is small; the median, mean, and maximum realization uncertainty was 0.03 %, 0.04 %,

and 0.32 % variability in modeled [Ba].

Next we consider uncertainties in the training data. As noted above, many labs report uncertainties
on [Ba] measurements of 1-2 %, while inter-laboratory differences may be up to a factor of five
larger. However, this does not consider any uncertainties associated with the other physical and

chemical features used to predict [Ba]. In general, these supporting measurement uncertainties

should be small-sinee: all overboard sensors are regularly calibrated and biogeochemical properties
in GEOTRACES are determined using established methods that are based on GO-SHIP best
practices (Hood et al., 2010). Moreover, all GEOTRACES sections include crossover stations that

are intended to facilitate intercalibration of all parameters, including those used here to predict
[Ba] (Fig. 2; Cutter, 2013). The WOA, MLD, Chl. a, and bathymetry data products are similarly
subjected to stringent quality review and so we consider it unlikely that these data contribute
systematic biases. We believe that the most likely source of uncertainty relates to the fact that all
predictor information used for model testing in the Indian Ocean was derived from time-averaged
data products, whereas [Ba] was derived from in sifu measurements. We made this decision
because the in situ data were incomplete for all 12 core features (Table 1), and this would have
necessitated interpolation for some features and not others. Since all models were tested using the
same predictor information, the comparison process should avoid systematic errors, though this

does not preclude temporal variability, described next.
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5.2.3. Other considerations

We now consider four other factors that potentially contribute to the uncertainty of the model
output: short- and long-term temporal variations, limitations of ML, and uncertainties regarding
the thermodynamic properties of BaSOs. Short-timescale variability in [Ba] may affect how
models were evaluated, though this effect is difficult to quantify. In principle, the trained models
should be able to resolve seasonal variations in [Ba] since they were trained on in sifu physical and
chemical data. In contrast, model predictions in the Indian Ocean were made using annual average
physical and chemical conditions and then evaluated by comparing these predictions against in
situ [Ba]. The temporal mismatch between Indian Ocean observations and predictions is unlikely
to be significant in the deep ocean, where seasonal variations are minor and the Ba residence time
is longest (e.g., Hayes et al., 2018). Seasonal variations are, however, likely to matter more for the
surface ocean. We were able to minimize some of the impact of these uncertainties by using long-
term averages of Chl. a and the maximum monthly mean MLD during model training and testing.
Significant seasonal mismatches for other parameters are unavoidable given that [Ba] data are too
sparse to develop a time-resolved model. We suspect that these variations are most likely to be
significant for boundary sources rather than biogeochemical cycling of Ba; significant
biogeochemical drawdown of surface [Ba] over seasonal timescales appears to be rare (e.g., Esser
& Volpe, 2002), whereas there are large seasonal variations in river discharge that impact near-
shore [Ba] (e.g., Samanta & Dalai, 2016). These suspicions could be tested using a model with
better than 1x1° spatial resolution, which—in theory—is possible with model #33363080, so long
as similarly high-resolution data are provided for the six predictors utilized by this model (z, 7, S,
[02], [POs], [NOs]. and [NOs3Si]). While it is challenging to precisely quantify seasonal
uncertainties, we note that model #33363080 performs well at low [Ba], which is found mostly
near the surface, where seasonal variations should beexhibit the largest (Figs-—3B;8B)-effects.
Likewise, seasonal variations will have only a minor effect on our calculations of global mean

[Ba] or Qbarite (Flg 8)

Long-term variability in [Ba] may also influence model performance, since the testing data from
the Indian Ocean were collected between 1977 (GEOSECS) and 2008 (SS259; Fig. 2). If secular
changes in Indian Ocean [Ba] were occurring, we might expect models to make accurate

predictions for some datasets at the expense of others. In contrast, we note that model #33363080
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reproduces all testing datasets similarly well, with the exception of a subset of samples from SS259

in the deep Bay of Bengal{(Fig-3C).. Here we observe that model #3336-tends-te-prediet—93080

predicts 18 % higher [Ba] than observed by Singh et al. (2013);partieutarly-areund2) for the 42
samples between 1,000-3,000 m (Eig—6AFigs. 4B; 7A, B). Heweverlnterestingly, model

#33363080 correctly predicts [Ba] at nearby GEOSECS stations 445 and 446, also in the Bay of

Bengal, sampled some 31 years prior—Fhe- to SS259. We briefly consider three possibilities for

the origin of the-this regional model—data discrepancy-. It may derive from the fact that model

#3080 does not include the features needed to correctly predict [Ba] in this-regionthese samples.

We view this as the least likely possibility as model #3080 performs well for other samples from

the northern Indian Ocean, including samples shallower than 1.000 m from Singh et al. (2013).

Another possibility is ureertain;-we-speeulate-that it mayrefleet-could reflect an 18 % decrease in
[Ba] in the deep Bay of Bengal since the GEOSECS survey in the 1970’s. Lastly, it could reflect

differences in how in situ [Ba] was measured, noting that Singh et al. (2013) opted for standard

addition everinstead of isotope dilution. Alternatively—it-could refleet-a—~9-% deerease-in{Balin
the—deepBay—of Bengal since—the 1970°s—We currently lack the data needed to confidently

distinguish between these latter two possibilities.

A third factor concerns the limitations of ML itself. We note that no trained model was able to
achieve a MAPDMAPE better than ~6 %. This 6 % value may represent one of three things. First,
it may point toward an intrinsic limitation of Gaussian Process Regression. Other types of ML,
such as Decision Trees or Artificial Neural Networks, may be able to achieve superior accuracy,
though this was not investigated. Second, it may indicate that the 12 features investigated provide
insufficient information about [Ba] to achieve higher accuracy. We view this as unlikely given that

our earlier analysis showed that only 5—8six—nine features were needed to accurately simulate [Ba]

and that the 12 features investigatedtested have proved useful in other studies simulating dissolved
tracer distributions (e.g., Rafter et al., 2019; Sherwen et al., 2019; Roshan & DeVries, 2021).
However, this does not rule out the existence of other features beyond the 12 that we tested that
are more useful for predicting [Ba], only that we did not investigate them. Third, it is possible that
the lowest MAPDMAPE of ~6 % reflects the current limit of inter-laboratory uncertainty in
determining [Ba]. We note that inter-laboratory uncertainties of 6-9 % were reported for the

measurement of Ba:Ca in carbonates (n = 10 labs; Hathorne et al., 2013). If the ~6 % MAPBDMAPE
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derives from inter-laboratory uncertainty, it is unlikely that further model refinements will improve

the accuracy of [Ba] predictions: the fundamental limitation is the data, not the model.

A final source of uncertainty concerns the computation of Qparie, Which contains two further

sources of uncertainty: the thermodynamic model and the solubility coefficients used to calculate
OQesiee Ksp. We calculated Qvarite based on the computation described by Rushdi et al. (2000), and
our approach yields similar values to their study and several others (e.g., Jeandel et al.,
1996;2000)—TFhisealenlation Monnin et al., 1999; see Appendix). The model used by Rushdi et
al. (2000) is based on BaSO4 solubility data from Raju & Atkinson (1988), who note good

agreement with the thermodynamic data of Blount (1977). These solubility data were obtained
based on experimentation with lab-made, coarse-grained BaSO4, which is unlikely to be wholly
representative of the microcrystalline BaSO4 precipitates found in seawater. Thus, the absolute
values of Quarite calculated here may be subject to eventual revision; however, the vertical (Fig. 1),
spatial (Figs. 3-—74-8), and whole-ocean (Fig. 89) trends in Qparite are robust. Should new
thermodynamic data for marine-relevant micron-sized pelagic BaSO4 become available, updated

maps of Quarite could be easiby—reealenlated—using—existing—meodel #3336-derived {Ba}data:

recalculated using model #3080-derived [Ba] data. Given the nature of these uncertainties, we

opted to calculate prediction uncertainties for Quarite empirically by comparison to literature data

(see Appendix). This vields a value between 0.08 and 0.10, similar to the 10 % prediction error

reported by Monnin et al. (1999).

We can calculate Qpaiite to @ high degree of precision; however, there are numerous uncertainties

pertaining to ML-predicted [Ba], the BaSO4 solubility coefficients used to calculate Ksp, and the

thermodynamic model used in the computation of Qparite (Sect. 5.2.). Thus,

5.3. Barium in seawater: A global perspectiveMedel-applications

Here we provide an overview of the main model features in [Ba], Ba* and Qparite, then outline

feurthree possible applications of the model output. Predictionsfrom-meodel#3336-shows
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5.3.1. Dissolved distribution of [Ba]

Model #3080 predictions show several interesting features in [Ba] (Figs. 4—7)-Medel#33365-8).
The model reproduces the expected nutrient-like distribution of [Ba] (Fig. 1C) and shows a general

increase in [Ba] along the Meridional Overturning Circulation;: volume-weighted mean [Ba]

increases from 67 to 8890 to 106 nmol kg! from the Atlantic to Indian to the Pacific Ocean,
respectively. The model also predicts some variation in shallow [Ba] that follows major surface-
water currents, such as a region of elevated [Ba] associated with the North Pacific Current, as well
as low [Ba] in the western North Atlantic associated with the Gulf Stream (Fig. 4B5B; Talley et

al., 2011). FakingHowever, these features and the processes driving them await corroboration.

Considering the ocean as a whole, we can alse-use our model eutput-to calculate the total Ba
inventory of the-eceanscawater. Using the mean oceanic [Ba] of 89 nmol kg™! and multiplying by
the mass of seawater (1.37x10%! kg) yields a total inventory of 122+87 Tmol Ba, whereby the
rangeuncertainty is based on the MAPDMAPE of model #33363080 (6.30 %). This estimate of

the total oceanic Ba inventory is appreximately10between 11-21 % lower than previeusexisting

estimates of 145 Tmol Ba (Dickens et al., 2003; Carter et al., 2020). Fhus;-given-current-estimates
Given the range of probable global marine Ba fluxes efbetween 18 (Paytan & Kastner, 1996) and

44 Gmol Ba yr! (Rahman et al., 2022), our inventory estimate places the mean residence time of

Ba in seawater is-likelybetween 2,706600—7,200 years.

N deril o f .

5.3.2. The Ba*Si relationship

We now quantify spatial and Quase—vertical variations in the Ba—Si relationship, which we explore

using Ba*. Star tracers, such as Ba*, highlight the processes affecting the distribution of a tracer

by comparing it to another tracer that shares the same circulation (Gruber & Sarmiento, 1997). The

concept has since been extended to study the processes affecting the distributions of many other

bioactive elements, including Si (Si*, relative to N: Sarimento et al., 2004). cadmium (Cd*,

relative to P: Baars et al., 2014), zinc (Zn*, relative to Si; Wyatt et al., 2014). First defined by

Horner et al. (2015) for Ba, Ba* is analogous to other star tracers: it is a measure of Ba—Si

decoupling whereby larger values indicate larger Ba—Si deviations relative to expected mean ocean

behavior. Vertical or spatial differences in Ba and Si sources or sinks will drive variations in Ba*,
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as will any Ba:Si fractionation occuring during their combined cycling. Conversely., if all Ba and

Si cyceling occurs in the same places (and with a fixed Ba:Si ratio), no Ba—Si decoupling will occur

and Ba* will exhibit conservative behavior. Since Ba and Si are cycled by different processes and

there are large vertical and spatial variations in the intensity of these processes (e.g., Bishop, 1989),

significant variations in Ba* are possible. We now explore these variations.

In the surface ocean, patterns of Ba* generally resemble those of [Ba] (Fig. 4). This—is-tikely
beeause-inln large parts of the ocean, surface [Si] approaches 0 umol kg™!; thus, variations in Ba*

derive mostly from variations in [Ba]. Barivm-star-is; however-strongly-positive-in-the top200-m

ofthe-This is most evident when examining regions with significant terrestrial input of Ba, such

as from major rivers (Sect. 5.2.1) and from rivers and continental shelves in the Arctic (e.g., Guay
& Falkner, 1998:; Whitmore et al., 2022; Fig. 5A). The Southern Oceans-even also exhibits positive
Ba*, though {Silis-in-the +0°s-of pmolkg *we suspect the mechanism is different. Here we observe

a belt of waters with positive Ba* ~+20 nmol kg™! range—centered on the Polar Frontal Zone—the

region between the Antarctic Polar Front and the Subantarctic Front (Orsi et al., 1995: Fig. 5A).

Silicic acid is intensely stripped from waters that transit northward through this region (e.g..

Sarmiento et al., 2004), potentially contributing to elevated Ba* at the sea surface. Dissolved [Ba]

and Ba* then decrease to the north of the Subantarctic front, partly driven by extensive particulate

Ba formation in the frontal region (e.g., Bishop, 1989).

At 1,000 m, the Atlantic, South Pacific, and southern Indian Oceans exhibit positive Ba* around

+10 nmol kg!, whereas the North Pacific, Southern, and Indian-Oceans-exhibit-negative-values
between—10-to—20-nmolkg ' -whereas the Atlantic and-Seuth Paeifie-northern Indian Oceans are

positive-around+10-nmol ke (Fig-5) Below;1,000-m;-the Southern-and-negative between —10

to —20 nmol kg~! (Fig. 6C). The positive anomalies are likely related to the northward spreading

of southern-sourced intermediate waters that originate within the Polar Frontal Zone and carry

positive Ba* into the low latitudes (e.g., Bates et al., 2017). In the Atlantic-Oeeans-deo-net-exhibit
signiftcant-gradientsinBa*and-are-, these values are carried all the way to the north of the basin

and return as North Atlantic Deep Water with only minor modifications to Ba* (=+10 nmol kg !;

Figs. 6C, 7C, 8C). Negative Ba* in the North Pacific, Southern, and northern Indian Ocean at

1.000 m likely reflects a mixture of hydrographic processes and in situ processes. For example,

the extensive region of negative and-pesitive-dewnBa™ in the North Pacific is closely associated
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with North Pacific Intermediate Water, which originates in the Sea of Okhotsk (Talley, 1991).

While the specific mechanism sustaining this particular Ba* feature is unknown, it most possibly

reflects a combination of preferential removal of Ba relative to Si in the source water formation

region (such as from particulate Ba formation) and weak vertical mixing in the subsurface North

Pacific relative to lateral transports (e.g.. Kawabe & Fujio, 2010). We suspect that the negative

Ba* values seen above 1,000 m in the northern Indian Ocean originate through processes occurring

internally within this basin, as the majority of the Indian Ocean below 1.000 m exhibits positive

Ba*. A possible mechanism for these shallow negative Ba* anomalies may relate to the relatively

weak overturning transports (Talley, 2008) and strong particulate Ba cycle north of 30 °S (Singh

et al., 2013), though this awaits more detailed investigation.

Lastly, the Southern Ocean exhibits negative Ba* between —10 and —20 nmol kg! from =200 m

water depth to the seafloor;respeetively—In-contrast-the Indian-and North-Paeifie Oceans. These

negative anomalies in Ba* appear to be associated with Circumpolar Deep Water and, below that,

Antarctic Bottom Water; the influence of the latter can also be seen in near-bottom negative Ba*

in the South Pacific, southern Indian, and South Atlantic Oceans (Fig. 8C). As with the other

basins, the origin of the negative Ba* waters in the Southern Ocean likely reflects a combination

of in situ and circulation-related phenomena. For example, in the Southern Ocean, Si is only

stripped at the very surface, whereas particulate Ba formation is thought to be greatest in the

mesopelagic (i.e., between 200—1.000 m: e.g.. Stroobants et al. 1991). Barite formation is generally

considered to be related to the regeneration of particulate organic matter (e.g.., Chow & Goldberg,

1960). whereby the former consumes Ba and the latter releases Si. Thus, intense organic matter

remineralization and associated pelagic BaSO4 precipitation could contribute to negative Ba* in

the mesopelagic Southern Ocean. Similarly, the Si cycle in the Southern Ocean tends to ‘trap’ a

significant fraction of the global Si inventory in the waters circulating close to Antartica (e.g.,

Holzer et al., 2014). Since the calculation of Ba* depends on both [Ba] and [Si], waters with
elevated [Si] will exhibit pesitive Ba*-around2;000-m;-between—+5-and—+15-nmol-kg *(Fig—6)-
The-mostpositive Ba* values; between+20-and+-30-nmol ke -are observed-at lower Ba* whether

or not there is elevated Ba removal.

By 2,000 m, almost all of the ocean north of 50 °S exhibits positive Ba* (Fig. 7C). By 4,000 m-in
thePaeifie;speeifically-in-the-, the areal extent of the positive-Ba* waters shrinks to encompass
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the area north of 30 °S (Fig. 8C). Despite covering a smaller area, the abyssal ocean exhibits the

most positive Ba* values outside of the surface of the Southern Ocean. The reasons for elevated

and increasing Ba* between the deep and abyssal oceans likely reflects a mixture of local and

regional processes, and we offer two speculative explanations for these patterns. First, Si trapping

in the Southern Ocean potentially renders most of the deep ocean away from Antarctica deficient

in Si relative to Ba. Thus, much of the ocean may exhibit more positive Ba* than the deep circum-

Antarctic region due to processes unrelated to Ba cycling. Second, the most positive Ba* values

are generally found close to the seafloor, rather than the mid-depths, especially in the North Pacific,

the Peru and Chile Basins-as-wel-as, and the Philippine Sea-(Fig—7)—Vertical profiles-of Qpaeare.

This may indicate a mechanism that preferentially removes Ba (relative to Si) from the mid-depths,

or input of Ba (relative to Si) close to the seafloor.

Systematic variations in Ba* arise due to differences in the marine biogeochemical cycles of Ba

and Si. While, in some cases, the specific drivers of these variations remains unresolved, our model

identifies multiple hotspots of Ba—Si decoupling that warrant additional study.

5.3.3. Barite saturation state of seawater

Here we show that our approach can predict Qpasite. with an MAE of 0.08, that our output is in

agreement with published values;-eomparisons—are-provided-in-the-Appendix, and that the deep

ocean, below 1,000 m, is at saturation with respect to BaSO4. By comparison to literature data, we

estimate that our model achieves a typical prediction uncertainty on Qparite 0of 0.08 (see Appendix).

Accordingly, values of Qparite between 0.92—1.08 can be considered as ‘BaSO4 saturated,” whereas

values of Qparite. <0.92 or >1.08 indicate under- or super-saturation, respectively. Global patterns
in Oparite derived using our model are similar to those reported bye-gsFeandeletals1996;: Monnin
et al-. (1999:) and Rushdi et al--. (2000). Exeepting-the-Readers looking for detailed basin-by-

basin descriptions of Qparite_ are directed to those studies. Briefly our model shows that, excepting

the high latitudes, the surface ocean is undersaturated with respect to BaSOj4 (i.e., Qpariee <H-and
the(0.92). The lowest values of Qparite in the open ocean are observed in the hot, salty cores of the

Subtropical Gyres (Quarite between 0.1-0.2; Eies—4D,-8D)y - WhereasFig. 5D). Conversely, the cold

and fresh polar regions exhibit supersaturation at the sea surface, though there are important

-37/54 -



differences between the Southern and Arctic Oceans. The Southern Ocean remains-supersaturated
e Qpasie—>bexhibits BaSO4 saturation to depths around 2,000 m, whereas the Arctic Ocean
switches to undersaturated conditions below ~the halocline (~250 m-—Belew). At 1,000 m, most of
the North Pacific is-—supersaturatedachieves saturation (or slight supersaturation) with respect to
BaSOy (Fig. 6D) and byat 2,000 m almost all of the ocean exhibits Qparite >+-exeepting0.92. The

main exceptions to this are the Atlantic Ocean, which is undersaturated at all depths, and the

southern Indian Ocean between 35-50 °S (Fig. 6B7D). The South Pacific and Indian Oceans return
to undersaturated conditions by 4,000 m, whereas the-majorityparts of the North Pacific exhibits
OQuesie—=tremain saturated to the seafloor (Fig. 7B8D). From a welumetrieglobal perspective, the

oceans are slightly undersaturated with respect to BaSO4: volume-weighted mean Qparite = 0.82;
however, the ocean belewbetween 1,000-5,.500 m exhibits a-meanQpariee >0.92;-whieh (Fig. 9).
This result implies that mueh—ef-the deep ocean, as a whole, is close to sataratienchemical

equilibrium with respect to BaSO4-(Fig—8D)-.

5.3.4. Model applicationstastly—in

In the spirit of maximizing model utility, we suggest three possible uses for these-datamodel #3080
outputs. First, the outputs can be used for model intercomparison and intercalibration. For
example, a number of statistical models, such as Optimum Multiparameter Optimization, have
been successfully used to study Ba cycling in the North Atlantic (Le Roy et al., 2018; Rahman et
al., 2022), Southeast Pacific (Rahman et al., 2022), and Mediterranean Sea (Jullion et al., 2017).
These models can apportion the relative contributions of in situ biogeochemical cycling and
conservative mixing to observed [Ba]; however, accurate quantification of these processes requires
a priori knowledge of end-member water mass [Ba], which model #33363080 can provide. Our
model could also be used to benchmark output from process-based models, such as the-Ocean

Circulation Inverse MedelModels (e.g., John et al., 2020; Roshan & DeVries, 2021). Second, the

output can be used for interpolation purposes. For-example,manyMany groups investigated Ba

partitioning into various types of marine carbonates (see Sect. 1 for examples); however, these
investigations are sometimes performed without a co-located measurement of [Ba]. In these cases
output from model #33363080 could be used to help calibrate specific substrates, such as deep-sea

corals or benthic forams. This also avoids the potential for circular reasoning whereby [Si] is used
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to estimate [Ba], which is then reconstructed from the Ba:Ca ratio of carbonates to estimate [Si].
Third, the model output makes testable predictions for regions of the ocean that have yet to be
sampled by GEOTRACES-style surveys. Several of these regions, such as the Southern Ocean,
exhibit with sharp lateral and vertical gradients in [Ba], Ba*, and Qparite. Such gradients should be

considered prime targets for future process-oriented studies of marine Ba cycling.

6. Data availability

Data described in this manuscript can be accessed at the Biological and Chemical Oceanography
Data Management Olffice under data doi:10.26008/1912/bco-dmo.885506.42 (Horner & Mete,
2023).

7. Conclusions

This study presents a spatially and vertically resolved global model of [Ba] determined using
Gaussian Process Regression machine learning. The model reproduces several known features of
the marine [Ba] distribution and makes testable predictions in regions that are yet to be sampled.
Analysis of the model output reveals the mean oceanic [Ba] is 89 nmol kg™!, implying a total
marine Ba inventory of 122487 Tmol. Using predictors from the World Ocean Atlas, we also
estimate the global distribution of Ba* and Qyarite. Both properties exhibit significant gradients that
can be systematically investigated in future studies. The mean oceanic Qpasite 1S 0.82, though
between 1,000-5,500 m the mean is >0.92, implying that the deep ocean is elose-te-saturationat
equilibrium with respect to BaSOs. Our model output should prove valuable in studies of Ba
biogeochemistry, specifically for statistical- and process-based model validation, calibrating
sedimentary archives, and for identifying promising regions for further study. More broadly, our
study demonstrates the utility of using machine learning to accurately simulate the distributions of
trace elements in seawater. With minor adjustments, our approach could be employed to make

predictions for other dissolved tracers in the sea.
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Appendix

Here we compare our results with published profiles of Qparite. Our results were calculated using
the thermodynamic model of Rusdi et al. (2000), model #33363080 [Ba], and WOA T, S, and
pressure. Literature profiles of Quvarite Were calculated using one of three different thermodynamic
models and in situ observations of [Ba], 7, S, and pressure. In general, there is strong agreement
between modeled and in situ Quarite Whereby our model reproduces the shape of published profiles
(Fig. A1). There are, however, some small systematic offsets between the various approaches, and

we suspect that these derive from differences in the underlying thermodynamic models.

—— Southern Ocean 1 Indian Ocean
————— GEOSECS St. 89 L INDIGO 2 St. 36 ————————  GEOSECS St. 420
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Figure A1. Comparison of literature- (symbols) and Model #33363080-derived (dashed line)
estimatesvalues of Qparite. Panels A and B show profiles of Qvarite at GEOSECS St. 89 (60°0’ S, 0°2’ E).
The other panels are from the Indian Ocean;: C and D are from INDIGO 2 St. 36 (6°9’ S, 50°55’' E) and E

from GEOSECS St. 420 (0°3’ S, 50°55’ E), some =675 km north of INDIGO 2 St. 36.

We compare our model output with literature data Qparice_at two statienslocations in two basins

(Fig. Al). These statienslocations were seleeted-for-comparing Qe beeausechosen to ensure a

fair comparison between studies: at beth-lecationseach location, at least two studies calculated

profiles of Qparite using the same underlying in situ data for [Ba], 7, S, and pressure. Fhis-ensures
a—fair comparison-betweenstudies;sineeThus, any differences in modeled Qparite should derive

from the thermodynamic model and not the input data. Likewise,~the literature profiles at these
locations were based on calculations for pure, rather than strontian, BaSOs, as in our study.

Published profiles of Qparite Were extracted graphically from each study using WebPlotDigitizer
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(Rohatgi, 2022). This extraction process may introduce some minor scatter in the literature data,

though this is relatively minor relativecompared to the range of variation in Qparite.

First, we examine profiles of Qparite reported for GEOSECS St. 89 in the Southern Ocean (Fig. Al;
Monnin et al., 1999; Rushdi et al., 2000). Modeled and published profiles show supersaturation in
the surface ocean and undersaturation below 2,000-2,500 m. Profiles from Rushdi et al. (2000)
show excellent agreement with Qpasite calculated from model #33363080 [Ba] and WOA T, S, and
pressure, with our output shighthynegatively-offset by a MADMAE of 0.06 (n = 22). Given that
we use the same thermodynamic model as Rushdi et al. (2000), the overall excellent agreement
with their study is not surprising. However, the result is nonetheless reassuring since our study
uses mean annual values for the various inputs, whereas Rushdi et al. (2000) utilized in situ data.
There is a slightly larger offset between our profile of Qparite and that calculated by Monnin et al.
(1999), with our respective profile effset-te-higher Quaeby-aMADexhibiting an MAE of 0.13 (n

= 41). This most likely reflects differences in the underlying thermodynamic model and not the in

situ data since our model reproduces the same overall profile shape as Monnin et al. (1999).
Likewise, both Monnin et al. (1999) and Rushdi et al. (2000) used the same in sifu input data and
their results are highly comparable, albeit with an offset similar to that between our results and

Monnin et al. (1999).

Next we examine profiles of Quarite in the Indian Ocean for samples from INDIGO 2 St. 36 (Fig.
Al; Jeandel et al., 1996; Rushdi et al., 2000). Profiles of Qparite Show undersaturation at the surface,
moderate supersaturation between 2,000-3,500 m, then return to undersaturated conditions down
to the seafloor. Our profile shows overall excellent agreement with that of Jeandel et al. (1996),

whereby e&r—da%a—&f%ef—fset—teﬂhglﬁlry—lewer—a comparison of Qparite Withyields a MABDMAE of of
0.6603 (n=21).
15035+#—=3)—Our profile shows similarly good agreement with that-ef-Rushdi et al. (2000),
whereby eur—data—are—offsettolower—a comparison between our respective values of Qbarite

withyields a MADMAE of 0.0704 (n = 20). As—w%h—th%eta%a—ef—leaﬁéel—et—al—%—w%ebsewe
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We also compared our results with data from St. 420 of GEOSECS (Monnin et al., 1999), which
is located =675 km north of INDIGO 2 St. 36 (Fig. 2). As with data from the Southern Ocean

(GEOSECS St. 89), our profile data are offset to higher Qparite than those of Monnin et al. (1999)
by-aMAD). with slightly larger MAE of 0.4216 (n=29). However, our modeled Quarite is generally

in much closer agreement with Monnin et al. (1999) above 1,250100 m than below, equivalent to
a MADMAE of 0.0304 (n = 98) and 0.1621 (n = 20621), respectively. In this case it is more
challenging to ascribe a unique cause of the differences in calculated Quarite; these offsets could

relate to differences in the predictors or the thermodynamic model.

We can use these comparisons to estimate the prediction uncertainty on our model-derived values

of Quarite. The MAE of the 133 comparisons shown in Fig. Al vields a value of 0.10. However,

there are different numbers of points in each profile: we thus believe it is more appropriate to

average the MAE calculated for each of the five profiles, which vields a value of 0.08. Both values

are similar to the 10 % prediction uncertainty reported by Monnin et al. (1999).

Overall, our ML-derived profiles of Quaiee Show excellent agreement with in situ data, both in

terms of profile shape and abselute-values of Qparie. We use this comparison to withinestimate the

prediction uncertainty on ML-derived values of Quarite. Which we calculate as being between 0.108

and 0.10. Should a revised thermodynamic model and/or improved BaSO4 solubility coefficients
become available, a new grid of Qparite could be calculated using Model #33363080 [Ba] and WOA

T, S, and pressure data.
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