
Response to Reviewer Comments

Barium in seawater: Dissolved distribution, relationship to silicon, and
barite saturation state determined using machine learning

We thank the four reviewers for their insightful and helpful comments on our study. We think
these comments have greatly improved the revised manuscript. Below we reprint all reviewer
comments (in black). Our responses follow (in blue) and any corresponding changes to the
manuscript are shown in green.

RC1: 'Comment on essd-2023-67’

Anonymous Referee #1

Major comments

The manuscript “Barium in seawater: Dissolved distribution, relationship to silicon, and barite
saturation state determined using machine learning” by Mete et al. developed a Gaussian
Progress Regression Machine Learning (ML) approach to predict dissolved Ba ([Ba]) in the
ocean. This study is significant for understanding the marine Ba cycle because it provides a
global picture of the vertical and spatial distribution of [Ba] and Ωbarite and suggests factors that
intimately link to [Ba]. It is exciting that the ML-derived Ba profiles are in excellent agreement
with in situ data. The manuscript is well-reasoned and well-written. I enjoy reading it and am
happy to recommend it for publication if the following concerns could be addressed. I hope the
authors find my comments constructive and help them make the manuscript more impactful.

We are delighted to read that the reviewer finds the study well put together. We found these
comments especially helpful and made a number of changes in response to them.

Sect. 2 and 3.1: The ML model split the observed datasets into two partitions: the data from the
Arctic, Atlantic, Pacific, and Southern Oceans were used for model training, whereas the data
from the Indian Ocean were reserved for model testing. Yes, as indicated by the authors, the
location-based training-testing separation is to minimize overfitting. However, we also need to
be careful that the training data happen to perfectly cover the minimum and maximum [Ba]
(according to Figs. 4A-7A), so [Ba] in the Indian Ocean is very well predicted. I would like to
know whether the ML model also works well when testing data fall outside training data. That
said, it is necessary to include the randomly assigned training-testing separation results for
comparison in the appendix.

These are great points and we’ve made three changes to the study to address them. Please note
that in response to a comment raised by Reviewer #4, we now identify model #3080 as the
optimal predictor model. This model is referenced in place of model #3336 in subsequent
discussion and figures.
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First, we note in the main text that the ML model output is within the ranges encountered during
training:

“The range of model #3080 predictions is within the range of [Ba] encountered in the 4,345
training data (17.1–159.8 nmol kg–1). This is an important consideration when assessing the
accuracy of Gaussian Process Regression models, and we provide additional discussion of this
point in the Supplement.”

Second, we investigated how restricting the range of the training data would affect model
performance. The following text and figures have been added to the supplement:

“Gaussian Process Regression (GPR) models are highly adept at making accurate geospatial
predictions of a target variable, particularly when the training data contain a certain level of
noise. However, GPR models are oftentimes less accurate than other methods when making
predictions beyond the ranges encountered during training (Cressie, 1993). To investigate
whether our preferred predictor model was subject to similar biases, we analyzed the
performance of model #3080 when provided with a narrower range of training data. This meant
restricting the range of [Ba] values seen during model training and comparing these outputs
against those generated by model #3080 when trained on the full training dataset.

“To achieve this, we identified the bottom (51.4) and top (98.9 nmol kg–1) sextile in the Indian
Ocean testing data and removed all [Ba] observations from the training data that were outside of
this range (i.e., only samples with [Ba] between 51.4–98.9 nmol kg–1 were included). This
reduced the number of [Ba] observations in the training data from 4,345 to 2,295. We then
retrained model #3080 (z, T, S, [O2], [PO4], [NO3], and [Si]) on these 2,295 data and used this
retrained model (hereafter model #3080N) to predict [Ba] for the Indian Ocean and on a global
basis. A comparison of [Ba] predictions made using model #3080N and from model #3080 are
shown below in Figs. S9 and S10.”
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Figure S9. Comparison of model #3080N and model #3080 outputs for the Indian Ocean testing
data. Model #3080 was trained using a narrowed version of the training data compared to model #3080,
which saw the full training database.

Figure S10. Boxplot of [Ba] values for training, testing, and ML model predictions. Each box shows
a five-number summary for the relevant dataset: median (horizontal line), the 75th and 25th percentiles (top
and bottom of box, respectively), and the maximum and minimum non-outlier values (upper and lower
whiskers, respectively). Statistical outliers are indicated by ‘+’. Boxes labeled ‘observations’ summarize
the in situ data used in model training and testing, respectively. The next two boxes show model #3080
predictions for the global ocean and the testing data. The final three boxes show the distribution of [Ba]
values in the ‘narrow’ training data and the resultant spread of [Ba] predicted by model #3080N, which
was trained using only these data.

“This analysis shows that model #3080N reproduces the median and interquartile range of the
Indian Ocean testing data (Figs. S9) as well as for the global predictions (Fig. S10). Likewise,
model #3080N can predict values of [Ba] outside of the ranges encountered in model training,
but only by between 5–10 %. As such, model #3080N underestimates the true range of [Ba]
values seen in the ocean and achieves a lower overall accuracy of [Ba] predictions compared to
model #3080 (#3080N MAPE = 8.8 % vs 6.0 %; Fig. S9). We conclude that the output from
model #3080, and likely other models, is most accurate when it falls within the range of [Ba]
encountered during training. Since model #3080 was trained on [Ba] data spanning 17.1–159.8
nmol kg–1, the entire range of model #3080 predictions (26.2–156.8 nmol kg–1; Fig. S10) falls
within the range seen during training. Thus, we conclude that the results from model #3080 are
generally robust as the model did not extrapolate beyond the range of [Ba] encountered during
training.”

Third, we included results from the random holdout process during model training. This was a
really great suggestion and we felt that addressing it required adding a new figure (Fig. 3) and a
table (Table 3). Two other reviewers raised related points; rather than duplicating our responses,
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we note here that a detailed description of our changes is provided in response to Reviewer #3
and Reviewer #4.

For the paper to benefit the community, additional discussion about the implications of existing
interpretations that rely on Ba* would be of great interest. Unlike [Ba] or Ωbarite, the scientific
significance of Ba* is not clear in the current version of the manuscript. Specifically, what do the
positive and negative Ba* mean? Does the global Ba* heterogeneity in Figs. 4-7 reveal
oceanographic and biogeochemical processes affecting the dissolved Ba-Si relationship? I
believe the relationship to silicon is one of the main targets of this study which requires in-depth
discussion.

This is a great suggestion and we are delighted to have the opportunity to provide some in-depth
analysis of Ba*. We made two main changes in response to this comment. First, we described the
significance of ‘star tracers’ in Section 3.:

“A selection of the most accurate models of [Ba] were then used to simulate Ba* and Ωbarite.
Star tracers, such as Ba*, are valuable for illustrating processes that influence the cycling of
elements in the ocean. First defined for N–P decoupling (N*; Gruber & Sarmiento, 1997) star
tracers show variations whenever there are differences in the sources and sinks of the two
elements being compared. If there are no differences in sources and sinks, the tracer will show
conservative behavior because both elements share the same circulation. Barium-star is based on
Ba–Si decoupling and was first defined by Horner et al. (2015). …”

Second, we provided a high-level ‘walkthrough’ of the Ba* distribution in a new subsection of
the Discussion (Sect. 5.3.2.). The text that appears in this new subsection appears below:

“We now quantify spatial and vertical variations in the Ba–Si relationship, which we explore
using Ba*. Star tracers, such as Ba*, highlight the processes affecting the distribution of a tracer
by comparing it to another tracer that shares the same circulation (Gruber & Sarmiento, 1997).
The concept has since been extended to study the processes affecting the distributions of many
other bioactive elements, including Si (Si*, relative to N; Sarimento et al., 2004), cadmium (Cd*,
relative to P; Baars et al., 2014), zinc (Zn*, relative to Si; Wyatt et al., 2014). First defined by
Horner et al. (2015) for Ba, Ba* is analogous to other star tracers: it is a measure of Ba–Si
decoupling whereby larger values indicate larger Ba–Si deviations relative to expected mean
ocean behavior. Vertical or spatial differences in Ba and Si sources or sinks will drive variations
in Ba*, as will any Ba:Si fractionation occuring during their combined cycling. Conversely, if all
Ba and Si cycling occurs in the same places (and with a fixed Ba:Si ratio), no Ba–Si decoupling
will occur and Ba* will exhibit conservative behavior. Since Ba and Si are cycled by different
processes and there are large vertical and spatial variations in the intensity of these processes
(e.g., Bishop, 1989), significant variations in Ba* are possible. We now explore these variations.

“In the surface ocean, patterns of Ba* generally resemble those of [Ba] (Fig. 4). In large parts of
the ocean, surface [Si] approaches 0 μmol kg–1; thus, variations in Ba* derive mostly from
variations in [Ba]. This is most evident when examining regions with significant terrestrial input
of Ba, such as from major rivers (Sect. 5.2.1) and from rivers and continental shelves in the
Arctic (e.g., Guay & Falkner, 1998; Whitmore et al., 2022; Fig. 5A). The Southern Ocean also
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exhibits positive Ba*, though we suspect the mechanism is different. Here we observe a belt of
waters with positive Ba* ≈+20 nmol kg–1 centered on the Polar Frontal Zone—the region
between the Antarctic Polar Front and the Subantarctic Front (Orsi et al., 1995; Fig. 5A). Silicic
acid is intensely stripped from waters that transit northward through this region (e.g., Sarmiento
et al., 2004), potentially contributing to elevated Ba* at the sea surface. Dissolved [Ba] and Ba*
then decrease to the north of the Subantarctic front, partly driven by extensive particulate Ba
formation in the frontal region (e.g., Bishop, 1989).

“At 1,000 m, the Atlantic, South Pacific, and southern Indian Oceans exhibit positive Ba* around
+10 nmol kg–1, whereas the North Pacific, Southern, and northern Indian Oceans are negative
between –10 to –20 nmol kg–1 (Fig. 6C). The positive anomalies are likely related to the
northward spreading of southern-sourced intermediate waters that originate within the Polar
Frontal Zone and carry positive Ba* into the low latitudes (e.g., Bates et al., 2017). In the
Atlantic, these values are carried all the way to the north of the basin and return as North Atlantic
Deep Water with only minor modifications to Ba* (≈+10 nmol kg–1; Figs. 6C, 7C, 8C). Negative
Ba* in the North Pacific, Southern, and northern Indian Ocean at 1,000 m likely reflects a
mixture of hydrographic processes and in situ processes. For example, the extensive region of
negative Ba* in the North Pacific is closely associated with North Pacific Intermediate Water,
which originates in the Sea of Okhotsk (Talley, 1991). While the specific mechanism sustaining
this particular Ba* feature is unknown, it most possibly reflects a combination of preferential
removal of Ba relative to Si in the source water formation region (such as from particulate Ba
formation) and weak vertical mixing in the subsurface North Pacific relative to lateral transports
(e.g., Kawabe & Fujio, 2010). We suspect that the negative Ba* values seen above 1,000 m in the
northern Indian Ocean originate through processes occurring internally within this basin, as the
majority of the Indian Ocean below 1,000 m exhibits positive Ba*. A possible mechanism for
these shallow negative Ba* anomalies may relate to the relatively weak overturning transports
(Talley, 2008) and strong particulate Ba cycle north of 30 °S (Singh et al., 2013), though this
awaits more detailed investigation.

“Lastly, the Southern Ocean exhibits negative Ba* between –10 and –20 nmol kg–1 from ≈200
m water depth to the seafloor. These negative anomalies in Ba* appear to be associated with
Circumpolar Deep Water and, below that, Antarctic Bottom Water; the influence of the latter can
also be seen in near-bottom negative Ba* in the South Pacific, southern Indian, and South
Atlantic Oceans (Fig. 8C). As with the other basins, the origin of the negative Ba* waters in the
Southern Ocean likely reflects a combination of in situ and circulation-related phenomena. For
example, in the Southern Ocean, Si is only stripped at the very surface, whereas particulate Ba
formation is thought to be greatest in the mesopelagic (i.e., between 200–1,000 m; e.g.,
Stroobants et al. 1991). Barite formation is generally considered to be related to the regeneration
of particulate organic matter (e.g., Chow & Goldberg, 1960), whereby the former consumes Ba
and the latter releases Si. Thus, intense organic matter remineralization and associated pelagic
BaSO4 precipitation could contribute to negative Ba* in the mesopelagic Southern Ocean.
Similarly, the Si cycle in the Southern Ocean tends to ‘trap’ a significant fraction of the global Si
inventory in the waters circulating close to Antartica (e.g., Holzer et al., 2014). Since the
calculation of Ba* depends on both [Ba] and [Si], waters with elevated [Si] will exhibit lower
Ba* whether or not there is elevated Ba removal.
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“By 2,000 m, almost all of the ocean north of 50 °S exhibits positive Ba* (Fig. 7C). By 4,000 m,
the areal extent of the positive-Ba* waters shrinks to encompass the area north of 30 °S (Fig.
8C). Despite covering a smaller area, the abyssal ocean exhibits the most positive Ba* values
outside of the surface of the Southern Ocean. The reasons for elevated and increasing Ba*
between the deep and abyssal oceans likely reflects a mixture of local and regional processes,
and we offer two speculative explanations for these patterns. First, Si trapping in the Southern
Ocean potentially renders most of the deep ocean away from Antarctica deficient in Si relative to
Ba. Thus, much of the ocean may exhibit more positive Ba* than the deep circum-Antarctic
region due to processes unrelated to Ba cycling. Second, the most positive Ba* values are
generally found close to the seafloor, rather than the mid-depths, especially in the North Pacific,
the Peru and Chile Basins, and the Philippine Sea. This may indicate a mechanism that
preferentially removes Ba (relative to Si) from the mid-depths, or input of Ba (relative to Si)
close to the seafloor.

“Systematic variations in Ba* arise due to differences in the marine biogeochemical cycles of Ba
and Si. While, in some cases, the specific drivers of these variations remains unresolved, our
model identifies multiple hotspots of Ba–Si decoupling that warrant additional study.”

Sect. 5.1: When the authors identified the optimal predictor model, they eliminated features that
offer the least improvement to ML model performance. Why are only MLD and chlorophyll a
eliminated, but not salinity (they improve the model equivalently low, i.e., -3%)? Including
salinity tends not to change the MAD much due to its high p-value. The authors need to justify it
further.

This is a really helpful point, and it speaks to an issue raised by Reviewer #4. In response to this
comment, we revisited the feature significance analysis (Sect. 4.1.). to explore the effect of
different model features on model performance in three steps: (i) for the random holdout cross
folding of the training data; (ii) for the regional cross-validation using the testing data; and, (iii)
for the regional cross-validation testing data, but only considering the 1,687 models that
performed better than the Ba–Si linear regression. We focus our exploration on the third group
since only these models perform better than existing methods for predicting [Ba]. The new table
(Table 3) and a summary of this analysis appears below:

“This analysis yields three main results. When considering only the holdout cross-folded training
data, the addition of any of the 12 features improves model performance by between –4.8 and
–56 %. Excepting longitude, similar across-the-board improvements were observed when
considering only the testing data, though the improvements for most features were more modest
(between –3.0 and –39 %). If considering only the ‘good’ models, six features improved model
performance by –2.4 and –8.3 % ([PO4], [NO3], T, [O2], z, and [Si]), five degraded model
performance by +0.2 to +22 % (bathy., Chl. a, MLD, lat., and long.), and salinity had no
significant effect (Table 3).
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Table 3. Feature addition analysis. Effect of each feature on model performance for Training and
Testing datasets. Model performance is quantified using MAE, thus all columns have units of nmol kg–1
unless otherwise shown. The Testing analysis is further subdivided into a comparison of all models and
‘good’ models, meaning those that achieved superior accuracy than the Ba–Si linear regression (Fig. 1).

“Overall, our results indicate that between six and nine features will result in an accurate and
generalizable ML model of [Ba], and that [PO4], [NO3], T, [O2], z, [Si], and possibly S, are
likely to be included as predictors in such a model.”

In the discussion we added the following:

“...[T]he inclusion of spatial information in the form of latitude and longitude significantly
degrades mean model performance by between +4.0 and +22 %, respectively. While bathymetry,
chlorophyll a, and mixed-layer depth exhibited only minor influences, they were nonetheless
deleterious to mean model performance by between +0.2 to +0.5 % (Table 3). Only [PO4],
[NO3], T, [O2], z, and [Si] consistently improved the mean ML model, which corresponds to
model #3112 (testing MAE of 4.3 nmol kg–1). However, visual inspection of model #3112
output reveals that it does not reproduce expected near-shore surface plumes of elevated [Ba]
close to certain major rivers (see Supplement). Though volumetrically minor, riverine inputs are
a geochemically important component of the marine Ba cycle, and the existence of nearshore Ba
plumes underpins a major proxy application of Ba. Near-shore riverine influence is easily
discerned by low S; we thus explored output from model #3080, which is identical to model
#3112, but includes S as a seventh feature during training. Models #3080 and #3112 exhibit
identical statistical performance for the testing data (MAE = 4.3 nmol kg–1; Fig. S1) and make
similar predictions for mean marine [Ba] and Ωbarite (89 nmol kg–1 and 0.82, respectively; see
Supplement). The similar performance of the two models is consistent with S exerting a
near-negligible impact on overall model performance (Table 3). Despite this small effect, model
#3080 is better able to reproduce riverine [Ba] plumes compared to model #3112 (see
Supplement). We therefore consider model #3080 to be our best estimate of marine [Ba].”
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We also added and series of visual comparisons of model #3112 and #3080 outputs to the
Supplement. An example of one of these comparisons is shown below. The idea here is to
illustrate that although model #3112 performs statistically similarly to model #3080, it misses
riverine Ba inputs. Since S is the only difference between these two models, we conclude that S
must be important for getting this feature right.

Figure S1. Comparison of model #3112 and model #3080 outputs for the Indian Ocean testing data.
Model #3112 was trained using six features: z, T, [O2], [PO4], [NO3], and [Si]. These are the same features
as in model #3080, minus S. The statistical performance of the two models is highly similar, though model
#3112 misses important geochemical features, discussed in the text.

Figure S2. Seawater chemistry in the Bay of Bengal and Andaman Sea. Left and center panels show
[Ba] at the sea surface from model #3080 and #3112, respectively. Right panel shows sea-surface salinity.

Minor comments

L81: The solubility product Ksp is a constant at a given temperature and pH. Thus, Ksp values at
different depths are different. The text needs to clarify how [SO4] and Ksp are assigned.
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Great point. We now explain in more detail how we determined Ωbarite:

“Values of Ωbarite were computed using the method described by Rushdi et al. (2000),
summarized in Equation 3. The numerator, Q, represents the in situ Ba and sulfate ion product
and, in this formulation, depends only on [Ba] and [SO42–] molality. The denominator, Ksp,
depends on T, S, and z (i.e., pressure) and is calculated in two steps: in situ T and S are used to
calculate the stoichiometric solubility product and then this value is modified by calculating the
effect of pressure on partial molal volume and compressibility, which are functions of T and z.
As with the calculation of Ba*, values of [Ba]in situ were obtained from ML models and
co-located data for T, S, and z were extracted from the WOA (Locarnini et al., 2018; Zweng et
al., 2018). Sulfate concentrations were assumed to be conservative with respect to S using
[SO42–] = 29.26 mmol kg–1 when salinity = 35 PSU. This latter assumption likely breaks down
in certain environments (e.g., where [SO42–] reduction occurs); as such, our model is not used
to predict Ωbarite in restricted basins, such as the Black Sea or Caspian Sea.”

L266-267: [Si]in situ and [Ba]in situ from the WOA, [Ba]predicted from ML model output?

Sort of; [Si]in situ was from the WOA, [Ba]predicted calculated from [Si]in situ, and [Ba]in situ from ML.
We’ve changed the wording here since the original was confusing. The new text reads:

“The global distribution of Ba* was determined by calculating [Ba]predicted (Eq. 2) using [Si]in
situ from the WOA 2018 (García et al., 2018b). The values of [Ba]in situ was taken from the ML
model output and [Ba]predicted was subtracted from this to yield Ba* (Eq. 1).”

Fig.3B and L502-513: The authors attribute the deviation between observed and ML-modeled
[Ba] from SS259 in the deep Bay of Bengal to the uncertainty of in situ [Ba] measurements.
Could this deviation result from the factors eliminated from Model #3336? This possibility needs
to be discussed at least.

A good third option that we hadn’t considered (also suggested by Reviewer #3). This paragraph
now closes like this:

“We briefly consider three possibilities for the origin of this regional model–data discrepancy. It
may derive from the fact that model #3080 does not include the features needed to correctly
predict [Ba] in these samples. We view this as the least likely possibility as model #3080
performs well for other samples from the northern Indian Ocean, including samples shallower
than 1,000 m from Singh et al. (2013). Another possibility is that it could reflect an 18 %
decrease in [Ba] in the deep Bay of Bengal since the GEOSECS survey in the 1970’s. Lastly, it
could reflect differences in how in situ [Ba] was measured, noting that Singh et al. (2013) opted
for standard addition instead of isotope dilution. We currently lack the data needed to confidently
distinguish between these latter two possibilities.”
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RC2: 'Comment on essd-2023-67’

Christophe Monnin

L. 348 et seq. The criterion for equilibrium cannot be Ω =1.0000000…. which never happens.
Instead a range of Ω values must be defined, that reflects the uncertainties in the input data (Ba
and SO4 concentrations) and in the thermodynamic model (barite solubility product and activity
coefficient). Taking Ω values between 0.9 and 1.1 is already a very demanding criterion that we
have retained in our paper (Monnin et al., 199). So the discussion in this paragraph should be
corrected according to this. For example Ω = 0.97 can be considered as a sign of barite
equilibrium. See Monnin et al., 1999 for a discussion. I see that the authors discuss this point in
section 5.2.3.

We thank Christophe Monnin for his important insights, which were also entertaining to read!

This is an interesting point and we’ve made five changs in response to this comment. First, we
note that the values of Ω possess an uncertainty (Sect. 4.2):

“Model #3080 contains 3,302,570 predictions for each of [Ba], Ba*, and Ωbarite (Sect. 6).
Assuming that the MAPE and MAE are good estimates of the prediction error, we estimate that
modeled [Ba] and Ba* have uncertainties of 6.0 % and 4.3 nmol kg–1, respectively.
Uncertainties on Ωbarite were estimated by comparison to literature data, which yields a MAE of
0.08. These estimates are discussed in more detail in Section 5.2 and the Appendix.”

Second, also in Section 4.2., we make a similar point when describing the volume-weighted
histograms:

“Lastly, Ωbarite tends to increase between the 0–250 m, 250–1,000 m, and 1,000–2,000 m depth
bins, increasing from 0.42, to 0.65, and 0.96, respectively. Average Ωbarite in the deepest bin
(2,000–5,500 m) is slightly lower, with a mean value of 0.92 (Fig. 9D). Given the accuracy of
our model-derived Ωbarite predictions (0.08 to 0.10), the ocean between 1,000–5,500 m is within
uncertainty of BaSO4 equilibrium.”

Third, we clarify where these uncertainties come from in Section 5.2.3.:

“Given the nature of these uncertainties, we opted to calculate prediction uncertainties for
Ωbarite empirically by comparison to literature data (see Appendix). This yields a value between
0.08 and 0.10, similar to the 10 % prediction error reported by Monnin et al. (1999).”

Fourth, we provide these details in the Appendix:

“We can use these comparisons to estimate the prediction uncertainty on our model-derived
values of Ωbarite. The MAE of the 133 comparisons shown in Fig. A1 yields a value of 0.10.
However, there are different numbers of points in each profile; we thus believe it is more
appropriate to average the MAE calculated for each of the five profiles, which yields a value of
0.08. Both values are similar to the 10 % prediction uncertainty reported by Monnin et al.
(1999).”

And fifth, we note what this means for assessing equilibrium in Section 5.3.3.:
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“By comparison to literature data, we estimate that our model achieves a typical prediction
uncertainty on Ωbarite of 0.08 (see Appendix). Accordingly, values of Ωbarite between
0.92–1.08 can be considered as ‘BaSO4 saturated,’ whereas values of Ωbarite <0.92 or >1.08
indicate under- or super-saturation, respectively.”

The updated Figure A1 (with model #3080 output is shown below):

Figure A1. Comparison of literature- (symbols) and Model #3080-derived (dashed line) values of
Ωbarite. Panels A and B show profiles of Ωbarite at GEOSECS St. 89 (60°0’ S, 0°2’ E). The other panels are
from the Indian Ocean: C and D are from INDIGO 2 St. 36 (6°9’ S, 50°55’ E) and E from GEOSECS St.
420 (0°3’ S, 50°55’ E), some ≈675 km north of INDIGO 2 St. 36.

Also the statement in the abstract that "the ocean below 1,000 m is, on average, at or near
saturation" is a simplification of what has been previously depicted by Monnin et al. (and by
Rushdi et al.). For example we wrote that in the Pacific Ocean "There is a return to
undersaturation of the water column at depths of about 3500 m in the Pacific and of about 2500
m in the Southern Ocean. The reverse is found for GEOSECS station 446 in the Gulf of Bengal
for which the highest Ba concentrations can be found at depth: surface waters are undersaturated
and equilibrium is reached below 2000 m". This simplifying statement by the authors
deteriorates the conclusions that they have obtained with their powerful and elaborate approach.

Fair enough! We’ve addressed this point in two ways. First, we note in Section 5.3.3. that earlier
studies already discerned the major contours in the global distribution of Ω:

“Global patterns in Ωbarite derived using our model are similar to those reported by Monnin et
al. (1999) and Rushdi et al. (2000). Readers looking for detailed basin-by-basin descriptions of
Ωbarite are directed to those studies.”

Second, we added a caveat in the abstract stating that there are regional variations in Ω:

- 11/25 -



“We also calculate the saturation state of seawater with respect to barite. In addition to revealing
systematic spatial and vertical variations, our results show that the ocean below 1,000 m is at
equilibrium with respect to barite.”

The discussion averaging barite saturation for the global ocean (L. 579-580:" the ocean below
1,000 m exhibits a mean Ω barite ≥0.92, which implies that much of the deep ocean is close to
saturation with respect to BaSO4") tends to hide the fact that specific regions of the global ocean
do not fit in this picture and should be given close attention (e.g. the role of hydrothermal
activity above ridges, or, as discussed by the authors, the continental input through river
discharge).

We opted to avoid discussing detailed regional patterns in Ω as the reviewer rightly notes that
this has been tackled by previous studies. (Conversely, no such discussion of global variability in
Ba* exists, and we took the opportunity provided by Reviewer #1 to address this issue.) In
response to this point, we tried to make it clearer that our focus, with respect to Ω, was on three
main things: (i) accuracy of our Ω estimates, (ii) whether our values reproduce known features in
Ω, and (iii) the global mean Ω. The following text now appears as the preamble to Section 5.3.3.:

“Here we show that our approach can predict Ωbarite with an MAE of 0.08, that our output is in
agreement with published values, and that the deep ocean, below 1,000 m, is at saturation with
respect to BaSO4.”

This being said, the paper is quite well organized, the presentation of the model and of the results
quite concise.

Excellent!

No changes made.

Although my opinion is that the discussion repeats in part what has been concluded from what
the authors call mechanistic models and as such should be simplified, the paper presents a very
good account of the Ba problem in the ocean and a way to address it (by what could be called
"brute force"…). It could be published as it is. The fact that the model can be adapted for other
tracers with a minimal effort is quite encouraging.

Excellent – thank you! We may even borrow some of this language for use in future
presentations: “Barium by brute force: Results from an ML model”

No changes made.

L. 67: missing figure number

Added cross reference to Figure 1.
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Typo in the vertical axis of Fig. 4, 5 and 6D: replace the lower 1.75 by 0.75.

Changed.

L.338. Sentence construction inadequate.

Good catch. The revised sentence reads:

“Based on our formulation (Eqs. 1, 2), Ba* varies from –27.2 to +27.9 nmol kg–1 and possesses
an unweighted mean of +2.4 nmol kg–1.”
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RC3: 'Comment on essd-2023-67’

Frank Pavia

I really enjoyed reading this paper by Mete et al. The manuscript was well-written,
well-organized, extremely clear, and the work generates a product that should be used by
chemical oceanographers and paleoceanographers alike. I have a few comments, and only the
first is substantial.

We are delighted to read such an encouraging and positive response from Frank Pavia. We found
these comments very helpful.

The decision to only use Indian Ocean data as the validation dataset is definitely curious, and I
think not justified well-enough in the text. The authors cite Rafter et al. 2019 as their source for
doing location-based separation of training and test data to avoid overfitting. Rafter et al.,
however, don't isolate a single basin for this - they use whole ship transects as their witheld data,
and these transects span multiple basins, hemispheres, and latitudes. Testing a globally-trained
dataset on a regionally-confined subset of data doesn't, at least to a reader not well-versed in
these sorts of choices, inspire the maximum amount of confidence in the results of the global
output of the model. Perhaps the authors could more completely explain this choice to bulwark
against this criticism.

This is a great point and we’ve taken the opportunity to clarify our reasoning. Before addressing
it, however, we want to note a related point raised by Reviewer #1, who wanted us to include the
randomly assigned training–testing separation results for comparison. We now do so in Figure 3
(below), which shows that the model training process vastly underestimates the error in [Ba]
predictions. The main reason for this, stated on p. 108 of Rasmussen & Williams (2006) is:

“[T]he training error is usually a poor proxy for the generalization error, since the model
may fit the noise in the training set (over-fit), leading to low training error but poor
generalization performance.”

This means that if we partition the data randomly we will get small, but unrealistic errors. If we
partition geographically we get larger, but more-realistic errors. We now note this in Section 3.2.:

“A significant problem in supervised ML, and particularly Gaussian Process Regression
learning, is overfitting: models may fit the noise in the training data, leading to poor
generalization performance (Rasmussen & Williams, 2006). Since our goal was to develop a
global model of [Ba] using regional training data, we deemed it especially important to identify
generalizable models. Generalizable models were identified through a testing process involving
regional cross-validation; each trained model was used to predict [Ba] for the 1,157 samples
from the Indian Ocean and model predictions were again compared against observations.
Importantly, no [Ba] data from the Indian Ocean were seen by any of the models during training.
This process helped to identify models that may have been overfit to the training data and can
further be used to calculate generalization errors (Sect. 4.1).”
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Figure 3. Effect of feature addition on ML model accuracy. Accuracy was quantified for each of the
4,095 trained models and quantified here using MAE (note log scale, which differs between panels). The
accuracy of trained models is shown for random holdout cross-validation during training (top) and for
regional cross-validation during testing (bottom). Square indicates the performance of our favored
predictor model, #3080 (see Fig. 4, Sect. 5.1). The accuracy of the Ba–Si linear regression benchmark is
shown as a dashed line in the lower panel (MAE = 6.8 nmol kg–1). To illustrate data density, points have
been randomly positioned within their respective bin and plotted with 80 % transparency.
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To further address Reviewer #3’s point, we added some discussion to Section 5.1. explaining
why we opted for regional cross-validation. We think that these arguments are now much
stronger than in the original submission and we appreciate the reviewer’s insights.

“Choosing a single, optimal model configuration is challenging given the sheer number of
skillful ML models. Below we winnow the list from 4,095 to a single model (#3080). We base
our winnowing primarily on the results of the regional cross-validation performed in the Indian
Ocean, rather than from the errors determined from random holdout cross folding of the training
data. We believe that there are three strong reasons for winnowing in this way. First, Gaussian
Process Regression Learners tend to fit the noise in the training data, meaning that the training
error is significantly lower than the generalization error (Rasmussen & Williams, 2006). Indeed,
trained models showed overall lower performance during testing compared to training, which we
believe is evidence of overfitting (Fig. 3, Table 3). Second, a generalizable global model should
be able to make predictions in regions where it has not already learned anything about the target
variable. Our regional cross-validation approach satisfies this consideration since no Indian
Ocean data were seen during model training. Third, the Indian Ocean is an ideal basin for testing
as it exhibits the full diversity of features expected to influence [Ba] (riverine inputs,
oxygen-minimum zones, coastal upwelling, etc.) and constitutes ≈20 % of the global ocean
volume. Likewise, the Indian Ocean captures most of the range in [Ba] seen elsewhere in the
ocean (Fig. 9); this likely reflects the input of Atlantic waters through the Aughulas leakage,
transport of old Pacific waters via the Indonesian Throughflow, and northward spreading of
mode and intermediate waters from the Southern Ocean. We thus assume that the Indian Ocean
testing errors are a good approximation of the generalization error, which we now use to winnow
the list of models.”

Figures 4-7: The 0.75 value for barite saturation is labeled as 1.75 in all these figures.

Good catch (thanks also to Reviewer #2!).

Changed.

Line 342: Change Look to Looking

Done. Now reads:

“Looking at the ocean as a whole, the probability density function of [Ba] roughly resembles a
uniform distribution, with a mean ocean [Ba] of 89 nmol kg–1 (Fig. 9A).”

Figure 8: I think it would be helpful to have a key/legend for the basins in A and C, similar to the
key for depths in B and D. It is not easy to match the text color of the basins to the colors of the
histograms in panels A and C.

Good suggestion. These have been added to the updated histograms for model #3080:
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Figure 9. Stacked, volume-weighted histograms showing the relative frequency distribution of
dissolved [Ba] (A, B) and Ωbarite (C, D) in the global ocean. The left column shows data grouped by
basin and the right column shows data grouped by a prescribed depth bin. Numbers in each panel display
the mean property value for that bin. Dashed line shows the global mean.
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Lines 507-513: Did all or many of the best models tend to produce the same systematic
mismatch between predicted and measured Ba for the Singh et al. 2013 data? It would be helpful
to know to make sure it isn't a quick [quirk?] of this specific model.

Reviewer #1 had a similar question and we added a few sentences in Section 5.2.3. to clarify this
point (reprinted in response to Reviewer #1’s comment).

Overall, we don’t think it’s a specific quirk of this model because several other good models
reproduced this offset; indeed, our new ‘optimal’ predictor model shows similar behavior as
model #3336 (the optimal model in the original submission). However, we did not investigate
whether every model predicted this mismatch because our focus was on making a globally
(rather than regionally) accurate model of [Ba]. It’s worth noting that model #3080 does well on
the shallow samples from Singh et al. (2013), implying that it’s something specific to the deep
Bay of Bengal, namely: changes in the deep dissolved Ba inventory since GEOSECS, or
inaccuracies with the measurements. Since we cannot distinguish between these two possibilities
without more recent samples from the region, we have left it open ended.

Section 5.3. I really enjoyed reading this section and am looking forward to the community's use
of this data product.

Excellent!

No changes made.
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RC4: 'Comment on essd-2023-67’

Anonymous Referee #4

Summary

This study uses a machine learning approach to reconstruct global Ba concentrations in the
ocean, and uses the model output to calculate Ba* and barite saturation state in the global ocean.
In general this is solid study that provides model output that will be useful to other researchers,
and the methodology is sound, with one exception that I detail below. I think that with minor
revisions the study should be acceptable for publication.

We’re pleased to read that the reviewer felt that this was a solid study and we are grateful for
their comments, which have improved the contribution.

Specific Comments

- Line 89: I disagree that mechanistic modeling should be called the “gold standard”. A model is
useful if one can learn something from it, period. Some mechanistic models are useful, some
statistical models are useful.

Fair enough. We took out this language. The new sentence reads:

“In mechanistic or process-based modeling, model outputs are derived from sets of underlying
equations that are based on fundamental theory. As such, mechanistic model outputs can be
interrogated to obtain understanding of processes and their sensitivities.”

- Line 104: The entire process and methodology of this study seems to owe a large intellectual
debt to ML-based trace metal modeling studies of Roshan et al. These pioneering studies should
be acknowledged here, e.g. Roshan et al. (2018), Roshan et al. (2020)

We are happy to acknowledge these earlier studies. The new sentence reads:

“Machine learning is increasingly being used to solve problems in Earth and environmental
sciences, including simulating the dissolved distribution of tracers in the sea (e.g., for cadmium,
Roshan & DeVries, 2021; copper, Roshan et al., 2020; iodine, Sherwen et al. 2019; nitrogen
isotopes of nitrate, Rafter et al., 2019; and zinc, Roshan et al., 2018).”

- Line 196: Explain what you mean by “non-parameteric” and “kernel-based”

Excellent suggestion. We added a sentence to clarify this:

“This particular ML algorithm is non-parametric, kernel-based, and probabilistic, which means
that it does not make strong assumptions about the mapping function, can handle nonlinearities,
and takes into account the effect of random occurrences when making predictions.”
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We also added the following to make clear why we used GPR:

“Gaussian Process Regression algorithms are widely used in geostatistics, where it is often
referred to as ‘kriging’ (e.g., Cressie, 1993; Rasmussen & Williams, 2006; Glover et al., 2011).
This type of algorithm is ideal when working with continuous data that also contains a certain
level of noise, such as from measurement uncertainty or oceanographic variation.”

- Line 196: What is the specific MATLAB function, and what options did you specify

An excellent idea. We now name the function in the main text:

“The MATLAB function, fitrgp, was used for model training.”

We also note the following:

“A full list of the parameter selections used in fitrgp is provided in Table S1.”

We then provide a table in the Supplement (Table S1) that explains all the function options, what
they do, the value we selected, and why we chose that value. This table is reprinted below:

Table S1. Function parameters specified for the function used to train ML models. The MATLAB
function fitrgp was used to perform model training (MathWorks, 2023). Each option, its purpose, the
value assigned, and a justification for the value chosen are shown.

Option Description of option Value selected Description of the value
selected

Fit Method Method to estimate
parameters of the GPR model

‘sd’ Subset of data points
approximation (i.e., selects a
smaller subset of training
data points and computes
the inverse of the covariance
matrix only for that subset,
while the remaining data
points are used to estimate
the hyperparameters of the
model.)

Basis
Function

Explicit basis in the GPR
model

‘constant’ H=1

(n-by-1 vector of 1s, where
n is the number of
observations, i.e., sets the
mean of the GPR model to
be a constant value, which is
equal to the mean of the
training output data and is
applied to all observations
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in the training data

Beta Initial value of the
coefficients

Inferred from the data, thus
changes with each run.

Sigma Initial value for the noise
standard deviation of the
Gaussian process model

std(y)/sqrt(2) Depends on the response
data, thus changes with each
run.

Constant
Sigma

Constant value of Sigma for
the noise standard deviation
of the Gaussian process
model

false allows the noise standard
deviation to vary across
different input points

Sigma
Lower
Bound

Lower bound on the noise
standard deviation

1e-2*std(y) Depends on the response
data, thus changes with each
run.

Categorical
Predictors

Categorical predictors list logical vector of length
p where each element is
false and p is the
number of predictors

None of our predictors are
categorical.

Standardize Specify whether or not the
data should be standardized
using mean and standard
deviation

true When true, each predictor is
centered and scaled to have
a mean of zero and a
standard deviation of unity.

Kernel
Function

Form of the covariance
function

‘exponential’ sets an exponential kernel
function (i.e., a type of
radial basis function that
computes the similarity or
covariance between two
input vectors based on their
distance or proximity in the
input space) to be used to
model the covariance
between the input variables.

Distance
Method

Method for computing
inter-point distances

‘fast’ e.g., (x−y)2 is computed as
x2 +y2−2∗x∗y when the
distance method is fast.

Active Set When specified, the active set
indicates the observations to
be used in model training. If
the active set is
predetermined, ActiveSetSize
and ActiveSetMethod are not
used.

[] We do not assign a
predetermined active set and
let the model chose a
random active set
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Active Set
Method

selection method for the
Active Set

‘random’ random selection of active
set

Random
Search Size

Random search set size 59 MATLAB default value

Tolerance
Active Set

Relative tolerance for
terminating active set
selection

1e-6
Controls the convergence
tolerance level for the active
set algorithm used in the
"subset of data points"
fitting method.

Predict
Method

Method used to make
predictions

‘exact’ Specifies that the exact
method should be used to
make predictions with the
trained GPR model

Optimizer Optimizer to use for
parameter estimation

‘quasinewton’ Sets a quasi-Newton method
(i.e., a gradient-based
optimization algorithm) to
estimate the
hyperparameters or other
parameters of the GPR
model.

Initial Step
Size

Initial step size [] Empty. Initial step size is
not used to determine the
initial Hessian
approximation.

Holdout A cross-validation method
where a fraction of the data is
used for validation.

0.2 Use 20% of training data for
validation and 80% for
training.

- Line 199: Explain the meaning of “basis” and “kernel-function” parameters

These are now all described in Table S1 (above). We think that this change makes the main text
simpler to follow and our methods easier to replicate.

- Line 310: The p-values seem to be meaningless. Not sure they add any value here.

This is a good point and we have updated this analysis. Rather than exploring the probability that
a feature changes the model we now explore how different features affect the model for the
training, testing, and ‘good’ models. This change is detailed in response to a comment made by
Reviewer #1.
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The main changes are a new figure (Fig. 3, see response to Reviewer #3) and a new table (Table
3; shown in a response to Reviewer #1).

- Figure 8: Are these values volume-normalized? If not, they would skew toward surface values
where grid boxes are smaller.

Yes, these are all volume weighted. This is now noted in the caption:

“Figure 9. Stacked, volume-weighted histograms showing the relative frequency distribution of
dissolved [Ba] (A, B) and Ωbarite (C, D) in the global ocean.”

- Section 5.1: It makes sense to remove models with lat and lon as predictors. After that, I
disagree with all of the choices presented in this section, which ultimately lead to the choice of 1
model out of a possible 1,687 — talk about overfitting!

We agree with parts of this comment and disagree with others. We provide our reasoning in
response to the next point.

- Eliminating models with Chl-a and MLD predictors: I will accept eliminating Chl-a, since
including it degraded the median model. But just because including MLD only improved the
average model by 3% is not a good reason to remove it as a predictor. You have a small sample
size in the validation set, and MLD may encode key information for particular environments that
are under-represented in the validation set. If it improves the model on average, it is reasonable
to keep it.

This last point – If it improves the model on average, it is reasonable to keep it – got us thinking
about the best way to approach the feature significance analysis, which is summarized in the new
Table 3. We performed this analysis for the training data (random holdout cross folding), the
testing data (regional cross validation), and for the 1,687 ‘good’ models (also regional cross
validation). We consider this last group the most relevant because:

“... these 1,687 models … are superior to existing methods for estimating [Ba] in seawater.”

which we now state in Section 5.1. Looking at it this way, we see that six features improved the
model on average ([PO4], [NO3], T, [O2], z, [Si]), five degraded it (bathy., Chl. a, MLD, lat., and
long.) , and one (S) had no effect. Since there is only one model that contains [PO4], [NO3], T,
[O2], z, and [Si], model #3112, we started with that. However, when we plotted the output from
model #3112 it became clear that this model, while excellent (statistically speaking), was missing
an important aspect of Ba geochemistry: input from rivers. We included some plots illustrating
this comparison in the Supplement (see response to Reviewer #1) and note in Section 5.1.:

“Though volumetrically minor, riverine inputs are a geochemically important component of the
marine Ba cycle, and the existence of nearshore Ba plumes underpins a major proxy application
of Ba. Near-shore riverine influence is easily discerned by low S; we thus explored output from
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model #3080, which is identical to model #3112, but includes S as a seventh feature during
training. Models #3080 and #3112 exhibit identical statistical performance for the testing data
(MAE = 4.3 nmol kg–1; Fig. S1) and make similar predictions for mean marine [Ba] and
Ωbarite (89 nmol kg–1 and 0.82, respectively; see Supplement).”

- Eliminating models with Si eliminates the strongest predictor, which seems foolish. There is no
reason to eliminate Si just because it appears in the definition of Ba*, which is not even in the
target data. If you want the model to predict Ba* in addition to Ba, you could add that to the
target when you train the models, but that is still no reason to remove Si from the predictor data
(if it were, Si wouldn’t even be in the list of features that you consider for this model).

Excellent point. We now retain Si as a feature when winnowing the list of good models.

As a result of this comment, we added [Si] to the model. The new model, #3080, is equivalent to
model #3336+[Si], and the performance of the model is improved by about 3 %.

- The reason given for eliminating models with <=4 features is not valid. The analysis shows that
*on average* the models with 5-8 predictors performed best (Figure 3). But that doesn’t mean
that there are not models with <5 predictors that could perform just as well and be just as
probable (in fact there clearly are, as shown in Figure 3). It is arbitrary to eliminate these models.

This is a fair point and, given the changes made in response to an earlier comment (“[i]f it
improves the model on average, it is reasonable to keep it”) it no longer applies.

- In general, there is simply no good reason to choose 1 model as the “optimal” model. In fact the
great benefit of the model testing that the authors have done is that it affords an ensemble of
models from which to choose, many of them being equally or approximately equally probable. It
one wants to “weight” the models one could do so be defining a probability function (MAD or
something similar would do) and assigning a probability to each of the models. This would be
better than simply choosing one single model (equivalent to assigning that model a probability of
1 and all the other models a probability of 0).

This is an interesting point. However, we did not implement this suggestion for two reasons.
First, the analysis we performed in response to the reviewer's earlier comment showed that only
six features consistently improved ML model performance—[PO4], [NO3], T, [O2], z, [Si]. We
thus decided to start with the only model that contained these six features (#3112). Adding S to
this model (#3080) had no effect on its MAE or MAPE, but it did mean that the model got rivers
right. Second, while an ensemble of good models might be interesting, we believe that end users
of this data product may find it easier to simply use our ‘best estimate’ of marine [Ba]. As more
data become available, such as from the next GEOTRACES IDP release, a new best model could
well emerge and we can update the model output incorporating those data.
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- Line 414: Figure 3 doesn’t show sea surface Ba.

Good catch.

This particular cross reference has been cut.

- Line 426: Or maybe the model is just wrong in those regions. Do any other of the possible
models (e.g., not model #3336) show elevated Ba at those locations?

Great point.

We now have a section in the Supplement showing a comparison of ML model outputs close to
the mouths of major rivers. It appears that including S is important if the models are to recognize
that there is elevated [Ba] close to shore.

- Line 430: Sure, it’s reasonable. It’s just unreasonable to say that there are no other possibilities.

We’ve added another possibility to this section (underlined text):

“The reasons for the lack of elevated [Ba] near the outflow of these two rivers is less clear. It is
possible that the model is simply inaccurate in these regions, though we have no particular
reason to believe that this is the case. Alternatively, it may reflect seasonal variations in Ba
release that are not captured by our mean annual model (e.g., Joung & Shiller, 2014). It could
also indicate that these particular rivers are not major net sources of Ba to the surface ocean,
which might be the case if dissolved Ba is being retained in the catchment (e.g., Charbonnier et
al., 2020) or estuary (e.g., Coffey et al., 1997).”

- Line 551: It would be better to base such uncertainties on an ensemble of most-probable models
(rather than a single model)

Based on the revised feature significance analysis suggested by the reviewer, we restricted our
analysis to a single model (#3080) and base our uncertainties on the generalization error.

No changes made.
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