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Abstract. High-quality gridded data on industrial water use are vital for research and water resource management. However, 

such data in China usually have low accuracy. In this study, we developed a gridded dataset of monthly industrial water 

withdrawal (IWW) for China, which is called the China industrial water withdrawal dataset (CIWW); this dataset spans a 56-15 

year period from 1965 to 2020 at spatial resolutions of 0.1° and 0.25°. We utilized >400,000 records of industrial enterprises, 

monthly industrial product output data, and continuous statistical IWW records from 1965 to 2020 to facilitate spatial scaling, 

seasonal allocation, and long-term temporal coverage in developing the dataset. Our CIWW dataset was significantly improved 

in comparison to previous data for the characterization of the spatial and seasonal patterns of the IWW dynamics in China and 

achieved better consistency with statistical records at the local scale. The CIWW dataset, together with its methodology and 20 

auxiliary data, will be useful for water resource management and hydrological models. This new dataset is now available at 

https://doi.org/10.6084/m9.figshare.21901074 (Hou and Li, 2023). 

1 Introduction 

Industrial water withdrawal (IWW) is the amount of water abstracted from freshwater sources for industrial purposes, which 

is different from water consumption. IWW accounts for approximately 19% of human water withdrawal globally and is the 25 

second largest sector of human water use following irrigation (WWAP, 2019). In developed countries, IWW accounts for more 

than half of their water use (Shen et al., 2010; Wada et al., 2011a; Flörke et al., 2013). Driven by economic and population 

growth, global IWW has steadily increased over the past 60 years (Oki and Kanae, 2006; Wada et al., 2011b) from 400 km3 

per year in 1960 to 955 km3 per year in 2010 (Flörke et al., 2013), and it is projected to continue to increase in the future (Oki 

et al., 2003; Shen et al., 2010; Fujimori et al., 2017). Considering the high spatial heterogeneity and fast changes in IWW, 30 

quantitative information with high spatiotemporal resolution on IWW is essential for water resource management and research. 

https://doi.org/10.6084/m9.figshare.21901074


2 

 

Existing IWW datasets primarily consist of statistical data at the administrative/watershed levels and model estimations at the 

grid level, in which the sectoral information is represented with varying degrees of complexity (Arnell, 1999, 2004; Alcamo 

et al., 2000, 2007; Vörösmarty et al., 2000; Oki et al., 2003; Hanasaki et al., 2008a; Otaki et al., 2008; Wada et al., 2011b; 

Hejazi et al., 2014; Wada et al., 2016; Yan et al., 2022). Gridded datasets developed from administrative-level data or models 35 

provide more detailed spatial information (Hanasaki et al., 2008a; Wada et al., 2011a); however, their accuracy depends on 

the spatial downscaling methods, including the spatial proxies and data sources. 

For the total IWW, statistical data are usually allocated to the grid level relying on the spatial proxies, such as population 

density and urban or industrial area (Hanasaki et al., 2008a, b, 2010; Van Beek et al., 2011; Wada et al., 2011a, b, 2014). For 

sectoral IWW, different mapping methods are applied. For the energy sector, water withdrawal was estimated by the total 40 

energy generated and water use efficiency under different technologies (Koch and Vögele, 2009; Flörke et al., 2013). With 

detailed information on the location, power output, and water use efficiency of power plants, water withdrawal for the energy 

sector could be mapped out (Vassolo and Döll, 2005; Flörke et al., 2013; Müller Schmied et al., 2014; Wang et al., 2016; Qin 

et al., 2019). For manufacturing, water withdrawal was estimated either as the residue of the energy water use from the total 

IWW downscaled using the spatial proxies mentioned above (Hejazi et al., 2014) or the product of population and per capita 45 

water consumption (Vörösmarty et al., 2000). Although several global gridded IWW datasets have been developed, the spatial 

proxies used for downscaling (e.g., population) are only indirect factors that are not directly tied to industrial production 

processes that consume water, and they cannot be used to separate the different industrial subsectors whose water use 

efficiencies could be substantially different (0.32 of Paper and Paper Products versus 5.6 of Electric Equipment and Machinery, 

unit: 103 yuan/m3). Moreover, when downscaling, the global gridded datasets typically rely on the national statistical data 50 

(Hejazi et al., 2014; Water GAP model 2.2 (Wada et al., 2016); Huang et al., 2018) without incorporating subnational statistics 

to better capture the regional differences. Therefore, global datasets are sufficient in showing the global general pattern but 

their performance could be poor for the specific regions, limiting their applications for regional water issues (Liu et al., 2019b). 

More importantly, IWW has seasonal fluctuations because of changes in weather conditions (temperature, precipitation, and 

thunderstorms), water supply availability (especially under monsoon climates, such as in China), production demand, and 55 

emission restrictions (Liu et al., 2006). However, most existing datasets do not represent seasonal variations (only annual data) 

or treat it as monthly invariant (i.e., each month shares 1/12 of annual total withdrawal) (Brunner et al., 2019; Wada et al., 

2011a). The lack of representation of intra-annual variations may result in significant discrepancies between the data and 

reality. A few studies consider seasonal variations in industrial water withdrawal for specific sectors. For example, seasonality 

in IWW for electricity generation is estimated by incorporating the influence of temperature variability on the electricity 60 

demand of thermoelectric power plants (Byers et al., 2014; Liu et al., 2015). The included climate variations introduce a clear 

seasonal pattern, with large withdrawals in winter at high latitudes and summer in tropical regions (Huang et al., 2018). 

Therefore, it is essential to fully account for intra-annual variations in IWW, which directly affect water resource management 

and allocation (Derepasko et al., 2021; Sunkara and Singh, 2022). 
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After decades of fast growth, China has become the second-largest economy in the world, with rapid industrial development 65 

leading to increasing water use (Zhou et al., 2020). IWW in China accounted for 20.2% of the total water withdrawal in 2019 

(source: China Water Resources Bulletin) and increased by 4.5 times from 31.93 km3 in 1965 to 142.86 km3 in 2013 (Zhou et 

al., 2020). However, water resources in China are distributed unevenly in space, causing severe water stress due to a mismatch 

between the water supply and demand of the population and industrial development (Liu et al., 2013; Zhao et al., 2015). For 

instance, Northern China is one of China's largest industrial centres and densely populated regions, but it is experiencing the 70 

most severe water scarcity in the world (Yin et al., 2020). The changes in IWW and total water withdrawal have further 

increased the water conflict, making it urgent to optimize the current water use and management structure. Therefore, high-

quality gridded IWW data for China are needed to characterize the spatial-temporal pattern of IWW for water management 

and for research on hydrological processes and modelling (Addor et al., 2020). However, IWW data produced from reliable 

data sources with a long period and high spatial resolution in China are still lacking. The publicly available data on IWW in 75 

China are either the statistical data at the provincial, prefecture, basin level (Xia et al., 2017; Qin et al., 2020; Chen et al., 2021) 

or the gridded data extracted from the global datasets that have low accuracy for regional and local studies (Liu et al., 2019a, 

b; Han et al., 2019; Niva et al., 2020; Yin et al., 2020; Li et al., 2022). 

To address this data gap, in our study, we used reliable local data sources to develop gridded datasets of monthly IWW in 

China with high spatial resolution while incorporating seasonal variations. By using multiple statistical data sources, the high-80 

resolution mapping of IWW was achieved by a unique industrial enterprise dataset including >400,000 enterprises; the seasonal 

variations were derived from the industry product output data; and the long-term temporal coverage was obtained by the 

continuous statistical records from 1965 to 2020. The resulting dataset, named the China Industrial Water Withdrawal dataset 

(CIWW), provides monthly IWW from 1965 to 2020 at spatial resolutions of 0.1° and 0.25°. The dataset, along with its 

auxiliary data, is useful to better understand the spatial and seasonal variations in IWW in China and support hydrological 85 

studies and regional water resource management. 

2 Data and Method 

2.1 Data 

2.1.1 Statistical data for industrial output value and water withdrawal 

The provincial-level industrial output value (IOV, unit: 103 Yuan per year) and IWW were from the China Economic Census 90 

Yearbook in 2008 (http://www.stats.gov.cn/sj/pcsj/jjpc/2jp/indexch.htm, last accessed: 2 April 2021). The data included 

surveyed IOV and IWW for enterprises above a designated production level (annual production > 5 million Yuan), consisting 

of three main industrial sectors (mining, manufacturing, and production and supply of electricity, gas and water) and 38 

subsectors (Table A1). Note that the two subsectors of “Other Mining” and “Waste Resources and Material Recycling and 
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Processing” contained no data, and the average values of the IOV and IWW of the mining and manufacturing sector in each 95 

province were used to fill these two subsectors. 

2.1.2 Industrial enterprise data in China 

The industrial enterprise dataset used in this study was from the Chinese Industrial Enterprise Database in Mainland China 

from 1998 to 2013 (https://www.lib.pku.edu.cn/portal/cn/news/0000001637, last accessed: 18 May 2022). The dataset contains 

surveyed industrial information, including address, products, annual IOV, and industry category, for more than 400,000 100 

enterprises whose annual IOV was more than 5 million Yuan (or 20 million Yuan from 2011 to 2013 due to standard changes). 

The dataset covers three main industrial sectors and 37 subsectors, similar to the provincial data in Section 2.1.1. The 

enterprises’ records for the subsector of “Water Production and Supply” were not used because the water supply was mainly 

for domestic rather than industrial purposes. To match the IWW survey data, which were only available in 2008 (the economic 

censuses in other years do not include detailed provincial IWW by subsector), industrial enterprise data in 2008 were selected 105 

for spatial downscaling of the provincial IWW (Fig. S1). 

2.1.3 Statistical data for the monthly industrial product output 

The monthly industrial product output data were from the China Industry Product Output Database (http://olap.epsnet.com.cn, 

last accessed: 26 September 2021). The data contain monthly outputs of 283 specific products of 36 industrial subsectors at 

the provincial level. We used the average of 5 years from 2006-2010 to reduce interannual variability in outputs. The monthly 110 

outputs of each product were converted to monthly fractions (divided by the annual total output) to represent its intra-annual 

variation. Missing values in monthly product output fractions were filled by the average value of monthly fractions of product 

output from 2006 to 2010. The monthly output fractions of 283 products were aggregated to 36 subsectors by averaging 

products within each subsector by the arithmetic mean. 

2.1.4 Statistical data of industrial water withdrawal for long-term extension 115 

Long-term statistical IWW data were required to produce IWW data for the past four decades. Provincial surveyed IWW 

statistical data of 2003 to 2020 were obtained from the China Water Resources Bulletin (http://www.mwr.gov.cn/sj/tjgb/szygb/, 

last accessed: 3 May 2022). IWW in the China Water Resources Bulletin is defined as the annual amount of water withdrawal 

for industrial production activities, including primary production, auxiliary production and ancillary production, excluding 

recycled water. To further extend the time series to an earlier period, the IWW from 1965 to 2002 reported by Zhou et al., 120 

(2020) (referred to as ‘Zhou2020 data’ hereafter), was used after summing the prefecture data to the provincial level. The IWW 

record was from multiple versions of water resources survey data (1st and 2nd National Water Resources Assessment Program) 

and defined the same way as the China Water Resource Bulletin and our study. The national IWW between two sources 

(Zhou2020 data and China Water Resources Bulletin) was almost identical in 2003 (117.72 vs 118.86 unit: km3; Fig. S2) but 

started to diverge afterward. To ensure data continuity, we opted for the China Water Resources Bulletin starting from 2003 125 

https://www.lib.pku.edu.cn/portal/cn/news/0000001637
http://www.mwr.gov.cn/sj/tjgb/szygb/
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as a statistical data source because it has been updated continuously since then. Thus, the combination of the above two data 

sources provided complete and continuous statistical records of IWW from 1965 to 2020 in China. Table 1 provides a summary 

of the data sources used for developing the CIWW dataset. 

Table 1 A summary of data sources for developing the CIWW dataset 

Data Source 
Industrial 

Sector 

Spatial 

resolution 
Time span Usage 

Industrial enterprise output 

value 

Chinese Industrial 

Enterprises Database 

Subsectors 

(36) 

Point Yearly, 2008 

Spatial mapping Industrial water withdrawal 
China Economic Census 

Yearbook 
Province Yearly, 2008 

Industrial output value 

Monthly product output 

(283 products) 

China Industry Product 

Output Database 
Province 

Monthly, 

2006-2010 

Seasonal 

allocation 

Industrial water use 
China Water Resources 

Bulletin 
None Province 

Yearly, 

2003-2020 
Long-term data 

from 1965 to 

2020 
Industrial water use Zhou et al., 2020 Sectors (10) Prefecture 

Yearly, 

1965-2002 

2.1.5 Other industrial water withdrawal data for comparison 130 

We used two other gridded IWW datasets to compare with the CIWW dataset: the global gridded monthly sectoral water use 

dataset for 1971-2010 at 0.5˚ (Huang et al., 2018) (referred to as ‘Huang data’ hereafter) and water abstraction for industrial 

uses from 1901 to 2005 at 0.5˚ as the input data for ISIMIP2b (referred to as ‘model data’ hereafter). The IWW from Huang 

data consists of three sectors: mining, manufacturing, and cooling of thermal power plants, and the sum of the three sectors 

was treated as the total IWW. The IWW from model data is the multi-model mean (Water GAP, PCR-GLOBWB, and H08). 135 

The sum of sectoral IWW (if available) was treated as total IWW (Wada et al., 2016). Unit of IWW was converted from m3 to 

mm by dividing the grid cell area. Table B2 provides a summary of the data description used for comparison. 

2.2 Method 

The development of the CIWW dataset primarily consisted of three steps: 1) mapping the provincial IWW data to the grid 

scale, 2) allocating annual IWW data to the monthly scale, and 3) producing long time series of IWW (Fig. 1). 140 
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Figure 1: Workflow for developing the CIWW dataset. 

2.2.1 Mapping industrial water withdrawal 

The spatial mapping of IWW in China was achieved using the IOV of >400,000 enterprises in 2008 and the subsectoral water 145 

use efficiency at the provincial level from the Chinese Economic Census Yearbook in 2008. 
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The geographical location of industrial enterprises was obtained by converting their addresses to geographical coordinates by 

the BaiduV3 geocoding service with the geopy package in Python. The industrial water use efficiency (𝑊𝑈𝐸𝑝,𝑠𝑢𝑏𝑠) of the 

province p and subsectors subs was computed as the industrial output value (𝐼𝑂𝑉𝑝,𝑠𝑢𝑏𝑠) divided by industrial water withdrawal 

(𝐼𝑊𝑊𝑝,𝑠𝑢𝑏𝑠) (Eq. 1): 150 

𝑊𝑈𝐸𝑝,𝑠𝑢𝑏𝑠 =
𝐼𝑂𝑉𝑝,𝑠𝑢𝑏𝑠

𝐼𝑊𝑊𝑝,𝑠𝑢𝑏𝑠
(1)

By assuming a same industrial water use efficiency for all industrial enterprises in a province of a subsector, the industrial 

water withdrawal (𝐼𝑊𝑊𝑖,𝑠𝑢𝑏𝑠) of enterprise i belonging to the subsector subs was estimated by multiplying the corresponding 

water use efficiency of the subsector subs in province p (𝑊𝑈𝐸𝑝,𝑠𝑢𝑏𝑠) and the industrial output value of enterprise i (𝐼𝑂𝑉𝑖,𝑠𝑢𝑏𝑠), 

as shown in Eq. 2: 155 

𝐼𝑊𝑊𝑖,𝑠𝑢𝑏𝑠 = 𝑊𝑈𝐸𝑝,𝑠𝑢𝑏𝑠 × 𝐼𝑂𝑉𝑖,𝑠𝑢𝑏𝑠 (2) 

The IWW of enterprises of specific subsectors (𝐼𝑊𝑊𝑖,𝑠𝑢𝑏𝑠) could be summed up from the point level to the grid level at a 

given spatial resolution (𝐼𝑊𝑊𝑔𝑖𝑟𝑑,𝑠𝑢𝑏𝑠). The summation of the subsectors (∑ 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑠𝑢𝑏𝑠
36
𝑠𝑢𝑏𝑠=1 ) provided the spatial pattern 

of the total IWW in 2008. 

2.2.2 Allocating industrial water withdrawal to seasonal variations 160 

We assumed that monthly IWW was proportional to the industrial product output and that there was no seasonal variation in 

water use efficiency during the year. Therefore, seasonal variations in IWW could be approximated by the monthly industrial 

product output, which was calculated as the monthly fractions of the product output to annual total output. The seasonal pattern 

included signals of variations in climate and weather because the industrial product output for some sectors could be affected 

by seasonal climate conditions and extreme weather events (e.g., production shutdowns or restrictions due to heatwaves, 165 

thunderstorms, torrential rains). Since the climate change-induced seasonality changes were slow and gradual, their influences 

on monthly IWW were also low, and the long-term climate change impacts (e.g., warming) could be captured by the yearly 

statistical IWW data. 

Since the monthly industrial product output data included 283 different products of different subsectors and the number of 

products varied across subsectors, we initially calculated the monthly fraction of each product output of each province, 170 

averaged from 2006 to 2010, to reduce the influence of interannual variability. Because industrial water for producing different 

products is unknown, we simply used the arithmetic mean of the monthly fractions of the different products belonging to a 

subsector to represent aggregated monthly fractions for the subsector. In this way, we obtained the fractions of the product 

outputs for subsector subs in province p for month mon (Fraction𝑝,𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
 𝑜𝑢𝑡𝑝𝑢𝑡

). 

Although provincial differences exist in the seasonality of IWW, we found that Fraction𝑚𝑜𝑛,𝑝,𝑠𝑢𝑏𝑠
 𝑜𝑢𝑡𝑝𝑢𝑡

 in certain subsectors and 175 

provinces exhibited unreasonable seasonal variations that were difficult to explain (Fig. S3). Instead of directly using the 

provincial-specific seasonal variations in output, the seasonal variations in each industrial subsector (Fraction𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
 𝑤𝑎𝑡𝑒𝑟 ) were 
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represented by the weighted mean of monthly product fractions across all provinces (Fraction𝑚𝑜𝑛,𝑝,𝑠𝑢𝑏𝑠
 𝑜𝑢𝑡𝑝𝑢𝑡

) with weights of 

provincial subsector IWW (𝐼𝑊𝑊𝑝,𝑠𝑢𝑏𝑠) from the Chinese Economic Census Yearbook in 2008 (Eq. 3). The only exception is 

for Electricity and Heating Power Production and Supply (EPS) subsector because its seasonality is strongly linked to seasonal 180 

temperature variation of each province and thus may exhibit regional differences. To account for this issue, we used the K-

means method and classified the seasonality of EPS into three types, which broadly correspond to North China (type 1), South 

and Northwest China (type 2), and Xizang (type 3), respectively (Fig. S4). In particular, Shanghai was manually adjusted from 

the originally classified type 1 to type 2 because of its strong peak in JJA.  

Fraction𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
𝑤𝑎𝑡𝑒𝑟 =

∑ (𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑝,𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
𝑜𝑢𝑡𝑝𝑢𝑡

× 𝐼𝑊𝑊𝑝,𝑠𝑢𝑏𝑠)31
𝑝=1

∑ 𝐼𝑊𝑊𝑝,𝑠𝑢𝑏𝑠
31
𝑝=1

(3) 185 

Therefore, the monthly IWW of the different subsectors at the grid level (𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛,𝑠𝑢𝑏𝑠) could be obtained by allocating 

its annual IWW (𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑠𝑢𝑏𝑠 ) into 12 months based on the corresponding monthly fractions of the same subsector 

(Fraction𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
 𝑤𝑎𝑡𝑒𝑟 ) as Eq. 4. 

𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛,𝑠𝑢𝑏𝑠 = 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑠𝑢𝑏𝑠 × Fraction𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
𝑤𝑎𝑡𝑒𝑟  (4) 

The monthly IWW at the grid level (𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛) after summing subsectors (∑ 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛,𝑠𝑢𝑏𝑠
36
𝑠𝑢𝑏𝑠=1 ) provided the spatial 190 

and seasonal pattern of the total IWW of China in 2008. 

2.2.3 Developing China's industrial water withdrawal data from 1965 to 2020 

We developed long-term IWW data in China from 1965 to 2020 by mapping provincial IWW statistics based on the spatial-

seasonal pattern derived from IWW in 2008. Due to the different statistical calibres of the data sources, the raw IWW from the 

2008 Chinese Economic Census Yearbook was not directly used in the long-term IWW data. Instead, its spatial-seasonal 195 

distribution was used to map the provincial industrial water withdrawal (𝐼𝑊𝑊𝑝) from the China Water Resources Bulletin 

between 2003 and 2020 and the Zhou2020 data between 1965 and 2002. These two IWW records were combined to develop 

the long-term data. The provincial industrial water withdrawal (𝐼𝑊𝑊𝑝) of each year was allocated to the grid level following 

Eq. 5 to obtain the gridded IWW data from 1965 to 2020 (𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
 𝑎𝑑𝑗𝑢𝑠𝑡

): 

𝐼𝑊𝑊 𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
𝑎𝑑𝑗𝑢𝑠𝑡

= 𝐼𝑊𝑊𝑝 ×
𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛

𝑟𝑎𝑤

∑ ∑ 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
𝑟𝑎𝑤12

𝑚𝑜𝑛=1𝑝

(5) 200 

where 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
𝑎𝑑𝑗𝑢𝑠𝑡

 was the adjusted IWW (to match 𝐼𝑊𝑊𝑝) of month mon at the grid level, 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
𝑟𝑎𝑤  was the monthly 

IWW at the grid level in 2008, and ∑ ∑ 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
𝑟𝑎𝑤12

𝑚𝑜𝑛=1𝑝  summed the monthly gridded 𝐼𝑊𝑊𝑔𝑟𝑖𝑑,𝑚𝑜𝑛
𝑟𝑎𝑤  to the annual total 

IWW of all grids in province p, representing the fraction of grid to provincial total IWW. 

Table 2 provides an overview of the CIWW dataset, including the gridded monthly IWW data in China from January 1965 to 

December 2020 with spatial resolutions of 0.1° and 0.25° and auxiliary data supporting the development. 205 
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Table 2 Overview of the China Industrial Water Withdrawal (CIWW) Dataset (available at 

https://doi.org/10.6084/m9.figshare.21901074) 

Data Variable 
Spatial 

resolution 
Temporal coverage Industrial sectors 

 Main data Industrial water withdrawal (adjusted) 0.1°/0.25° Monthly, 1965-2020 NA 

Auxiliary 

data 

Industrial water withdrawal (raw) 0.1°/0.25° Monthly, 2008 36 subsectors 

Industrial output value 0.1°/0.25° Yearly, 2008 36 subsectors 

Number of industrial enterprises 0.1°/0.25° Yearly, 2008 36 subsectors 

2.3 Data validation and comparison with other datasets 

 

Figure 2: Validation of the CIWW data against the statistical data for spatial distribution and seasonal variation. (a) Relationship 210 
between the mean IWW of 1971-2005 from Zhou2020 data (Zhou et al., 2020) and CIWW, Huang data (Huang et al., 2018), and the 

model data (ISIMIP2b Input Data) for 341 prefectures in China. The black dotted line indicates the 1:1 line, and the coloured dashed 

lines indicate the fitted lines. For this comparison, CIWW is processed to the same spatial resolution of Huang data and model data 

at 0.5° before aggregating to the prefecture level. Comparison results with CIWW at other resolutions (0.25° and 0.1°) are reported 

in R and RMSE. (b) Comparison of the 5-year mean (2006-2010) monthly variation in IWW from the surveyed data (red, (Long et 215 
al., 2020)), CIWW (blue), and Huang data (orange) in Beijing. The solid grey line shows IWW for individual years from 2006 to 

2010. The inset shows the annual mean total IWW from 2006 to 2010.  

To validate the CIWW dataset, we compared the spatial and seasonal patterns with statistical data records and other datasets. 

For spatial validation, the 35-year mean IWW (1971-2005) from CIWW, global gridded data (Huang et al., 2018), and model 

https://doi.org/10.6084/m9.figshare.21901074
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data (ISIMIP2b Input Data) were compared with the Zhou2020 data (treated as “truth”) (Zhou et al., 2020) for 341 prefectures 220 

in China. Although we used the provincial-level Zhou2020 data in the spatial mapping, the prefectural-level data were unused 

in developing CIWW but left intentionally only for validation purposes. The provincial- and prefectural-level IWW are not 

completely independent (each province consists of many prefectures), however, the intra-provincial variations reflected in 

prefectural IWW are not captured by the provincial IWW. In the absence of additional validation data, the prefectural IWW 

can support the validation and determine how the effectiveness of spatial patterns after downscaling. All gridded data were 225 

averaged over each prefecture using the Zonal Statistics function of rasterstats package (with “all-touched” option) in Python 

and then multiplied by the prefecture area to obtain IWW for each prefecture (in units of km3). The results in Fig. 2a indicated 

a superior performance of CIWW data in representing the spatial variations in IWW compared against Huang data and model 

data due to its much higher correlation (0.75, 0.43, and 0.54) and lower root mean square error (RMSE) (0.28 vs. 0.38 vs. 0.38 

km³). Additionally, when comparing CIWW at higher resolutions (0.25° and 0.1°), the consistency with the Zhou2020 data 230 

improved further with similar or higher correlation (0.74 and 0.79, respectively) than the 0.5° data. This result demonstrated 

the benefit of increased spatial resolution in characterizing the IWW at smaller scales. 

For seasonal validation, owing to the data limitation, we only had monthly surveyed statistical IWW data in Beijing from 2006 

to 2010 (Long et al., 2020). The results showed that both the CIWW and Huang data could capture the 5-year mean seasonality 

of IWW in Beijing (Fig. 2b). However, the magnitude of IWW was significantly overestimated by the Huang data (56 mm per 235 

year) relative to the surveyed statistical data (33 mm per year). In comparison, the magnitude of IWW in the CIWW data (34 

mm per year) was more in line with the surveyed statistical data (Fig. 2b). The slight deviation of CIWW from statistical data 

in certain months (e.g., December) reflects the imperfect capability of applying national seasonality to characterize local 

variations in Beijing. These validations demonstrated better performances of CIWW data with much higher accuracy and 

improved representations of the spatial and seasonal variations; thus, CIWW could be a preferable data source for IWW-related 240 

applications in China. 
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3 Results 

3.1 Spatial distribution of industrial water withdrawal in China 

 

Figure 3: Total IWW (raw) in China at 0.25˚ in 2008 (a) and for different industrial sectors, including electricity and gas production 245 
and supply (EGPS, b), manufacturing (c), and mining (d). The box plot in the bottom left corner shows the interquartile range (25% 

and 75%) of nonzero water withdrawal, with the red and yellow lines denoting the median and mean values, respectively. The 

numbers displayed as percentages denote the percentage of the sectoral IWW to the total IWW. 

There was substantial spatial variation in the total IWW according to the 2008 data (Fig. 3a). The eastern coastal area of China 

had generally higher IWW, followed by southeastern and central China, and the lowest IWW occurred in western China. The 250 

largest water withdrawal was found in the urban agglomeration of the Yangtze River Delta and Pearl River Delta. The spatial 

distribution of IWW over the country indicated that industry enterprises were primarily concentrated in urban areas with more 

intensified economic activities. 

The water withdrawal by the main industrial sectors showed distinctive spatial patterns. Water withdrawal from EGPS showed 

a dispersive pattern that was mainly concentrated in southeastern coastal areas, especially in the Yangtze River Delta region 255 

(Fig. 3b). Water withdrawal from manufacturing broadly reflected the total IWW and population distribution of China, because 

of the close linkage between manufacturing and population (Fig. 3c and Fig. S5). The water withdrawal of mining was confined 
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to regions with rich mineral resources, such as central, northern, and southwestern China (Fig. 3d). Overall, the industrial 

sector with the largest IWW was EGPS (57.85%), followed by manufacturing (37.11%) and mining (5.03%). The dominance 

of the EGPS sector in total IWW reflected the large water requirement for thermoelectric power generation (Gu et al., 2016; 260 

Niva et al., 2020). 

3.2 Seasonal variations in industrial water withdrawal in China 

 



13 

 

Figure 4: Seasonal variations in the national total IWW (a) and for separate industrial sectors, including the electricity and gas 

production and supply (EGPS) (b), manufacturing (c), and mining sectors (d). The seasonal variations are represented as the fraction 265 
of the monthly IWW to the annual total during 2006-2010. The thick lines represent the water withdrawal of the main industrial 

sectors, and the thin lines represent the subsectors. The shadows represent the seasons with peak and low water withdrawal of a 

year. 

The seasonal variations in IWW during 2006-2010, represented by the fraction of monthly water withdrawal to annual total, 

are shown in Fig. 4. The results indicated that the IWW peaked in summer (June to August, 28%), followed by autumn 270 

(September to November, 25%), spring (March to May, 24%) and winter (December to February, 23%) (Fig. 4). February was 

the month with the lowest IWW, possibly due to its fewer days and the coincidence with the Chinese Spring Festival holiday 

(Liu et al., 2006). The highest IWW occurred in June, potentially due to the largest industrial output and high demand for 

cooling. This IWW peak did not extend to other summer months because extreme weather events, such as heatwaves and 

heavy rain, occurred more frequently in July and August, which could result in production shutdowns and reduced water 275 

consumption (Liu et al., 2006). 

Seasonal patterns of IWW for the manufacturing and mining sectors were generally similar, but the subsectors of 

manufacturing showed more diverse patterns. The IWW for the EGPS had quite different seasonality, as there were two peaks, 

one in June to August and the other in December (Fig. 4b); these peaks were likely caused by the seasonal changes in cooling 

water withdrawal for thermal electricity generation due to seasonal temperature variation. The summer peak of EGPS was 280 

related to the high energy demand for air conditioning cooling (Huang et al., 2018), and the winter peak was related to the high 

energy demand for heating (Byers et al., 2014; Liu et al., 2015; Huang et al., 2018). 

3.3 Long-term changes in industrial water withdrawal in China from 1965 to 2020 

 

Figure 5: Monthly industrial water withdrawal in China from 1965 to 2020 in the CIWW dataset. The red line represents the moving 285 
average of the monthly IWW of a 12-month moving window. 
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For interannual variations, IWW in China increased significantly from 2.1 billion to 14 billion m3/month during 1965–2010, 

and it then decreased to 10 billion m3/month (Fig. 5). These long-term changes indicated that IWW in China has now entered 

a slowly declining phase. The decline of national IWW after 2010 is mainly due to the implementation of a series of water-

saving management measures (The State Council of the People’s Republic of China, 2011) such as establishing “three red 290 

lines” to cap the total water withdrawal, enhance water use efficiency, and increase industrial water recycling rate (Chen and 

Chen, 2021; Zhang et al., 2023). In addition, the comparison of long-term annual national IWW of three datasets (CIWW, 

Huang and model data) showed that the other two datasets significantly underestimated China's total IWW and presented 

different temporal patterns, as they did not consider the effects of water use policies (Fig. S6). 

4 Discussion 295 

Our study developed new gridded data for IWW in China from 1965 to 2020. The CIWW dataset improves upon previous 

data, particularly in the characterization of spatial and seasonal patterns. Instead of using indirect proxies, such as population 

density to map IWW, we used data on industrial enterprises that were direct water withdrawers. Compared with existing IWW 

datasets that either lack or have limited representation of seasonal changes (Wada et al., 2011b; Huang et al., 2018; Brunner 

et al., 2019), our dataset contained seasonal variations based on information from direct water consumers of the sectorial 300 

industrial production processes. Furthermore, we used localized data sources in China to produce the long-term IWW data, 

significantly improving regional accuracy and consistency with the statistical data records. The usage of public data sources 

and transparent methodology make it possible to update and recalibrate the data further for specific user needs. 
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4.1 Potential applications of industrial water withdrawal data: high-resolution analysis and data scaling 

 305 

Figure 6: Zoomed view of IWW in the densely urbanized regions in China at a spatial resolution of 0.01° (a, b, c) and 0.02° (d, e, f) 

for clarity, including the Beijing-Tianjin-Hebei region (a, d), Yangtze River Delta (b, e), and Pearl River Delta (c, f). Panels (a)–(c) 

show the spatial pattern of IWW for manufacturing, and Panels (d)–(f) show the spatial pattern of IWW for electricity and gas 

production and supply. The numbers displayed as percentages denote the percentage of the sectoral IWW to total IWW. 

The IWW data product with high resolution supports various research applications. The high spatial resolution revealed IWW 310 

at fine scales. Figure 6 shows IWW hotspots in some of China's most densely urbanized regions in 2008 at 0.01° (this resolution 

was not included in the CIWW dataset but could be produced by the data and code we provided), including the Beijing-Tianjin-

Hebei, the Yangtze River Delta, and the Pearl River Delta. These maps displayed high heterogeneity of IWW at the local 

scales. 
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 315 

Figure 7: CIWW data showing the downscaling of IWW from provincial to county levels in China (a) and from provincial to water 

basin levels in the Yellow River Basin (b). 

Additionally, CIWW data could facilitate downscaling of statistical data between different administrative (e.g., provincial or 

prefecture level), natural (e.g., watershed), and grid levels and help reconcile the scale mismatch between data with different 

spatial units (e.g., administrative and watershed/catchment). For example, with the gridded CIWW data, the statistical 320 

provincial IWW data could be downscaled to the prefecture level or even the county level (Fig. 7a). Moreover, the provincial 

IWW could be rescaled to the watershed level using weights from the gridded IWW. Figure 7b shows the rescaling of the 

IWW from provincial levels to watersheds in the Yellow River basin. 

4.2 Uncertainties in the spatial downscaling methods 

The spatial pattern of IWW in the CIWW dataset was primarily derived based on >400,000 industrial enterprises in 2008. The 325 

spatial sampling of industrial enterprises could affect the spatial mapping. Although this was a large number of records, the 

enterprise dataset could not cover all enterprises in China since it only sampled enterprises above a designated production level. 

Therefore, other enterprises below this level, including their IWW, would be omitted from the datasets, leading to spatial 

undersampling of all industrial enterprises and their IWW in China. According to the 2008 Chinese Economic Census 

Yearbook, the enterprises above a designated level accounted for 93% of the IOV and 85% of the water withdrawal of all 330 

industries. This data indicated that spatial sampling could have a limited influence on the overall spatial pattern. Additionally, 

this issue could be mitigated when the point-level enterprise estimates were aggregated to the grid level.  

Another source of uncertainty came from water use efficiency (WUE). Ideally, the enterprise-level IWW could be estimated 

using each enterprise's IOV and WUE. However, the enterprise-specific WUE was unavailable; thus, we used the provincial 

subsectorial WUE, assuming the enterprises of the same subsector in the province had similar WUEs. This assumption 335 

disregarded the WUE variations since the WUE of different enterprises could vary substantially depending on subsector, 
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technological levels, investment, scale effects and so on. For this matter, the spatial distribution of IWW could be further 

improved with better data sources available at finer scales in the future. 

4.3 Uncertainties in seasonal allocation methods 

When allocating the annual IWW to monthly scales, we used monthly variations in industrial product output data to represent 340 

the seasonal variation in IWW. Notably, there were differences in monthly variations across different products and provinces. 

When aggregating the monthly variations of 283 products to subsectors, each product was assigned an equal weight due to the 

lack of product-specific WUE, which neglected the structural differences within the subsector because the products consuming 

more water could have a more important role. When aggregating IWW from subsector to sector, the structural differences 

within a sector were considered with the weights of subsector WUE. 345 

We observed considerable differences in monthly variations in product output across provinces for different industrial sectors 

(Fig. S7). However, the seasonal fluctuations shown in sectors, such as manufacturing and mining, exhibited patterns that were 

chaotic and unreasonable at the provincial level (Fig. S7). It was difficult to determine whether these different seasonal 

fluctuations originated from statistical/random errors, unweighted product outputs to the subsector, interannual variability, or 

actual regional differences. Therefore, we selected to use the national mean monthly variations to represent each subsector to 350 

improve the robustness. These monthly subsector variations were then combined with the subsectoral water withdrawal to 

derive the seasonal variations in IWW (Eq. 4). This choice was expected to have a limited impact on the seasonality of total 

IWW because it was primarily determined by the sector composition of a province (Reynaud, 2003; Sathre et al., 2022). In 

future research, the regional differences in seasonal variations in IWW should be further explored. 

4.4 Uncertainties in producing long-term gridded data 355 

A key step in developing the long-term gridded IWW data was to apply the spatial-seasonal pattern of IWW derived in 2008 

for downscaling. The year 2008 was chosen to match the 2008 Chinese Economic Census Yearbook data, which include 

detailed IWW information that are only available in 2008. Thus, even though the total IWW increased over time with economic 

development, their spatial pattern and seasonality remained the same in CIWW. We acknowledge that the time-invariant 

spatial-seasonal pattern of IWW from a single year in 2008 was a strong assumption and probably not true in reality. 360 

Nevertheless, this practice was acceptable in the literature under the data limit. For example, the spatial patterns from a single-

year (e.g., the urban population distribution in 2009 used in WaterGAP3 (Flörke et al., 2013) and Global IWW map in 2000 

used in PCR-GLOBAL (Wada et al., 2011a, b)) or patterns with multi-year updates (e.g., H08 (Hanasaki et al., 2008b) and 

Huang et al., 2018) were used when developing the gridded IWW data with long time spans. Other time-varying data sources, 

such as nightlight, land cover, and population density maps with frequent temporal updates, could potentially facilitate the 365 

characterization of the temporal changes in the spatial pattern of IWW. 

The long-term changes in the industrial WUE can affect IWW, since WUE generally improves over time with the development 

of technology. This improvement would occur for all enterprises (Chen et al., 2019; Yang et al., 2021) and thus may not 

necessarily change the broad spatial pattern of IWW; since this pattern is determined by the spatial distribution of industry and 

economic activities. The influence of other long-term factors such as climate change and WUE changes related to industry 370 
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development could be partially captured by the provincial statistical data which incorporate the changing spatial pattern of 

total IWW at the provincial level (Fig. S7). 

Notably, the number of enterprises would also change over time and is likely to influence the spatial pattern of IWW. By 

comparing the spatial pattern of the IOV between 2008 and 2013 using the gridded enterprise data, the two years showed high 

consistency, with correlation values of 0.9 at 0.1° and 0.94 at 0.25° (Fig. S8). Since the 2013 data had 16% fewer enterprise 375 

samples (<340,000) than 2008 (>400,000), the different sample sizes meant fewer enterprises would appear in 2013 compared 

to 2008. Nonetheless, the number of grids with the presence of valid enterprises in 2013 was just 12% fewer than that in 2008 

at 0.1° and 7% at 0.25°, much smaller than the expected 16% decline in spatial coverage. This result indicated that the spatial 

pattern of the gridded data was less sensitive to the number of enterprises, especially at coarse spatial resolutions. 

These analyses support that although specific industrial enterprises, their WUE, and water withdrawal substantially changed 380 

over time, the broad spatial pattern after aggregating to the grid scale still largely holds because the spatial pattern of IWW is 

determined by the distribution of the population and economy of the country, which remain relatively stable over the years 

(Fig. S5). Nevertheless, temporal changes in the driving factors of IWW and their regional differences, such as industrial 

structure, water use efficiency, and climate (Alcamo et al., 2003; Otaki et al., 2008; Flörke et al., 2013; Zhou et al., 2020), 

should be considered to achieve higher accuracy. Due to this limitation, the CIWW dataset would have better performance for 385 

the last 20 years but may contain larger uncertainties towards earlier periods. Users can select the time period of the dataset 

according to their specific needs and interpret earlier years data with caution. Our evaluation indicated that the CIWW data in 

earlier years had surprisingly good performance with a much higher correlation (0.83 vs. 0.35~0.36 in 1971; as illustrated in 

Fig. S9) and smaller RRMSE (Relative Root Mean Squared Error, RMSE/mean, 1.97 vs. 2.78~ 2.85 in 1971) than other gridded 

datasets when compared against Zhou2020 data at prefectural level (note the prefecture-level IWW from Zhou2020 data was 390 

not used in developing CIWW). 

5 Conclusions 

To address the data gap in industrial water withdrawal in China, one of the top water consumers in the world, we developed a 

new gridded dataset, namely, the China Industrial Water Withdrawal Dataset. This dataset provided monthly IWW from 1965 

to 2020 with spatial resolutions of 0.1° and 0.25°. With the best available data sources, this dataset showed significant 395 

improvements compared to previous global datasets in characterizing the spatial pattern, seasonal variation, and long-term 

changes in IWW in China and had much higher accuracy. The transparent methodology and public availability of the source 

data enabled further adjustments and calibration to support the various applications by users. They also served as a reference 

to develop localized datasets for other countries. This dataset could help to understand human water use dynamics and support 

studies in hydrology, geography, environment, sustainability sciences, and regional water resource management and allocation 400 

in China. 
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6 Data availability 

The China Industrial Water Withdrawal Dataset is available at https://doi.org/10.6084/m9.figshare.21901074 (Hou and Li, 

2023). The Chinese Industrial Enterprises Database is available from the library resources of Peking University 

(https://www.lib.pku.edu.cn/portal/cn/news/0000001637). The Chinese Economic Census Yearbook in 2008 is freely available 405 

to the public at https://www.stats.gov.cn/sj/pcsj/jjpc/2jp/left.htm. The China Industry Product Output Database can be 

downloaded from the EPS data (https://www.epsnet.com.cn/). The provincial industrial water withdrawal data from 2003 to 

2020 are from the China Water Resources Bulletin (http://www.mwr.gov.cn/sj/tjgb/szygb/), and the data from 1965 to 2002 

were obtained from Zhou et al., 2020 (https://www.pnas.org/doi/10.1073/pnas.1909902117). 

Code availability 410 

The Python codes used in this study are available at GitHub (https://github.com/cch-yhm/CIWW_dataset) 
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Appendix A 565 

Table A1 Classification of sectors in data 

No. Subsector Sector Notes 

6 Coal Mining and Dressing Mining industry  

7 Petroleum and Naturel Gas Extraction  

8 Ferrous Metals Mining and Dressing  

9 Non-Ferrous Metals Mining and Dressing No industrial 

enterprise data 

10 Nonmetal Minerals Mining and Dressing  

11 Other Mining No monthly product 

output data, filled by 

average of mining 

sector 

13 Food Processing Manufacture 

industry 

 

14 Food Manufacture  

15 Beverage Processing  

16 Tobacco Processing  

17 Textile Industry  

18 Apparel, Footwear & Caps Manufacture  

19 Leather, Furs, Down, and Related Products  

20 Processing of Timber, Manufacturing of Wood, 

Bamboo, Rattan, Palm & Straw Products 

 

21 Furniture Manufacturing  

22 Paper & Paper Products  

23 Printing, Reproduction of Recording Media  

24 Cultural, Educational, and Sports Articles  

25 Petroleum Processing and Coking  

26 Raw Chemical Materials  

27 Medicines Manufacturing  

28 Chemical Fibres Manufacturing  

29 Rubber Manufacturing  
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30 Plastics Manufacturing  

31 Nonmetal Mineral Products  

32 Smelting and Pressing of Ferrous Metal  

33 Smelting and Pressing of Non-Ferrous Metal No industrial 

enterprise data 

34 Metal Products  

35 General Machinery  

36 Special Machinery  

37 Transportation Equipment  

39 Electric Equipment and Machinery  

40 Electronic and Telecommunications Equipment  

41 Instruments, Metres, Cultural and Office Machinery  

42 Artwork and Other Manufacturing Products  

43 Waste Resources and Material Recycling and 

Processing 

No monthly product 

output data, filled by 

average of 

manufacturing sector 

44 Electricity and Heating Power Production and 

Supply 

Electricity and 

Gas Production 

and Supply 

 

45 Gas Production and Supply  

46 Water Production and Supply 

Unused, not for 

industrial purpose 
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Appendix B 

Table B2 A summary description of other IWW data for comparison. 570 

Data variable Data source Industrial sector Time span Spatial resolution 

Industrial water 

withdrawal 

Global gridded monthly 

sectoral water use dataset 
Sectors (3) 

Monthly, 

1971-2010 
0.5˚ 

Water abstraction 

for industrial uses  

Input Data used in 

ISIMIP2b 
None Yearly, 1901-2005 0.5˚ 

Introduction of IWW between different models in model data 

IWW in model  Industrial sector Definition of IWW 

Water GAP Sectors (2, except mining) 
Total IWW is the sum of manufacturing and energy production 

water withdrawal 

H08 None Total IWW includes manufacturing use and energy production. 

PCR-GLOBWB None Total IWW no details available 

 


