
Response to Comments of Referee #1: 

This manuscript developed a gridded dataset of monthly industrial water withdrawal 

(IWW) for China, spanning a 56-year period from 1965 to 2020 at a spatial resolution of 

0.1° and 0.25°. While the dataset covers a wide range of time, the spatial precision appears 

to be high. However, I have some concerns regarding the spatialization method used in 

the study. I think the method has too many uncertainties and strong assumptions, and the 

use of some definitions of industrial water is unclear. Therefore, I suggest that you make 

the following modifications to your manuscript to address these concerns:  

Response: Thank you for taking your time to review our study and provide feedback and 

comments. We appreciate your concerns regarding the spatialization method for industrial 

water withdrawal. Although far from perfect, we feel that using industrial enterprise data for 

spatialization has clear advantages compared to other spatial proxies such as population or 

nightlights, as the former is directly connected to industrial production processes in which water 

is withdrawn and consumed. In the revision, we performed more validations for the data and 

revised texts to clarify and discuss the assumptions and uncertainty in the methodology and 

data. 

 

1. The authors need to make the abstract more concise and focused. Instead of 

mentioning hydrology and geographical sustainability in a broad sense, the relevance 

of the dataset to specific research areas or applications should be emphasized. 

Response: Thank you for the comments.  

We modified this part to be more specific, and the revised texts are shown below:  

“The CIWW dataset, together with its methodology and auxiliary data, is useful for water 

resource management and hydrological models.”   

 

2. Line35-45. The author lists the spatialization methods of sectoral IWW, but does not 

demonstrate the shortcomings of the current methods. The low accuracy of dataset is 

mentioned, but how the author judges the low accuracy of these datasets is not clear.  

Response: Thank you for the comments.  

The shortcomings in current methods are the spatial proxies and the global statistical data used 

for downscaling, resulting in lower accuracy for regional applications. Firstly, the spatialization 

of IWW in manufacturing and mining relies on spatial proxies such as population density, urban 

or industrial area (e.g., Water GAP model 2.2 (Wada et al., 2016); Huang et al., 2018) (Table 

R1). These are only indirect factors related to IWW but not the factor that is directly relevant 

to industrial production processes that consume water (i.e., enterprise-level production). 

Moreover, they cannot separate different industrial sectors whose water use efficiency could be 

substantially different. Secondly, almost all existing IWW datasets are global datasets, which 

means they used national-level IWW statistical data downscaled to derive gridded data (Hejazi 

et al., 2014; Water GAP model2.2 (Wada et al., 2016); Huang et al., 2018)(Table R1), without 



incorporating information at sub-regional levels (e.g., provincial statistics). Therefore, global 

datasets are sufficient in revealing the global general pattern but may have poor performance 

for specific regions like China which keeps it from being used for localized studies (Liu et al., 

2019). Besides, some IWW datasets are only estimated by water intake from electricity, 

omitting manufacturing and mining water withdrawal (e.g., H08 model (Wada et al., 2016)).  

In the revision, we added more explanation for method introduction. 

 

Table R1 Method and data sources ofIWW spatial mapping in previous studies 

Sector Method for Spatialization Data sources References 

Total IWW 

Downscaled only by demographic data 

National data from 

World Resources 

Institute (country level) 

WWDR-Ⅱ Annual Industrial water 

withdrawal  

Downscaled by demographic data, socio-

economic, and geographical data FAO AQUASTAT 

database (country level) 

Hanasaki et al., 2008a 

Downscaled by urban area data Otaki et al., 2008 

Total IWW only 

containing 

Electricity 

Electricity production * Unit Water Demand  

Then downscaled by demographic data Statistical data on 

Electricity production 

(country level) 

H08 model (Wada et al., 2016) 

Electricity production * Unit Water Demand  

Then downscaled by demographic data, 

socio-economic, and geographical data 

Water GAP model 2.0 (Alcamo et 

al., 2007) 

Electricity 

Thermal electricity production * Unit Water 

Demand (point level) 

Then summed up to grid 

Statistical data on 

Electricity production 

(Point level) 

KASIM model (Koch and Vögele, 

2009) 

Water GAP model 2.2 (Wada et al., 

2016) 

Huang et al., 2018 

Manufacturing 

and mining 

Downscaled only by demographic data 

Statistical data (country 

level)  

Water GAP model 2.2 (Wada et al., 

2016) 

Huang et al., 2018 

Total industrial water withdrawal - water 

withdrawal by electricity, omitting the 

mining water withdrawal  

FAO AQUASTAT 

database (country level) 
Hejazi et al., 2014 

 

3. line65-70. The rationale for the need for long-term and high-resolution IWW data in 

China requires further clarification. The reasons mentioned in the manuscript, such 

as water conflicts caused by increased water demand and water resource management 

are too broad and do not provide a specific explanation for the need of such data. 

Response: Thank you for the comments.  

Industrial water withdrawal in China has been increasing, accounting for 20% of human water 

withdrawal, and shows substantial spatial variations. The gridded data of IWW are needed to 



characterize such changes for research and application purposes. However, the currently 

available gridded datasets of IWW in China are those from global data which typically have 

poor performance at fine scales due to their methodology and data sources. This is our 

motivation to specifically develop a gridded long-term IWW dataset in China with significant 

improvements in methodology and data sources compared to existing data to address the data 

gap.  

With the gridded long-term IWW dataset in China, users can not only explore long-term 

changes of IWW, the tendency and effects of human water demand-supply in industrial 

activities at the local scale, and then provide recommendations on regional adjustment of 

industrial structure and water resources management; but also can be used as the reference and 

validation data applied to the model, with process-based models to gain an in-depth 

understanding of hydrological processes (Addor et al., 2020). 

In the revision, we added a more detailed description on the reasons for the need for long-term 

and high-resolution IWW data in China. 

 

4. Why should this sentence be placed here alone? 

Response: Thank you for pointing out this issue.  

We want to emphasize that the data variable in this dataset is industrial water withdrawal rather 

than industrial water consumption. We have moved the sentence to the beginning of the 

introduction: 

“Industrial water withdrawal (IWW, the amount of water abstracted from freshwater sources 

for industrial rather than water consumption) accounted for approximately 19% of human water 

withdrawal globally, which is the second largest sector of human water use following irrigation.” 

 

5. In this manuscript, industrial water withdrawal and industrial water use are 

considered to have the same meaning. Nevertheless, the two definitions are different, 

and industrial water use also includes industrial reuse water consumption. 

Response: Thank you for the comments.  

We apologize for the confusion regarding the definitions. The statistical IWW data from 2003 

to 2020 were from the China National Water Resources Bulletin. The issue is that in China 

National Water Resources Bulletin (in Chinese), water withdrawal is called "water use" (in 

Chinese). However, according to its definition, it is defined as the annual amount of water 

withdrawal for industrial production activities, including primary production, auxiliary 

production, and ancillary production, excluding recycled water. Thus, the literal "water use" 

actually means "water withdrawal". We use the term "water withdrawal" when describing the 

data sources to avoid this confusion.  

To avoid confusion between the concepts of water withdrawal and water use, we replace water 

use with water withdrawal in Section 2.1.4 and add the definition as follows: 

"Long-time statistical IWW data were required to produce IWW data for the past four decades. 



Provincial surveyed data on IWW in China from the National Water Resources Bulletin 

(http://www.mwr.gov.cn/sj/tjgb/szygb/, last access: 3 May 2022) from 2003 to 2020 were used. 

To further extend the time series to the earlier period, the IWW by (Zhou et al., 2020) (referred 

to as ’Zhou2020 data’ hereafter) from 1965 to 2002 was used by summing up the prefecture 

data to the provincial level. The definition in the National Water Resources Bulletin is the 

annual amount of water withdrawal for industrial production activities, including primary 

production, auxiliary production, and ancillary production, excluding recycled water, which is 

consistent with Zhou2020 data (Zhou et al., 2020) and IWW in our study. Thus, we used them 

to obtain complete statistical records of IWW from 1965 to 2020 in China." 

 

6. I think the spatialization method used has a lot of uncertainties. The authors assume 

the industrial water use efficiency was the same for all industrial enterprises in the 

same province and the same subsector. A province contains large, medium and small 

enterprises, and their water use coefficients must be different.  

Response: Thank you for the comments and we totally agree. In reality, the water use efficiency 

of a given enterprise could be different from other enterprises even for the same subsector, due 

to investment, technology, revenue, scale, and so on. It is reasonable to expect that enterprises 

of different sizes tend to have different water use efficiencies, and it is possible that larger 

companies may have higher water use efficiency than smaller ones. However, the problem is 

that currently we do not have data to provide specific information about the enterprise sizes and 

their water use efficiencies. If we arbitrarily introduce this scaling relationship without actual 

data, this would bring new uncertainty to spatial distribution. In the future, when such data 

becomes available, incorporating this information could better estimate enterprise-level IWW. 

We added a discussion on this matter in the revision. 

 

Also, the distribution coefficient of monthly water shortage regards the whole country as 

a whole, without considering the differences among provinces.  

Response： Yes, there are indeed regional differences in the seasonality of IWW. Figure R1 

shows the monthly variations of production output across provinces for different industrial 

sectors, and we can see most of them follow some differences in different provinces (e.g., for 

electricity and manufacturing sectors). However, at the provincial level, the seasonal 

fluctuations may exhibit unreasonable or chaotic patterns that are hard to explain, such as 

manufacturing and mining sectors of Hainan, Guangxi province. For example, Tibet's fraction 

of manufacturing production in January and February was too low, under 0.025. The exact 

reasons are unclear, but they could be caused by statistical/random errors in the data. Therefore, 

we used each subsector's national mean monthly variations to allocate IWW instead of using 

provincial-level seasonal variations which are problematic in certain places. This choice would 

not affect much the seasonality of the final IWW because the seasonality of different sectors 

plays a dominant role in determining the seasonality of IWW for a province (Reynaud, 2003; 

Sathre et al., 2022). In the revised manuscript, we added Figure R1 as Figure 3C and a more 

http://www.mwr.gov.cn/sj/tjgb/szygb/#tdsub


detailed discussion on seasonal variations among provinces. 

 
Figure R1. The seasonal variations of the national total IWW (a) and provincial IWW for 

separate industrial sectors, including electricity and gas production and supply (EGPS) (b), 

manufacturing (c), and mining sectors (d). The seasonal variations were the fraction of monthly 

IWW to the annual total during 2006-2010. The thick lines stand for water withdrawal of sectors, 

and the thin color lines stand for provinces. Shadows represent the seasons with peak and low 

water withdrawal of a year.  

 

Moreover, the manuscript used the water use efficiency of enterprises in 2008 for the 

spatialization of IWW from 1965 to 2020. Can the coefficient of 2008 represent the period 

from 1965 to 2020? 

We used water use efficiency and the resulting spatial-seasonal patterns of IWW in 2008 to 

downscale IWW in other years from 1965 to 2020, serving as a time-invariant pattern for 

downscaling. First, we made this choice mainly because of the data constraint since no data 

were available to calculate subsector water use efficiency for years other than 2008. This 



practice is not ideal but is justifiable given the data limit and the practices adopted in other 

studies. Developing long-time series gridded data of IWW based on either a time-invariant 

pattern (e.g., H08, WaterGAP3, and PCR-GLOBAL) or patterns with decadal updates (e.g., 

Huang et al., 2018; Dong et al., 2022) for downscaling can be found in previous studies (Table 

R2). Second, industrial water use efficiency generally improved over time with the 

development of technology. This means that the temporal improvement in water use efficiency 

is likely to apply for all enterprises (Chen et al., 2019), while the spatial differences in water 

use efficiency of a given year are still determined by the spatial distribution of economic 

conditions which remain relatively stable over the years. The changes in total IWW from 

statistical IWW data could reflect the influence of long-term factors. For the above reasons, we 

chose the approach to develop the long-term gridded IWW data.  

The dataset developed based on the time-invariant pattern 2008 should be reasonably well for 

the recent ~20 years but may contain larger biases for earlier years. We added this vital point to 

the manuscript to make the users aware of this issue so that they can choose the period of the 

data for their specific needs and accuracy considerations. In the revised manuscript, we added 

a more detailed discussion on using a time-invariant spatial pattern for long years IWW 

downscaling.  

Table R2 Spatial pattern used for long-term data extension in previous studies 

Spatial pattern Long-term data Used for Reference 

NASA Back Marble night-time light 

intensity map in 2012-2016 

1980-2016 Model (VIC-5) Droppers et al., 

2020 

Distribution of urban population in 2009 1950-2010 Model (WaterGAP3) Flörke et al., 2013 

Global population distribution map and 

national boundary information in 2005 

1970-2010 Model (H08) Hanasaki et al., 

2008 

Global IWW map in 2000 1960-2001 Model (PCR‐GLOBWB) Wada et al., 2011a, b 

Linear Interpolation based on GDP 

dataset in 1990, 2000 and 2010, same as 

1990 before 1990 

1971-2010 Model (CLHMS, the Coupled 

Land Surface-Hydrologic   

Model System) 

Dong et al., 2022 

Global population density maps with decadal 

updates (1980, 1990, 1995, 2000, 2005) 
1970-2010 Water Dataset  Huang et al., 2018 
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