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Abstract. This article describes the development of a monthly precipitation dataset for the Spanish mainland, covering the 

period between December 1915 and December 2020. The dataset combines ground observational data from the National 

Climate Data Bank (NCDB) of the Spanish meteorological service (AEMET) and new data rescued from meteorological 10 

yearbooks published prior to 1951 that were never incorporated into the NCDB. The yearbooks data represented a significant 

improvement of the dataset, as it almost doubled the number of weather stations available during the first decades of the 20th 

century, the period when the dataset was more scarce. The final dataset contains records from 11,312 stations, although the 

number of stations with data in a given month varies largely between 674 in 1939 and a maximum of 5,234 in 1975. Spatial 

interpolation was used on the resulting dataset to create monthly precipitation grids. The process involved a two-stage process: 15 

estimation of the probability of zero-precipitation (dry month), and estimation of precipitation magnitude. Interpolation was 

carried out using universal kriging, using anomalies (ratios with respect to the 1961-2000 monthly climatology) as dependent 

variable and several geographic variates as independent variables. Cross-validation results showed that the resulting grids are 

spatially and temporally unbiased, although the mean error and the variance deflation effect are highest during the first decades 

of the 20th century, when the observational dataset was more scarce. The dataset is available at 20 

https://doi.org/10.20350/digitalCSIC/15136 under an open license, and can be cited as Beguería et al. (2023).  



2 
 

1 Introduction 

Sea and land weather station records are crucial information sources to study the evolution of climate over the last century and 

beyond, and are the result of the sustained effort of many volunteers and climate and weather agencies around the world (see 

Strangeways, 2007). A large number of projects have focused on collecting and curating data from different sources in order 25 

to improve the spatial and temporal coverage of the datasets, and even rescue old data that had not been digitised and remains 

unknown to the broad public. These efforts are particularly required in regions with large spatial variability and heterogeneous 

precipitation regimes, such as Mediterranean climate regions of the world. Especially in those areas, however, research does 

not provide unanimous results, as for example trends analyses show differences according to the period selected, data set or 

study area (Hoerling et al., 2012; Mariotti et al., 2015; Zittis, 2015; Deitch et al., 2017; Caloiero et al., 2018; Peña-Angulo et 30 

al., 2020; between many others). 

In parallel with these efforts, many research groups have focused on developing spatial and temporal complete grids that 

override the fragmentary character of observational (station-based) data sets. The development of gridded climatic datasets 

from point observations has experienced a fast development in the first decades of the 21st century, aided by the tremendous 

improvement of computing capabilities and the implementation of complex interpolation methods in standard statistical 35 

packages and programming languages (New et al., 2002; Hijmans et al., 2005; Harris et al., 2014; Schamm et al., 2014; Harris 

et al., 2020). Gridded data sets offer numerous advantages over point-based observational data that make them best suited to 

climate and environmental studies. While observational datasets are limited to the locations of climatic stations and the time 

series are often fragmentary in time, gridded datasets offer a continuous spatial and temporal coverage. Having a continuous 

coverage is most relevant for computing regional or even global averages, which are crucial in climate change studies. Gridded 40 

data are also often a necessity as simulation model inputs, which usually require continuous climatic forcing data. 

Users of gridded data, however, must not forget that grids are in fact models and not directly observed data, and as such they 

are not devoid of issues. Interpolation methods are not perfect, and they have inherent problems such as the deflation of (spatial 

and temporal) variance, as we discussed in Beguería et al. (2006). Also, since the spatial and temporal coverage of 

observational datasets is often not homogeneous (some areas and time periods are over-represented while others may lack any 45 

data), there are potential sources of bias. Despite this, gridded datasets are currently used in the vast majority of studies that 

make use of climate data. 

In a previous work we described the development of a gridded data set of monthly precipitation for Spain, MOPREDAS, 

spanning 1946-2005 (González-Hidalgo et al., 2011). Other gridded precipitation data sets have been later developed for Spain 

with a daily temporal resolution, such as Spain02 for 1950-2003 (Herrera et al., 2012), SAFRAN-Spain (1979-2014; Quintana-50 

Seguí et al. 2016 and 2017), SPREAD (1950-2012; Serrano-Notivoli et al., 2017), AEMET-Spain (1951-2017; Peral et al., 

2017), or Iberia01 (1971-2015; Herrera et al. 2019). Currently, no data set exists spanning back to the first decades of the 20th 

century. This is due in part to the drastic decrease in the number of available observations prior to 1950. The objective of this 

article is to describe the development of the MOPREDAScentury data set, a gridded data set of monthly precipitation over 
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mainland Spain covering the period 1916-2020, aimed at becoming a reference spatial-temporal data set to assess changes in 55 

the spatial and temporal patterns of precipitation over Spain. The process includes the rescue of old records not included in the 

National Climate Data Bank (NCDB) of the Spanish meteorological service (AEMET), which allow increasing the 

observational sample and are critical for developing a gridded dataset. The text describes this data rescue process and the 

spatial interpolation, presents the main results of a cross-validation assessment, and discusses several issues related to the 

development of the dataset. 60 

2 Data and methods 

The development of the MOPREDAScentury dataset encompassed two distinctive steps: i) improving the observational dataset 

available in digital format, especially for the first half of the 20th century; and ii) using spatial interpolation techniques to create 

the gridded dataset. This section describes both steps, as well as the procedure used for evaluating the resulting data set. 

 65 

2.1 Data rescue (yearbooks) 

The MOPREDAScentury data set combines land-based weather station data digitised and stored in the National Climate Data 

Bank (NCDB), and newly digitised records from meteorological yearbooks (YB) that were published by different government 

offices until 1950 such as Ministerio de Fomento, Servicio Meteorológico (a part then of the Instituto Geográfico y Catastral) 

and Ministerio del Aire. The data rescue process from the yearbooks was carried out in two main steps: (a) digitisation, and 70 

(b) matching with the data series in the NCDB. Digitisation was carried out by manual reading and typing the data into digital 

files, using the scanned version of the YB collection stored at AEMET’s public repository (https://repositorio.aemet.es). 

Matching the digitised data series with those in the NCDB proved to be a laborious task, as the identification of the weather 

stations in the YB were not consistent across the books and did not always coincide with the NCDB. Similar difficulties were 

found when rescuing temperature data to develop the MOTEDAScentury dataset (Gonzalez-Hidalgo et al., 2015 and 2020; a 75 

detailed description of the matching process can be found in these references). The rescued yearbooks data had a fair level of 

overlapping with the NCDB, but they allowed to fill in gaps and extend many time series back into the first decades of the 20th 

Century. There were also a number of data series that were completely new. 

The augmented data set resulting from the combination of the NCDB and the YB rescued data was subjected to a quality 

control. Thus, the observations were automatically flagged as suspicious in the following cases: 80 

• Sequences of twelve identical monthly values occurring in different years in the same station, or in the same year in 

different stations. 

• Sequences of seven or more consecutive months with zero precipitation in the same station. 

• Individual months with precipitation equal or greater than 1000 mm. 
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The flagged data (suspicious values) were then manually checked in their original sources (books) to discard digitisation errors, 85 

in which case they were corrected, and if not they were compared against three or four neighbouring stations to decide whether 

to maintain or discard them. An example of data rejection is provided in Table 1. 

 

2.2 Spatial interpolation (two-step method) 

We use geostatistical techniques for the interpolation of monthly precipitation. Geostatistics is now a well-known field, and it 90 

has been presented in a wide range of introductory texts (Goovaerts, 1997), so we should provide only a brief summary here. 

The key element in geostatistics is the variogram (or, more commonly, the semivariogram), which is a function that relates the 

semi-variance 𝛾 between any pair of measurements to the spatial distance between them, h: 

𝛾(ℎ) = 	 !
"
	𝐸[{𝑍(𝑥) − 𝑍(𝑥 + ℎ)}"] (eq. 1) 

 95 

An empirical semivariogram can be constructed from a set of geographically-explicit measurements by analysing all the 

possible paired observations, and a mathematical model can then be fit to provide a continuous estimation of the relationship 

between any pair of points. This function can then be used to derive interpolation weights, being the basis of a family of 

interpolation methods known as Gaussian process regression or, in the geostatistical literature, kriging. Kriging interpolation 

yields best linear unbiased predictions (BLUPs) at unsampled locations, being a major reason for its widespread use. 100 

The most frequently used form of kriging is ordinary kriging (OK), in which the interpolated values are linear weighted 

averages of the n available observations, 𝑧(𝑥), and an unknown constant value, 𝑍(𝑥#): 

�̂�(𝑥) = 	∑ 𝜆$ 	𝑧(𝑥$) − 𝑍(𝑥#)	%
$&#  (eq. 2) 

where 𝜆$ are the interpolation weights, with the condition that they sum to one (∑ 𝜆$%
$&# ) so the interpolation is unbiased. 

Although kriging does not require any distribution assumptions on the data, OK relies on second-order stationarity. That is, it 105 

is assumed that the expected value of 𝑍(𝑥#)  is constant over the spatial domain (𝐸[𝑍(𝑥#)] = 𝜇(𝑥) = 𝑚); and that the 

covariance for any pair of observations depends only on the in the distance between them (𝐸[{𝑍(𝑥) −𝑚}{𝑍(𝑥 + ℎ) −𝑚}] =

𝑐(ℎ)). 

Here we used two extensions of OK, universal kriging (UK) and indicator kriging (IK). Universal kriging relaxes the first 

assumption and allows dealing with a spatially non-stationary mean, sometimes called a spatial trend. The interpolated values 110 

thus consist of a deterministic part (the trend) 𝜇(𝑥), and a stochastic part or residual, 𝜌(𝑥): 

�̂�(𝑥) 	= 	𝜇(𝑥) + 𝜌(𝑥) 	= 		∑ 𝛼'	𝑓'(𝑥)(
'&# 	+	∑ 𝜆$ 	𝑧(𝑥$)%

$&#  (eq. 3) 
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where 𝑓'(𝑥)  are spatially-varying variables and 𝛼'  are unknown regression coefficients. Therefore, UK allows for the 

inclusion of co-variables as predictors for the interpolation, and can therefore be viewed as a mixed-effects model, or a 

combination of regression and interpolation. 115 

Indicator kriging, on the other hand, is useful for binary variables (event / no event), and provides an estimation of the transition 

probability. It uses an indicator function to transform the variable into a binary outcome instead of working with the original 

variable, yielding event probabilities as a result, �̂�(𝑥) = 	 �̂�(𝑧(𝑥) = 0). IK can be based on either OK or UK, accepting co-

variables as spatial predictors in the latter case. 

Here we adopted a two-step approach, consisting on using IK for predicting precipitation occurrence, and UK for predicting 120 

the precipitation magnitude. This is an approach most commonly used for the interpolation of daily precipitation (Hwang et 

al., 2012; Serrano-Notivoli et al., 2019) and less so for monthly data. In the case of our study area, as we will see later on, the 

frequency of zero-precipitation months is not irrelevant, so a two-step approach was advisable. Therefore, in a first step we 

used the following indicator function to transform the observed variable in mm into zero-precipitation events: 

𝐼(𝑥) = =1 if	𝑧(𝑥) = 0
0 otherwise

 (eq. 4) 125 

Then, we used indicator kriging to obtain estimated zero-precipitation probabilities, �̂�(𝑥). In a second step we used universal 

kriging for estimating precipitation magnitude, �̂�(𝑥). Once the two predictions were performed, we combined them into a 

single estimated precipitation field 𝑧′(𝑆) according to the following rule: 

𝑧′(𝑥) = A 0 if	�̂�(𝑥) ≤ 𝑝)
�̂�(𝑥) otherwise  (eq. 5) 

where 𝑝) 	 ∈ (0, 1) is a classification threshold. Determining the classification threshold is a complex task, since different 130 

values can be used that lead to better performance on the event of interest (zero monthly precipitation, in our case) at the cost 

of allowing more false negatives, or the contrary. We shall discuss about the classification in the discussion section of this 

article. 

We used five co-variables for the deterministic part: the easting and northing coordinates, the altitude, the distance to the coast 

line (Figure A1), and the monthly climatology: zero-precipitation probability for IK (Figure A2), and mean precipitation for 135 

UK (Figure A3). To obtain the climatologies we computed spatial fields of monthly mean precipitation using UK and the 

geographic co-variates mentioned above, based on data from a sample of 1698 observatories with at least 35 years of data over 

the period 1961-2000. This period was selected because it contained the highest number of serially-complete data series, while 

encompassing a long-enough period (40 years) to allow for stable average values of the two variables of interest. In the 

discussion section we provide a comparison of this approach with using the original data and using a full normalization. All 140 

co-variables were re-scaled to a common range between 0 and 1 to facilitate model parameter fitting. 
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One peculiarity of the variable of interest (monthly precipitation) is that it can only take non-negative values. Also, when a 

number of observations are considered over a sufficiently large area, the data often shows a skewed distribution. One common 

solution to both issues is to use a logarithmic transformation of the data, i.e. interpolating on 𝑙𝑛(𝑥) instead of x, an approach 

that is sometimes known as lognormal kriging in the geostatistics literature. This generates additional issues, though, as this 145 

approach tends to over-estimate lower precipitation and under-estimate high precipitation (Roth, 1998). Another drawback is 

that it does not allow to interpolate observations of zero precipitation, which is sometimes solved by adding a small offset, e.g. 

interpolating on 𝑙𝑛(𝑥 + 1), although this has other undesired effects and it does not provide a good estimation of zero 

observations. Here we opted for using the original variable, i.e. without a log transformation, although we compare both options 

in the discussion section. 150 

Another transformation that is often applied when interpolating precipitation fields, especially with weighted averaging 

methods, is to transform the original values to anomalies. This is in fact a way of normalizing the data in space, as it eliminates 

the differences that occur between locations that systematically tend to receive much higher or lower precipitation. As new 

observatories appear and disappear around a given point, this could lead to biases in the interpolation that could introduce 

anomalies in the interpolated series. Here we decided to use anomalies computed as ratios to the long-term climatologies (mean 155 

values) computed above. 

Selection of the semivariogram model and parameter fitting are fundamental steps for kriging. There are many different 

semivariogram models available, and there is no general rule as to how to choose one over the other, but the modeller’s 

experience. While some models offer a greater flexibility to adapt to the empirical semivariogram, parameter estimation can 

become a problem in some cases because there are no exact solutions and the iterative algorithms used do not always yield 160 

good results. This is usually not a problem when performing one interpolation as the analyst often tries different options and 

checks that there are no substantial differences between the results, but it can be an issue when a large number of interpolations 

need to be done and an automatic process needs to be designed, as it was the case here. We used the functions krige from 

the gstat package for R (Pebesma, 2004; Gräler et al., 2016) to perform the kriging interpolations, and autofitVariogram 

from the package automap (Hiemstra et al., 2008) to compute the semivariogram coefficients. The Matérn semivariogram 165 

model was the most frequently selected one, both for indicator and universal kriging. It is a highly flexible model that often 

yields optimum results. In some cases, though, a Gaussian model was preferred by the automated procedure, and in a few cases 

the automatic process was not able to converge to good parameter values, so a spherical or an exponential (less flexible but 

more robust) model was enforced. The frequency of each semivariogram model over the whole time period is provided, for IK 

and UK, in the additional material (Table A1). 170 

Best linear unbiased predictions (BLUPs), characterized by their mean and standard deviation, were then cast over a point grid 

at regular distance over longitude and latitude, with a mean distance of 10 km between points. 
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2.3 Evaluation 

Evaluation of the interpolation results is fundamental to fully understand the benefits of the interpolated dataset, the limitations 175 

and the best use cases. Here we performed a thorough evaluation based on several statistics and checks, for both the IK 

(probability of zero precipitation) and the UK (precipitation magnitude) interpolations. To evaluate the performance of the 

interpolation method to estimate values at unmeasured locations we followed a leave-one-out cross-validation (LOOCV) 

approach. This is an iterative process in which the interpolation is repeated as many times as there are data, each time removing 

one observation from the training data set that is later used to compare the estimated and observed values. Although this is a 180 

time-consuming process, it allows to obtain an independent sample that better represents the ability of the model to estimate 

values when no data are available. By not removing other observations that the one being used for evaluation, we could also 

test the effect of having a varying number of observations in the vicinity. 

Validation of indicator kriging (probability of zero-precipitation). There is no consensus about the most appropriate statistic 

to evaluate binary classifications and their associated confusion matrices. A confusion matrix, also known as an error matrix, 185 

has four categories: true positives, TP (pred = 0, obs = 0); true negatives, TN (pred > 0, obs > 0); false positives, FP (pred = 0, 

obs > 0); and false negatives, FN (pred > 0, obs = 0); plus the total positive (P) and negative (N) observations and the positive 

and negative predicted totals (PP = TP + FP and PN = TN + FN, respectively). A variety of statistics can be calculated based 

on these quantities, of which here we focused on the following ones: 

• The positive prediction value (PPV) is the fraction of positive predictions that are true positive: 𝑃𝑃𝑉 = 𝑃𝑃 𝑇𝑃⁄ . 190 

• The negative predictive value (NPV) is the fraction of negative predictions that are true negative: 𝑁𝑃𝑉 = 𝑁𝑃 𝑇𝑁⁄ . 

• The true positive rate (TPR) is the fraction of positive cases correctly predicted: 𝑇𝑃𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ . It can be 

considered as the probability of detection (if a case is positive, the probability that it’d be predicted as such). 

• The true negative rate (TNR) is the fraction of negative cases that were correctly predicted: 𝑇𝑁𝑅 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ . It can 

be considered as a measure of how specific is the test (if a case is negative, the probability that it’d be predicted as such). 195 

The PPV and NPV are not intrinsic to the test as they depend also on the event’s prevalence (fraction of positive cases in the 

observed sample). In a highly un-balanced sample, such as the case of zero precipitation in our dataset were the proportion of 

station / months with zero precipitation is very low, these two statistics will be highly affected. The TPR and TNR, on the 

contrary, do not depend on prevalence so they are intrinsic to the test. In diagnostic testing the TPR and TNR are the most 

used, and are known as sensitivity and specificity, respectively. In informational retrieval the main ratios are the PPV and 200 

TPV, where they are known as precision and recall. 

We also computed two metrics that summarize the elements of the confusion matrix, so they can be considered as overall 

measures of the quality of the binary classification. The F1 score is computed as: 

𝐹1	 = 	 "	+,
"	+,-./-.,	

 (eq. 6) 
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As it can be seen, the F1 ignores the count of true negatives, so it places more emphasis on the positive cases (zero-precipitation 205 

months, in our case). The Matthews correlation coefficient (MCC), on the other hand, produces a high score only when the 

prediction results are good in all the four confusion matrix categories.  It is equivalent to chi-square statistics for 2 x 2 

contingency tables. Its value ranges between -1 and 1, with values close to zero meaning a bad performance (not higher than 

a random classifier), while 1 represents a perfect classification. 

𝑀𝐶𝐶 =	 (+,×+/)3(.,×./)
4(+,-.,)(+,-./)(+/-.,)(+/-./)	

 (eq. 7) 210 

All these statistics vary between 0 and 1, where a high value (close to one) is interpreted as indicating a high accuracy. 

For the evaluation of the magnitude we used the following metrics: 

• The mean absolute error (MAE) and the relative MAE (RMAE), as global error measures: 

• The mean error (ME) and the relative ME (RME), as global bias measures: 

• The ratio of standard deviations (RSD), as a measure of variance deflation: 215 

• The Kling-Gupta efficiency (KGE), as an overall goodness of fit measure. 

Model evaluation was performed globally considering the whole dataset, but also for each month individually to make it 

possible to analyse the temporal evolution of the performance statistics. 

Finally, in order to determine the benefits of the data rescue process, we compared the original (NCDB) and augmented 

(NCDB+YB) datasets. We used the same cross-validation scheme described above, but in this case the validation was restricted 220 

to the period covered by the yearbooks (1916-1950). Another important difference is that we only used the observations present 

in both the NCDB and NCDB+YB data sets for computing cross-validation statistics, although the whole data sets were used 

for performing the interpolation. 

 

3 Results 225 

3.1 Data rescue and quality control 

The annual weather yearbooks proved to be an outstanding source of climate data over the 1916-1950 period, as it contained 

369,286 observations from 4,248 stations, compared to 281,951 observations from 2,732 stations for the NCDB in the same 

period. As expected, there was a significant overlap between the two sources, so the augmented data set resulting from their 

combination contained 432,183 observations from 4,414 stations. Figure 1 shows the temporal evolution of the two data sets 230 

and their combination over 1916-1950. With the exception of a few years (1932, 1933, and 1937-1941), the yearbooks vastly 

surpassed the NCDB in number of active stations. The improvement of the combined data set with respect to the NCDB ranged 

between more than 100% before 1920 and between 80 and 20% in the remaining of the period. 
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A striking characteristic of the dataset during this first period was the abundance of short-lived time series, and even more so 235 

in the yearbooks data (Table 2). The highest frequency (43%) corresponds to series with less than five years of data, while 

65% of the series had no more than 10 years. On the other hand, less than 5% of stations cover the complete period 1916-1950. 

The complete dataset, spanning 1916-2020, contained more than 3.3 million records from 11,008 weather stations. The number 

of stations currently active in any given year was much lower, thought, and it varied significantly (Figure 2). After a first 

decade (1916-1925) with no large variation at around 800 active stations, the number of active stations increased steadily, 240 

reaching approximately 2500 stations in 1950, and peaking at 5,237 in 1975. The number of active stations has progressively 

decreased since, reaching 2,615 in 2020. The most notable exception to this general trend was the Spanish Civil War period 

between 1936 and 1939 and the immediate post-war years, when the dataset was severely reduced and reached its lowest count 

at 675 active stations in 1939. 

As a consequence of this variation, the information spatial density has greatly changed over time, too (Figure 3). Also, and in 245 

particular in the first half of the 20th century, the spatial coverage of the dataset is not homogeneous as some regions have a 

notably lower information density. Regarding the spatial coverage, the image illustrates that the addition of the rescued data 

(YB dataset) improved in a significant way the data density in some regions that were severely under-represented in the original 

data set (NCDB), such as the South-West (Guadalquivir River basin). 

As temporal changes in data availability can have an impact in the interpolation results and in any ulterior analysis, we assessed 250 

it in more depth. Figure 4 informs on the evolution of the distance to the closest neighbouring station (mean and standard 

deviation). Since the random component of kriging is essentially a distance-based weighting scheme, this is a relevant statistic 

that is related to the degree of spatial smoothing introduced by the interpolation. Prior to 1940 the mean distance ranged 

between 10 and 12 km, rapidly decaying to less than 6 km after 1960. The minimum average distance (5.9 km) was achieved 

in 1973, with a slight increase since then up to the present. Interestingly, the increase of the closest neighbour distance in recent 255 

years has been slower than the reduction in the number of observatories, evidencing a more even spatial distribution of the 

observation network that is also apparent when the spatial distribution of the stations in 2015 and 1955 are compared. The 

effect of the reduction of stations is perhaps more evident in the distance variances. The variability of the number and density 

of observations during the study period is a potential source of undesired effects in the interpolated dataset, reinforcing the 

need for a thorough validation. 260 

Another potential source of bias arises from the altitudinal distribution of the stations, since there is usually a good correlation 

between monthly precipitation and elevation, so ideally the observations should sample evenly all the altitudinal ranges on the 

study area. In our case, the areas below 500 m a.s.l. tended to be over-represented when the proportion of observations per 

altitude ranges was compared to that of the study area, while higher areas were slightly under-represented (Figure 5). Strong 

temporal changes in the altitudinal distribution of the stations could be an additional problem as it could generate temporal 265 

bias in the resulting grids. However, in our case the altitudinal distribution of the observations changed only slightly, with the 

average elevation oscillating between 575 (1st quartile) and 614 (3rd quartile) m a.s.l., values that correspond approximately to 
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the mean elevation of mainland Spain (Figure 6). The relative composition of the dataset by altitudinal classes has not changed 

significantly over the study period, so no temporal bias was to be expected due to elevation shifts (Figure A4Figure A 4). 

Regarding the length of the data series, the frequency of observatories with less than five years of data is 22%. 34% of the 270 

series cover more than 30 years, while only a few (0.1%) cover the complete period (Table 3). 

While this heterogeneity of record lengths is not uncommon in observational datasets, it imposes an important decision that 

conditions the development of gridded dataset: whether to use all the information available at any given moment, even if the 

data availability changes over time, or to restrict the analysis to a reduced set of stations that do not change over time. The last 

option implies selecting the largest and most complete data series and then undergoing a gap-filling and reconstruction process 275 

so in order to make all the series cover the whole period of study, at the cost of rejecting a large amount of valid data and the 

risk of introducing statistical artifacts during the reconstruction process. The first option, on the other hand, has the advantage 

of making use of all the information available, but the risk of introducing statistical biases in the dataset since the number of 

observations change largely over time. We shall discuss this issue later in the article. 

Figure 7 shows the time series of data discarded during the quality control process. Discarded data amounted to 0.5-1% of the 280 

records prior to 1940, between 0.25-0.5% during 1940-1985, and lower than 0.2% since ~1985. The largest part of the 

rejections was due to repeated sequences in the same station, or between different stations in the same year, while anomalous 

data (sequences of zeros or extremely high values) amounted for a much lower proportion or rejections. Discarded data are 

distributed evenly across the year (Table 4), with a certain lower prevalence in July and August that might be due to the higher 

difficulty to detect anomalies during those months given the more irregular character of precipitation. 285 

 

3.2 Gridded dataset 

The result of the interpolation process was a gridded database of mean and standard deviation fields of the best linear unbiased 

predictions (BLUPS) of monthly precipitation between January 1916 and December 2020 (1272 time steps). As an example 

of the dataset, mean and standard deviation fields are shown for April 1916 and 1975 (Figure 8). The figures illustrate the 290 

probabilistic nature of the Gaussian process interpolation, as the mean and standard deviation fully describe the probability 

distribution of estimated precipitation at each point of the grid. There is a noticeable difference in the observational data density 

leading to each interpolated grid (as seen in Figure 3), which had an impact mainly on the magnitude of the standard deviation 

field. In fact, despite a similar range of the mean predicted values, the standard deviation field value ranges were very different 

between the two dates, being almost double in 1916 than in 1975, revealing a higher uncertainty of the estimated values.  295 

This is further illustrated in Figure 9 (left panel), which shows time series of estimated monthly precipitation (BLUPs) with 

their uncertainty levels (plus and minus one standard deviation) at four random grid points. In addition, time series of the 

standard deviation and of the distance to the closest observation are also provided. Two facts are apparent upon inspection of 

the plots: i) there is a linear relationship between the predicted precipitation and the uncertainty range, i. e. there is a larger 
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uncertainty for higher precipitation; and ii) there is a reduction of the uncertainty range with time, which can be related to the 300 

progressive addition of new information. 

 

3.3 Validation: probability of zero precipitation 

The MMC statistic was used to determine the classification threshold for the interpolation of precipitation occurrence, since it 

provides a good balance between the prediction of positive and negative cases (Figure 10). Classification thresholds were 305 

computed for each month, and were applied globally (i.e., the same thresholds applied for the whole spatial and temporal 

domains). The threshold values were lower in winter (close to 0.25) and higher in summer (close to 0.50), reflecting the 

seasonal variation of the prevalence of zero-precipitation. The thresholds offered a good balance as they tended to maximise 

the individual metrics of the confusion matrix (Figures A5 and A6). 

As a result, a reasonably good prediction of zero-precipitation cases was obtained in the summer months, when the prevalence 310 

is higher and thus more important, while during the rest of the year, when the prevalence is lower and therefore less relevant, 

there was a slight under-estimation of zero-precipitation cases (Figure 11).  

A detailed inspection of the evaluation statistics for the prediction of zero-precipitation (Table 5) reveals that the interpolation 

was better at predicting negative cases (precipitation higher than zero) than positive cases (zero precipitation), as shown by 

higher TNR and NPV values over TPR and PPV. This is also reflected by the F1 score, which focuses in the ability to predict 315 

positive cases, and had values in the 0.50-0.65 range for most months. Only during the summer months (especially July and 

August) the skill was higher. 

 

3.4 Validation: magnitude 

Cross-validation results of precipitation magnitude (considering the combined result of the two interpolations by application 320 

of Equation 5) can be considered good. The probability density of the interpolated values matched quite well that of the 

observations (Figure 12), although the predicted values tended to be slightly more concentrated around the mode of the 

distribution while under-representing the lower and higher tails of the distribution. Such variance contraction should be 

expected in any interpolation process, and it is more important to check for biases and temporal inconsistencies. 

This can be seen in more detail when comparing the quantiles of the observed and predicted sets (Table 6). Starting by the 325 

median (50% percentile), there was a very good match between both sets, albeit a slight over-estimation can be found in most 

months. When considering the lower quantiles (25% and, especially, 10%) the over-estimation is more evident, while the 

higher quantiles (75% and, especially, 90%) show a closer match. 

Cross-validation statistics for the magnitude interpolation are given in Table 7, and an example scatterplot of predicted against 

observed values for a 12-months period is provided in Figure 13. The MAE over the whole dataset ranged between slightly 330 

less than 7 mm in July and 17 mm in December. This might seem as quite high error values, but it must be kept in mind that 
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the distribution of the variable of interest is highly skewed, so a relatively low number of very high observations contribute a 

lot to the statistic. In fact, visual inspection of the scatterplots in Figure 13 reveals a good match between observations and 

predictions, in all months. 

The ME, very close to zero mm, indicates no significant bias in the predictions. The RSD was in general close to 0.9, which 335 

can be considered a good result and imply only a slight reduction of the spatial variance in the predicted precipitation fields. 

The KGE, finally, was quite good, too, with values ranging between 0.79 in May (worst case) and 0.85 in December-January 

(best months). In general, the validation results were better in winter, and worse during the summer months. 

A very important issue when constructing gridded datasets over an extended period, as it was the case here, is to consider 

potential biases that may arise from the substantial change in the number of observations available at different times. Large 340 

temporal variation in the size of the observational data set can potentially impact several aspects of the interpolated grids, 

mostly their spatial variance, and even might be a source of bias. Here we checked for such changes by computing cross-

validation statistics for each monthly grid independently and then inspecting the time series of said statistics, looking for 

temporal trends (Figure 14). Ideally, validation statistics should be time-stationary, although some effects are inevitable due 

to the changes in the size of the observational dataset. 345 

The first and most obvious consequence of the variation in the number of observations is the effect on the overall accuracy, as 

expressed by the MAE. As the size of the observed dataset increased over time, the absolute error of the interpolation also 

decreased. A similar result would be obtained by inspecting the evolution of other goodness-of-fit statistic, such as the R2, and 

is an inevitable consequence of having more data to interpolate. In our case, the reduction of the MAE was approximately two-

fold, that is the error was two times higher during the first decades of the 20th century, when the observational dataset was 350 

scarcest, than during the last decades of the study period. 

More relevant than the absolute error is the evolution of the mean error, as it informs about possible systematic temporal biases 

that could affect, for instance, the computation of temporal trends using the interpolated grid. In principle, the unbiasedness of 

the kriging interpolation is independent of the size of the dataset, so no temporal bias should be expected. However, other 

factors related to the normalization of the data or other steps of the process could introduce undesired effects. In our case, the 355 

ME was stationary or only exhibited very limited temporal trend, with close-to-zero values and mostly random oscillations. 

Only for some months (April and July being the most conspicuous) a slight increasing trend of the ME was apparent, albeit 

the magnitude of the difference between the start and the end of the study period (less than 0.5 mm) was very low in comparison 

with the magnitude of the variable. 

Another well-known effect of the sample size is that it related to the variance shrinkage of the interpolation. This can be 360 

inspected by the RSD statistic, which showed an increasing trend as the size of the available data increased. The magnitude of 

the difference between the start and the end of the study period ranged around 0.1, indicating that later grids had larger 

variability (and much closer to that of the observed sample) than earlier grids. Despite the not-too high magnitude of the effect, 



13 
 

it is something that should be considered, for instance, if the interpolated grid was to be used for assessing variability or 

extreme values changes over time. 365 

As a final result, indicative of the overall goodness-of-fit of the interpolation and considering both the error, the bias and the 

variability, the KGE statistic showed a steady increase during the study period ranging between values in the 0.65 - 0.7 range 

at the beginning of the period and close to 0.9 at the end. 

A spatial evaluation of the quality of the interpolation, focusing on the KGE statistic, shows that the worst results were obtained 

in the summer months, and towards the South of the study area (Figure 15). 370 

 

3.5 Evaluation of the combined dataset 

The addition of new observational data digitised from the year books improved the prediction of zero precipitation and 

precipitation magnitude in all months, as shown by the cross-validation statistics computed over the period 1916-1950 (Table 

8). The most notable improvement of the augmented data set (NCDB+YB) over the original one (NCDB) was the stabilisation 375 

of the mean error during the first decades of the study period, which exhibited large variability in the original dataset (Figure 

16). 

 

4 Discussion 

In the following paragraphs we discuss various aspects of our spatial interpolation approach and evaluate the performance of 380 

alternative model choices. We used a geostatistical approach, universal kriging (also known as Gaussian process regression), 

over other well-known and used approaches such as global or local regression, weighted averaging methods or splines, due a 

number of reasons. On the one hand, and similar to other regression methods, kriging performs a probabilistic prediction, as it 

allows obtaining not only best predictions at unsampled locations but also their standard deviation, allowing to determine 

uncertainty ranges. Under appropriate assumptions, kriging yields best linear unbiased predictions (BLUPs), unlike other 385 

weighted averaging methods that do not guarantee unbiasedness. Standard regression methods, on the other hand, only consider 

fixed effects and result in best linear unbiased estimations, ignoring the random part. In a preliminary phase we found that 

kriging resulted in better cross-validation statistics than, for instance, angular-weighting interpolation. 

In order to make the best use of the data, we used all the observations available at each time step. As a result, the interpolation 

sample varied largely on time, as the number of weather stations available was five times higher at their peak in the middle 390 

1970’s than at the beginning on the period (1916-1940). Such a strong variation in the observational dataset is not uncommon 

when analysing large temporal periods, and may have non-desired effects on the interpolated data set, advising for a thorough 

temporal validation. It is evident that a bigger sample would result in reduced prediction uncertainty, but should not result in 

systematic bias. We found that to be correct, as only the MAE but not the ME was affected by temporal changes in the sample 
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size. This implies that the interpolated dataset can be safely used for climatological analyses involving the calculation of means 395 

or trends in the mean values, over the whole temporal range or overt shorter time spans. However, some unexpected temporal 

bias was found related to certain variable transformations, which were discarded (more on that later). Also, as it was expected, 

smaller samples resulted in a reduced variance (as shown by the RSD). As a result, caution is recommended when using the 

data set for climatological assessments of spatial or temporal variability, extremes or quantiles other than the mean. 

 A common concern that is often expressed against using a time-varying sample for interpolation is that it might introduce 400 

biases (inhomogeneities) in the predicted time series at given locations as new weather stations appear (or disappear) in the 

vicinity of the point, due to possible systematic differences between the two points. Although this is more problematic with 

weighted averaging methods than with regression or kriging approaches, we decided to use a variable transformation in order 

to eliminate such differences. Therefore, we transformed the original data in millimetres into anomalies (ratios to the point’s 

long-term climatology). Although this is not a strict requirement of kriging, interpolating the anomalies and transforming back 405 

to the original units resulted in slightly better cross-validation results (Table A3), and helped ensuring the statistical continuity 

of the predicted time series at any given point of the grid as new observations (weather stations) appeared in the vicinity of the 

point. 

We tried other variable transformations than the ratios to the climatology, with less good results. One of the most promising 

approaches was performing a full standardization of the variable by converting the original values into standardized variates. 410 

In fact, converting the observed values into Standardised Precipitation Index anomalies improved slightly the error statistics 

(MAE), albeit it yielded worse bias statistics (ME) and overall accuracy (KGE; Table A4). The worse ME of the full 

standardisation might be a result of the transformation of the variable, but the most preoccupying effect was that it introduced 

a strong temporal component in the ME (Figure A8), with a bias magnitude that could no longer be considered irrelevant as it 

could appreciably alter, for instance, the computation of temporal trends based on the interpolated grid. 415 

Another important aspect of our approach is that it consisted on two steps, where the final precipitation prediction is the result 

of independent estimation of the probability of zero-precipitation and precipitation magnitude. This allowed attaining a better 

representation of zero-precipitation areas, which was especially relevant for the summer months. As a comparison, a single-

step approach (that is, direct interpolation of precipitation magnitude) resulted in a severe underestimation of zero-

precipitation: if the prevalence of zero-precipitation cases was 8.24% in the observational dataset, using a single-step approach 420 

this value got reduced to 1.64%. Our two-step approach, on the other hand, yielded a much closer estimation at 8.07%. 

Underestimation was especially important during the summer, when the prevalence of zero-precipitation months is higher 

(Figure A7). Using a single-step approach did not have such a remarkable impact on the prediction of precipitation magnitude, 

leading to similar or marginally poorer cross-validation statistics (Table A2). This came as no surprise due to the low 

contribution of low-precipitation values to validation statistics in general, and highlights the importance of performing a 425 

thorough validation of the interpolation results that goes beyond the mere computation of error (deviation) statistics and 

considers other important aspects of the data, such as the prediction of zero-precipitation. 
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We also checked the added information of using co-variates, i.e. using a universal kriging approach, against a simpler ordinary 

kriging with no co-variates. We found that the co-variates resulted in better cross-validation statistics, both for the probability 

of zero-precipitation and for magnitude, although the magnitude of the difference was not too big (Table A5). 430 

Our variable of interest, precipitation, can only take positive values (once zero-precipitation has been ruled out), and it’s 

distribution is typically skewed. I order to deal with these characteristics in a regression context, usually a logarithmic 

transformation of the variable is advised, or using a logarithmic link function. However, this implies that the method’s 

unbiasedness properties might not apply to the original variable under certain circumstances, recommending caution (Roth, 

1998). Here we found that applying a log-transformation to the data yielded slightly worse cross-validation results (Table A6) 435 

and, similarly to applying full-standardization, it introduced a temporal bias in the mean error. Therefore, we opted to not using 

this transformation. 

Our approach has a number of drawbacks and potential improvements. The kriging properties rely on a proper estimation of 

the semivariogram model, which needs to be estimated for each time step. We found that under certain circumstances the 

automatically derived semivariograms were flawed (either the parameter search did not converge, or the parameters were too 440 

low or too high), so we had to put extra care in designing automated checks and solutions, as described in the methodology. 

Also, we found that under certain circumstances the method could be too sensitive to outlier observations. 

Another important limitation is the kriging assumption of spatial stationarity, as the semivariogram model is supposed to be 

valid across the whole spatial domain. This is clearly a sub-optimal approach for climate variables with often complex spatial 

behaviour such as abrupt changes and variations in the correlation range, spatial anisotropies, etcetera. One possible solution, 445 

not explored here, is the implementation of deep Gaussian process (deepGP) regression. Unlike ‘shallow’ kriging, as used 

here, deepGP introduces more than one layer of Gaussian processes and therefore allows for spatial non-stationarities to be 

modelled (Damianou & Lawrence, 2012), providing a promising method for the interpolation of climate variables. 

Another drawback of the our approach is that, as only the information of the month being interpolated is used, a good wealth 

of useful information is not used. Spatio-temporal variogram models have been proposed to leverage on the self-correlation 450 

properties of climatic variables (Sherman, 2011; Gräler, 2016), especially over short time periods, but other possible 

approaches include the use of principal components fields, weather types or k-means field classification as co-variates for 

universal kriging. All these approaches merit exploration and will be subject of future work. 

 

5 Data availability. The MOPREDAScentury (Monthly Precipitation Dataset of Spain) gridded dataset  can be accessed at 455 

the project’s website at https://clices.unizar.es, and has been reposited with permanent handle 

https://doi.org/10.20350/digitalCSIC/15136. It is distributed under the Open Data Commons Attribution (ODC-BY) license, 

and can be cited as Beguería et al. (2023). 
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6 Conclusions 

We created a century-long (1916-2020) dataset of monthly precipitation over mainland Spain to serve as a basis for further 460 

climatologic analysis. To achieve that, we first augmented the current observational information in the Spanish National 

Climate Data Bank with new data digitised from climatic year books during the period 1916-1950. This allowed to almost 

double the information available in the first decades of the 20th century, a crucial task due to the general data scarcity during 

that period, especially over certain regions such as the north- and south-west of the study area. The new data helped reduce the 

uncertainty of the interpolated dataset, and stabilised its mean error. We further used a two-step kriging method to interpolate 465 

monthly precipitation fields (grids) based on all the data available in the observational record. Each month was interpolated 

independently, i.e. no information from the previous or posterior months was used besides the computed climatology that was 

used as a co-variable. Other co-variables were the spatial coordinates, the elevation and the distance to the sea. The raw data 

in millimetres were converted to anomalies (ratios to the long-term monthly climatology) prior to interpolation. The main 

advantages of our approach were: i) relatively fast computation of the model’s coefficients and predictions, especially 470 

compared to machine learning methods; ii)  provides best linear unbiased predictions, unlike other methods such as global or 

local regression (which provide estimations, i.e. considering only the fixed effects and not the random component), splines or 

weighted means (which do not consider co-variables and do not guarantee lowest error or unbiasedness); iii) has a probabilistic 

nature, allowing to estimate uncertainty ranges. A thorough cross-validation of the resulting gridded data set revealed a good 

estimation of precipitation values at unmeasured locations, with a slight over-estimation of low values and under-estimation 475 

of high values. No systematic biases were found, especially along the temporal dimension. The effects of the strong variation 

in the sample size due to changes in the observational network were only apparent in the uncertainty of the grided predictions 

and in the grid spatial variability, but introduced no temporal bias. The resulting dataset is available to download with an open 

license. We have devised further means of improving the approach, which would be implemented in further versions of the 

dataset. 480 
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Figures 

 
Figure 1. Temporal evolution of the number of active weather stations in the dataset: national digital data bank (NCDB), newly 565 
digitised year-books (YB) data sets, and their combination (NCDB+YB). 
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Figure 2. Temporal evolution of the number of active weather stations in the data set over the whole study period. 

 570 
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Figure 3. Spatial distribution of the weather stations in selected years, with indication of the data origin. 
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Figure 4. Temporal evolution of the distance to the closest station: mean (black dots) and two standard deviation range (grey vertical 
lines). 575 
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Figure 5. Frequency histogram of weather stations per elevation class, as compared to the whole study area. 

  580 
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Figure 6. Temporal evolution of the station network’s elevation: mean (dots) and two standard deviation range (vertical lines). 

 

 585 
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Figure 7. Temporal evolution of the observations discarded during quality control (percent per year), according to the reason: 
duplicated data, anomalous values, and total discarded. 

 

 



27 
 

Figure 8. Example grids: mean and standard deviation of monthly precipitation (PCP) best linear unbiased predictions (BLUPS) 590 
for April 1916 (up) and April 1975 (bottom). Black dots and numbers identify the location of four random points selected for further 
analysis. 
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Figure 9. Time series of best linear unbiased predictions (BLUPs) of April precipitation at four random grid points (left column): 595 
means (black dots) and two standard deviations range (vertical lines); standard deviation of the predictions (central column); and 
mean distance to the nearest observation (right column). 

 

 
Figure 10. Selection of zero-precipitation prediction thresholds based on the MMC statistic (cross-validation results). 600 
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Figure 11. Empirical density functions of zero-precipitation frequency in the observed (grey) and cross-validation (red) datasets. 
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 605 
Figure 12. Density of observed (grey) and predicted (red) monthly precipitation (cross-validation results). 
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Figure 13. Predicted and observed monthly precipitation values for year 2015 (cross-validation results). Each dot represents one 
weather station. 610 
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Figure 14. Temporal evolution of the mean absolute error (MAE), mean error (ME), ratio of standard deviations (RSD) and Kling-
Gupta efficiency (KGE) for each month (cross-validation results). 
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 615 

 
Figure 15. Location of station / months with negative KGE over the period 1916-2020 (cross-validation results). 
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Figure 16. Time series of the mean error in the NCDB and combined (NCDB+YB) datasets. 

  620 
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Tables 

 

Table 1. Example of an anomalous value discarded by comparison with their nearest neighbours (December of 1920). 

Suspicious data Neighbour stations 
ID 0311A ID 0320 ID 0395 ID 0390 ID0336A 
6680 mm 960 mm 668 mm 1332 mm 512 mm 

 

 625 
Table 2. Number and percentage of stations according to the length of the record, for the period 1916-1950. 

 

 
 
 630 
 
Table 3. Number and fraction of stations according to the length of the record, for the period 1916-2015. 

Length 1 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100 105 

Number 419 2221 1244 1286 1061 827 808 701 573 517 544 746 569 286 128 48 14 

Percentage 3.5% 18.5% 10.4% 10.7% 8.8% 6.9% 6.7% 5.8% 4.8% 4.3% 4.5% 6.2% 4.7% 2.4% 1.1% 0.4% 0.1% 

 
Table 4. Monthly distribution of anomalous data discarded during the quality control: number of observations and percent over the 
whole datta. 635 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Anomalies 197 189 171 174 169 175 97 90 169 220 229 234 
(%) 9.3 8.9 8.1 8.2 8.0 8.3 4.6 4.3 8.0 10.4 10.8 11.0 

 
  

Length (years) NCDB YB NCDB+YB 

5 1095 (40%) 1903 (45%) 1884 (43%) 

10 660 (24%) 1146 (27%) 1082 (24%) 

15 334 (12%) 541 (13%) 524 (12%) 

20 334 (12%) 306 (7%) 450 (10%) 

25 124 (5%) 156 (4%) 221 (5%) 

30 61 (2%) 115 (3%) 105 (2%) 

35 78 (3%) 68 (2%) 98 (2%) 

40 46 (2%) 18 (<1%) 62 (1%) 
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Table 5. Cross-validation statistics for zero-precipitation estimation: true positive ratio (TPR), true negative ratio (TNR), positive 
predictive value (PPV), negative predictive value (NPV), F1 score (F1) and Mathew’s correlation coefficient (MCC). Median values 
across all the stations. 640 

Month TPR TNR PPV NPV F1 MMC 

January 0.660 0.984 0.695 0.982 0.660 0.677 

February 0.658 0.984 0.671 0.983 0.648 0.665 

March 0.528 0.994 0.727 0.985 0.609 0.611 

April 0.485 0.989 0.448 0.990 0.455 0.466 

May 0.509 0.987 0.532 0.985 0.506 0.520 

June 0.627 0.971 0.699 0.961 0.628 0.661 

July 0.806 0.923 0.823 0.914 0.733 0.814 

August 0.764 0.939 0.795 0.928 0.713 0.779 

September 0.629 0.979 0.733 0.967 0.652 0.677 

October 0.608 0.982 0.535 0.986 0.555 0.569 

November 0.587 0.994 0.748 0.987 0.653 0.658 

December 0.615 0.981 0.544 0.986 0.562 0.578 
 
Table 6. Mean monthly observed (obs) and predicted (pred) percentiles and mean values (cross-validation results). 

 10% 25% 50% 75% 90% Mean 

Month obs pre obs pre obs pre obs pre obs pre obs pre 

January 9.94 12.45 21.17 24.45 41.35 43.10 74.60 73.48 135.20 132.33 62.34 62.23 

February 10.65 13.75 21.60 24.44 39.48 41.68 69.94 69.58 124.30 120.63 55.80 55.82 

March 13.31 16.40 26.39 29.64 47.80 50.29 79.67 78.12 127.54 122.41 63.86 63.97 

April 15.90 19.81 27.85 30.51 47.12 48.74 75.22 74.03 115.04 109.86 58.46 58.39 

May 12.50 16.19 27.00 31.22 47.30 49.08 73.36 72.81 113.37 109.27 55.04 55.02 

June 2.10 4.81 10.39 13.25 26.45 29.15 50.00 49.68 77.33 73.12 34.57 34.60 

July 0.00 0.00 0.00 0.00 7.10 9.63 25.20 25.18 48.04 44.83 17.64 17.48 

August 0.00 0.00 0.90 3.18 10.95 12.44 30.19 30.36 59.11 55.24 21.48 21.26 

September 5.81 9.34 14.71 18.54 32.27 35.10 59.17 57.64 95.62 89.85 44.89 44.94 

October 16.05 18.72 28.82 31.09 48.55 50.04 87.44 87.18 138.85 134.71 65.91 65.72 

November 17.20 20.41 32.70 35.08 54.77 57.19 95.01 94.79 156.67 152.81 74.66 74.64 

December 13.07 16.52 26.90 29.20 51.55 52.94 88.20 87.33 151.39 150.29 69.99 69.92 
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Table 7. Cross-validation statistics for precipitation magnitude estimation: mean absolute error (MAE, mm), mean error (ME, mm), 645 
ratio of standard deviations (RSD), Kling-Gupta efficiency (KGE). Median values across all the stations. 

Month MAE ME RSD KGE 

January 11.43 0.60 0.96 0.817 

February 10.76 0.59 0.96 0.814 

March 10.91 0.57 0.95 0.812 

April 11.28 0.55 0.94 0.818 

May 11.72 0.48 0.93 0.806 

June 9.98 0.22 0.91 0.762 

July 6.33 -0.08 0.88 0.679 

August 6.97 0.00 0.89 0.703 

September 10.57 0.25 0.92 0.794 

October 12.55 0.50 0.96 0.838 

November 12.79 0.60 0.96 0.83 

December 13.01 0.62 0.97 0.83 
 
Table 8. Cross-validation statistics for zero-precipitation and magnitude in the original (NCDB) and augmented (NCDB+YB) data 
sets: F1 score (F1), Mathew’s correlation coefficient (MCC), mean absolute error (MAE, mm), and Kling-Gupta efficiency (KGE) 
median values across the stations, period 1916-1950. 650 

 NCDB NCDB+YB 

Month F1 MMC MAE KGE F1 MMC MAE KGE 

January 0.975 0.521 12.080 0.682 0.974 0.552 11.663 0.707 

February 0.973 0.548 12.886 0.721 0.975 0.587 12.380 0.747 

March 0.985 0.251 13.993 0.687 0.991 0.226 13.187 0.716 

April 0.983 0.454 12.379 0.718 0.980 0.475 12.101 0.743 

May 0.986 0.266 15.722 0.673 0.989 0.251 14.882 0.701 

June 0.950 0.541 11.496 0.572 0.952 0.575 10.826 0.608 

July 0.907 0.662 6.540 0.487 0.904 0.672 6.292 0.523 

August 0.926 0.640 8.725 0.443 0.917 0.653 7.970 0.493 

September 0.973 0.572 13.938 0.644 0.971 0.606 13.338 0.681 

October 0.985 0.516 14.100 0.648 0.984 0.532 13.360 0.690 

November 0.985 0.713 13.737 0.687 0.985 0.720 13.417 0.717 

December 0.985 0.375 16.252 0.690 0.985 0.389 15.243 0.716 
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Appendix A: additional figures and tables 

 

 655 
 

Figure A 1. Fixed covariates used for universal kriging interpolation: easting and northing coordinates, elevation, and distance to 
the coast line. 
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 660 
Figure A 2. Mean monthly zero-precipitation probability over 1961-2000. 
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Figure A 3. Mean monthly precipitation over 1961-2000. 665 
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Figure A 4. Time evolution of the frequency of observations according to altitudinal classes. 

670 
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Figure A 5. Positive prediction value and true positive rate vs. classification threshold obtained by cross-validation. The selected 
threshold is shown by black vertical lines. 
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 675 
Figure A 6. Negative prediction value and true negative rate vs. classification threshold obtained by cross-validation. The selected 
threshold is shown by black vertical lines. 

 



44 
 

 
Figure A 7. Empirical density functions of zero-precipitation frequency in the observed (grey) and cross-validation (red) datasets, 680 
using a single-step approach. 
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Figure A 8. Time series of cross-validation mean error, performing a full-standardisation of the variable. 685 
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Table A 1. Semivariogram models used in the interpolation of zero-precipitation probability and precipitation magnitude: 
exponential (Exp), Gaussian (Gau), Spherical (Sph) and Matern (Mat). Number of months. 

Zero-precipitation Magnitude 
Exp Sph Gau Mat Exp Sph Gau Mat 
39 454 44 735 35 89 11 1137 

 

Table A 2. Cross-validation statistics for zero-precipitation and precipitation magnitude, using a single-step approach. 690 

Month TPR TNR PPV NPV F1 MMC  MAE ME RSD KGE 

January 0.190 0.997 0.748 0.958 0.302 0.362  11.443 0.662 0.961 0.816 
February 0.178 0.997 0.741 0.960 0.287 0.350  10.778 0.672 0.957 0.814 
March 0.149 0.999 0.798 0.973 0.251 0.338  10.912 0.594 0.953 0.812 
April 0.068 0.999 0.614 0.982 0.122 0.200  11.259 0.639 0.940 0.817 
May 0.078 0.999 0.691 0.973 0.140 0.226  11.715 0.574 0.924 0.805 
June 0.136 0.997 0.828 0.916 0.233 0.314  9.988 0.381 0.901 0.760 
July 0.203 0.991 0.913 0.736 0.332 0.355  6.405 0.196 0.873 0.672 
August 0.183 0.993 0.895 0.798 0.303 0.349  7.041 0.252 0.879 0.697 
September 0.139 0.998 0.840 0.928 0.239 0.324  10.590 0.387 0.920 0.793 
October 0.078 0.999 0.682 0.969 0.140 0.223  12.550 0.654 0.953 0.837 
November 0.171 0.999 0.786 0.974 0.281 0.359  12.816 0.632 0.953 0.827 
December 0.125 0.997 0.642 0.969 0.209 0.274  13.005 0.715 0.964 0.824 

 

Table A 3. Cross-validation statistics for precipitation magnitude, without variable transformation. 

Month MAE ME RSD KGE 

January 11.692 0.599 0.960 0.813 
February 10.957 0.547 0.958 0.812 
March 11.120 0.581 0.952 0.809 
April 11.370 0.538 0.942 0.817 
May 11.834 0.475 0.926 0.805 
June 10.062 0.222 0.902 0.758 
July 6.359 -0.085 0.875 0.678 
August 7.072 -0.023 0.876 0.698 
September 10.670 0.248 0.917 0.791 
October 12.668 0.471 0.955 0.836 
November 13.033 0.558 0.952 0.824 
December 13.218 0.542 0.966 0.822 
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Table A 4. Cross-validation statistics for precipitation magnitude, performing a full-standardisation of the variable. 

Month MAE ME RSD KGE 

January 11.317 -0.618 0.948 0.813 
February 10.675 -0.475 0.946 0.812 
March 10.818 -0.608 0.941 0.810 
April 11.152 -0.750 0.934 0.815 
May 11.757 -0.885 0.917 0.793 
June 9.843 -1.115 0.887 0.752 
July 6.088 -0.738 0.850 0.660 
August 6.917 -0.930 0.854 0.673 
September 10.350 -1.173 0.908 0.791 
October 12.453 -0.987 0.943 0.833 
November 12.738 -0.780 0.941 0.822 
December 12.884 -0.684 0.953 0.819 

 695 

Table A 5. Cross-validation statistics for zero-precipitation and precipitation magnitude, interpolation with no co-variates (ordinary 
kriging). Median values across all the stations. 

Month TPR TNR PPV NPV F1 MMC  MAE ME RSD KGE 

January 0.679 0.982 0.668 0.983 0.655 0.982  11.619 0.701 0.959 0.809 
February 0.658 0.984 0.671 0.983 0.648 0.984  10.943 0.627 0.957 0.808 
March 0.552 0.992 0.687 0.986 0.604 0.992  11.021 0.620 0.950 0.808 
April 0.441 0.990 0.467 0.989 0.444 0.990  11.419 0.592 0.938 0.810 
May 0.517 0.986 0.522 0.985 0.505 0.986  11.835 0.555 0.921 0.799 
June 0.626 0.971 0.694 0.961 0.626 0.971  10.013 0.230 0.898 0.756 
July 0.800 0.925 0.828 0.912 0.733 0.925  6.288 -0.068 0.872 0.674 
August 0.773 0.934 0.783 0.930 0.710 0.934  6.987 -0.024 0.881 0.698 
September 0.627 0.979 0.733 0.967 0.652 0.979  10.593 0.255 0.919 0.789 
October 0.546 0.986 0.577 0.984 0.547 0.986  12.753 0.584 0.952 0.833 
November 0.591 0.993 0.735 0.987 0.649 0.993  13.048 0.655 0.951 0.818 
December 0.575 0.984 0.566 0.984 0.554 0.984  13.230 0.682 0.964 0.819 
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Table A 6. Cross-validation statistics for precipitation magnitude, using a logarithmic variable transformation. 700 

Month MAE ME RSD KGE 

January 11.692 0.599 0.960 0.813 
February 10.957 0.547 0.958 0.812 
March 11.120 0.581 0.952 0.809 
April 11.370 0.538 0.942 0.817 
May 11.834 0.475 0.926 0.805 
June 10.062 0.222 0.902 0.758 
July 6.359 -0.085 0.875 0.678 
August 7.072 -0.023 0.876 0.698 
September 10.670 0.248 0.917 0.791 
October 12.668 0.471 0.955 0.836 
November 13.033 0.558 0.952 0.824 
December 13.218 0.542 0.966 0.822 

 

Table A 7. Cross-validation statistics for precipitation magnitude, without the small offset. 

Month MAE ME RSD KGE 

January 11.591 0.591 0.961 0.814 
February 10.958 0.548 0.958 0.812 
March 11.110 0.581 0.952 0.810 
April 11.298 0.531 0.942 0.817 
May 11.834 0.475 0.926 0.805 
June 10.062 0.222 0.902 0.758 
July 6.353 -0.086 0.875 0.678 
August 7.047 -0.022 0.878 0.699 
September 10.671 0.256 0.917 0.790 
October 12.668 0.471 0.955 0.836 
November 12.960 0.562 0.952 0.824 
December 13.085 0.552 0.966 0.822 

 


