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Abstract 10 

Floodplain is a vital part of the global riverine system. Among all the global floodplain delineation 

strategies empowered by remote sensing, DEM-based delineation is considered computationally 

efficient with relatively low uncertainties, but the parsimonious model struggles with incorporating 

spatial heterogeneity into the floodplain map. In this study, we propose a globally applicable 

thresholding scheme for DEM-based floodplain delineation to improve the representation of 15 

spatial heterogeneity. Specifically, we develop a stepwise approach to estimate the Floodplain 

Hydraulic Geometry (FHG) scaling parameters for 269 river basins worldwide to best respect the 

scaling law while approximating the spatial extent of two publicly available global flood maps 

derived from hydrodynamic modeling. Based on the spatially-varying FHG parameters, a ~90-m 

resolution global floodplain map named Spatial Heterogeneity Improved Floodplain by Terrain 20 

analysis (SHIFT) is delineated, which takes the hydrologically corrected MERIT-Hydro dataset as 

the DEM inputs and the Height Above Nearest Drainage (HAND) as the terrain attribute. Our 

results demonstrate that SHIFT validates well with reference maps with the overall accuracy 

exceeding 0.85. At the same time, it shows superior consistencies with several other datasets 

sourced from independent hydrodynamic modeling and DEM-based approaches. SHIFT 25 

effectively captures the global patterns of the geomorphic floodplains, with better regional details 

than existing data. The estimated FHG exponent exhibits a significant positive relation with the 

basins’ climatic aridity conditions, particularly for 34 world’s major river basins, suggesting the 

ability of the scaling exponents in capturing more spatial heterogeneity. SHIFT estimates global 
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floodplain area to be 8.2 million km2, representing 5.5% of the world's total land area, and we 30 

anticipate SHIFT, available at https://zenodo.org/records/10440609 (Zheng et al., 2023), to be used 

to support a range of applications requiring boundary delineations of the global geomorphic 

floodplains. 

 

Highlights 35 

l We develop a globally applicable thresholding scheme for DEM-based floodplain mapping 

that improves the integration of floodplain spatial heterogeneity. 

l We create a new 90-m geomorphic floodplain map named Spatial Heterogeneity Improved 

Floodplain by Terrain analysis (SHIFT). 

l SHIFT exhibits better consistency with existing floodplain maps. 40 

l The estimated exponent in Floodplain Hydraulic Geometry (FHG) exhibits significant a 

positive relation with climatic aridity. 

l Global floodplain area is estimated to be 8.2 million km2, representing 5.5% of the world's 

total land area. 

  45 
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1. Introduction 

Floodplain is an integral component of the global riverine system – it acts as a river’s ecological 

buffer, and offers conveniences for human settlements while also harboring flood risks (Di 

Baldassarre et al., 2013). Floodplains accommodate over half of the world’s human habitation and 

development due to their favorable nature (Andreadis et al., 2022; Best, 2019). Thus, accurate 50 

delineation of floodplain boundaries has attracted wide attention among ecologists, flood 

practitioners/engineers, and geomorphologists (Wohl, 2021). Among various mapping efforts 

across different scales and resolutions (Dhote et al., 2023), global-scale floodplain maps are 

particularly valuable as they require a consistent and spatially continuous framework, which can 

be leveraged to offer insights into the changing global floodplain characteristics and flood risks 55 

(Du et al., 2018; Lindersson et al., 2020; Rajib et al., 2021, 2023; Rentschler et al., 2022, 2023). 

 

Terrestrial observation empowered by satellite remote sensing provides essential data that allow 

for the delineation of global-scale floodplain by estimating inundation caused by flood extremes. 

One strategy for the delineation is to directly detect the flood inundation areas from optical or 60 

Synthetic Aperture Radar (SAR) remote sensing imageries (e.g., Tellman et al., 2021). This 

requires historical occurrence of a flood event to define a floodplain, but such an event-based 

approach often results in spatially discrete global floodplain maps limited by satellite data quality 

and accessibility. It also overlooks unflooded yet at-risk locations, potentially underestimating 

floodplain extents. Other strategies involve running hydrodynamic or hydraulic models, which 65 

takes input data from terrain and runoff forcing and then simulate detailed flood inundation 

dynamics in a computationally demanding manner (Bates et al., 2018; Trigg et al., 2021). This 

method derives continuous floodplain maps, and it emphasizes the inundation area under different 

flood return periods (e.g., 100-year floodplain), which is more commonly used in engineering and 

hazard mitigation practices (Wohl, 2021). Various global floodplain maps are available from 70 

different hydrodynamic models, including the European Commission’s Joint Research Centre 

(JRC) (Dottori et al., 2016), the CIMA-UNEP model from the Global Assessment Report (GAR) 

(Rudari et al., 2015), CaMa-Flood (Yamazaki, 2014), Fathom Global (Sampson et al., 2015) and 

GLOFRIS (Winsemius et al., 2013). Yet due to the uncertainties that concern the forcing inputs, 

model structure and parameters, notable inconsistencies are reported across these datasets (Bates, 75 

2023; Bernhofen et al., 2022; Trigg et al., 2016). Thus, the uncertainties associated with the above 

https://doi.org/10.5194/essd-2023-540
Preprint. Discussion started: 15 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 4 

approaches highlight the need for continuous efforts to improve global floodplain mapping 

strategies. 

 

Recent advancements in remote sensing offer ever-growing spatial coverage, refined resolution 80 

and improved accuracy of global terrain products, motivating the third strategy to directly delineate 

floodplains with satellite-derived terrain data. The Digital Elevation Models (DEMs)-based or 

terrain analysis approach is often considered to exhibit higher computational efficiencies as it takes 

less data and parameters, and the sufficiently accurate DEMs are already recognized as the least 

uncertain component compared to other uncertainty sources in global floodplain mapping with 85 

hydrodynamic models (Bates, 2023). As a result, the parsimonious DEM-based floodplain 

mapping method receives growing attention in large-scale studies and ungauged basins (Manfreda 

et al., 2014; Nardi et al., 2013, 2018; Tavares da Costa et al., 2019). DEM-based floodplain 

mapping generally consists of two steps. First, essential terrain attributes such as Height Above 

Nearest Drainage (i.e., HAND), Topography Wetness Index, Slope Position, or their derivatives 90 

are calculated from DEMs to represent river proximity (Beven and Kirkby, 1979; Rennó et al., 

2008; Weiss, 2001; Xiong et al., 2022). Second, thresholding schemes are applied to these 

attributes to delineate the floodplain boundary (Dhote et al., 2023). For example, the GFPlain 

algorithm, a widely applied method for terrain-based floodplain delineation (Knox et al., 2022; 

Manfreda et al., 2014; Nardi et al., 2006; Rajib et al., 2023), adopts such an approach to create the 95 

GFPlain250m dataset (Nardi et al., 2019). In a recent comparative study, GFPlain250m was proved 

to show the highest consistency with several existing floodplain maps, highlighting the potential 

of geomorphic floodplain delineation in reducing model uncertainties (Lindersson et al., 2021).  

 

However, DEM-based mapping methods also face challenges particularly in characterizing spatial 100 

heterogeneity (Annis et al., 2019), or spatial variations of floodplain characteristics and processes 

discovered across scales such as topography, morphology, climate, stratigraphy, biodiversity and 

river fluxes (Iskin and Wohl, 2023; Wohl, 2021; Wohl and Iskin, 2019). In a DEM-based mapping 

approach, one needs to address the impact of heterogeneous factors on floodplain extents through 

thresholding schemes, but currently there is no universal large-scale thresholding scheme available 105 

(Dhote et al., 2023). Many previous attempts assume homogeneous determining factors within the 

study area and directly assume a universal threshold (e.g., a specific HAND threshold for all pixels) 

https://doi.org/10.5194/essd-2023-540
Preprint. Discussion started: 15 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 5 

in obtaining geomorphic floodplains, which may suffice at smaller scales but could significantly 

skew results in large-scale studies (Afshari et al., 2018; Hocini et al., 2021; Manfreda et al., 2014; 

Nardi et al., 2013). To better account for spatial heterogeneity, the aforementioned GFPlain 110 

algorithm (Nardi et al., 2006) applied the floodplain hydraulic geometry (hereafter FHG, Bhowmik, 

1984) as the thresholding scheme. In the FHG scaling law relationship, the floodplain extent scales 

exponentially with the river’s upstream drainage area (UPA), which adds UPA as the primary 

determining factor in deriving floodplain maps. However, it often adopts universal values for FHG 

parameters across basins (Nardi et al., 2019), implying that other sources of heterogeneity 115 

encapsulated by the FHG scaling parameters is ignored. While studies attempting to estimate the 

empirical parameters of FHG with statistical fitting methods exist, it remains difficult to derive 

FHG parameters worldwide and to offer further physical interpretations for the parameters. Such 

inadequate representation and understanding of spatial heterogeneity in FHG parameters may lead 

to inaccurate delineations in less well-documented regions; for example, overestimated floodplains 120 

in arid or semi-arid area as reported by existing assessments of geomorphic floodplains (Dhote et 

al., 2023; Lindersson et al., 2021).  

 

To complement existing studies, here we develop a globally applicable framework to estimate 

FHG parameters that better integrate spatial heterogeneity into our thresholding scheme. It takes 125 

two publicly available hydrodynamic floodplain maps as the reference to estimate spatially varied 

FHG parameters across 269 global river basins. Based on this, we develop a 90-m global 

geomorphic floodplain map named Spatial Heterogeneity Improved Floodplain by Terrain analysis 

(SHIFT). SHIFT calculates HAND above the nearest river pixel to which it drains by utilizing the 

hydrologically corrected MERIT-Hydro (Yamazaki et al., 2019) dataset. Due to the use of the 130 

MERIT-Hydro dataset, SHIFT also addresses limitations of existing global geomorphic mapping 

that used uncorrected DTM with limited spatial coverages (60°N to 60°S) and relatively low spatial 

resolutions. Our manuscript is organized as the follows. Section 2 introduces our methods and data 

in detail. Section 3 presents our geomorphic floodplain data and the accuracy assessment against 

several reference maps. Sections 4 & 5 close with discussions and conclusions of this study. 135 

 

https://doi.org/10.5194/essd-2023-540
Preprint. Discussion started: 15 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 6 

3. Methods and Data 

SHIFT is developed following the technical flowchart in Fig. 1. Below we will describe our data 

and methods in detail. 

 140 

 
Fig 1. Technical workflow of the study. Parallelograms denote data; rectangles denote processing; 

highlighted rectangles are the key features of SHIFT. Stepwise parameter estimation is marked in 

the grey box. 

 145 

2.1 Data 

(1) MERIT-Hydro hydrography map. We take terrain inputs (i.e., elevation, d-8 flow direction and 

upstream drainage area) from the MERIT-Hydro dataset (Yamazaki et al., 2019). It is a 90-m 

resolution global dataset that combines data from the Space Shuttle Radar Topography Mission 

(SRTM) and airborne LiDAR, which has undergone rigorous error correction processes to remove 150 

various types of errors such as striping noise, speckle noise, absolute errors, as well as biases in 

tree heights. Multiple remote sensing datasets and Volunteer Geographic Information System 
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(Volunteer GIS) water data are used to further enhance its ability to identify river locations. 

Specifically, it combines OpenStreetMap river vector data, SRTM waterbody data, and Landsat-

derived water data to calculate the likelihood of a grid cell representing a water body. In areas with 155 

a high likelihood of water, the elevation is adjusted lower. This approach effectively improves the 

accuracy of flow direction calculations and minimizes deviations in flat areas. The dataset is 

georeferenced to the WGS84 and EGM96 geodetic reference systems, with a spatial resolution of 

3 arc-seconds (approximately 90 meters at the equator). 

 160 

(2) HydroBASINS Level-3 Global Basins. We applied basin boundary data from the level-3 

HydroBASINS dataset to introduce the basin-by-basin spatial variability in parameter estimation. 

It is a multi-level global basin dataset derived from the SRTM DEM data as part of the 

HydroSHEDS project (Lehner and Grill, 2013). HydroBASINS is structured into 12 levels of 

basins, with higher levels representing finer basins. The dataset applies the Pfafstetter coding 165 

system to support analysis of watershed topology including upstream and downstream connectivity. 

The first three levels are assigned with Level 1 categorizing continents, Level 2 dividing continents 

into major sub-units, and Level 3 delineating the largest river basins on each continent (Lehner, 

2014). The Level-3 sub-basins in HydroBASINS consist of 269 units globally with an average size 

of 555,600 km2. Among them, 34 major river basins with complete coverage between 60°N to 170 

60°S (the spatial extent of our reference maps, see below) are used for further analysis in Section 

4.1.  

 

(3) JRC flood map. The flood hazard map created by the European Commission’s JRC is selected 

as part of the reference and validation dataset. It is based on the 3-arcsecond SRTM DEM, which 175 

combines hydrological simulations from the Global Flood Awareness System (GloFAS) with a 

two-dimensional CA2D hydraulic model for flood inundation mapping. The GloFAS simulations 

utilize ERA-Interim data, covering the period from 1980 to 2013, and operate at a resolution of 

0.1 degrees (approximately 11 km at the Equator). The system simulates streamflow by coupling 

two distributed global models: HTESSEL, which estimates surface water and energy fluxes in 180 

response to atmospheric forcing, and LISFLOOD Global, which uses the output from HTESSEL 

to simulate routing processes and streamflow. The flood hazard maps produced are at a 30-second 

resolution and focus on river channels with an upstream catchment area greater than 5000 km² 
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(Dottori et al., 2016). The JRC dataset provides flood hazard maps with different return periods 

from 10 years to 1000 years. Here we used the 500-year flood map as a reference floodplain map 185 

based on the notion that geomorphic floodplains are dominantly shaped by high-impact yet low-

possibility events (Annis et al., 2019; Bhowmik, 1984; Lindersson et al., 2021). 

 

(4) GAR flood map. We also select the 500-year flood map by hydrodynamic model from the GAR 

of the United Nations Office for Disaster Risk Reduction (UNDRR) and the CIMA foundation as 190 

a reference and validation dataset. The GAR data employs a global database of discharge data from 

over 8000 stations to estimate extreme streamflows and DEM from HydroSHEDS for hydraulic 

modeling. This one-dimentional model applies Manning’s equation to calculate river stages. The 

GAR flood map also considers artificial flood defense by assuming target return periods of flood 

defenses based on the GDP distribution, thereby locally reducing the estimated flooded volume 195 

within the estimated protected area. The dataset is characterized by return periods of 25, 50, 100, 

200, 500, and 1000 years, a coverage of 60°N to 60°S, with a native resolution of 90 meters from 

the SRTM DEM, later aggregated to 1 km for risk computation (Rudari et al., 2015).   

 

(5) GFPlain250m floodplain map. The aforementioned geomorphically delineated GFPlain250m 200 

floodplain map is used as the benchmark and another validation dataset (Nardi et al., 2019). It 

shares the same coverage with GAR (60°N to 60°S). For each grid, it calculates the height above 

the lowest elevation grid within the same watershed (i.e., the basin outlet) as the terrain attribute 

rather than the nearest river grid to which it drains. This may lead to underestimation of floodplain 

in upstream areas. FHG is applied as the thresholding scheme (Nardi et al., 2006), but the exponent 205 

takes universal values across different basins (i.e., exponential parameter b = 0.3, proportional 

parameter a = 0.01) for convenient global applications. It takes the 250 m SRTM DTM as terrain 

input and implements the hydrological analysis workflow by using the ArcPy library. 

 

(6) GLWD lake and reservoir dataset. We apply a global lake mask to crop the reference map 210 

before using it for parameter estimation, which helps to avoid inconsistent lake representations 

from our reference and validation datasets. To do that, the Global Lake and Wetland Dataset 

(GLWD) jointly developed by the World Wildlife Fund (WWF) and the Center for Environmental 

Systems Research at the University of Kassel (Lehner and Döll, 2004) is used. It consists of three 
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layers and the Level-1 layer represents large lakes and reservoirs, including 3,067 lakes and 654 215 

reservoirs with lake area ≥ 50 km² and storage capacity ≥ 0.5 km³, respectively. The dataset takes 

reference from multiple sources and is further refined with independent data from USGS and 

extensive visual inspections and quality control. 

 

(7) Global-AI_PET_v3 Aridity Index database. We use the Aridity Index (AI) from the Global 220 

Aridity Index and Potential Evapotranspiration Database (Global-AI_PET_v3) to assess its linkage 

with the FHG parameter. The database provides 30 arc-second global Potential Evapotranspiration 

(ET0) and AI data. AI is calculated as the ratio of mean annual precipitation to mean annual 

reference ET0, which is estimated by the FAO Penman-Monteith Reference Evapotranspiration 

equation. It has been validated against various weather station data and shows an improved 225 

correlation with real-world data compared to previous versions (Zomer et al., 2022). 

 

2.2 Methods 

This section introduces HAND, FHG and our parameter estimation scheme for SHIFT.  

 230 

(1) HAND as a terrain attribute. HAND is a derivative terrain index that describes the relative 

elevation difference between any grid cell in a DEM and its nearest river grid (Rennó et al., 2008). 

River grid here is identified by applying a 1000 km2 threshold to the Upstream Drainage Area 

(UPA). Accurate HAND calculation requires defining the nearest river network grids either by 

flow direction or by distance. The flow direction model defines the first river network grid reached 235 

by tracing the d-8 flow as the nearest drainage, resulting in floodplain maps that capture regional 

hydrological characteristics but influenced by local terrain fluctuations. The distance model 

searches for the nearest drainage grid with a specific distance (e.g., two-dimensional or three-

dimensional Euclidean distance), highlighting geometric considerations but ignores natural 

geomorphic separations. We adopt the flow direction method to avoid discontinuities in HAND 240 

introduced by the distance model (not shown); subsequent results in floodplain delineation are 

derived from using the d-8 flow directions obtained from the MERIT-Hydro dataset.    

 

(2) FHG as a thresholding scheme. FHG is an adapted form of the original river channel hydraulic 

geometry (Leopold and Maddock, 1953). It posits a power-law relationship between floodplain 245 
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characteristics (width, depth, 100-year discharge) and river size (UPA or strahler stream order). In 

the context of floodplain delineation, it considers a power-law relationship between the potential 

inundation depth (h) of a river grid cell and its UPA:  

 

ℎ = 𝑎 ∙ 𝑈𝑃𝐴!	 (1) 250 

 

where a and b are empirical parameters containing heterogeneous factors determining floodplain 

extents. Then, the algorithm determines grid cells with HAND lower than h of the corresponding 

river grid (hriver) as floodplain, which can be represented by Eq. (2): 

 255 

𝑓(𝐻𝐴𝑁𝐷, ℎ"#$%") = 11, 𝐻𝐴𝑁𝐷 ≤ ℎ"#$%"
0,𝐻𝐴𝑁𝐷 > ℎ"#$%"

(2) 

 

(3) FHG parameter estimation. Estimating FHG parameters requires either reference floodplain 

extents or estimated runoff as inputs (Annis et al., 2019; Nardi et al., 2013). We take two 

hydrodynamic model outputs as the reference map (i.e., the 500-year return period JRC and GAR 260 

flood maps) as they intrinsically contain floodplain spatial heterogeneity by feeding gauged 

streamflow observations or climate reanalysis data (Lindersson et al., 2021). For areas where both 

maps are available, we take both the join and the interserction of JRC and GAR as the reference, 

as we consider the intersection map to be accurate and the union map to be comprehensive. For 

areas above 60°N, we take the JRC as the reference since it is the only map available. 265 

 

With the above reference map, two methods can be used to estimate FHG parameters: parameter 

space sampling (PSS) and logarithmic regression (LR). PSS defines a feasible range for two 

parameters in Eq. (1), and then samples the parameters from the parameter space and tests their 

combinations against a reference map by using a fitness index (Annis et al., 2019). LR assumes 270 

that all floodplain grids from the reference map satisfy the scaling law so that the FHG parameters 

b and a can be estimated by statistical approximation (Nardi et al., 2013). For LR, we expect all 

floodplain pixels in the reference map to satisfy:  

 

𝐻𝐴𝑁𝐷 ≤ 𝑎 ∙ 𝑈𝑃𝐴"#$%"! (3) 275 
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which could be transformed into: 

 
𝑙𝑛(𝐻𝐴𝑁𝐷) ≤ 𝑏 ∙ 𝑙𝑛	(𝑈𝑃𝐴"#$%") + 𝑙𝑛	(𝑎) (4) 

 280 

Apparently, PSS can best approximate the output but could lead to equifinality, while LR 

emphasizes the scaling law but could be influenced by uncertainties of the reference data (see more 

details below). Therefore, we combine the two methods above and propose a stepwise parameter 

estimation framework. Specifically, we first determine baseline values for parameter a0 from prior 

research, then estimate b by forcing logarithmic regression based on the reference dataset to best 285 

respect the FHG scaling law; then, the coefficient a is calculated by sampling parameter space 

based on the reference map and the determined b value. 

 

Equation (4) anticipates a positive linear relationship (Fig. 2a) between ln(UPAriver) and the 

maximum ln(HAND) values that mark the furthest floodable grid by each river grid, but our 290 

observations deviate from this expectation because some river grids with small drainage areas can 

have unexpectedly high HAND values. These can be ascribed to uncertainties with our reference 

map that inherits the model chain errors, terrain data and spatial resolution inconsistencies, as well 

as other unaccounted within-basin variability that may break the scaling law. While results from 

the Gaussian kernel density plot (Fig. 2b) prove that the majority of data still conforms to the 295 

power law, the patterns indicates that one cannot simply apply LR to the maximum ln(HAND) and 

ln(UPAriver) to obtain the required parameters. 
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Fig 2. The expected and actual scenario of floodplain grids within a basin. X-axis represents 

ln(UPAriver), y-axis represents ln(HAND). a) shows the scatter plot of the expected linear 300 

relationship between maximum ln(HAND) and ln(UPAriver). Blue scatters are the maximum 

HAND values while gray scatters are non-maximum reference floodplain grids. b) shows the 

actual scenario (i.e., the Yangtze River basin, BasinID: 4002082) which approximately arrives at 

the power law relationship in kernel density plot.  

 305 

Therefore, we develop a scheme to effectively mitigate data noises in estimating parameter b while 

maintaining the power law for the majority of grids. First, we take floodplain grids from the less 

noisy intersection reference map and set a universal HAND threshold of 20 m to screen out the 

most obvious high anomalies. We then group HAND values by UPAriver and apply an iterative 

moving-window data-filtering scheme based on 3-sigma statistics where every grid would be 310 

filtered by 20 windows (window size = 1, step = 0.1). In each iteration, we compute the mean and 

standard deviation for the data within each window. A grid point is retained only if it consistently 

meets the 3-sigma criteria across all 20 windows. This iterative process stops either when every 

data point fits within all moving windows, or if the procedure fails to converge towards a stable 

solution. Instead of directly performing LR, we calculate a sequence of theoretical b values from 315 

the maximum HAND of each UPAriver unit with a baseline estimate of a0= 0.01 based on prior 

research (Nardi et al., 2019). As the optimal b will lean towards the higher end of our calculated 
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sequence but not at the highest end as it could be possibly interfered by remaining high HAND 

anomalies, we evaluate the 10% to 50% percentiles of these b sequences across all basins to 

identify the best percentile that centers around the previously estimated global b value of 0.3  320 

(Nardi et al., 2019). The b value under this identified percentile is then chosen as the optimal 

parameter for each individual basin. 

 

After b is determined, the coefficient a is optimized with an iterative PSS method. We take both 

the intersection map and the union map as our reference dataset, as we would like to highlight the 325 

‘consensus’ of existing maps while trying to capture more spatial heterogeneity from both maps. 

We apply the Overall Accuracy (OA) as the target in the parameter estimation process: 

 

𝑂𝐴 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
(5) 

 330 

A, B, C, D denote overlapping (True Positive), over-predicition (False Positive), under-prediction 

(False Negative), and correct rejection (True Negative), respectively. We select OA instead of 

kappa coefficient (Cohen, 1960), Model Agreement Index (Trigg et al., 2016) or measure-of-fit 

function (Nardi et al., 2019), because other indices can be less appropriate in our case as we use a 

composite of two largely inconsistent hydrodynamic flood maps.  Approximation by these indices 335 

would focus on predicted areas by either dataset and may overlook non-floodplain areas, which 

could lead to overestimation in parameters and thus floodplain extents. Considering the previously 

estimated a values range across 0.001 to 0.06 (Nardi et al., 2018), we first sample 20 equidistant 

a values between 0 and 1 against the reference data. Then the direct neighbor of the best-

performing a value, constraining its precision to at least one decimal place, is used to search for 340 

the true optimal a. We apply four iterations, each with a new set of 20 equidistant a values within 

the estimated direct neighbors from the last iteration. The optimal a from the final iteration is then 

selected as the as the basin-specific coefficient.  

 

(4) Development of SHIFT. Based on the above, we estimate the FHG parameter with the 345 

HydroBASINS level-3 basins, and derive the floodplain map for each basin and then integrate 

them into a 90 m global floodplain map. We use Python 3.10 libraries (e.g., Pandas, Numpy and 
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Geopandas), the GDAL command line interface and the TauDEM toolkit (Terrain Analysis Using 

Digital Elevation Models (TAUDEM)) for the FHG parameter estimation and the thresholding. 

We also downsize the dataset to 1-km resolution floodplain map for convenient large-scale 350 

applications, and the 1-km resolution floodplain map is provided as part of the final output. 

Permanent water bodies are removed for all processes. 

 

(5) Validation. Finally, we conduct a pairwise consistency analysis among four floodplain maps, 

i.e., SHIFT, GFPlain250m, JRC and GAR to ensure the quality of SHIFT. We also apply OA and 355 

Model Agreement Index (MAI, see Eq. 6) for this pairwise consistency analysis in reference to 

previous research (Lindersson et al., 2021), where A, B, C in Eq. (6) are the same as Eq. (5).  

 

𝑀𝐴𝐼 =
𝐴

𝐴 + 𝐵 + 𝐶
(6) 

A, B, C denote the same as Eq. 5. b has different influence on rivers depending on their drainage 360 

area, i.e., large b values highlighting the dominance of large rivers over tributaries in shaping 

floodplain extents, we expect b to be better associated with the spatial heterogeneity of floodplain 

characteristics. Therefore, we also calculate the correlation of the exponent b and climate aridity 

of all basins, which helps to validate whether our thresholding scheme can better capture spatial 

heterogeneity of global floodplains. 365 

 

4. Results 

3.1 Global FHG parameter estimation 

Based on the stepwise parameter estimation scheme proposed in Section 2.2 (3), we obtain the 

statistical distributions of different b percentiles in Fig. 3a. While distributions from all percentiles 370 

exhibit similar patterns, especially for the 20th to 50th percentiles, we apply the 30th percentile 

worldwide as it best distributes around the previously estimated global b value of 0.3  (Nardi et al., 

2019; see dashed line in Fig. 3a). Under this percentile, the estimated b values fall within the range 

of 0.2 to 0.4 across all 269 basins globally, and they exhibit a statistically significant but weak 

positive correlation (r = 0.281) with the climatic aridity of all basins. Notably, it exhibits a 375 

reasonably strong correlation for 34 global major river basins (r = 0.612, Fig. 3b).  
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Spatially, the distribution of the estimated b (Fig. 3c) shows that regions characterized by abundant 

precipitation and water resources (e.g., southern East Asia, Southeast Asia, the Mississippi and 

Amazon) generally exhibit relatively higher b values. Conversely, regions such as Central-West 380 

Asia, the Arabian Peninsula, the Sahara region, and central Australia tend to have relatively lower 

b values. There are also exceptions, for instance the overall high b values in the arctic circle, low 

values in river deltas (e.g., Red river in North America, Jiaodong Penninsula in Eastern Asia) along 

with the high anomalies in the Great Victoria Desert in Australia. Based on the estimated b, the 

coefficient a is also optimized which varies from 0.0001 to a maximum of 0.2 across all basins. 385 

 

 
Fig 3. Results of FHG parameter b estimation. a) The distribution of parameter b across basins, 

p10 to p50 represent the percentiles during estimatio, b = 0.3 line shows the universal value applied 

in previous research. b) Scatter plot with regression line for Aridity Index and parameter b, gray 390 
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scatters stand for all basins and red scatters for major basins. c) Spatial distribution of parameter b 

across HydroBASINS level-3 basins.  

 

3.2 Global floodplain delineation 

Based on the estimated FHG parameters, the global distribution of floodplain areas is delineated 395 

and shown in Fig. 4a. Overall, the spatial pattern of the floodplains aligns well with the low-lying 

areas in major river systems. More specifically, floodplains in Northern Asia are mainly distributed 

around the West Siberian Plain and the Central-West Siberian Plateau, e.g., the Ob and Yenisei 

River Basins. West and Central Asia’s floodplains are primarily near the Caspian Sea, the Aral Sea, 

and the Mesopotamian Plain. In East Asia, the Yangtze River Basin dominates floodplains in the 400 

middle and lower reaches, along with contributions from the North China Plain, some Yellow River 

tributaries such as the Hetao Plain, and river mouths in the southeast. The Lancang-Mekong River 

Basin and the Salween-Irrawaddy River Basin in Southeast Asia also breed the largest floodplains 

worldwide, as well as the Indus and Ganges-Brahmaputra River Basins from South Asia. In Europe, 

the primary floodplains are concentrated in the Danube River Basin between the Alps and the 405 

Carpathian Mountains, alongside the Rhine, Dnieper and Po River Basins. In Africa, floodplains 

are predominantly distributed in the upstream Nile River, including the Nile Delta and the Niger 

River Basin, as well as the Congo River Basin, the Chari River-Lake Chad Basin and around Lake 

Victoria, with additional areas near West and East Africa's coasts. North America's floodplains are 

mainly in the Mississippi River Basin and Alaska's Yukon River Basin. South America's 410 

floodplains are primarily in the Amazon River Basin, the Orinoco plain, and the La Plata plain. In 

Oceania, floodplains center around the Murray-Darling River Basin in the interior lowlands.  

 

To show more regional details, we use two cases under different climatic conditions (Figs. 4b & 

4c) to further illustrate the differences between SHIFT and the widely used GFPlain250m dataset. 415 

Case 1 (Fig. 4b) is the Indus-Ganges-Brahmaputra River basin which flows through Bangladesh, 

India, Pakistan, and Nepal. These countries are primarily characterized by frequent floods and are 

strongly influenced by the South Asia monsoon. SHIFT captures detailed floodplains in the Indus 

River basin, a major basin in South Asia where GFPlain250m leaves out. Additionally, SHIFT 

offers finer details in upstream areas and can better distinguish main river floodplains from those 420 

of the tributaries. Case 2 (Fig. 4c) is situated in the Yellow River basin (Hetao Plain) in Inner 
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Mongolia, China, a region dominated by arid to semi-arid continental climate. Comparing the 

floodplain maps with visual interpretations of the satellite images suggests that SHIFT can provide 

a more comprehensive depiction of the Hetao Plain. The floodplains outside of the Hetao Plain in 

SHIFT are relatively limited, which aligns with its generally dry climate conditions. 425 

 

 
Fig 4. Geomorphic floodplain extent in SHIFT. a) Global spatial distribution of floodplains, 

with major river basins or plains marked out. b) and c) show two cases of our floodplain delineation 

and the GFPlain250m dataset, with background image from © Google Earth on EPSG: 3857 430 

projection. b) locates in the humid Indian-Ganges river basin, while c) locates in the semi-arid 

yellow river basin in inner Mongolia, China.  

 

According to SHIFT, global floodplains take up approximately 8.2 million km2, representing 5.5% 

of the world's total land area. Fig. 5 further shows the floodplain area and percentage of floodplains 435 

within each of the global major river basins. Overall, the Amazon River Basin possesses the largest 

total floodplain area globally (743,294 km2), followed by the Parana, Nile, Volga and Mississippi 

River basins. Floodplains in Haihe River Basin takes up the greatest area percentage (~27%), 
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highlighting the great flood inundation potential of such basins. Comparing across continents, 

South America and Asia breed the most widespread floodplain extent worldwide, while river 440 

basins in Asia tend to have the highest floodplain percentages. 

 

 
Fig 5. Floodplain area statistics in major river basins. Blue bars stand for total floodplain area 

(left y-axis), red bars stand for the ratio of floodplain area to the total basin area (right y-axis). 445 

Basins are ranked by total floodplain area. AF: Africa, AS: Asia, AU: Australia, EU: Europe, NA: 

North America, SA: South America. 

 

 

3.3 Validation and consistency analysis 450 

Figure 6 shows the global basin-level distribution of OA between SHIFT and the reference map 

that considers both the intersection and union of two hydrodynamic maps (Section 2.1). The results 

reveal that the algorithm achieves an accuracy of over 0.85 in the majority of global basins, proving 

the effectiveness of our parameter estimation scheme in capturing information from the reference 

maps. Regions with well-established floodplain mapping systems (e.g., Danube and Mississippi) 455 

tend to show better consistency between reference maps and thus present higher OA, while the 
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lowest OA are seen in river deltas, including the delta of the Amazon River (OA = 0.56) and the 

Nile River (OA = 0.73), the Red River in North America (OA = 0.81), as well as the Jiaodong 

Penninsula in East Asia (OA = 0.81). Most basins perform better against the intersection map 

compared to the union map due to large inconsistency between the two reference maps themselves. 460 

The arctic basins and arid regions (e.g., the Sahara, Mongolia, and central Australia) present 

highest OA against both reference datasets due to the very limited floodplain distribution there.  

 

 
Fig 6. Validation of SHIFT against two reference datasets. Two variables in the bivariate map 465 

are the OA against the union map (magenta) and the intersection map (cyan). Balanced OAs will 

result in blue basins. 

 

Fig. 7a shows the statistics of the pairwise consistency analysis among different floodplain maps 

(i.e., SHIFT, JRC, GAR, GFPlain250m). Overall, the highest MAI is observed between GAR and 470 

GFPlain250m, as well as the SHIFT and JRC pair (blue box, Fig. 7a), demonstrating the 

superiority of geomorphic mapping approaches, and such a pattern is more prominent when 

considering 34 major basins only (orange box, Fig. 7a). For example, the consistency between 

SHIFT and JRC surpassed that between GAR and GFPlain250m. In the remaining pairs, SHIFT 

consistently presents higher MAI with other validation datasets. The high MAI between GAR and 475 

GFPlain250m is likely the result of overestimation, especially in GAR, as evidenced by the lowest 

OA values for all pairs involving GAR. In contrast, SHIFT consistently shows the highest OA 
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values with existing pairs, both in GAR pairs and non-GAR pairs. Such patterns of high MAI but 

low OA concerning GAR reveal the complex dynamics between consistency and accuracy.  

 480 

To better understand the spatial variation in pairwise analysis, we plot the most consistent pair and 

corresponding MAI values for each basin (Fig. 7b). We find that basins with SHIFT as their 

highest-consistency pair are typically located in humid to sub-humid basins, including most major 

basins such as the Mississippi, Amazon, Yangtze, and Nile. In contrast, basins with GAR and 

GFPlain as the highest-consistency pairs are generally distributed in arctic basins and arid to semi-485 

arid regions (e.g., the Sahara and Central Australia) where both maps delineate floodplains more 

extensively than expected. These results further prove that SHIFT can effectively capture spatial 

heterogeneity encapsulated in the reference datasets. At the same time, it also exhibits high 

consistency with existing datasets, while better distinguishing between regions with different 

hydroclimatic conditions. 490 
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Fig 7. Results of the consistency analysis. a) shows boxplots of pairwise MAI (left) and OA (right) 

among SHIFT, GFPlain250, JRC and GAR. Statistics for all 269 basins are shown in blue boxes, 

and that for the 34 major river basins are shown in orange. b) shows bivariate choropleth map of 495 

the highest-performance MAI pair and the corresponding MAI value for each basin. Higher MAI 

results in higher saturation. 

 

 

4. Discussions 500 

Despite the demonstrated superiority in our approach, several caveats are worth mentioning.  
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4.1 Uncertainties of the exponent b estimation 

During the development of the thresholding scheme, we recognize uncertainties with the FHG 

relation due to the inconsistencies between the reference maps as well as the data quality across 505 

regions. Thus, we quantify the uncertainty of b by calculating the standard deviation among all 

possible b values derived at different percentiles, based on the notion that high reference data 

quality would reduce abnormal HAND values, leading to a narrower range of the estimated b 

sequence and lower standard deviation. While the uncertainty distribution (Fig. 8) reveals a 

complex pattern that does not simply align with the expected b patterns shown in Fig. 3, areas with 510 

limited floodplain (e.g., Western Australia, Central-West Africa, and Central-West Siberia) and 

mountainous regions (e.g., the Rocky Mountains and the Andes) generally show higher 

uncertainties (red colors). Recall that we have applied uniform percentiles worldwide to filter data 

noise, the low uncertainties in regions such as Yangtze, Pearl, Ganges River basins likely suggest 

a rigorous filter and a subsequently underestimation of b may be applied. Yet in the absence of 515 

independent data to inform better strategies, we consider our proposed approach valid and effective. 

 

 
Fig 8. The uncertainty of parameter b by basins. Uncertainty is quantified as the standard 

deviation among all possible b values derived at different percentiles (see Section 2.2 for methods). 520 

 

4.2 Differentiation between flood inundation and floodplain maps   

Geomorphic floodplain maps and inundation maps are fundamentally different, but delineation 

methods for the latter can be used to delineate the former. Inundation maps have been described 

as 'hydraulic floodplains' to highlight their engineering uses (Wohl, 2021). In this study, we employ 525 
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two 500-year return period flood inundation maps as the reference to estimate floodplain extents, 

as previous studies imply that geomorphic floodplains are predominantly shaped by low-

probability but high-impact flood occurences (Lindersson et al., 2021). It should be noted that our 

DEM-based approach can be applied to derive FHG parameters based on other return periods, but 

this study is primarily concerned with exploring the geomorphic characteristics of floodplains 530 

rather than focusing on inundation maps on different return periods.  

 

4.3 Spatial scales of SHIFT 

The spatially varying parameters for SHIFT are derived based on HydroBASINS Level-3 basins, 

which depicts 269 river basins in different continents with some containing aggregations of smaller 535 

basins. These basins are not hydrologically connected and do not share homogeneous determining 

factors, thus are suitable for our thresholding scheme that estimates one set of parameters for each 

basin. A possible strategy to improve the scheme is to further divide these basins into smaller sub-

basins, but smaller-scale analysis can increase the impact of reference data uncertainties especially 

in delta regions with high floodplain discordance (Fig. 5a). Considering the high data noise that 540 

may limit the further integration of sub-basin level heterogeneity in estimating parameters, the 

spatial disaggregation scheme used by SHIFT is thought to mark a step forward in improving 

heterogeneity while offering reasonable physical interpretations of the parameters. 

 

Lastly, when calculating HAND as the terrain attribute for SHIFT, we set an UPA threshold of 545 

1000 km2 to delineate the river network grids following past studies (Dottori et al., 2016; Nardi et 

al., 2019; Rudari et al., 2015). A sensitivity test on a smaller threshold (50 km2) not shown here 

suggests that more detailed floodplains around smaller rivers can be derived, but at the same time 

such a threshold can limit expected floodplains by large rivers. Thus, this study considers the 1000 

km2 UPA threshold to be valid. Future large-scale studies can further investigate the above 550 

mentioned spatial scale parameters to derive finer maps. 
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5. Conclusions 

In this study, we develop an improved thresholding scheme for large-scale DEM-based floodplain 555 

delineation, the core of which being a stepwise estimation framework for Floodplain Hydraulic 

Geometry (FHG) parameters that respects the power law while better integrating spatial 

heterogeneity from two publicly available hydrodynamic flood maps. We apply the framework to 

269 basins worldwide to derive the required FHG parameters, and the empirical exponent b in 

FHG exhibits reasonable correlations with hydroclimatic conditions, especially for major river 560 

basins, proving the effectiveness of our method in better capturing climatic heterogeneity 

compared to studies that adopt a homogeneous exponent worldwide. Based on the proposed 

framework, we created a global geomorphic floodplain map named SHIFT (Spatial Heterogeneity 

Improved Floodplain by Terrain analysis) using terrain inputs from the 90-m MERIT-Hydro 

dataset, where SHIFT is demonstrated to capture both the global patterns and regional details of 565 

geomorphic floodplains well. Global consistency analysis with other floodplain or flood maps 

from independent data sources further show that SHIFT exhibits superior consistency with existing 

datasets on a pair-wise basis. We provide the SHIFT data layers at two spatial resolutions (i.e., 90-

m and 1-km resolution) for the convenience of the users. Moreover, this research also offers a 

framework for better understanding FHG parameters and contributes a comprehensive geomorphic 570 

floodplain dataset, allowing future large-scale floodplain studies to better capture global patterns 

and address regional floodplain characteristics. 
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