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Abstract 

Floodplain is a vital part of the global riverine system. Among all the global floodplain delineation 

strategies empowered by remote sensing, DEM-based delineation is considered computationally 

efficient with relatively low uncertainties, but the parsimonious model struggles with incorporating 15 

basin-level spatial heterogeneity of the hydrological and geomorphic influences into the map. In 

this study, we propose a globally applicable thresholding scheme for DEM-based floodplain 

delineation to improve the representation of spatial heterogeneity. Specifically, we develop a 

stepwise approach to estimate the Floodplain Hydraulic Geometry (FHG) scaling parameters for 

river basins worldwide at the scale of Level-3 HydroBASINS to best respect the scaling law while 20 

approximating the spatial extent of two publicly available global flood maps derived from 

hydrodynamic modeling. The estimated FHG exponent exhibits a significant positive relationship 

with the basins’ hydroclimatic conditions, particularly in 33 of the world’s major river basins, 

indicating the ability of the approach to capture fingerprints from heterogeneous hydrological and 

geomorphic influences. Based on the spatially-varying FHG parameters, a ~90-m resolution global 25 

floodplain map named Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT) is 

delineated, which takes the hydrologically corrected MERIT-Hydro dataset as the DEM inputs and 

the Height Above Nearest Drainage (HAND) as the terrain attribute. Our results demonstrate that 

SHIFT validates better with reference maps than both hydrodynamic modeling and DEM-based 
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approaches with universal parameters. The improved delineation is mainly with better 30 

differentiation between mainstreams and tributaries in major basins and a more comprehensive 

representation of stream networks in aggregated river basins. SHIFT estimates global floodplain 

area to be 9.91 million km2, representing 6.6% of the world's total land area. SHIFT data layers 

are available at two spatial resolutions (90-m and 1-km), along with the updated parameters, at 

https://zenodo.org/records/11835133 (Zheng et al., 2024). We anticipate SHIFT to be used to 35 

support applications requiring boundary delineations of the global geomorphic floodplains. 

 

Highlights 

⚫ We develop a globally applicable thresholding scheme for DEM-based floodplain mapping 

that improves the integration of floodplain spatial heterogeneity. 40 

⚫ We create a new 90-m geomorphic floodplain map named Spatial Heterogeneity Improved 

Floodplain by Terrain analysis (SHIFT). 

⚫ SHIFT has better delineation of mainstreams in major river basins and more comprehensive 

representation of stream networks in aggregated river basins. 

⚫ The estimated exponent in Floodplain Hydraulic Geometry (FHG) exhibits a statistically 45 

significant positive relation with hydroclimatic factors. 

⚫ Global floodplain area is estimated to be 9.91 million km2, representing 6.6% of the world's 

total land area. 

  



Manuscript submitted to ESSD 

 3 

1. Introduction 50 

Floodplain is an integral component of the global riverine system – it acts as a river’s ecological 

buffer, and offers conveniences for human settlements while also harboring flood risks (Di 

Baldassarre et al., 2013). Floodplains accommodate over half of the world’s human habitation and 

development due to their favorable nature (Andreadis et al., 2022; Best, 2019). Thus, accurate 

delineation of floodplain boundaries has attracted wide attention among ecologists, flood 55 

practitioners/engineers, and geomorphologists (Wohl, 2021). Among various mapping efforts 

across different scales and resolutions (Dhote et al., 2023), global-scale floodplain maps are 

particularly valuable as they require a consistent and spatially continuous framework, which can 

be leveraged to offer insights into the changing global floodplain characteristics and flood risks 

(Du et al., 2018; Lindersson et al., 2020; Rajib et al., 2021, 2023; Rentschler et al., 2022, 2023). 60 

 

Terrestrial observation empowered by satellite remote sensing provides essential data that allow 

for the delineation of global-scale floodplain by estimating inundation caused by flood extremes. 

One strategy for the delineation is to directly detect the flood inundation areas from optical or 

Synthetic Aperture Radar (SAR) remote sensing imageries (e.g., Tellman et al., 2021). This 65 

requires historical occurrence of a flood event to define a floodplain, but such an event-based 

approach often results in spatially discrete global floodplain maps limited by satellite data quality 

and accessibility. It also overlooks unflooded yet at-risk locations, potentially underestimating 

floodplain extents. Other strategies involve running hydrodynamic or hydraulic models, which 

takes input data from terrain and runoff forcing and then simulate detailed flood inundation 70 

dynamics in a computationally demanding manner (Bates et al., 2018; Trigg et al., 2021). This 

method derives continuous floodplain maps, and it emphasizes the inundation area under different 

flood return periods (e.g., 100-year floodplain), which is more commonly used in engineering and 

hazard mitigation practices (Wohl, 2021). Various global floodplain maps are available from 

different hydrodynamic models, including the European Commission’s Joint Research Centre 75 

(JRC) (Dottori et al., 2016), the CIMA-UNEP model from the Global Assessment Report (GAR) 

(Rudari et al., 2015), CaMa-Flood (Yamazaki, 2014), Fathom Global (Sampson et al., 2015) and 

GLOFRIS (Winsemius et al., 2013). Yet due to the uncertainties that concern the forcing inputs, 

model structure and parameters, notable inconsistencies are reported across these datasets (Bates, 

2023; Bernhofen et al., 2022; Trigg et al., 2016). Thus, the uncertainties associated with the above 80 
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approaches highlight the need for continuous efforts to improve global floodplain mapping 

strategies. 

 

Recent advancements in remote sensing offer ever-growing spatial coverage, refined resolution 

and improved accuracy of global terrain products, motivating the third strategy to directly delineate 85 

floodplains with satellite-derived terrain data. The Digital Elevation Models (DEMs)-based or 

terrain analysis approach is often considered to exhibit higher computational efficiencies as it takes 

less data and parameters, and the sufficiently accurate DEMs are already recognized as the least 

uncertain component compared to other uncertainty sources in global floodplain mapping with 

hydrodynamic models (Bates, 2023). As a result, the parsimonious DEM-based floodplain 90 

mapping method receives growing attention in large-scale studies and ungauged basins (Manfreda 

et al., 2014; Nardi et al., 2013, 2018; Tavares da Costa et al., 2019). DEM-based floodplain 

mapping generally consists of two steps. First, essential terrain attributes such as Height Above 

Nearest Drainage (i.e., HAND), Topography Wetness Index, Slope Position, or their derivatives 

are calculated from DEMs to represent river proximity (Beven and Kirkby, 1979; Rennó et al., 95 

2008; Weiss, 2001; Xiong et al., 2022). Second, thresholding schemes are applied to these 

attributes to delineate the floodplain boundary (Dhote et al., 2023). For example, the GFPlain 

algorithm, a widely applied method for terrain-based floodplain delineation (Knox et al., 2022; 

Manfreda et al., 2014; Nardi et al., 2006; Rajib et al., 2023), adopts such an approach to create the 

GFPlain250m dataset (Nardi et al., 2019). In a recent comparative study, GFPlain250m was proved 100 

to show the highest consistency with several existing floodplain maps, highlighting the potential 

of geomorphic floodplain delineation in reducing model uncertainties (Lindersson et al., 2021).  

 

However, DEM-based mapping methods also face challenges particularly in characterizing spatial 

heterogeneity (Annis et al., 2019), or spatial variations of floodplain characteristics and processes 105 

discovered across scales such as topography, morphology, climate, stratigraphy, biodiversity and 

river fluxes (Iskin and Wohl, 2023; Wohl, 2021; Wohl and Iskin, 2019). In a DEM-based mapping 

approach, one generally addresses the impact of heterogeneous factors on floodplain extents 

through thresholding schemes, but currently there is no universal large-scale thresholding scheme 

available (Dhote et al., 2023). Many previous attempts assume homogeneous determining factors 110 

within the study area and directly assume a universal threshold (e.g., a specific HAND threshold 
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for all pixels) in obtaining geomorphic floodplains, which may suffice at smaller scales but could 

significantly skew results in large-scale studies (Afshari et al., 2018; Hocini et al., 2021; Manfreda 

et al., 2014; Nardi et al., 2013). To better account for spatial heterogeneity, the aforementioned 

GFPlain algorithm (Nardi et al., 2006) applied the floodplain hydraulic geometry (hereafter FHG, 115 

Bhowmik, 1984) as the foundation of their thresholding scheme. In the FHG scaling law 

relationship, the floodplain extent scales exponentially with the river’s upstream drainage area 

(UPA), which adds UPA as the primary determining factor in deriving floodplain maps. However, 

it often adopts universal values for FHG parameters across basins (Nardi et al., 2019), implying 

that other sources of heterogeneity encapsulated by the FHG scaling parameters is ignored. While 120 

studies attempting to estimate the empirical parameters of FHG with statistical fitting methods 

exist, it remains difficult to derive FHG parameters worldwide and to offer further physical 

interpretations for the parameters. Such inadequate representation and understanding of spatial 

heterogeneity in FHG parameters may lead to inaccurate delineations in less well-documented 

regions; for example, overestimated floodplains in arid or semi-arid area as reported by existing 125 

assessments of geomorphic floodplains (Lindersson et al., 2021).  

 

To complement existing studies, here we develop a globally applicable framework to estimate 

FHG parameters that better integrate spatial heterogeneity into our thresholding scheme. It takes 

two publicly available hydrodynamic floodplain maps as the reference to estimate spatially varied 130 

FHG parameters across all global river basins at the scale of Level-3 HydroBASINS. Based on 

this, we develop a 90-m global geomorphic floodplain map named Spatial Heterogeneity Improved 

Floodplain by Terrain analysis (SHIFT). SHIFT calculates HAND above the nearest river pixel to 

which it drains by utilizing the hydrologically corrected MERIT-Hydro (Yamazaki et al., 2019) 

dataset. Due to the use of the MERIT-Hydro dataset, due to which SHIFT also addresses limitations 135 

of existing global geomorphic mapping that used uncorrected DTM with limited spatial coverages 

(60N to 60S) and relatively low spatial resolutions. Our manuscript is organized as the follows. 

Section 2 introduces our methods and data in detail. Section 3 presents our geomorphic floodplain 

data and the accuracy assessment against several reference maps. Sections 4 & 5 close with 

discussions and conclusions of this study. 140 
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2. Methods and Data 

SHIFT is developed following the technical flowchart in Fig. 1. Below we will describe our data 

and methods in detail. 

 145 

 

Figure 1. Technical workflow of the study. Parallelograms denote data; rectangles denote 

processing; highlighted rectangles are the key features of SHIFT. Stepwise parameter estimation 

is marked in the grey box. 

 150 

2.1 Data 

2.1.1 Terrain Data 

(1) MERIT-Hydro hydrography map. We take terrain inputs (i.e., elevation, d-8 flow direction and 

upstream drainage area) from the MERIT-Hydro dataset (Yamazaki et al., 2019). It is a 90-m 

resolution global dataset that combines data from the Space Shuttle Radar Topography Mission 155 

(SRTM) and airborne LiDAR, which has undergone rigorous error correction processes to remove 

various types of errors such as striping noise, speckle noise, absolute errors, as well as biases in 
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tree heights. Multiple remote sensing datasets and Volunteer Geographic Information System 

(Volunteer GIS) water data are used to further enhance its ability to identify river locations. 

Specifically, it combines OpenStreetMap river vector data, SRTM waterbody data, and Landsat-160 

derived water data to calculate the likelihood of a grid cell representing a water body. In areas with 

a high likelihood of water, the elevation is adjusted lower. This approach effectively improves the 

accuracy of flow direction calculations and minimizes deviations in flat areas. The dataset is 

georeferenced to the WGS84 and EGM96 geodetic reference systems, with a spatial resolution of 

3 arc-seconds (approximately 90 meters at the equator). 165 

 

(2) HydroBASINS Global Basins. We applied basin boundary data from the Level-3 

HydroBASINS dataset to introduce the basin-by-basin spatial variability in parameter estimation. 

It is a multi-level global basin dataset derived from the SRTM DEM data as part of the 

HydroSHEDS project (Lehner and Grill, 2013). HydroBASINS is structured into 12 levels of 170 

basins, with higher levels representing finer basins. The dataset applies the Pfafstetter coding 

system to support analysis of watershed topology including upstream and downstream connectivity. 

The first three levels are assigned with Leve-1 categorizing continents, Level-2 dividing continents 

into major sub-units, and Level 3 delineating the largest river basins on each continent (Lehner, 

2014). The Level-3 sub-basins in HydroBASINS consist of 269 units globally with an average size 175 

of 555,600 km2. Level-4 and Level-5 boundaries are also applied for further analysis on scales. 

 

(3) MERIT-Basins. MERIT-Basins is a global vector hydrography database derived from the 90-m 

MERIT-Hydro product, based on a 25 km² threshold for drainage areas (Lin et al., 2019). It aligns 

well with the MERIT-Hydro dataset. To obtain the corresponding boundaries for parameter 180 

estimation, we combined MERIT-Basins into groups equivalent to Level-3 to Level-5 of 

HydroBASINS. We aggregated MERIT-Basins based on its spatial relationship with basins from 

HydroBASINS, ensuring that the centroid of a MERIT-Basin falls within the corresponding 

boundary. This approach accounts for slight differences in boundaries due to the use of different 

terrain data, preventing confusion in hydrological representation. Among the Level-3 basins, the 185 

40 largest hydrologically connected basins were manually selected, based on the hypothesis that 

connected basins better apply the scaling law due to shared attributes within the same hydrological 
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system. Seven of these 40 basins, with centroid located above 60°N, were excluded since one of 

our reference maps does not cover regions above 60°N.  

 190 

2.1.2 Reference and benchmark datasets 

(1) JRC flood map. The flood hazard map created by the European Commission’s JRC is selected 

as part of the reference and validation dataset. It is based on the 3-arcsecond SRTM DEM, which 

combines hydrological simulations from the Global Flood Awareness System (GloFAS) with a 

two-dimensional CA2D hydraulic model for flood inundation mapping. The GloFAS simulations 195 

utilize ERA-Interim data, covering the period from 1980 to 2013, and operate at a resolution of 

0.1 degrees (approximately 11 km at the Equator). The system simulates streamflow by coupling 

two distributed global models: HTESSEL, which estimates surface water and energy fluxes in 

response to atmospheric forcing, and LISFLOOD Global, which uses the output from HTESSEL 

to simulate routing processes and streamflow. The flood hazard maps produced are at a 30-second 200 

resolution and focus on river channels with an upstream catchment area greater than 5000 km² 

(Dottori et al., 2016). The JRC dataset provides flood hazard maps with different return periods 

from 10 years to 1000 years. Here we used the 500-year flood map as a reference floodplain map 

based on the notion that geomorphic floodplains are dominantly shaped by high-impact yet low-

possibility events (Annis et al., 2019; Bhowmik, 1984; Lindersson et al., 2021). 205 

 

(2) GAR flood map. We also select the 500-year flood map by hydrodynamic model from the GAR 

of the United Nations Office for Disaster Risk Reduction (UNDRR) and the CIMA foundation as 

a reference and validation dataset. The GAR data employs a global database of discharge data from 

over 8000 stations to estimate extreme streamflows and DEM from HydroSHEDS for hydraulic 210 

modeling. This one-dimensional model applies Manning’s equation to calculate river stages. The 

GAR flood map also considers artificial flood defense by assuming target return periods of flood 

defenses based on the GDP distribution, thereby locally reducing the estimated flooded volume 

within the estimated protected area. The dataset is characterized by return periods of 25, 50, 100, 

200, 500, and 1000 years, a coverage of 60N to 60S, with a native resolution of 90 meters from 215 

the SRTM DEM, later aggregated to 1-km for risk computation (Rudari et al., 2015). 
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(3) GFPlain250m floodplain map. The aforementioned geomorphically delineated GFPlain250m 

floodplain map is used as the benchmark and another validation dataset (Nardi et al., 2019). It 

shares the same coverage with GAR (60N to 60S). For each grid, it calculates the height above 220 

the lowest elevation grid within the same watershed (i.e., the basin outlet) as the terrain attribute 

rather than the nearest river grid to which it drains. This exaggerates the vertical distance to streams 

for upstream pixels and may thus lead to underestimation of floodplain. FHG is applied as the 

thresholding scheme (Nardi et al., 2006), but the exponent takes universal values across different 

basins (i.e., exponential parameter b = 0.3, proportional parameter a = 0.01) for convenient global 225 

applications. It takes the 250-m SRTM DTM as terrain input and implements the hydrological 

analysis workflow by using the ArcPy library. 

 

(4) GLWD lake and reservoir dataset. We apply a global lake mask to crop the reference map 

before using it for parameter estimation, which helps to avoid inconsistent lake representations 230 

from our reference and validation datasets. To do that, the Global Lake and Wetland Dataset 

(GLWD) jointly developed by the World Wildlife Fund (WWF) and the Center for Environmental 

Systems Research at the University of Kassel (Lehner and Döll, 2004) is used. It consists of three 

layers and the Level-1 layer represents large lakes and reservoirs, including 3,067 lakes and 654 

reservoirs with lake area ≥ 50 km² and storage capacity ≥ 0.5 km³, respectively. The dataset takes 235 

reference from multiple sources and is further refined with independent data from USGS and 

extensive visual inspections and quality control. 

2.1.3 Datasets for correlation 

(1) Global-AI_PET_v3 Aridity Index database. We use the Aridity Index (AI) from the Global 

Aridity Index and Potential Evapotranspiration Database (Global-AI_PET_v3) to assess its linkage 240 

with the FHG parameter. The database provides 30 arc-second global Potential Evapotranspiration 

(ET0) and AI data. AI is calculated as the ratio of mean annual precipitation to mean annual 

reference ET0, which is estimated by the FAO Penman-Monteith Reference Evapotranspiration 

equation. It has been validated against various weather station data and shows an improved 

correlation with real-world data compared to previous versions (Zomer et al., 2022). 245 
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(2) LAI Climatology. Developed for a model intercomparison project (HighResMIP v1.0) of 

CMIP6, this dataset provides a global 0.25° x 0.25° gridded monthly mean leaf area index (LAI) 

climatology, averaged from August 1981 to August 2015 (Haarsma et al., 2016). Derived from the 

Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping 250 

Studies (GIMMS) LAI3g version 2, it includes bi-weekly data from 1981 to 2015. The raw LAI3g 

version 2 data were regridded from 1/12° x 1/12° to 0.25° x 0.25°, processed to remove missing 

and unreasonable values, scaled to obtain LAI values, and averaged bi-weekly to monthly. The 

final product is a monthly long-term mean LAI (1981-2015) provided in a single NetCDF (.nc4) 

file. 255 

 

 

2.2 Methods 

This section introduces HAND, FHG and our parameter estimation scheme for SHIFT.  

 260 

(1) HAND as a terrain attribute. HAND is a derivative terrain index that describes the relative 

elevation difference between any grid cell in a DEM and its nearest river grid (Rennó et al., 2008). 

River grid here is identified by applying a 1000 km2 threshold to the Upstream Drainage Area 

(UPA), supported by previous studies (Nardi et al., 2019). The threshold is determined by 

preliminary experiments to ensure that it is neither too small, which would misattribute large-river-265 

dominated floodplains to small rivers, nor too large, which would overlook rivers with notable 

influence. Accurate HAND calculation requires defining the nearest river network grids either by 

flow direction or by distance. The flow direction model defines the first river network grid reached 

by tracing the d-8 flow as the nearest drainage, resulting in floodplain maps that capture regional 

hydrological characteristics but influenced by local terrain fluctuations. The distance model 270 

searches for the nearest drainage grid with a specific distance (e.g., two-dimensional or three-

dimensional Euclidean distance), highlighting geometric considerations but ignores natural 

geomorphic separations. We adopt the flow direction method to avoid discontinuities in HAND 

introduced by the distance model (not shown); subsequent results in floodplain delineation are 

derived from using the d-8 flow directions obtained from the MERIT-Hydro dataset.  275 
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(2) FHG as a thresholding scheme. FHG is an adapted form of the original river channel hydraulic 

geometry (Leopold and Maddock, 1953). It posits a power-law relationship between floodplain 

characteristics (width, depth, 100-year discharge) and river size (UPA or Strahler stream order). In 

the context of floodplain delineation, it considers a power-law relationship between the potential 280 

inundation depth (h) of a river grid cell and its UPA:  

 

ℎ = 𝑎 ∙ 𝑈𝑃𝐴𝑏 𝐸𝑞𝑛. (1) 

 

where a and b are empirical parameters containing heterogeneous factors determining floodplain 285 

extents. Then, the algorithm determines grid cells with HAND lower than h of the corresponding 

river grid (hriver) as floodplain, which can be represented by Eqn. (2): 

 

𝑓(𝐻𝐴𝑁𝐷, ℎ𝑟𝑖𝑣𝑒𝑟) = {
1, 𝐻𝐴𝑁𝐷 ≤ ℎ𝑟𝑖𝑣𝑒𝑟

0, 𝐻𝐴𝑁𝐷 > ℎ𝑟𝑖𝑣𝑒𝑟
𝐸𝑞𝑛. (2) 

 290 

(3) FHG parameter estimation. Estimating FHG parameters requires either reference floodplain 

extents or estimated runoff as inputs (Annis et al., 2019; Nardi et al., 2013). We take two 

hydrodynamic model outputs as the reference map (i.e., the 500-year return period JRC and GAR 

flood maps) as they intrinsically contain floodplain spatial heterogeneity by feeding gauged 

streamflow observations or climate reanalysis data (Lindersson et al., 2021). The goal of using 295 

these reference datasets is to capture the information of spatial heterogeneity of these two datasets 

while trying our best to constrain model-related uncertainties.  

 

With the above reference map, two methods can be used to estimate FHG parameters: parameter 

space sampling (PSS) and logarithmic regression (LR). PSS defines a feasible range for two 300 

parameters in Eqn. (1), and then samples the parameters from the parameter space and tests their 

combinations against a reference map by using a fitness index (Annis et al., 2019). LR assumes 

that all floodplain grids from the reference map satisfy the scaling law so that the FHG parameters 

b and a can be estimated by statistical approximation (Nardi et al., 2013). For LR, we expect all 

floodplain pixels in the reference map to satisfy:  305 

 

𝐻𝐴𝑁𝐷 ≤ 𝑎 ∙ 𝑈𝑃𝐴𝑟𝑖𝑣𝑒𝑟
𝑏 𝐸𝑞𝑛. (3) 
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which could be transformed into: 

 310 

𝑙𝑛(𝐻𝐴𝑁𝐷) ≤ 𝑏 ∙ 𝑙𝑛 (𝑈𝑃𝐴𝑟𝑖𝑣𝑒𝑟) + 𝑙𝑛 (𝑎) 𝐸𝑞𝑛. (4) 

 

Apparently, PSS can best approximate the output but could lead to equifinality, while LR 

emphasizes the scaling law but could be influenced by uncertainties of the reference data (see more 

details below). Therefore, we combine the two methods above and propose a stepwise parameter 315 

estimation framework. Specifically, we first determine baseline values for parameter a0 from prior 

research, then estimate b by forcing logarithmic regression based on the reference dataset to best 

respect the FHG scaling law; then, the coefficient a is calculated by sampling parameter space 

based on the reference map and the determined b value. 

 320 

Equation (4) anticipates a positive linear relationship (Fig. 2a) between ln(UPAriver) and the 

maximum ln(HAND) values that mark the furthest floodable grid by each river grid, but our 

observations deviate from this expectation because some river grids with small drainage areas can 

have unexpectedly high HAND values. These can be ascribed to uncertainties with our reference 

map that inherits the model chain errors, terrain data and spatial resolution inconsistencies, as well 325 

as other unaccounted within-basin variability that may break the scaling law. While results from 

the Gaussian kernel density plot (Fig. 2b) prove that the majority of data still conforms to the 

power law, the patterns indicates that one cannot simply apply LR to the maximum ln(HAND) and 

ln(UPAriver) to obtain the required parameters. 
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 330 

Figure 2. The expected and actual scenario of floodplain grids within a basin. X-axis 

represents ln(UPAriver), y-axis represents ln(HAND). a) shows the scatter plot of the expected linear 

relationship between maximum ln(HAND) and ln(UPAriver). Blue scatters are the maximum 

HAND values while gray scatters are non-maximum reference floodplain grids. b) shows an actual 

scenario (i.e., the Yangtze River basin corresponding to the level-3 HydroBASINS, PFAF ID: 434) 335 

which approximately arrives at the power law relationship in kernel density plot.  

 

Therefore, we develop a scheme to effectively mitigate data noises in estimating parameter b while 

maintaining the power law for the majority of grids. First, we take floodplain grids from the 

intersection of the two reference maps as we suggest the intersection map to be more accurate. 340 

Then we set a universal HAND threshold of 20 m to screen out the most obvious high anomalies. 

We then group HAND values by UPAriver and apply an iterative moving-window data-filtering 

scheme based on 3-sigma statistics where every grid would be filtered by 20 windows (window 

size = 1, step = 0.1). In each iteration, we compute the mean and standard deviation for the data 

within each window. A grid point is retained only if it consistently meets the 3-sigma criteria across 345 

all 20 windows. This iterative process stops either when every data point fits within all moving 

windows, or if the procedure fails to converge towards a stable solution (e.g., for highly noised or 

significantly non-normal data). Instead of directly performing LR, we calculate a sequence of 

theoretical b values from the maximum HAND of each UPAriver unit with a baseline estimate of a0 
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= 0.01 based on prior research (Nardi et al., 2019).The binning parameter is tuned to effectively 350 

reduce data noise for all basins. As the optimal b will lean towards the higher end of our calculated 

sequence but not at the highest end as it could be possibly interfered by remaining high HAND 

anomalies, we evaluate the 10% to 50% percentiles of these b sequences across all basins to 

identify the best percentile that centers around the previously estimated global b value of 0.3 (Nardi 

et al., 2019). The b value under this identified percentile is then chosen as the optimal parameter 355 

for each individual basin. 

 

After b is determined, the coefficient a is optimized with an iterative PSS method. We take both 

hydrodynamic maps as our reference dataset, as we would like to highlight the ‘consensus’ of 

existing maps while trying to achieve better consistency from both maps. Numerous indices for 360 

the optimization target exist, including Overall Accuracy (OA), Kappa coefficient (Cohen, 1960), 

Fleiss’s Kappa (Fleiss, 1971), Model Agreement Index (MAI, Trigg et al., 2016) or measure-of-fit 

function (Nardi et al., 2019). While MAI and measure-of-fit function emphasize data overlap, they 

do not address overprediction. OA considers unpredicted areas but may overly reward non-

floodplains since they are the major landmass type. Fleiss’s Kappa can assess agreement among 365 

multiple datasets, but using it alone with two existing datasets may bias our estimated boundary 

towards the dataset with larger predictions as it maximizes mathematical consistency values. This 

is undesirable since we aim for agreement with each individual dataset to balance the information 

from both. Therefore, our target function is defined as: 

 370 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  𝐹𝐾 − 𝜎 ∙ (𝑀𝐴𝐼𝐽𝑅𝐶 − 𝑀𝐴𝐼𝐺𝐴𝑅)
2

𝐸𝑞𝑛. (5) 

 

Here, Fleiss’s Kappa (FK) represents how well the three datasets (including the product with the 

parameter to be optimized) match. The penalty term, based on the squared difference between the 

two MAI values, reduces bias towards one dataset over the other. The weight term (σ), ranging 375 

from 0 to 1, is determined by the normalized number of available reference data grids in the basin. 

This assumes that basins with fewer common data grids have less reliable datasets, and thus 

overemphasizing the penalty term would unnecessarily and overly influence FK. 

 

Fleiss’s Kappa (FK) is calculated as: 380 
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 𝐹𝐾 =  
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
𝐸𝑞𝑛. (6) 

 

Where Po and Pe are respectively calculated by: 

 385 

𝑃𝑜 =
1

𝑁
∑

∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)𝐶
𝑗=1

𝐾(𝐾 − 1)

𝑁

𝑖=1

 𝐸𝑞𝑛. (7) 

𝑃𝑒 = ∑ (
∑ 𝑛𝑖𝑗

𝐾
𝑖=1

𝑁𝐾
)

2𝐶

𝑗=1

𝐸𝑞𝑛. (8) 

 

In these equations, K is the number of models (3 here), N is the number of pixels, i represents each 

grid, and j represents different possible values (1 or 0 here). The MAI is calculated as:  390 

 

𝑀𝐴𝐼 =
𝐴

𝐴 + 𝐵 + 𝐶
𝐸𝑞𝑛. (9) 

 

Where A, B, C denote overlapping (True Positive), over-predicition (False Positive), and under-

prediction (False Negative) respectively. Considering the previously estimated a values range 395 

across 0.001 to 0.06 (Nardi et al., 2018), we first sample 20 equidistant a values between 0 and 1 

against the reference data. Then the direct neighbor of the best-performing a value, constraining 

its precision to at least one decimal place, is used to search for the true optimal a. We apply five 

iterations, each with a new set of 20 equidistant a values within the estimated direct neighbors 

from the last iteration. The optimal a from the final iteration is then selected as the basin-specific 400 

coefficient.  

 

(4) Development of SHIFT. Based on the above, we estimate the FHG parameter with the 

HydroBASINS level-3 basins, and derive the floodplain map for each basin and then integrate 

them into a 90-m global floodplain map. We use Python 3.10 libraries (e.g., Pandas, Numpy and 405 

Geopandas), the GDAL command line interface and the TauDEM toolkit (Tarboton, 2016) for the 

FHG parameter estimation and the thresholding . We also downsize the dataset to 1-km resolution 
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floodplain map for convenient large-scale applications - the 1-km resolution floodplain map is 

provided as part of the final output. We used median as the resampling method for continuous 

variables like UPA and HAND, and mode for categorical data, such as the reference maps, SHIFT, 410 

and watershed division. Permanent water bodies are removed for all processes.  

 

(5) Validation & Correlation. After getting the updated floodplain boundary with the optimized 

parameters (SHIFT), we conduct a pairwise consistency analysis among five maps, i.e., SHIFT, 

GFPlain250m, UP (Universal Parameters, applying b = 0.3 and a = 0.01 on MERIT-Hydro), JRC 415 

and GAR. UP was generated to allow the assessment of how changes in parameters influence the 

results. We apply both MAI (see Eqn. 9) and OA for this pairwise consistency analysis in reference 

to previous research (Lindersson et al., 2021). Note that MAI is a critical index: a MAI of 0.2 

represents 20% to 33% overlapping between models, while a MAI of 0.5 represents 50% to 67% 

overlapping. Previous large-scale assessment of floodplain map consistencies revealed that the 420 

median MAI is at the range of 0.1 to 0.4 (Lindersson et al. 2021). OA is calculated as: 

 

𝑂𝐴 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
𝐸𝑞𝑛. (10) 

 

where D denotes non-prediction by both maps, and A, B, and C are as defined in Eqn. (9). The two 425 

types of indices applied here have different focuses: OA considers non-floodplain areas, while 

MAI focuses exclusively on overlapping floodplain areas. Considering the overall landmass is 

non-floodplain, we also calculated OA within 20-km buffer zones, with distance measured as the 

hydrological distance to the stream. In the pairwise comparison, group comparisons were 

conducted with JRC and GAR, where each hydrodynamic map was tested against SHIFT, GFPlain, 430 

and UP. The JRC-GAR pair serves as the baseline.  

 

For our analysis, we focus on parameter b. Theoretically, b influences rivers differently based on 

their drainage area, with larger b values highlighting the dominance of large rivers over tributaries 

in shaping floodplain extents. Thus, we expect b to be closely associated with the spatial 435 

heterogeneity of basin-level hydrological and geomorphic characteristics. Our primary hypothesis 

is that b should be related to climate aridity, as more humid areas are expected to show stronger 
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dominance of large rivers. Additionally, vegetation, indicated by LAI (Leaf Area Index), may also 

play a role since it is involved in the runoff generation process as well as modulating soil erosion 

that can be key to floodplain formation. Therefore, we calculate the correlation of b with average 440 

AI (Aridity Index) and LAI across all basins to validate whether our thresholding scheme can 

better capture the spatial heterogeneity of floodplain characteristics. 

 

 

3. Results 445 

3.1 Global FHG parameter estimation 

Following the stepwise parameter estimation scheme proposed in Section 2.2 (3), we obtain the 

statistical distributions of different b percentiles in Fig. 3b. While distributions from all percentiles 

exhibit similar patterns, especially for the 20th to 50th percentiles, we apply the 30th percentile 

worldwide as it best distributes around the previously estimated global b value of 0.3 (Nardi et al., 450 

2019; see dashed line in Fig. 3b). The majority of estimated parameter b lies within the range of 

0.25 and 0.35. Based on the estimation, the coefficient a is also optimized which varies from 

0.0001 to a maximum of 0.12 across all basins.  

 

Spatially, the distribution of the estimated b (Fig. 3a) shows that regions characterized by abundant 455 

precipitation and water resources (e.g., southern East Asia, Southeast Asia, the Mississippi and 

Amazon) generally exhibit relatively higher b values. Conversely, regions such as Central-West 

Asia, the Arabian Peninsula, the Sahara region, and central Australia tend to have relatively lower 

b values. There are also exceptions, for instance the overall high b values in the arctic circle, and 

low values in river deltas (e.g., the western Mississippi Delta in Louisiana, Jiaodong Peninsula in 460 

Eastern Asia). Estimated parameter a exhibits a less clear spatial pattern (Fig. S1) as it is less 

uniform in unit and highly dependent on estimated b. 
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Figure 3. Statistical and spatial distribution of estimated FHG parameter b. a) Spatial 465 

distribution of parameter b across HydroBASINS level-3 basins. b) The distribution of parameter 

b across basins, p10 to p50 represent the percentiles during estimation, b = 0.3 line shows the 

universal value applied in previous research.  

 

Statistically, results show that b from all basins exhibits significant but weak positive correlation 470 

with the AI (Aridity Index, r = 0.335, Fig. 4a), and an insignificant positive correlation with LAI 

(Leaf Area Index, r = 0.083, Fig. 4b). For the selected 33 major basins, which are hydrologically 

connected and thus expected to have more internally consistent hydrological characteristics, both 

correlations are stronger (r = 0.680 for AI and r = 0.668 for LAI) and significant. We investigate 

other potentially relevant factors (Fig. S1), but no significant and consistent linear correlations 475 

were observed, suggesting that more complex mechanisms may be involved that do not manifest 

as observable linear correlations. 
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Figure 4. Scatter plots of FHG parameter b against relevant hydroclimatic factors. a) Scatter 480 

plot with AI (Aridity Index). b) Scatter plot with LAI (Leaf Area Index). In each plot, gray points 

represent all basins, including the largest ones, while red points represent the 33 selected basins. 

Pearson's r and significance levels are indicated on the plots.  

 

 485 

3.2 Global floodplain delineation 

Based on the estimated FHG parameters, the global distribution of floodplain areas is delineated 

and shown in Fig. 5a. Overall, the spatial pattern of the floodplains aligns well with the low-lying 

areas in major river systems. More specifically, floodplains in Northern Asia are mainly distributed 

around the West Siberian Plain and the Central-West Siberian Plateau, e.g., the Ob and Yenisei 490 

River Basins. West and Central Asia’s floodplains are primarily near the Caspian Sea, the Aral Sea, 

and the Mesopotamian Plain. In East Asia, the Yangtze River Basin dominates floodplains in the 

middle and lower reaches, along with contributions from the North China Plain, some Yellow River 

tributaries such as the Hetao Plain, and river mouths in the southeast. The Lancang-Mekong River 

Basin and the Salween-Irrawaddy River Basin in Southeast Asia also breed the largest floodplains 495 

worldwide, as well as the Indus and Ganges-Brahmaputra River Basins from South Asia. In Europe, 

the primary floodplains are concentrated in the Danube River Basin between the Alps and the 

Carpathian Mountains, alongside the Rhine, Dnieper and Po River Basins. In Africa, floodplains 
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are predominantly distributed in the upstream Nile River, including the Nile Delta and the Niger 

River Basin, as well as the Congo River Basin, the Chari River-Lake Chad Basin and around Lake 500 

Victoria, with additional areas near West and East Africa's coasts. North America's floodplains are 

mainly in the Mississippi River Basin and Alaska's Yukon River Basin. South America's 

floodplains are primarily in the Amazon River Basin, the Orinoco plain, and the La Plata plain. In 

Oceania, floodplains center in the interior lowlands around the Murray-Darling River Basin.  

 505 

To show more regional details, we use two cases under different climatic conditions (Figs. 5b & 

5c) to further illustrate the differences between SHIFT and the widely used GFPlain250m dataset. 

Case 1 (Fig. 5b) is the Indus-Ganges-Brahmaputra River basin which flows through Bangladesh, 

India, Pakistan, and Nepal. These countries are primarily characterized by frequent floods and are 

strongly influenced by the South Asia monsoon. SHIFT captures detailed floodplains in the Indus 510 

River basin, a major basin in South Asia where GFPlain250m leaves out. Additionally, SHIFT 

offers finer details in upstream areas and can better distinguish main river floodplains from those 

of the tributaries. Case 2 (Fig. 5c) is situated in the Yellow River basin (Hetao Plain) in Inner 

Mongolia, China, a region dominated by arid to semi-arid continental climate. Comparing the 

floodplain maps with visual interpretations of the satellite images suggests that SHIFT can provide 515 

a more comprehensive depiction of the Hetao Plain. The floodplains outside of the Hetao Plain in 

SHIFT are relatively limited, which aligns with its generally dry climate conditions. 
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 520 

Figure 5. Geomorphic floodplain extent in SHIFT. a) Global spatial distribution of floodplains, 

with major river basins or plains marked out. b) and c) show two cases of that compares SHIFT 

with GFPlain250m, with background image from © Google Earth on EPSG: 3857 projection. b) 

locates in the humid Indian-Ganges River basin, while c) locates in the semi-arid yellow river basin 

in inner Mongolia, China. Major rivers of the region is marked on the map. SHIFT delineates fewer 525 

areas in the upstream Ganges River (b) and reduces the floodplain extent outside the Yellow River 

mainstream (c). It also offers more comprehensive coverage, including the Indus River basin (b) 

and the Hetao basin (c). 

 

According to SHIFT, global floodplains take up approximately 9.91 million km2, representing 6.6% 530 

of the world's total land area. Fig. 6 further shows the floodplain area and the percentage of 
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floodplains within each of the global major river basins. Overall, the Amazon River Basin 

possesses the largest total floodplain area globally (625,431.3 km2), followed by the Parana, Nile, 

Ganges and Mississippi River basins. Floodplains in Haihe River Basin takes up the greatest area 

percentage (~20%), highlighting the great geomorphic flood inundation potential of such basins. 535 

Comparing across continents, South America and Asia breed the most widespread floodplain 

extent worldwide and tend to have the highest floodplain percentages. 

  

 

Figure 6. Floodplain area statistics in major river basins. Blue bars stand for total floodplain 540 

area (left y-axis), red bars stand for the ratio of floodplain area to the total basin area (right y-axis). 

Basins are ranked by total floodplain area. AF: Africa, AS: Asia, AU: Australia, EU: Europe, NA: 

North America, SA: South America. 

 

 545 

3.3 Validation and consistency analysis 

Figure 7 shows the basin-level distribution of MAI between SHIFT and the two hydrodynamic 

maps. It shows that: (1) SHIFT exhibits stabler consistency with the two maps in major basins 
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(e.g., the Yangtze and the Amazon) compared to smaller basins; (2) Better consistency between 

SHIFT and reference maps is found in humid basins, with some exceptions in arid areas (e.g., the 550 

Niger). These patterns may be attributed to the greater number of reference data grids in larger and 

wetter basins, which also have strong scaling relationships that support a geomorphic approach for 

floodplain mapping. In addition, SHIFT generally aligns better with JRC in major river basins, 

while consistency with GAR is higher in smaller basins and inland river basins. The median MAI 

with JRC is 0.271, while for GAR it is 0.308. For the 33 major basins, the median MAI with JRC 555 

and GAR are 0.415 and 0.289 respectively. This difference can be ascribed to the different river 

stream delineation strategies adopted by the two datasets. That is, JRC uses a stream threshold of 

5000 km² for drainage area, while GAR uses 1000 km². Consequently, JRC is less effective in 

capturing features of inland basins (e.g., the Tibetan Plateau) and fragmented river deltas (e.g., 

west of the Andes), where few rivers meet the 5000 km² threshold. For large basins, JRC performs 560 

better as it highlights the inundation of larger rivers (e.g., the Mississippi), while in GAR small 

rivers also yield large floodplain extents. Notably, SHIFT generally aligns better with JRC for the 

Arctic basins, as GAR lacks data north of 60°N. 

 

 565 

Figure 7. Validation of SHIFT against two reference datasets. In the bivariate map, the two 

variables are the MAI against the JRC map (magenta) and the GAR map (yellow). A balanced 

MAI results in red basins. 
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Figure 8a shows the pairwise consistency analysis among different floodplain maps to more 570 

objectively document the pros and cons of each dataset. Prominently, it shows that the consistency 

between SHIFT and JRC significantly improves over UP and GFPlain, but that with GAR does 

not (as shown in MAI). The consistency pattern can be explained by delving into the inner working 

of each dataset. For large basins, SHIFT highlights the mainstreams and reduces prediction of 

tributaries, thus aligning more closely with JRC as it highlights major rivers, leading to a decrease 575 

in consistency with GAR. UP and GFPlain align better with GAR in these regions, as they all tend 

to overpredict, especially in tributaries. For other basins, SHIFT strikes a balance between the two 

datasets. Comparing SHIFT with UP, SHIFT increases the lower interquartile range for JRC’s OA 

and the upper interquartile range for GAR’s OA, highlighting a general improvement with SHIFT. 

For MAI, the upper quartile with GAR has decreased while the lower quartile has improved, 580 

suggesting a consistency trade-off between the two datasets. Notably, all geomorphic maps show 

a better consistency with the hydrodynamic outputs than the hydrodynamic pair, proving again 

that the hydrogeomorphic delineation method is a more globally consistent framework. 

 

To better understand the impact of our estimated parameters on the consistency performance, we 585 

analyze the most consistent pair and corresponding MAI values for each basin. Among all pairs, 

SHIFT-JRC aligns the best in 62 basins, with SHIFT-GAR in 74, UP-JRC in 8, and UP-GAR in 

37 (Fig. 8b). This validates that SHIFT exhibits better consistencies with the reference maps even 

though the difference between SHIFT and UP seems not statistically significant (Fig. 8a). Spatial 

patterns (Fig. 8b) show that SHIFT-JRC pairs aligns best in humid major basins (e.g., the 590 

Mississippi and Amazon) and very arid regions (e.g., the Taklamakan and central Australia). 

SHIFT-GAR pairs are the most consistent in mountainous regions (e.g., the Rockies and Andes), 

aggregated deltas (e.g., eastern Australia and southern Africa), islands (e.g., Indonesia), and inland 

river basins (e.g., the Tibetan Plateau) where few rivers meet the 5000 km² drainage area threshold 

of JRC. In contrast, cases where UP pairs align best are less common. UP aligns better with GAR 595 

due to their shared large prediction extents, such as around the Caspian Sea. In rare instances where 

UP-JRC pairs perform best, it is typically in deltas or regions where SHIFT-GAR performs well, 

such as deltas and islands. This is likely because our method balances consistency between the 

datasets, but GAR’s wider prediction coverage makes this strategy less effective in these infrequent 

cases.  600 
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Note that GFPlain and UP use the same parameter for its geomorphic delineation, but their 

consistency with JRC and GAR differs significantly (Fig. 8a). This is because GFPlain uses 250-

m SRTM as the terrain input, while UP uses MERIT-Hydro, which has undergone hydrological 

correction to lower the elevation of waterbody pixels, resulting in higher HAND values and smaller 605 

floodplain extents. GAR, which generally overpredicts floodplain extents especially in arid regions, 

aligns better with GFPlain. The overprediction of GAR is evidenced by GAR-pairs having the 

lowest OA, as OA strictly penalizes overprediction. At the same time, we found the difference 

between SHIFT and UP may be under-represented in the statistical plots (Fig. 8a) while the actual 

impact of variable parameters brought by SHIFT is substantial: the global floodplain extent 610 

estimates are 14.95 million km² for UP and 9.91 million km² for SHIFT, showing a 50.85% 

difference in total predicted areas. Additionally, regions where UP-GAR has the highest 

consistency (Fig. 8b) generally coincide with regions where SHIFT-JRC aligns best. This reversed 

pattern of consistency further supports that the statistical differences between UP and SHIFT are 

underrepresented in Fig. 8a. 615 
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Figure 8. Results of the consistency analysis. a) Boxplots of pairwise analysis among SHIFT, 620 

GFPlain, UP (MERIT-Hydro but with Universal Parameters), JRC, and GAR across three metrics: 

MAI (left), OA (middle), and OA within a 20-km buffer (right). Two group comparisons are 

marked in different colors (magenta for JRC and yellow for GAR). Statistics for all basins with 

valid data inputs (see Methods) are shown in blue boxes, and those for the 33 major river basins 

are shown in orange. b) Bivariate choropleth map of the highest-performance MAI pair among 625 

four pairs (SHIFT & JRC, SHIFT & GAR, UP & JRC, UP & GAR) and the corresponding MAI 

value for each basin. Different pairs are represented by different hues, with higher MAI values 
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shown in higher saturation. Basins where a SHIFT-pair performs best are marked in cold colors, 

while those where a UP-pair performs best are represented in warm colors. Among all pairs, 

SHIFT-JRC performed best in 62 basins, SHIFT-GAR in 74, UP-JRC in 8, and UP-GAR in 37.  630 

 

 

4. Discussions 

Several conceptual and technical details warrant discussions when developing our improved 

geomorphic parameter estimation approach. Here, we discuss the pros and cons of SHIFT with 635 

respect to its FHG thresholding scheme, residual uncertainty, hydrogeomorphic floodplain 

boundary, and the spatial scale used in our methodological development. 

 

4.1 FHG as a thresholding scheme 

The primary contribution of this study is the estimation of localized parameters for the FHG model. 640 

In section 3.3, we compared the performance of localized versus global parameters, but several 

aspects require further clarification.  

 

First, we believe the need for localized parameters arises from the role that empirical parameter in 

FHG plays in determining floodplain boundary. A higher b value emphasizes the influence of larger 645 

rivers in shaping geomorphic floodplains, reflecting hydrogeomorphic processes that vary across 

different basins and should be better represented. Given the absence of ground truth for floodplain 

boundaries, we attempt to improve representation of these heterogeneous processes by balancing 

information from two existing reference maps from hydrodynamic modeling. Despite 

acknowledged inconsistencies, the hydrodynamic maps are informed by climatic forcing, 650 

providing a common basis more likely to spatially heterogeneous than universal geomorphic 

parameters. In other words, while we do acknowledge these maps can be uncertain, they contain 

useful information that can be applied to constrain geomorphic floodplain boundaries. This leads 

to our data filtering process to reduce inconsistency and to identify a scaling law from the 

references. By incorporating outputs from hydrodynamic maps, our approach optimizes the DEM-655 

based model without altering its foundation, as evidenced by the overall better consistency 

regardless of parameters used (Fig. 8a). Although certain regions may benefit less from our 
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strategy (e.g., where UP-JRC performs best), results (Fig. 8b) show convincing general 

improvements and consistency patterns. The estimated parameters derived here are also provided 

to support potential future studies with regionalized focuses. 660 

 

Second, our estimated parameters aim to capture fingerprints from spatially varying hydrological 

and geomorphic processes that can influence the floodplain extent. We consider aridity as the 

primary factor influencing the spatial variability of b, based on the assumption that in humid basins, 

rivers with larger upstream drainage areas exert greater dominance over smaller segments in 665 

shaping floodplains. Vegetation also plays a role, as it influences runoff generation and modulates 

soil erosion, both key to floodplain formation. Additionally, factors such as terrain and soil 

composition might influence the results. Given the data uncertainties and the complex physical 

interpretations of b, it is important to note that we do not expect perfect relationships between these 

factors and the derived exponent b. The correlation analysis indeed aligns with our expectations: 670 

AI is statistically significant in explaining the spatial variability of b, while LAI plays a role and 

terrain does not show strong correlations with b. Soil compositions (Poggio et al., 2021) do not 

exhibit a consistent pattern across analyses done at different scales (Table S1). Despite the not-so-

strong correlation with AI and LAI, its statistical significance supports the effectiveness of our 

proposed methods, which helps to derive spatially-varying parameters that are also physically 675 

meaningful. The parameter a could also encapsulate influences from relevant processes, but its 

physical interpretation is highly dependent on b, as its unit is less uniform (Nardi et al., 2006). 

Therefore, clarifying the influencing processes of a is beyond the scope of this study. 

 

Third, although alternative thresholding methods that use river discharge and synthetic rating 680 

curves exist (e.g., those used by the US National Water Model, Zheng et al., 2018), these methods 

come with more sources of uncertainty by requiring high-quality data inputs (e.g., gauged 

discharge, Manning’s coefficient). Thus, while they may work well with in-situ observations, 

replicating this globally poses challenges and is conceptually different from our approach. Our 

proposed FHG method requires only terrain input, which is recognized as the least uncertain 685 

component in global floodplain mapping method (Bates, 2023). By providing the optimized 

parameters derived here, we consider the FHG thresholding as more globally consistent and easily 

applicable. 
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4.2 Residual uncertainties associated with FHG parameter estimation 690 

We also recognize several uncertainties associated with the FHG relation. The primary source of 

uncertainty comes from the inconsistency between the two reference hydrodynamic datasets across 

regions, which can be traced back to their model chain errors. Several measures are taken to 

mitigate the potential influence: we take the intersection of the two datasets as the reference, apply 

an iterative moving-window scheme to filter the data, and force scaling-law relationships to 695 

estimate the parameter b. However, residual uncertainties may still exist due to three aspects: (1) 

Inconsistencies in terrain data, as both JRC and GAR use SRTM as the inputs while we use 

MERIT-Hydro; (2) Potential intra-basin heterogeneity of scaling relationships which may lead to 

unstable estimates; (3) The lack of reference data in certain basins, which lowers our credibility in 

the estimated parameters. To evaluate how the residual uncertainty influences our FHG parameter 700 

estimation, we quantify the uncertainty of b by calculating the standard deviation among all 

possible b values derived at different percentiles. This metric assesses how well the data conforms 

to the power law: a better-conforming set of data result in a narrower range of the estimated b 

sequence and, consequently, lower standard deviation. A lower standard deviation also supports 

the application uniform filtering percentiles globally (see Methods) and proves robustness of our 705 

approach.  

 

Figure 9 reveals the residual uncertainty in parameter b, which ranges from 0 to 0.03 with a median 

of 0.01. This is considered reasonable for a global median b of 0.3. The pattern is similar to that 

parameter b itself (Fig. 3), with lower uncertainties in large humid basins (blue color), and greatest 710 

uncertainty (red color) observed in arid regions (e.g., The Saharan Regions and western-central 

Australia), mountainous areas (e.g., the Rocky Mountains and the Andes), and deltas (e.g., The 

Jiaodong Peninsula, the western Mississippi Delta and the Nile Delta). High residual uncertainty 

in these regions are possibly due to the particularly strong differences between the reference 

datasets. For deltas, the great inconsistencies in spatial extents are amplified by their different 715 

definition of rivers, as JRC and GAR respectively takes up a stream threshold of 5000 km2 and 

1000 km2. It also explains the unexpectedly low b values in deltas observed in Fig. 3. In contrast, 

the Arctic exhibits generally low uncertainty, likely because only one reference dataset is available 

above 60N, reducing discrepancies and thus lowering remaining uncertainty.  
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 720 

 

 

Figure 9. Spatial pattern of the residual uncertainty of parameter b by basins. Residual 

uncertainty is quantified as the standard deviation among all possible b values derived at different 

percentiles (see Section 2.2 for details). 725 

 

4.3 Floodplain definition and inundation maps 

We also dedicate some discussions to the definition of floodplains here as numerous definitions 

exist for different intended uses. Geomorphically, a floodplain is an accumulation plain along a 

watercourse, formed by unconsolidated sediment transported and deposited by the stream, usually 730 

flooded during high flows (Brierley and Fryirs, 2013). This definition emphasizes the formation 

process. From a hydrologist or a flood manager’s perspective, the floodplain is often associated 

with inundation attached to certain flood strengths (Krizek et al., 2006), which can be also referred 

to as the hydraulic floodplain. Alternatively, focusing on material flux exchanges yields different 

boundaries (Wohl, 2021). We consider these perspectives not contradictory but complementary in 735 

floodplain mapping processes as they highlight different aspects of floodplains. Specifically, 

geomorphic floodplains are predominantly shaped by low-probability but high-impact flood 

occurrences (Lindersson et al., 2021), which subsequently connects our goal of delineating a 

geomorphic floodplain with identifying a boundary that encompasses all potentially inundated 

areas under extreme conditions. Therefore, we have used two 500-year return period flood maps 740 

as references for estimating our parameters, only to ensure a sufficiently large boundary for the 
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carrying out of this algorithm. This way, the geomorphic definition of a floodplain is still obeyed. 

While the FHG parameters can be approximated for various return periods (Nardi et al., 2006), our 

approach does not focus on nor involve a specific return period for inundation. In other words, our 

goal is not to provide a mere substitute for inundation maps. Instead, we aim to leverage a river's 745 

geographical characteristics and hydrological extreme conditions, to identify scaling relationships 

that align with geomorphic principles, and to offer a more comprehensive understanding of global 

floodplain extents.  

 

4.4 Spatial scales of SHIFT 750 

The spatially varying parameters for SHIFT are derived at the scale of HydroBASINS Level-3 

basins, which depicts 269 river basins globally with some containing aggregations of smaller 

basins. These aggregated basins are not hydrologically connected and are less suitable for our 

thresholding scheme that estimates one set of parameters for each basin, compared to the largest 

basins which shares internally consistency hydrogeomorphic processes. A possible strategy to 755 

improve the scheme is to further divide these basins into smaller sub-basins, but smaller-scale 

analysis can increase the impact of reference data uncertainties especially in delta regions with 

high floodplain discordance (Fig. 5a). Parameters for Level-4 and Level-5 basins were also 

calculated (statistics are given in Table S1), but many basins had insufficient reference grids to 

give reliable estimations. Considering the high data noise that may limit further integration of sub-760 

basin level heterogeneity in estimating parameters, the spatial disaggregation scheme used by 

SHIFT (i.e., level-03) is sufficient in improving heterogeneity while offering reasonable physical 

interpretations of the parameters. 

 

Lastly, when calculating HAND as the terrain attribute for SHIFT, we set an UPA threshold of 765 

1000 km2 to delineate the river network grids following past studies (Nardi et al., 2019; Rudari et 

al., 2015). A sensitivity test on a smaller threshold (50 km2) not shown here suggests that more 

detailed floodplains around smaller rivers can be derived, but at the same time such a threshold 

can limit expected floodplains by large rivers. Conversely, a larger threshold, such as the 5000 km² 

used by the JRC dataset, imposes a stricter criterion on river streams, leading to fewer river 770 

networks and reduced floodplain boundaries in areas like deltas. Thus, this study considers the 
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1000 km2 UPA threshold to be valid. Future large-scale studies can further investigate the above-

mentioned scale parameters, but we expect the gains to be minimal. 

 

 775 

5 Conclusions 

In this study, we develop an improved thresholding scheme for large-scale DEM-based floodplain 

delineation, the core of which being a stepwise estimation framework for Floodplain Hydraulic 

Geometry (FHG) parameters that respects the power law while better integrating spatial 

heterogeneity from two publicly available hydrodynamic flood maps. We applied the framework 780 

at the scale equivalent to HydroBASINS Level-3 basins to derive localized FHG parameters as an 

update to previously global parameters that do not account for the heterogenous factors influencing 

floodplain extents. The optimized empirical exponent b in FHG exhibits statistically significant 

positive correlations with hydroclimatic conditions, particularly in major river basins. Based on 

the proposed framework, we created a global geomorphic floodplain map named SHIFT (Spatial 785 

Heterogeneity Improved Floodplain by Terrain analysis) using terrain inputs from the 90-m 

MERIT-Hydro dataset, where SHIFT is demonstrated to capture both the global patterns and 

regional details of geomorphic floodplains well. The effectiveness of our framework is supported 

by:  

 790 

1. The parameters show statistically significant but relatively weak relationships with 

hydroclimatic variables (e.g., AI, LAI), suggesting an enhanced representation of spatially 

heterogeneous hydrological and geomorphic information at the basin level. 

2. The filtered data conforms to a relatively stable power law, suggesting a robust regionalized 

scaling relationship. 795 

3. Parameter changes lead to improved consistency with existing maps, with better 

differentiation between mainstreams and tributaries in major basins and more comprehensive 

representation of stream networks in aggregated river basins. 

 

We provide the SHIFT data layers at two spatial resolutions (i.e., 90-m and 1-km) for the 800 

convenience of the users. The optimized parameters are also provided to support future studies.  
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Overall, we offer a framework for estimating spatially varying FHG parameters, contribute an 

updated geomorphic floodplain dataset, provide a better understanding of observable influences in 

the FHG scaling relationships, and expand on discussing the different focuses and implications of 805 

various floodplain mapping techniques. We hope our analysis to be helpful to enhance the 

understanding of current methodologies for defining and identifying active floodplains, especially 

in the context of changing climate. 
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